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a b s t r a c t

We study optimal service pricing in server farms where customers arrive according
to a renewal process and have independent and identical (i.i.d.) exponential service
times and i.i.d. valuations of the service. The service provider charges a time varying
service fee aiming at maximizing its revenue rate. The customers that find free servers
and service fees lesser than their valuation join for the service else they leave without
waiting. We consider both finite server and infinite server farms. We solve the optimal
pricing problems using the framework of Markov decision problems. We show that the
optimal prices depend on the number of free servers. We propose algorithms to compute
the optimal prices. We also establish several properties of the optimal prices and the
corresponding revenue rates in the case of Poisson customer arrivals. We illustrate all
our findings via numerical evaluation.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Server farms refer to centrally maintained collections of computer servers or processors intended to provide a
ervice (or a class of services) to customers. Over the past decade, server farms have mushroomed to keep up with the
assive demand for both data storage and computation, which continues to increase at breakneck speed. These include
ervices such as AWS EC2 and Azure [2]. Server farms offer a cost-effective alternative to customers wherein they need
ot spend initial setup and maintenance of a service facility. These also allow customers to dynamically scale resource
tilization and provide redundancy against failure of specific hardware. However, service providers incur considerable
osts on hardware, cooling, power, security etc. Sustained proliferation of data farms is contingent on providers profiting
hrough service charges levied on the customers.
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Optimal service pricing is central to the thriving operation of server farms [3,4]. Service providers’ earnings come from
ervice charges levied on the customers. Different customers may have different utilities (or, valuation) of the service. Also,
n a server farm with a waiting queue, a customer’s valuation will also depend on its expected waiting time, i.e., on the
ueue length on its arrival. The customers opt for the service only if their valuation of the service exceeds service charge.
learly service charges directly impact service provider’s revenue. These along with customers’ valuation also determine
ervers’ occupancy and congestion which in turn governs future customers’ valuation. We thus see that determining
ptimal prices is a complex problem. The problem is further complicated by the fact that service providers cannot a
riori assess customers’ valuation though they often know value distributions based on historical data.
We consider a multiple server system that offers service to stochastically arriving customers. Customers’ service

urations are random. We do not assume any waiting queue. The service provider sells the service to customers at
otentially time varying prices. Different customers also have different values of the service. The service provider does
ot know customers’ values but knows value distribution. A customer who finds at least one idle server on arrival opts
or the service if and only if its value exceeds the current service charge. The customers who find all the servers busy
n arrival leave the system without getting served. The service provider aims to maximize the average revenue rate by
etting appropriate prices. We derive optimal prices as a function of the number of idle servers. We also study various
roperties of the optimal prices and optimal revenue rate vis-a-vis total number of servers, customer arrival rate, average
ervice time etc.

.1. Our contribution

We assume a service provider with K servers. We further assume that the customers arrive according to a renewal
rocess, having i.i.d. inter arrival times, i.i.d. exponential service times and i.i.d. valuations for the service. We formulate
he optimal pricing problem that maximizes the service provider’s revenue. Finding and using the optimal pricing scheme
n a multi-server system may in general be challenging. The challenges are two-fold. First, finding the optimal policy is
hallenging given the model parameters. Second, there are practical challenges in implementing these policies, since most
ervice providers in practice prefer simple policies. We address both these challenges in the paper. First, we study the
niform pricing problem as a sub optimal but easy to implement policy, and obtain performance bounds for this policy.
hen, we obtain the revenue maximizing pricing policy by solving an associated Markov decision problem. We study
he properties of the optimal solution, and compare its performance to that of sub optimal policies discussed previously.
ollowing is a preview of our main results.

1. We observe that for the system with infinitely many servers (i.e., K = ∞), the optimal service prices are uniform,
i.e., independent of the number of occupied servers.

