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Abstract—Motivated by applications in data center networks,
in this paper, we study the problem of scheduling in an input
queued switch. While throughput maximizing algorithms in a
switch are well-understood, delay analysis was developed only
recently. It was recently shown that the well-known MaxWeight
algorithm achieves optimal scaling of mean queue lengths in
steady state in the heavy-traffic regime, and is within a factor
less than 2 of a universal lower bound. However, MaxWeight is
not used in practice because of its high time complexity. In this
paper, we study several low complexity algorithms and show that
their heavy-traffic performance is identical to that of MaxWeight.
We first present a negative result that picking a random schedule
does not have optimal heavy-traffic scaling of queue lengths even
under uniform traffic. We then show that if one picks the best
among two matchings or modifies a random matching even a
little, using the so-called flip operation, it leads to MaxWeight
like heavy-traffic performance under uniform traffic. We then
focus on the case of non-uniform traffic and show that a large
class of low time complexity algorithms have the same heavy-
traffic performance as MaxWeight, as long as it is ensured
that a MaxWeight matching is picked often enough. We also
briefly discuss the performance of these algorithms in the large
scale heavy-traffic regime when the size of the switch increases
simultaneously with the load. Finally, we perform empirical study
on a new algorithm to compare its performance with some
existing algorithms.

Index Terms—Data Centers, MaxWeight, Scheduling, State
Space Collapse, Power-of-d, Bipartite Matching

[. INTRODUCTION

Input queued crossbar switches are essential components
in building networks and have been studied since the 90’s
[1]. There is now renewed interest in studying input queued
switches because they are good approximations of data center
networks built using Clos topologies [2][3].

The throughput performance of various algorithms was
studied in the past. It was shown in [1][4] that the cele-
brated MaxWeight algorithm maximizes throughput. However,
implementing a MaxWeight algorithm involves computing a
maximum weight bipartite matching at every time, which has a
complexity of O(n?%) [5], which is impractical given the size
of today’s data center networks. Therefore, lower complexity
algorithms that also maximize throughput were studied in
[6][71[8]1[9][10]. A low complexity algorithm with distributed
implementation is presented in [11].

While maximizing throughput is a first order metric and easy
to study, the objective in a real world data center is to minimize
delay. Due to Little’s law, studying steady-state delay is the
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same as studying steady-state mean queue length. However,
evaluating either of these is challenging in queueing systems.
Therefore, they are studied in various asymptotic regimes such
as heavy-traffic. The primary focus of this paper is heavy-traffic
regime, where the switch is loaded close to its capacity. In this
regime, the mean queue length goes to infinity, and we study
the rate at which it goes to infinity by considering the sum of
the queue lengths in heavy-traffic, multiplied by a heavy-traffic
parameter (e) that captures the distance to the capacity region.
Heavy-traffic queue length behavior under MaxWeight was
recently studied in [12][13][14] and an exact expression for
the heavy-traffic scaled mean sum queue lengths was obtained.
Moreover, it was shown that the queue lengths are within a
factor of 2 from a universal lower bound, thus establishing that
MaxWeight has an optimal scaling. Moreover, using Little’s
law, this result implies that the mean delay is O(1) independent
of the size of the switch. This result was obtained in [12] using
a novel drift method. The key step is to establish a state space
collapse (SSC) result, which shows that in heavy traffic, the
n? dimensional queue length vector lives close to a (2n — 1)
dimensional cone. The main challenge here was due to the
multidimensional nature of the SSC. The goal of this paper
is to study low complexity scheduling algorithms that have
MaxWeight like queue length performance on heavy-traffic,
i.e., within a constant factor of the universal lower bound.

A. Main Contributions

We first consider the switch under uniform traffic and
study random scheduling, where a matching is picked every
time uniformly at random. We show in Section III-A that,
under uniform traffic, while random scheduling achieves the
maximum possible throughput, its heavy-traffic behavior is
much worse. In particular, we show that for random scheduling,
the heavy traffic scaled mean sum queue length is ©(n?), as
opposed to ©(n) for MaxWeight. This is because random
scheduling does not exhibit state space collapse.

Then, in Section III-C, we study the power-of-d scheduling,
where d matchings are picked uniformly at random and the
best among them is used. We show that under uniform traffic,
power-of-d scheduling not only maximizes throughput, but also
has MaxWeight like heavy-traffic behavior. Inspired from [15],
we further propose an algorithm that we call random d-flip ,
where one matching is sampled at random, and one tries to
improve it by trying to flip two queues in the matching. We
show that under uniform traffic, this is enough to get maximum
throughput and MaxWeight like heavy-traffic behavior.



TABLE I
RESULTS PRESENTED IN THIS PAPER

Algorithm Throughput lim e Z @ij | E[>C;; ;] = | Amortized Complexity | Reference

Optimality b0 O(n+8) for B
MaxWeight Yes O(n) >4 O(n??) [12]
Random Uniform traffic | O(n?) N/A O(n) Sec 1II-A
Power-of-d Uniform traffic | O(n) > 6 O(dn) Sec 1II-C, Sec VI-A
Random d-Flip Uniform traffic | O(n) > 6 O(n+d) Sec 1II-D, Sec VI-A
Bursty MaxWeight Yes O(n) > 3+max(y,1) | O(nZ5/m) Sec TV-B, Sec VI-A, [7]
Pipelined MaxWeight Yes O(n) > 3+max(y,1) | O(n%?), parallelizable | Sec IV-C, Sec VI-A, [7]
Randomly Delayed MaxWeight | Yes O(n) Unknown O(6n?"?) Sec V
Pick and Compare (PC-d) Yes O(n) Unknown O(dn) Sec V
LAURA Yes O(n) Unknown O(nlog? n) Sec V. [8]
SERENA Yes O(n) Unknown O(n) Sec V, [8]
d-Flip Unknown Unknown Unknown O(d) Sec VII

We then consider variants of MaxWeight algorithm under
general traffic in Section IV. We show that bursty MaxWeight
algorithm and pipelined MaxWeight algorithm [7] have the
same heavy-traffic performance as MaxWeight. In bursty
MaxWeight, a maximum weight matching is computed every
m time steps, and the same matching is used for m steps.
In pipelined MaxWeight, a maximum weight matching is
computed at every time, but it takes m time steps to complete
this computation, and so the matching is used only m steps
later. This is amenable to a parallelized implementation. We
present a general theorem that characterizes the heavy-traffic
performance of a broad class of algorithms including both
these algorithms.