2. We study optimal uniform pricing for K server system (K < ∞). These policies are sub optimal, but are simpler to
compute and implement. We derive a bound on the revenue rate for the optimal uniform price. We observe that
the potential loss in revenue by using uniform pricing, is small under low load. We also study asymptotic revenue
rates for uniform pricing as arrival rates are scaled, and show that limiting revenue can go to zero for certain arrival
processes.

3. We further observe that the potential loss in revenue from using a uniform pricing, may be large under heavy
traffic. This suggests that the service provider has an incentive to use the optimal pricing scheme, even though it
may be potentially more complex. For finite server systems, we frame the revenue rate maximization problem as
a continuous time Markov control problem. We show that the optimal prices depend on the number of occupied
servers, and can be obtained via solving a fixed point iteration.

4. We study the dependence of optimal prices and corresponding revenue rates on customer arrival rates, service
rates, and the number of servers K , in the case of Poisson customer arrivals. We show that the optimal revenue
is increasing in arrival rate, service rate and number of servers. We also show that the revenue per arrival rate,
revenue per service rate and revenue per server are decreasing in their respective variables.

5. We illustrate all our findings via numerical results. Our numerical studies also provide additional insights on the
behavior of optimal prices with respect to arrival and service rates.

.2. Related work

Cloud computing facilities that host a large number of data servers face the problem of optimizing the utilization
f these servers. Designing an optimal pricing policy is a crucial step in extracting the best possible revenue from the
ystem [5,6]. Since a cloud compute facility can be modeled as a bunch of servers with an associated queueing process,
he cloud pricing problem can be studied as a problem of pricing in queues. One of the earliest works that studied pricing
f queues was [7], in which the entry of customers to a queue was regulated using tolls. Customers can decide to balk
r join the queue, after observing the queue size. Such systems are called observable. Customers join the system if the
ifference between their valuation of the job and the cost of waiting exceeds the admission price to the queue. This
ranslates to a threshold type policy — if the queue length is greater than the threshold, the customers balk; else they
oin. The optimal threshold may vary, depending on whether we want to maximize the total social utility or the revenue.
2



Ashok Krishnan K.S., C. Singh, S.T. Maguluri et al. Performance Evaluation 154 (2022) 102282

I
A
a
m
i
s
i
i

t
p
p
t
m
t
A
t
a
t
d
s
w
T
o

t was shown that in [7] that the socially optimal threshold was higher than the threshold for revenue maximization.
subsequent work [8] shows that, the revenue maximizing and socially optimal toll values can be the same, provided
two-part tariff is imposed. There have been a number of other works which looked at extensions of [7] or at related
odels. The effect of the reward variance on the performance is studied in [9]. In [10], the author examines whether

t is always optimal for a profit maximizing service provider to hide the queue length from an arriving customer. It is
hown that there are thresholds of arrival rates, below which it is optimal for the service provider to hide the queue state
nformation, and above which it is optimal to reveal. These, and numerous other related works, have been summarized
n [11,12].

Optimization of revenue in queueing systems has been extensively studied. In one of the first works in this direc-
ion, [13], the author studies optimal pricing for an M/M/s queue with finite waiting room. He shows that the optimal
rices are monotone increasing in the number of customers waiting in the system. A similar monotonicity result for the
rice as a function of the number of customers, for a similar system but with no waiting room, is shown in [14]. In [15],
he authors look at the revenue maximization problem from the perspective of the service provider. They are interested in
aximizing the expected discounted revenue, while keeping the queueing model of [7]. They obtain a revenue optimizing

hreshold queue length beyond which entries are not allowed into the queue. This threshold can be computed numerically.
ll customers who see a waiting queue length smaller than this threshold, pay a price equal to the difference between
heir valuation and waiting cost. In [16], an explicit form is derived for the threshold obtained in the previous work,
nd they characterize the earning rate asymptotically. However, both aforementioned works provide explicit solutions in
he case of fixed service valuation (or simple valuation distributions, such as a valuation which takes two values). They
o not provide explicit solutions for valuations with continuous support and general distributions. In [17], the authors
tudy optimal pricing in finite capacity queueing systems. However, they consider the sub optimal class of static prices,
here the prices charged by the service provider is independent of the number of customers present in the system.
hey find the best prices in this class, and study its variation with the number of servers. Another work which looks at
ptimal pricing in finite capacity queueing system is [18]. Here, under the assumption that the generalized hazard rate of

the valuation distribution is strictly increasing, the authors obtain the optimal, revenue maximizing policy. However, this
assumption does not hold for all distributions. Another work which looks at dynamic pricing in queues is [19]. The authors
consider a multi server queueing system with finite waiting room. They prove that an optimal monotone policy exists,
under the average reward criterion. Existence of an optimal monotone policy for a system with two tandem queues is
provided in [20]. Apart from these, there is substantial literature which looks at revenue optimization of different models
of queueing systems using an MDP framework and obtain existence and structural results on the optimal policy. These
include works such as [3,21]. In [22], the authors study optimal pricing for a two class queueing system, and obtain
structural results for the optimal prices. A comprehensive survey of different dynamic pricing techniques is available
in [23]. In a recent work [24], the authors prove the existence a static pricing policy that obtains 78.9% of the optimal
profit in a system with multiple reusable resources. They assume that the arrivals form a Poisson process, and further,
that the revenue rate is a concave function of the arrival rate. This static pricing policy is obtained as a function of the
optimal (state dependent) pricing policy.

Since explicit computation of optimal prices and revenues is difficult in general, a number of works study the pricing
and revenue problem in asymptotic regimes, and obtain useful insights. That dynamic pricing can lead to lower variability
in the revenue of pricing system, as opposed to static pricing, is shown in [25]. They use an asymptotic analysis to show
that the revenue loss due to randomness is lower for dynamic pricing than static pricing, when the customer valuation
is random. An asymptotically optimal pricing is obtained in [26] when the customers are delay sensitive but have fixed
valuations, for a system with two classes of customers. An asymptotic approach to the dynamic pricing problem is given
in [27], where the solution to an approximating diffusion control problem is used as a solution. Another asymptotic regime
is the large capacity regime, explored in [28]. They aim to minimize the cost to the customers caused by delay, when the
delay cost is a non-linear function of delay. The authors obtain different optimal policies, corresponding to different types
of cost functions in this asymptotic regime.

As opposed to works such as [3,13,14,19–21,29] which show existence of the optimal policy and proceed to obtain
structural insights, in this work, we explicitly obtain the optimal price as a solution of a fixed point equation. Moreover
we consider arrival processes with general distribution, which generalizes the Poisson assumption in these works. We
do not restrict ourselves to the increasing hazard rate assumption of [18], and thus have a more general result. Since we
assume valuations with a general distribution, our result is more general than [15].

Notation: Before we proceed, we introduce the following notation that we use throughout in this article. We denote
the set of positive integers by N, the set of non-negative integers by Z+, the set of non-negative reals by R+, the set of
first n positive integers by [n], and the set of non-negative real vectors of length n by Rn

+
. A list of some commonly used

symbols in this paper is given in Table 1, for easy reference.

2. System model

We model a compute cluster of K servers as a queueing system, where jobs arrive with some service time and a
valuation. The price of admission into the compute cluster is updated at each job arrival. If the admission price is smaller
than the valuation, then the job is admitted into the system. The job pays the admission price to the compute cluster. In
3
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Table 1
List of notation commonly used in this paper.
Symbol Meaning

λ Arrival rate

µ Service rate of one server

ρ Load factor λ
µ

Vi Valuation of job i

G(u) P[V1 ≥ u]

pk Admission price when k jobs are present in the system

p Price vector (p0, ..., pK−1)

X(t) Number of busy servers at time t

[K ] {1, . . . , K }

X {0, . . . , K }

X
′

{0, . . . , K − 1}

R(K , p) Revenue rate for K -server system with price vector p
p∗ Optimal price vector for K server system

p∗K Optimal uniform price for K server system

π Marginal distribution of number of busy servers seen by arriving customer

Ui ith inter arrival time

φ(s) Laplace Stieltjes transform of interarrival time = E[e−sU1 ]