We then consider another general class of linear complexity
algorithms proposed by Tassiulas [6] that are shown to be
throughput optimal. In these algorithms, at any time, there is
a small § chance of picking a MaxWeight matching. If not,
a matching is sampled according to some distribution, and it
is compared with the previous matching, and the best among
the two is used. This framework was used in [8] and [9] to
develop several low complexity algorithms including APSARA,
SERENA and LAURA. We show in Section V that this large
class of algorithms also has the same heavy-traffic behavior as
MaxWeight.

While all the algorithms that we study have same heavy-
traffic performance as that of MaxWeight, they all are not
equally good in practice. This is because while heavy-traffic
analysis is finer than throughput optimality, it does not
capture subtle differences in performance. In particular, any
algorithm that exhibits SSC has MaxWeight like heavy-traffic
performance. However, different algorithms may have slightly
different quality of SSC. In order to capture this performance
difference, we consider the large system heavy-traffic regime
[16][17][18][19] in Section VI-A. In this regime, size of the
switch increases simultaneously while the traffic approaches
the capacity, and we study the performance difference of the
above algorithms in this regime.

All the results are summarized in Table 1. In Section VII,
we use simulations to exhibit the performance of the proposed
algorithm d-Flip. We finally conclude in Section VIII, along
with a few pointers on future research directions. We will now
start with the model, notation and other preliminaries such as
a formal definition of state-space collapse and heavy traffic

optimality in Section II.

II. MODEL AND PRELIMINARIES

In this section, we present the model and introduce the
required notation. Moreover, we present several known results
from the previous literature. In any time slot ¢, ¢;;(t) (also
called queue length) denotes the number of packets that need
to be transferred from the input ¢ to the output j, q(t) is a
n x n queue length matrix with elements g;;(¢). Throughout
this paper, the letters in bold denotes vectors in R™*". Also,
for any process x(t) that converges in distribution, Z denotes
the limiting random variable to which z(t) converges.

A. Arrival and Service Process

At any time ¢, a;;(t) (a(t) in matrix form) denotes the
number of packets that arrive at the input port ¢ to be
delivered to output port j. The term matrix and vector are used
interchangeably throughout the paper. The mean arrival rate

vector is denoted by E[a(t)] = A and variance Var(a(t)) = o2.

Assumption 1. For the arrival process:

(i) For any given pair (i,7), a;;(t) are independent and
identically distributed with respect to t.

(i1) The arrival process is also independent across input-output
pair, ie., for all i,j,i" and j' such that (i,7) # (i',j),
a;;(t) is independent of a; ;s (t).

(iil) There exists amax such that ¥i, j,t, a;;(t) < amax < 00.

(iv) There is non-zero probability of no arrivals, i.e., P(a(t) =
0) > 0, where 0 is a n X n vector of all zeros.

The assumptions mentioned in Assumption 1 are quite
general for a switch system. Due to the structure of the switch
system, in each time slot, each input can be matched with at
most one output and vice-versa. The switch system can also
be thought of as a complete bipartite graph with 2n nodes
and n? edges. And the weight of each edge (i,7) is g;;(t).
A schedule is then a matching on the corresponding graph,
which is represented by a n x n matrix with entries either 0
or 1. We use s(t) to denote the schedule in time slot ¢. The
element s;;(¢t) = 1 if and only if the input 7 is connected with
the output 5 at time ¢. In this paper, without loss of generality,
we consider a schedule to be a perfect matching between input
and output nodes, i.e., no more connections between input and



output nodes can be made. It follows that the set of possible

schedules X is just the set of all n X n permutation matrices.

The weight of the schedule is the sum of the queue lengths
that are being served in the given time slot. A scheduling
algorithm or policy picks the schedule s(¢) in every time
slot. MaxWeight is a scheduling algorithm that always picks
the schedule with the highest weight. If the algorithm picks
schedules only from X, it might happen that s;;(¢) is 1 but
there are no packets available to be transferred from input ¢ to
output j. In such a case, we say that the service is wasted. As
a result, the queue length evolve according to the following
equation,

Gij(t+1) = [qi; () + ai;(t) — si; (1) T
= qij(t) + aij(t) — siz(t) + uiy(t),

where [z+] = max(0, ) and u;;(t) denotes the unused service
on link (7, 7). By writing this into matrix form, we get

q(t+1) = q(t) +a(t) —s(t) + u(?)

It can be observed that if ¢;;(t + 1) > 0 then w;;(t) = 0. This
gives us the condition that, g;;(t + 1)u,;(¢t) = 0 for all (g, 7)
which implies that (q(t 4+ 1),u(t)) = 0. Let o(#H;) be the
o-algebra generated by H;, where H; denotes the history till
time ¢, i.e.,

H: = {a(0),s(0),q(1),... D,a(®)}. D

Similarly, we define o(H;) to be the o-algebra generated by
H,, where

He = {q(0),5(0),a(1),...,s(t — 1),q(t),s()}. (@)

For an arbitrary scheduling algorithm, it not necessary that q(t)
forms a Markov chain. For example, in Section V, we look at
the algorithm named as randomly delayed MaxWeight, where
the system uses the MaxWeight schedule with probability ¢, and
with probability (1 — §), it uses the schedule used in previous
time slot. In such a case, the system needs to remember the
schedule used in previous time slot and so using q(¢) as the
state of Markov chain is not enough. The correct definition for

7S(t_

the state of the Markov chain in this case would be (q(t), s(t)).

For the switch system considered in this paper, we assume that
there is a process X (¢) such that X (¢) forms a Markov chain
and we define two conditions on X (¢) as given below.

A.1. The Markov chain X (t) is o(H;)-measurable and it is
also irreducible and aperiodic.

There exists a function g(-) such that q(t) = g(X(¢)).
Further, let A C Z"*" and suppose g '(A) = {
g(X) € A}. Then, if |A| < oo then |g7(A)| <
where | - | denotes the size of the set.

A2.

For all the algorithms considered in this paper, we prove
that condition A.1 and A.2 are satisfied. The condition A.1l
is required to use the Lyapunov’s drift argument to establish
the positive recurrence of the Markov chain X (¢). Note that
irreducibility is not a major condition as otherwise, we can
just consider the communicating class of X (0) to be the state
space. The first part of condition A.2 essentially says that q(¢)
is a deterministic function of the state X (¢), which implies that
the state of the Markov chain holds full information about the

queue length. Second part of condition A.2 is more technical.
Overall condition A.2 is not very limiting because it is satisfied
by most of the algorithms studied in the previous literature.

In this paper, we say that the switch system is stable if the
corresponding Markov chain X (¢) is positive recurrent. The
capacity region C of the switch is the set of mean arrival rate
vector A for which there exists some scheduling policy under
which the switch system is stable. As given in [4], the capacity
region for a switch, denoted by C is

C= {A S Rixn : Z)\” < 172)‘ij <1 VZ,]}
i=1 J=1

An algorithm for which the the queue length vector q(t) is
stable for all A € C is called throughput optimal. In [20], it
was proved that MaxWeight is throughput optimal.

The set F denotes the set of doubly stochastic matrices.
The set F forms a facet [21, Chapter 3] of the closure of the
capacity region C. Throughout this paper, we use A to denote
a matrix in C and v to denote a matrix in F.

A switch system is in heavy traffic regime if the mean arrival
rate matrix is very close to the boundary of the capacity region.
Note that for any A € C, there exists v € F and ¢;; € [0,1]
such that \;; = (1 — €;;)v;;. In order to make the theoretical
analysis simpler, we take ¢;; = € for all (7,7). Otherwise
we can pick an € such that ¢;; > ¢ V(4,j) and many of our
upper bound results would still be valid. This is also called
Completely Saturated Case in [12].

Assumption 2. The mean arrival rate vector is A = (1 — €)v,
for some v € F and € € (0,1), such that

A .
Vmin = NN V5 > 0.
9

Also, there exists &2 such that the variance 0% — &2 as ¢ 1 0.

The parameter € in Assumption 2 is a measure of how far
A € C is from the boundary F. In this paper, we refer € as the
heavy traffic parameter. The switch system is in heavy traffic
regime if € is very close to 0.

From here onwards, we will assume that the arrival satisfies
Assumption 1 and 2. Throughout the paper, ¢ denotes the
distance of A from its corresponding v as given in Assumption
2. Also, note that even though the parameters of the arrival
process depends on ¢, we do not attach e to their symbols just
to keep the notations simple.

An arrival process is said to be under uniform traffic if
the mean arrival rate for every input-output pair is same, i.e.
Aij = Ay for all ¢,7,4 and j'. Also, even though the mean
arrival rates are same, the variance might differ across the
input-output node pairs. It is easy to observe that for an arrival
process that is in the capacity region and under uniform traffic,
the mean arrival rate lies in C* C C given by

1
C* = {)\ S Rixn : )\ij < —, VZ,]}
n
Let 1 be an n X n matrix of all ones. If the uniform traffic

arrival process satisfies Assumption 2, then we can take A =
%1. Furthermore, if the arrival process is uniform Bernoulli



traffic, 1e the arrivals a,;(¢) are Bernoulli random variables,

then ||lo||* = (1 — €)(n — 1 + ¢), which gives lim. ||o||” =
le]]” =n—1.
B. Geometry

Let e’ be an n x n matrix with i** row being all ones
and zeros everywhere else and & is a n x n matrix with j**
column begin all ones and zeros everywhere else. Consider
the subspace S C R™*" defined as,

S= {x X = Zwiei—i—zwjéj s.t. wg,w; €R Vi,j}.
i J

We define the cone K to be the intersection of & with the
positive orthant, i.e., L =S8N Rix”. The dimension of cone
K is 2n — 1 as it is spanned by 2n — 1 independent vectors
out of 2n vectors {e’} and {&’}. For two matrices x and
y in R"*" (x,y) denotes the Frobenius inner product and
Il = /T ).

For any vector x, x| denotes the projection to the space S
with x; = x — x|. Similarly, x| x denotes the projection to
the cone K with x x = x — x| k. Some important properties
regarding the set S and K are provided in Appendix A (in the
supplement file).

C. State-space collapse

The main workhorse in heavy-traffic analysis is state-space
collapse, viz., the phenomenon that a queueing system in heavy-
traffic behaves like a system with a smaller number of queues.
It was shown in [12] that in the switch system operating under
MaxWeight scheduling algorithm, the state q(t) (of dimension
n?) collapses to the cone K (of dimension 2n — 1). This was
established by showing that in steady state, q | ¢ is significantly
smaller than qx. The following definition presents this notion
of state space collapse more formally.

Definition 1. A scheduling algorithm is said to achieve State-
Space Collapse (SSC) if the switch system is stable, the
corresponding Markov chain X (t) satisfies condition A.1 and
A.2 and there exists €y > 0 such that for 0 < € < €, the
steady state queue length vector satisfies

]E[quur] <0, Vre{l,2...}, 3)

where C.. is a constant, independent of e.

Theorem 2. Consider a switch system which achieves state-
space collapse according to Definition 1, then the heavy traffic
scaled queue length satisfies

SIS

— | la]|”.

2n

hme]E{Zq”} = (1 -

The proof of the result in Eq. (4) for MaxWeight was given
in [12]. However, the proof in [12, Theorem 1] implies that
Eq. (4) holds for any scheduling algorithm that satisfies SSC
as given by Definition 1. Now, we formally define the term
MaxWeight-like.