βj
∏j

m=1
1−φ(mµ)
φ(mµ)

θ∗ Optimal revenue rate

Fig. 1. We depict a 5 server system. A job with valuation V arrives when two servers are busy. The admission price is p2 and the job joins the
system if its valuation V ⩾ p2 .

this case, the compute cluster earns the revenue equal to the admission price, and the job leaves upon service completion.
If admission price is larger than the valuation, the job leaves and never returns. A 5 server system is depicted in Fig. 1.
Two servers are occupied, and a new arrival with valuation V attempts to join the system.

The arrival process is modeled as a renewal process with i.i.d. inter-arrival times having mean 1
λ
. Arrival processes

re typically modeled by Poisson processes in the literature [12]. Our model is a generalization of this assumption,
here the sequence of interarrival times U ≜ (Un ∈ R+ : n ∈ N) remains i.i.d. however with a general distribution

F : R+ → [0, 1]. The sequence of arrival instants of customers is denoted by A ≜ (An ∈ R+ : n ∈ N), such that renewal
nstants An =

∑n
i=1 Ui. We denote the counting process associated with the arrival sequence by Nt : R+ → Z+ such that

Nt ≜
∑
n∈N

1{An⩽t}

is the number of arrivals until time t .
Service time requirements of arriving jobs at compute clusters can be modeled as i.i.d. random variables with a shifted

exponential distribution [30,31], with a constant start-up time and a random memoryless service time. When the job sizes
are large,2 exponential distribution is a good approximation for the job service requirement. As such, we assume that the
service time requirements of arriving jobs are an i.i.d. random sequence S ≜ (Sn ∈ R+ : n ∈ N), distributed exponentially
with mean 1

µ
.

2 When the job sizes are large, the mean of the memoryless service time dominates the constant start-up time.
4
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A natural assumption would be to assume that service time requirements affect the job valuation, i.e. higher the service
ime requirement, larger the valuation. However, this assumption has two caveats, the first that the job is aware of its
equirements apriori, and the second that all jobs are valued in a homogeneous manner. In practice, jobs maybe unaware of
ervice time requirements, and they maybe valued heterogeneously. To keep our model general and analytically tractable,
e assume that each job has a random i.i.d. positive valuation sampled from a continuous cumulative distribution
: R+ → [0, 1]. We denote the i.i.d. random sequence of job valuations by V ≜ (Vn ∈ R+ : n ∈ N) with finite
ean EV1. We note that this remains a more general assumption, when compared to constant valuation considered in

he literature [15]. Random valuation models the scenario where the customers are not identical in their assessment of
he value of the job. However, they are drawn from a homogeneous population. We assume that the distribution G is
nown. However, in general it may be necessary to estimate this distribution. For example, see [32] where the authors
se kernel density estimation methods to estimate G.
Recall that we have a finite compute cluster with K servers, and we assume that incoming jobs join a unique3 idle4

erver if admitted. That is, a job leaves if either its valuation is lower than the admission price or all K servers are busy.
e assume that the server sets a price, that depends only on the number of busy servers at any job arrival instant. That

s, if we let k be the number of busy servers at a job arrival, then the admission price is pk. The number of busy servers
epresents the resource crunch at the service provider. It is reasonable to expect the service provider to set its prices as
function of this number. To capture the effect of a job leaving when all K servers are busy, we can define the price

K ≜ ∞. Therefore, if there are k busy servers at arrival instant of nth job with valuation Vn, then we can indicate its
dmission by 1{Vn⩾pk}, and the revenue earned by the cluster by pk1{Vn⩾pk}. Note that in our model a customer leaves when

no free server is available, or when the price posted is large. Such a model is common in the literature and is referred to
as a loss model [3,14,24,33]. This is in agreement with majority of cloud computing modeling in literature. For example,
Bouterse and Perros [34] study capacity planning of cloud infrastructure considering a finite number of application seats
and no queueing. Vakilinia et al. [35] also consider resource allocation in cloud computing centers with finite number
of VMs assuming that the jobs are blocked if there are not enough idle VMs to serve them. This also corresponds to a
situation where the service provider is not a monopoly — there are other service providers to whom the customer can
turn to, when the server under consideration is busy or expensive.