4)

Definition 3. For a switch scheduling algorithm, its heavy
traffic performance is said to be MaxWeight-like if the algorithm
satisfies Eq. (4).

According to Theorem 2, to show that an algorithm is
MaxWeight-like it is enough to prove that the algorithm achieves
the SSC according to Definition 1. Although MaxWeight
satisfies Eq. (4), there might exist algorithms that perform
better than MaxWeight in heavy traffic. As mentioned in [12],
we only know that for any scheduling algorithm

[Sas] 2 5lel ~ 9w

This means that the heavy traffic scaled mean sum queue length
for MaxWeight is within a factor of 2 of the optimal. In [22],
the authors presented an algorithm which performs better than
MaxWeight, although they did not provide the heavy traffic
limit for it.

ew 1

5 llo [E)

D. Lyapunov Drift

We use Lyapunov drift arguments to obtain the heavy-traffic
results in this paper. To that end, in this subsection, we present
some Lyapunov functions, their drift and some known results
on Lyapunov drift.

Let X (t) be an irreducible and aperiodic Markov chain over
a countable state space A. Suppose Z : A — R, is a non-
negative Lyapunov function. The drift of Z at X is the change
in the value of Z(-) after one step transition. Mathematically,

AZ(X) £ [Z(X(t+1) — Z(X ()] T(X(t) = X),
where Z(-) is the indicator function. We define three different
conditions on the drift:

C.1. There exists 7 > 0 and x < oo such that V¢ > 0 and

VX € A with Z(X) > &,

]E[AZ(X)|X(t) = X] < —n.
C.2. There exists D < oo such that VX € A,
]P’(\AZ(X)| < D) =1.

C.3. There exists a non-negative random variable M such that
|AZ(X)] is stochastically dominated by M for all ¢ > 0,
i.e., for any ¢ > 0,

P(|AZ(X)| > c|X(t

and E[e?M] < oo for some 6 > 0.

It is easy to observe that the condition C.2 is stronger than
condition C.3. We define C.2 and C.3 differently because we
can state a stronger result if the condition C.2 holds. Some
important results related to the drift analysis of switch system
is given in Appendix B (in the supplement file).

)=X) <P(M >c) Vt>0,

III. CLASS 1: MODIFICATIONS OF RANDOM SCHEDULING

In this section, we study random scheduling and some
modifications of it. For a switch system, random scheduling
is not throughput optimal. The capacity region of random
scheduling is known to be C*. Throughout this section, we
assume that the arrival process is under uniform traffic. We



show that heavy traffic behaviour of random scheduling is
not MaxWeight-like, but there are some variants of random
scheduling which have MaxWeight-like heavy traffic behaviour.

A. Random Scheduling

Random scheduling, as the name suggests, is a scheduling
policy for which the schedule s(¢) is chosen uniformly at
random from the set of permutation matrices &X'. The time
complexity of generating a random schedule is O(n) by using
Fisher—Yates shuffle [23, Example 12].

Proposition 4. Consider a switch system under uniform traffic.
For random scheduling, the process q(t) forms a positive
recurrent Markov chain and,

lim B[ > g3 =g||&||2+w. ©)
j

el0 2

Moreover, if the arrival process is uniform Bernoulli traffic,
I E[ —,} = n(n—1). 7
im ¢ %: Gij| =n(n—1) @)

From Theorem 2, we know that any scheduling algorithm that
satisfies SSC has optimal queue length scaling of O(||& %) in
heavy traffic. While from Proposition 4, the heavy traffic scaled
mean sum queue length for random scheduling is O(n ||&|?).
This shows that random scheduling does not have optimal
queue length scaling.

Proposition 4 under uniform Bernoulli traffic was presented
in [7, Theorem 2], and was proved by noting that under random
scheduling, each of the n? queues of the switch can be analyzed
separately by assuming that the service to each of the queue
is a Bernoulli random variable with success probability 1/n.
The proof for general traffic can be shown similarly, and we
present the details in Appendix C (in the supplement file) for
completeness.

B. State space collapse

In this section, we will present the heavy-traffic results for
a class of scheduling algorithms. Later on we provide some
examples that lie in this class like power-of-d, and random
d-flip scheduling algorithms that are modification of random
scheduling.

Definition 5. A scheduling algorithm lies in class 111 (v) if
the corresponding Markov chain X (t) satisfies condition A.1
and A.2 and there exists a constant W1 > 0 such that in any
time slot t > 0, the expected weight satisfies

El(a(t),s(t)|X(t) = X] = (q,v) + W1 [lauxl,

where W1 is independent of € and q = g(X).

®)

MaxWeight lies in class Iy (v) for any v for which vy, > 0,
in which case W7 = vy, [12]. We later on show that, power-of-
d and random d-flip scheduling lies in IT; (2 1) with W = 515
Also, it is easy to observe that random scheduling does not lie
in class IT; (£ 1). Next, we claim that any scheduling algorithm
that lies in class II; (v) satisfies SSC if the mean arrival rate
isA=(1-¢w.

Theorem 6. Suppose the mean arrival rate is of the form
A = (1 — €)v and the scheduling algorithm lies in the class
Iy (v). Then, the scheduling algorithm achieves SSC and so
its heavy traffic behaviour is MaxWeight-like.

The proof of Theorem 6 follows by showing that if we
pick the Lyapunov function to be ||q k||, then this Lyapunov
function satisfy the conditions C.1 and C.2. After that we can
use existing results to show that all the moments of ||q || are
bounded by a constant. This implies that scheduling algorithm
achieves SSC according to Definition 1 and so it is heavy
traffic behaviour is MaxWeight-like. The details of the proof
are provided in Appendix D (in the supplement file). Next, we
provide some examples of the algorithms that lie in this class.

C. Power-of-d scheduling

The power-of-d scheduling is a variant of random scheduling
in which the system samples d > 2 schedules uniformly at
random with replacement from the set of permutation matrices
X and chooses the one with the largest weight. In time slot
t, let {s1(¢),...,sq(t)} denotes the schedules sampled by the
power-of-d algorithm. The schedule chosen by power-of-d is

s(t) = argmax{{q(t),s1(t)), ..., (a(t),sa(t))}-

We assume that schedules are sampled with replacement just
for simplicity. The results does not change qualitatively even if
the schedules are sampled without replacement. Generating a
random schedule has a time-complexity of O(n). And as power-
of-d generated d random schedule times, the time complexity
of power-of-d is O(dn).

It is known that power-of-d scheduling is not throughput
optimal [8]. However, it is stable under all the arrival rates
in C*, and so we can study its heavy traffic behavior under
uniform traffic.

D. Random d-Flip scheduling

Random d-flip scheduling algorithm is another variant of
random scheduling. For any given schedule s; and a queue
length matrix q, a flip step constitutes of following three steps,

o Sample two indices (4,5) and (k,[) uniformly at random
such that s ;; = s1 4 = 1, where sy ;; is the (i,)""
element of the schedule s;.

o Create a different schedule s, such that s5;; = s 51 = 0
and 8§24l = S2,kj = 1.

o Select the schedule with the larger weight, i.e.,

s = arg max{(q, s1), (q,s2) }.
S1,S2

Note that to compare the weight of the matching s; and s9 in
the flip step, the system does not need to calculate the weight
of the schedule. It suffices to compare the value of g;; + g
and ¢;; + gxj. Thus the flip step has a complexity of only O(1).

In each time slot ¢, random d-flip samples a schedule s(t)
uniformly at random from the set X’ and then uses the flip step
on s(t), d times consecutively. As the complexity of generating
a random schedule is O(n) and complexity of flip step is O(1),
the complexity of random d-flip is O(n + d).



The flip step considered in this paper is random flipping
and it is not necessary that flip step improves the schedule
generated by random sampling, but there are more ways to
implement the flip step. In [15], authors provide another method
of implementing the flip step, which strictly improves the
weight of the schedule but the complexity of each flip step
is O(n). The algorithm APSARA in [8] is also based on flip
step mentioned above.

Lemma 7. In any time slot t, the schedule chosen by power-
of-d or by random d-flip satisfies,

Ef{at).st)lal) = a] > a 1)+ 5 il ©

Note that for random scheduling, the expected weight is
%(q, 1). Power-of-d generates more schedules to improve the
weight. We show that in expectation, this improvement is at
least 55 [[gL |- The detailed proof of Lemma 7 for power-
of-d is provided in Appendix E (in the supplement file).

Similarly, the algorithm random d-flip first samples a random
schedule and then implements the flip steps that strictly
improves the expected weight. We prove that the expected
improvement by the first flip step is at least 55 [[q1x||. The
details of the proof of Lemma 7 for random d-flip is provided
in Appendix F (in the supplement file).

Proposition 8. Under uniform traffic, power-of-d scheduling
and random d-flip achieve SSC and so their heavy traffic
behaviour is MaxWeight-like.

Proof. For power-of-d and random d-flip, the process q(t)
forms a Markov chain and satisfy condition A.1 and A.2. The
aperiodicity of Markov chain q(t) in this case follows from
part (iv) of Assumption 1, as the state g = 0 has a self loop.
And irreducibility follows by taking the state space to be the
set of states reachable from O as given in [24, Exercise 4.2].
Also, it is evident that the chain q(t) satisfies condition A.2.

From Lemma 7, we know that power-of-d and random d-
flip lies in the class II(11) as given in Definition 5. Then,
Proposition 8 follows directly from Theorem 6. O

So far, we considered uniform traffic since power-of-d and
random d-flip scheduling algorithms are not throughput optimal.
The switch is unstable under general non-uniform traffic under
these algorithms. One way to overcome this limitation is by
using a load-balanced switch [25]. A load balanced switch is
a two-stage architecture consisting of two switches in tandem.
The first stage aims to equalize the arrival rate across the inputs
of the switch at the second stage, so that the second stage
is operating under uniform traffic. The on-line complexity of
operating the first switch is just O(1) so it does not affect the
overall performance. More details regarding the load balanced
setup can be found in [24] and [25].

IV. CLASS 2: APPROXIMATE MAXWEIGHT

In this section, we will present another class of scheduling
policies that achieves SSC and so are heavy traffic optimal.
In [7], the authors present two efficient approximations of
the MaxWeight named bursty MaxWeight and pipelined
MaxWeight. Next, we define a class of algorithm that contains
these two algorithms, and provide heavy result for that class.

A. State space collapse

Now we prove the heavy traffic result for a class of
algorithms which includes bursty and pipelined MaxWeight.

Definition 9. A scheduling algorithm lies in class 11y if the
corresponding Markov chain X (t) satisfies condition A.1 and
A.2 and there exists a constant Wo > 0 such that in any time
slot t > 0, the expected weight satisfies

E[(a(t),s()|X (1) = X] > max(q,s) = W2, (10)

where Wy is independent of € and q = g(X).

The class 1l presented in Definition 9 is based on the class
of algorithms presented in [7]. MaxWeight lies in class II; with
Wy = 0. In [7], it was proved that any scheduling algorithm
in the class Iy is throughput optimal. Next, we look at the
SSC and heavy traffic optimality of scheduling algorithms in
class II5.

Theorem 10. Any scheduling algorithm that lies in the class 115
achieves SSC and so its heavy traffic behaviour is MaxWeight-
like.

Theorem 10 shows that bursty MaxWeight and pipelined
MaxWeight satisfies SSC and thus their heavy traffic behaviour
is MaxWeight-like. The proof of Theorem 10 follows on
similar lines as the proof of Theorem 6. From the definition
of the algorithms in class II,, the weight of schedule for any
scheduling algorithm in II5 is at most a constant difference
away from MaxWeight. If the queue lengths are very large
(like in heavy traffic), the weight of the MaxWeight schedule is
much larger compared to difference W5 and so the performance
of the scheduling algorithm is quite close to that of MaxWeight.
Thus, the heavy traffic performance of algorithms in Il5 is
similar to MaxWeight scheduling. The proof of Theorem 10 is
provided in Appendix G (in the supplement file).