We denote the number of busy servers in the system at time t by X(t) ∈ X ≜ {0, . . . , K }. Since the admission price
epends only on the number of busy servers at the arrival instants, it follows from the memoryless property of service
imes that the number of busy servers specify the system state completely. Since we have set pK = ∞, the state space
can be reduced to X ′ ≜ {0, . . . , K − 1}. We denote a state-dependent price vector by p = (p0, . . . , pK−1) ∈ RX ′

+
. We

enote the number of busy servers in the system seen by nth arriving customer as Zn ≜ X(A−n ). We denote the revenue
arned by the cluster until time by R(t), which can be written as

R(t) =
Nt∑
n=1

K−1∑
k=0

pk1{Vn⩾pk}1{Zn=k}. (1)

he limiting revenue rate for this K server system with the state-dependent price vector p is denoted by

R(K , p) ≜ lim
t→∞

ER(t)
t

. (2)

Our main goal is to find the state-dependent pricing vector p that maximizes revenue. Formally, we solve the following
problem.

Problem 1. Find the optimal price vector p∗ ∈ RX ′

+
that maximizes the limiting system revenue rate R(K , p). That is,

we wish to find

p∗ ≜ argmax
{
R(K , p) : p ∈ RX ′

+

}
.

Denoting a vector of all ones by 1 ∈ RX ′

+
and a fixed price p ⩾ 0, we can denote the uniform price vector by p1. In

this case, the price charged to a customer is independent of the state of the system. We next find the uniform price that
maximizes the revenue rate.

Problem 2. Find the uniform price p that maximizes the limiting system revenue rate R(K , p1). That is, we wish to find

p∗ ≜ argmax {R(K , p1) : p ∈ R+} .

In most systems, calculating the optimal uniform price turns out to be much simpler than obtaining the optimal price
vector p∗. This also provides a benchmark for comparing the optimal policy and quantifying the improvement. We denote
the optimal revenue rate by R∗ = R(K , p∗), and compare it to the revenue rate R(K , p∗1) for the best uniform pricing.

3 We are not considering redundant replication of jobs, which is an interesting future direction. We will see that our problem remains difficult
even without redundancy.
4 This model can be extended to the case when jobs join the queue if all K servers are busy. In this case, the price will depend on the number
f people existing in the queue, and the state space of possible prices increases.
5
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emark 1. In this paper, we assume that the price charged does not depend on the service time. In contrast, in cloud
omputing systems such as Amazon EC2 and Microsoft Azure, the customers are charged based on their service time.
owever, the results in this paper are also applicable in such settings with pk being interpreted as price per unit service.
his can be understood as follows. Suppose Si is the random service duration of the ith job, then its price is pkSi, and

its expected value is pk
µ
. So, the mean revenue expression, the Bellman’s equation characterizing the optimal pricing etc.

emain unchanged the same except for a constant scaling factor 1
µ
. Consequently, the optimal pricing analysis and the

roperties of the optimal prices also continue to hold.

. Computation of revenue rate

Recall that the nth customer sees Zn = X(A−n ) busy servers in the system. We denote the indicator to the event that
he job valuation of nth customer is higher than the system admission price, by en ≜ 1{Vn⩾pZn}

. From the memoryless
roperty of service time requirements, state dependent admission pricing, and the i.i.d. nature of job valuations, it follows
hat the process ((Zn, en) ∈ X × {0, 1} : n ∈ N) evolves as a discrete time Markov chain with finite state space.