B. Bursty MaxWeight

This scheduling algorithm evaluates the MaxWeight schedule
after every m time-slots and then uses the same schedule
consecutively for next m time slots. For a n xn switch, the time-
complexity of computing the MaxWeight schedule is O(n?).
Thus, the amortized time-complexity of bursty MaxWeight is
O(n?%/m). Note that if m is chosen to be ©(n*?), this leads
to a constant amortized complexity.

C. Pipelined MaxWeight

This takes m time slots to compute the MaxWeight schedule,
so the MaxWeight schedule corresponding to q(t) is used
in time slot ¢ + m. While pipelined MaxWeight still has a
high complexity of O(n??%), it is amenable to a parallelized
implementation which makes it useful in practice.

Proposition 11. Bursty and Pipelined MaxWeight achieve SSC
and so their heavy traffic behaviour is MaxWeight-like.

Proof. The proof of condition A.1 and A.2 for both algorithms
are given in Appendix H (in the supplement file). For both
algorithms, as shown in [7],

(q(t),s(t)) > msax<q(t), S) — 2Mmnamax-



Thus, bursty and pipelined MaxWeight lies in the class Il
as given in Definition 9 (Section IV-A) and then by using
Theorem 10, both algorithms satisfy SSC and so their heavy
traffic behaviour is MaxWeight-like. O

Both bursty MaxWeight and pipelined MaxWeight depend
on the parameter m. Even though the result in Proposition 11
holds for any value of m, it does not mean that the heavy traffic
performance of bursty MaxWeight or pipelined MaxWeight is
not affected by the value of m. The larger the value of m, the
further away these algorithms are from MaxWeight. Later, in
Section VI-A, we provide an intuition of the effect of m on
the heavy traffic behavior of the switch.

V. CLASS 3: RANDOMIZED ALGORITHMS WITH MEMORY

In this section, we look at the third class of algorithms that
satisfies SSC. The description of the class is as follows.

Definition 12. A scheduling algorithm lies in class 113 if the
corresponding Markov chain X (t) satisfy condition A.1 and
A.2 and
(1) There exists a 6 > 0 such that for every time t > O the
chosen schedule s(t) satisfies

]P)(<q(t)a s(t)) = msax<q(t), S>‘Ht) >4,

where H, is given by Eq. (1).
(ii) For every time t > 1, the chosen schedule s(t) satisfies

{a(t),s(t)) = (a(t),s(t —1)). (12)

(iii) There exists a deterministic function f(-), such that
(a(t), s(t)) = f(X(1)).

It is easy to observe that MaxWeight scheduling lies in
II3 with 6 = 1. The definition of class Il3 in this paper
is based on the class of algorithms presented in [6]. The
algorithms presented in [6] uses a two-step procedure to choose
the schedule s(t).

o Sampling step: The system samples a schedule §(¢) which

satisfies Eq. (11).
o Comparison step: The sampled schedule §(¢) is compared
with s(t — 1), i.e.,

s(t) = argmax {(q(t),8(t)), (a(t),s(t — 1))}
S(t),s(t—1)

(1)

Any scheduling algorithm that uses the above mentioned steps
satisfies Eq. (11) and Eq. (12). Note that the complexity of
the comparison step is O(n), so the comparison step does not
affect the complexity of the algorithm with worse than linear
time complexity. The comparison step is very useful because it
plays a key role in making the scheduling algorithm throughput
optimal. Some of the algorithms based on the procedure given
in [6] are as follows,

e Randomly Delayed MaxWeight: This is randomized ver-
sion of bursty MaxWeight. The system chooses to imple-
ment MaxWeight with probability § or uses the previous
schedule with probability 1 —d. The amortized complexity
of this algorithm is O(dn??).

e Pick and Compare (PC-d): This algorithm is an extension
of power-of-d. In this algorithms, the system generates

the random schedule §(¢) during the sampling step using
power-of-d and then uses the comparison step. In this
case, § can be taken to be d/n! and the complexity of
pick and compare or PC-d is O(dn).

e LAURA and SERENA: In [9] and [8], the authors presented
several low-complexity algorithms, like LAURA (com-
plexity O(nlog®n)) and SERENA (complexity O(n)),
that also lie in the class II3 under the assumption that the
arrival process is Bernoulli.

Part (iii) of Definition 12 is an extension of condition A.2,
as here we also need the information about schedule to be a
part of the state of the Markov chain. This condition is satisfied
by the example algorithms presented above. More complicated
algorithms such as non-Markovian scheduling policies may not
satisfy this assumption. The corresponding Markov chain for
algorithms mentioned above and the class of algorithms in [6]
is given by X (¢) = (q(t),s(t)), and it can be observed that
X (t) satisfy condition A.1 and A.2, so they also satisfy Part
(iii) of Definition 12. Thus, the class of algorithms in [6] also
lies in class II3. By the arguments presented in [6], for any
scheduling algorithm that lies in class II3, the queue length
process q(t) is stable, so we skip the proof of stability here.

Theorem 13. Suppose the scheduling algorithm lies in the
class I13. Then, the process q(t) is stable. Also, the scheduling
algorithm achieves SSC and its heavy traffic behaviour is
MaxWeight-like.

Theorem 13 shows that the class of scheduling algorithms
presented in [6] achieves SSC and have the same heavy traffic
scaled queue length as MaxWeight. Therefore, the same result
holds for the algorithms presented in [9].

Let {T)}r>0 be the sequence time instants at which the
chosen schedule matches with the MaxWeight schedule, i.e.,

(a(Tk),s(Th)) = max(q(Tk),s).

As (q(t),s(t)) = f(X(t)), it follows that {T;}r>o form a
sequence of stopping times for the Markov chain X (¢). We
define another process {Yj}r>o such that Y, = X (T%). As
{T%}r>0 are stopping times, by strong Markov property, Y
forms a Markov chain. Also, for Y, = Y, take (q,s) =
f(Y), and by the construction of {Y}},>0, s is the MaxWeight
schedule corresponding to q.

Lemma 14. For any k > 1, let 7, = Ty41 — T). Then, for
any Y, the random variable {1,|Y), = Y} is stochastically
dominated by a random variable M which is Geometrically
distributed with mean 1/4.

The proof of Lemma 14 follows from part (i) of Definition 12.
The idea is that in any time slot, there is at least § probability
that the MaxWeight schedule is picked. So, we can bound the
probability P(7j, > |V, =Y) with P(M > ¢). The proof of
Lemma 14 is provided in Appendix I (in the supplement file).
Next, we provide the proof sketch for Theorem 13.

The idea behind the proof of Theorem 13 is that the
scheduling algorithms lying in II3 chooses the MaxWeight
schedule frequently. In fact, Lemma 14 shows that the time
difference between choosing the two MaxWeight schedules is



stochastically dominated by a geometrically distributed random
variable.

Once the MaxWeight schedule is chosen, the weight of the
schedule chosen by the scheduling algorithm in subsequent
time slots is not much worse than the weight of the MaxWeight
schedule in those time slot. This happens because the queue
lengths cannot deviate too much in a single time slot (as
arrivals are bounded) and the algorithm tries to improve upon
the schedule used in previous time slot.

Mathematically, we use the Lyapunov drift argument on
the Markov chain {Y}};>0. We show that for {Y}}x>o, if we
choose the Lyapunov function to be ||q_ ||, then this Lyapunov
function satisfies the condition C.1 and C.3. The detailed proof
of Theorem 13 is provided in Appendix J (in the supplement
file).

VI. COMPARISON OF ALGORITHMS

So far, we studied the performance of three classes of algo-
rithms, and saw that they all have MaxWeight like heavy-traffic
performance. In this section, we present a comparison and
contrast them and Table I presents a summary. The three classes
are clearly not disjoint. For instance, as mentioned before,
MaxWeight lies in all three classes. It is not hard to construct
other algorithms that lie in all three classes. One can combine
multiple scheduling algorithms to generate a new algorithm.
The algorithm PC-d (Section V) was created by implementing
an extra comparison step after doing power-of-d. So PC-d lies
in both IT; (1) and IT5. A similar modification can be done
with random d-flip without changing the complexity of the
algorithm. One can also create a scheduling algorithm that
generates two schedules, one by bursty MaxWeight and other
by PC-d and then chooses the one with larger weight. Such
an algorithm will lie in all three classes.

While we proved that they all have MaxWeight-like heavy-
traffic mean delay performance, their performance under other
metrics can be different. First consider throughput optimality.
As mentioned before, while the algorithms in class Iy and
class II3 are throughput optimal, the algorithms in II;(v) are
not. Power-of-d and random d-flip are known to be stable
only in a subset of the capacity region C*. In particular, they
support maximum possible load only when the traffic is uniform.
There are known examples [8, Theorem 1] showing how they
are unstable under non-uniform load for certain arrival rate
vectors within the capacity region. In the next subsection, we
present the large scale heavy traffic regime, which is yet another
asymptotic performance view, that enables us to distinguish
between the performance of the algorithms presented so far.

A. Large scale heavy traffic regime

Stochastic networks such as an input queued switch are in
general hard to analyze and so, are usually studied in various
asymptotic regimes with heavy-traffic being a prominent one
that is the main focus of this paper. In the heavy-traffic regime,
we fix the size of the switch n, and load it to its maximum
capacity, i.e., we let the heavy-traffic parameter ¢ — 0. Another
popular regime is the large scale limit, where the load is
fixed (e is fixed) and the size of the system, n is sent to

infinity [26]. Different regimes present different view points of
the system, and obtaining results in various regimes presents
a more holistic view. For example, several algorithms that
have the same performance in one regime may have different
performance in another regime.

In this section, we consider a whole spectrum of asymptotic
regimes between the large scale regime and the heavy-traffic
regime, where the size of the switch simultaneously grows
to infinity as the arrival rate approaches the boundary of the
capacity region. These are called the large scale heavy traffic
regime. These regimes are of special interest today, since the
size of today’s data center networks is huge. For a given n, let
the e(n) denote the heavy traffic parameter of the system such
that e(n) is Q(n~?) for some 8 > 0. As 3 — oo, one can
heuristically think of this as the heavy-traffic regime studied in
the previous sections. To see this, note that we have that n is
O(e’l//’)). So, when /3 — 00, n does not scale as € — 0. Thus,
the heavy-traffic regime where n is constant and € — 0 can be
thought of as a special case of large scale heavy traffic regime
when [ — oco. Similarly, one can think of the special case
of 5 — 0 as corresponding to the large scale regime. Also,
for simplicity, we assume that the arrival process is uniform
Bernoulli traffic in this section. This means that A = @1
and ||o]* = (1 —e(n))(n —1+¢€(n)) = n—1+ o(n). In
this case, from the universal lower bound given in Eq. (5),
we know that if €(n) = Q(n~") then, E[ Y=, Gi;] is Q(n'*7)
for any value of 5 > 0. Therefore, a natural question is if
there is an algorithm under which, we can also obtain an upper
bound that is O(n'*#) for all 3 > 0. At this point, while this
is still an open question [19], it is known [12, Corollary 1]
that under MaxWeight algorithm, E[ Y, gi;] is ©(n'*#) for
B > 4. More precisely, for 5 > 4, under MaxWeight algorithm,

lim @E{ij} -1 (13)
n—oo M — t ’
ij
Theorem 15. Consider a switch system under uniform
Bernoulli traffic such that \ = (1;75"))1, and e(n) is Q(n=5).
Then, we have Eq. (13)

(1) under algorithms in class Hl(%l) for B > 3+, where
a1 > 0 and Wi = O(n=%). In particular, power-of-d
and random d-flip algorithms satisfy Eq. (13) for 3 > 6.
under algorithms in class Ty for > 2 4+ max{aas, 2},
where as > 0 and Wy = O(n®2). In particular, bursty
MaxWeight and pipelined MaxWeight algorithms satisfy
Eq. (13) for 5 > 3 + max{~, 1}, where m is O(n").