We define i∗ ≜ min {i ∈ X : pi > supp(G) or pi = ∞}, where with a slight abuse of notation, we use supp(G) to denote
he support of the probability density function of the random variable with cumulative distribution function G. Since the
aluations are i.i.d., it can be verified that this Markov chain is irreducible and aperiodic over the reduced state space
0, . . . , i∗}× {0, 1}. It follows that this reduced Markov chain has a positive invariant distribution π̃ . For ease of notation,
we can extend this distribution π̃ to the entire state space X ×{0, 1} by defining π̃ (k, u) = 0 for all k > i∗ and u ∈ {0, 1}.
Since valuations are i.i.d., conditioned on the number of busy servers Zn seen by the incoming arrival, the conditional
mean of the random variable en ∈ {0, 1} is E[en|Zn] = G(pZn ). That is, G(pk) is the admission probability of an incoming
customer that sees k busy servers. Let π ≜ (πk : k ∈ X ) be the marginal distribution of the number of busy servers seen
by an incoming customer. In terms of the marginal distribution π and admission probability G(pk), we can write the joint
distribution π̃ as

π̃ (k, 1) = G(pk)πk, π̃ (k, 0) = G(pk)πk. (3)

Theorem 3. Given the marginal distribution π and the state-dependent arrival rate λk ≜ λG(pk), the limiting mean revenue
rate for the cluster with state-dependent price vectors p is

R(K , p) =
K−1∑
k=0

πkλkpk. (4)

Proof. From Eq. (1) for the cumulative revenue R(t) until time t , we observe that the revenue earned by the cluster for
nth arriving customer is denoted by R(Zn, en) = pZnen. Since Nt is a counting process for the arrival renewal process, we
have limt→∞

Nt
t = λ almost surely. Hence, we can write,

lim
t→∞

R(t)
t

= λ lim
t→∞

1
Nt

Nt∑
n=1

R(Zn, en).

By an ergodic theorem for Markov chains (Theorem 1.10. of [36]), it follows that, almost surely,

λ lim
Nt→∞

1
Nt

Nt∑
n=1

R(Zn, en) = λ

K−1∑
k=0

pk
∑

u∈{0,1}

uπ̃ (k, u).

rom Eq. (3) for π̃ (k, 1) and the definition of state-dependent arrival rate λk, we see that, almost surely,

lim
t→∞

R(t)
t

=

K−1∑
k=0

πkλkpk.

ince the revenue rate is upper bounded by average valuation of all incoming customers, we get R(t)/t ⩽ (
∑Nt

n=1 Vn)/t .
ince the valuation sequence V is independent of the interarrival sequence U , it follows from the strong law of
arge numbers [37, Theorem 5.4.2] that the upper bound converges to λEV1 almost surely. From the renewal reward
heorem [38, Theorem 3.6.1], we see that limt→∞(

∑Nt
n=1 Vn)/t = λEV1. It follows from [37, Theorem 4.5.4], that (R(t)/t :

> 0) is a uniformly integrable family of random variables. Consequently, we have

lim
t→∞

ER(t)
t

= E lim
t→∞

R(t)
t

=

K−1∑
k=0

πkλkpk. □

We will assume that the optimal price vector defined in Problem 1 exists and is finite.
6
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Fig. 2. Transition rate diagram of the CTMC denoting the number of busy servers with three identical servers and state dependent prices.

ssumption 4. There exists a finite optimal price p∗ such that,

R(K , p∗) = max
p∈RX ′

+

R(K , p).

We are interested in finding this p∗ whenever it exists.