(ii)

The proof of the theorem is presented in Appendix K (in the
supplement file). The main tool to prove results of the form
Eq. (13) in general, and the above theorem in particular is the
following result that exploits a finer handle on the state space
collapse, which follows from [12, Corollary 1]. The details are
also provided in Appendix L (in the supplement file).

Lemma 16. Consider a switch system under uniform Bernoulli
traffic such that A = %1, and e(n) is Q(n=P). Suppose
the scheduling algorithm satisfy state space collapse with,

E[laxl’] <¢ vre{ne. ),



such that C, is O(n®") for all r € {1,2, ...}, then Eq. (13)
holds for all B > o + 1.

Note that for classical heavy-traffic results, we just need
existence of SSC as in Definition 1 that only cares about the
existence of parameter C,., and not about its dependence on
the system size n. In contrast, here the quality of SSC, i.e.,
the exact dependence of C,. on the system size n plays a key
role. The quality of such SSC is in turn influenced by the drift
with which the algorithm pushes towards the cone. Among the
algorithms studied so far, MaxWeight has the strongest drift
towards the cone, and so we have from prior work [12] that
Eq. (13) is valid for S > 4. The class of algorithms studied
in this paper have weaker drift towards the cone. While this
distinction was not evident in the performance in the classical
heavy-traffic regime, it becomes clearer in Theorem 15.

More precisely, for Class 1 algorithms, the quality of drift
towards the cone is determined by the constant W, in Eq. (8).
For MaxWeight, which also lies in Class 1, under uniform
traffic, W1 = vmin = 1/n. For power-of-d and and random
d-flip, from Lemma 7, we have that W; = #, which is worse
by a factor of O(1/n?). This leads to 3 > 6 in Theorem 15
for these algorithms, more than 8 > 4 for MaxWeight.

For Class 2 algorithms, the quality of drift towards the
cone is determined by the constant W; in Eq. (10). For
bursty MaxWeight and pipelined MaxWeight in this class,
according to Definition 9 we have that W5 = 2nmay,ax which
is same as O(n'™7) when m is O(n?). On the other hand,
for MaxWeight (which also lies in Class 2), W5 = 0. It turns
out that distinction leads to § > 3 + max{1,~} for pipelined
and bursty MaxWeight algorithms. The details of the proof of
Theorem 15 is provided in Appendix K (in the supplement
file).

At this point, it is not clear if a result similar to Theorem
15 can be proved for Class 3 algorithms and that is an open
question for further investigation. The key challenge is that
the parameter C,. in Lemma 16 depends on 1/4, and can be
as large as n!. Another open question is investigating these
algorithms for the values of 3 not covered in Theorem 15. It
is known [19] to be a challenging open problem to even study
the MaxWeight algorithm when 8 < 4.

VII. d-FLIP: EMPIRICAL RESULTS

In this section, we present simulation results on an O(d)
algorithm named as d-flip. The algorithm d-flip differs from the
random d-flip in the sense that d-flip do not generate a random
schedule, it just uses the flip step d times on the schedule
used in previous time slot, i.e. it generates s(t) by applying
d flip steps on s(t — 1). We only present empirical results
related to d-Flip, as we cannot claim that d-flip lies in any
of the three class mentioned in this paper. The complexity of
d-flip is O(d) as it uses just d flip step, each of complexity
O(1). For simplicity, we will use the term Q-length to denote
E[Z” ij]. Also, the term Load denotes the value (1 — €),
where ¢ is the heavy traffic parameter.

Fig. 1 shows the effect for increasing the value of d in power-
of-d, random d-flip and d-flip. The plot shows that increasing
the d does not have a huge effect on power-of-d, but it has
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Fig. 1. Q-length vs Value of d plot for power-of-d, random d-flip and d-flip
for a 16 x 16 switch under uniform Bernoulli traffic with Load = 0.90.
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Fig. 2. Q-length vs Load plot for PC-d and d-flip with d = 8 for a 16 x 16
switch under non-uniform Bernoulli traffic.

significant effect on random d-flip and d-flip. For small values
of d, power-of-d perform better, while for large values of d,
random d-flip and d-flip perform better. Intuitively, the reason
behind this is that for smaller values of d, power-of-d has a
higher probability of choosing a schedule with large weight as
compared to random d-flip or d-flip, and this changes as the
value of d increases. For example, consider a schedule which
can be converted to the MaxWeight schedule by a flip step. In
this case, random d-flip or d-flip have 2/n(n—1) probability of
choosing a flip step that gives MaxWeight schedule, while for
power-of-d, the probability of sampling a MaxWeight schedule
is 1/nl.

In Fig. 2, we again show the comparison of PC-d and d-flip.
In this plot, the arrival process is non-uniform. We know that
PC-d lies in the class II3, so it is throughput optimal and also
heavy traffic optimal. Even though d-flip does not lie in any
of the classes mentioned in this paper, we can see that d-flip
heavily outperforms PC-d.

VIII. FUTURE WORK

In this section, we present a few future directions and open
problems. One open problem is characterizing the exact stability
region of power-of-d or random d-flip. In this paper, we only
looked at these algorithms under uniform traffic, or when
the mean arrival rate lies in C*. But the stability region of



these algorithms is larger than C*. Once the capacity region
is understood, one can then study these algorithms under
nonuniform traffic as long as the load is within their capacity
region.

While this paper studies three different classes of low
complexity algorithms, there are a few more algorithms that
do not fall in any of the classes, and so are not analytically
understood. The d-flip is one such algorithm, which is seen to
perform well in simulations presented in Section VII. Another
example is iSLIP [10], which commonly used in data centers,
but the heavy traffic result for iSLIP is not known.

Another future direction is the large scale analysis of
algorithms in Class II3. Such an analysis will help us fur-
ther differentiate between the algorithms in Class II3. Since
simulations from Section VII indicate that some algorithms
such as PC-d, LAURA and SERENA from the class I3 perform
well, one expects that for these algorithms, a large scale heavy
traffic regime result might be true.
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