Remark 2. Consider the discrete-time discrete-state process Z ≜ (Zn ∈ X : n ∈ N), that denotes the number of busy
ervers seen by an incoming arrival. In the nth interarrival time Un, the number of departures from Zn = k busy servers
is denoted by random variable Nk(Un). Conditioned on duration Un and Zn = k, the probability of i departures is given by

P {Nk(Un) = i} =
(
k
i

)
(1− eµUn )ie−(k−i)µUn ,

for i ∈ {0, . . . , k}. Since the interarrival time sequence U is i.i.d. with general distribution F , we can write the probability
f 0 ⩽ i ⩽ k departures from k busy servers, as

αk,i ≜ EP {Nk(Un) = i} =
∫

dF (x)P {Nk(x) = i} . (5)

Then, we can write the homogeneous probability for the Markov chain Z to transition from state k ∈ X to state
j ∈ {0, . . . ,min {k+ 1, K }} as

G(pk)αk+1,k+1−j + G(pk)αk,k−j. (6)

Therefore, one can find the transition probability matrix for the sampled Markov chain Z , for any general interarrival
distribution F . It follows that the limiting distribution of the number of busy servers can be evaluated at least numerically.

Remark 3 (Kelly [39]). The computation of marginal distribution π of the number of busy servers, is straightforward for
Poisson arrivals. In this case, the evolution of the number of busy servers forms a birth–death Markov process, with
transitions depicted in Fig. 2. Due to PASTA property, the distribution of number of busy servers seen by incoming
customers is identical to the stationary distribution π of this Markov process. In particular, the distribution π is given in
erms of the load factor ρ ≜ λ

µ
as

πk =

⎧⎨⎩π0
ρk

k!

∏k−1
j=0 G(pj), k ̸= 0,[

1+
∑K

k=1
ρk

k!

∏k−1
j=0 G(pj)

]−1
, k = 0.

(7)

We showed in Theorem 3, that the limiting revenue rate R(K , p) can be written as a function of state-dependent price
vector p, marginal distribution π , and state-dependent arrival rates λk. Hence, the optimal price vector depends on the
arginal distribution π . This marginal distribution is not easy to compute for the case of general inter arrival distribution,
nd its properties are not easy to establish even when inter arrival times are exponential. Therefore, we first consider a
imple sub-class of prices, the uniform prices, where the price is independent of the state.

. Uniform pricing

In this section, we will consider uniform pricing, not only when the number of servers is finite, but also when it is
ountably infinite. We show that uniform pricing is optimal in the infinite server scenario. Hence, optimizing the revenue
ver the simpler class of uniform prices is a reasonable solution, when the number of servers is large.
From Theorem 3, the following corollary is immediate for the revenue rate under uniform pricing.

orollary 5. The mean revenue rate for K-server system under uniform pricing p = p1 is

R(K , p1) = λpG(p)(1− πK (p)). (8)

The revenue rate depends on the probability 1− πK (p) of arriving jobs seeing at least one idle server. This probability
depends on the uniform price p. Hence, we obtain an expression for the blocking probability πK (p) to understand the
evenue rate dependence on the uniform price p.
7
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roposition 6. Consider a K-server system with uniform price p = p1. We denote the Laplace Stieltjes transform (LST) of the
nterarrival time U by φ : R → R+, which is defined by φ(s) ≜ E[e−sU

] for all s ∈ R. Defining

βj ≜

j∏
m=1

1− φ(mµ)
φ(mµ)

, (9)

we can write the limiting probability of finding all K servers busy as

πK (p) = (
K∑

j=0

(
K
j

)
G(p)−jβj)−1. (10)

roof. Recall that interarrival times U for jobs are i.i.d. with common distribution F . For uniform pricing p = p1, the
admission indicator sequence e ≜ (en : n ∈ N) are i.i.d. Bernoulli with Een = G(p). We write the number of arrivals
etween (n − 1)th and nth admission as Tn, and observe that T ≜ (Tn : n ∈ N) is an i.i.d. geometric sequence with
uccess probability G(p), and independent of inter-arrival sequence. We denote the inter-arrival times for admitted job
as Ũ ≜ (Ũn : n ∈ N), where Ũn ≜

∑Tn
k=1 Uk. It follows that Ũ is i.i.d. and thinned version of the original arrival process U .

e can write the LST for the inter-arrival times of admitted jobs in terms of thinning probability G(p) as

φ̃(x) =
∞∑
n=1

φ(x)nG(p)n−1G(p) =
G(p)φ(x)

1− G(p)φ(x)
. (11)

e observe that the evolution of the K -server pricing system under uniform pricing, is identical to that of a G/M/K/K
ueueing system with i.i.d. inter-arrival times Ũ and K i.i.d. servers with exponential service rates µ. Therefore, the limiting
locking probability for this stable G/M/K/K system can be written, using the Palm’s formula [40], as

πK (p) =
1∑K

j=0

(K
j

)∏j
m=1

1−φ̃(mµ)
φ̃(mµ)

.

Result follows from Eq. (11), which implies that 1−φ̃(mµ)
φ̃(mµ)

=
1

G(p)

( 1−φ(mµ)
φ(mµ)

)
. □

From above proposition, we can make the following observations for the limiting blocking probability.

roposition 7. For the finite server system under uniform pricing, the limiting blocking probability is nonincreasing in

(a) uniform price for a fixed number of servers,
(b) number of servers for a fixed uniform price.

roof. We recall the form of blocking probability πK (p) given in Eq. (10) for K -server system under uniform price p.

(a) Blocking probability πK (p) is non-decreasing in G(p), and the tail probability G(p) is non-increasing in uniform price
p.

(b) From the definition of βj =
∏j

m=1
1−φ(mµ)
φ(mµ) in Eq. (9), the binomial identity

(K+1
j

)
=

(K
j

)
+
( K
j−1

)
, and positivity of all

terms, we observe that

πK+1(p) ⩽ πK (p). □

Remark 4. Above proposition implies that a higher price leads to a lower blocking probability for the same number
of servers, since some jobs will leave without joining. It also implies that block probability is reduced by increasing the
number of servers while keeping the price fixed.

Definition 8. For a K -server system, we can define the optimal uniform price p∗K as the price that maximizes the mean
revenue rate under uniform pricing. That is,

p∗K ≜ argmax
p>0

R(K , p1) = argmax
p>0

λpG(p)(1− πK (p)).

The corresponding revenue rate for this price is R(K , p∗K1).

4.1. Properties of revenue rate under uniform pricing

We now show that this optimal revenue increases with the number of servers.

Lemma 9. The mean revenue rate for a finite server system under uniform pricing is increasing in the number of servers.
8
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roof. Consider the optimal uniform price p∗K for K server system. When this uniform price is applied to a K + 1 server
ystem, then the mean revenue rate of this system is given by Eq. (8), as

R(K + 1, p∗K1) = λp∗KG(p
∗

K )(1− πK+1(p∗K )).

rom the monotonicity of blocking probability with the number of servers in Proposition 7, for finite server system under
niform price, it follows that πK+1(p) ⩽ πK (p). Therefore, we have

R(K , p∗K1) ⩽ λp∗KG(p
∗

K )(1− πK+1(p∗K )) = R(K + 1, p∗K1).

Since the optimal uniform price for K + 1 server system is p∗K+1, we obtain that R(K + 1, p∗K1) ⩽ R(K + 1, p∗K+11) and the
result follows. □

Remark 5. We consider the uniform pricing for the limiting case when the number of servers grow unboundedly large.
If the uniform price is p, then any arriving job with valuation higher than p joins the system. Since there is no blocking
due to unavailability of servers, the mean revenue rate for the limiting system is λpG(p). Therefore, the optimal uniform
price for infinite server system is given by

p∗
∞

≜ argmax
p

pG(p). (12)

We next see that the optimal uniform price for infinite server system is lower than the optimal uniform price for any
finite server system.

Lemma 10. Let p∗
∞

defined in Eq. (12) and p∗K defined in Eq. (8) be the optimal uniform prices for infinite and finite K-server
ystems respectively. Then, p∗K ⩾ p∗

∞
for all finite K .

roof. Let πK (p∗K ) and πK (p∗∞) be the blocking probabilities for K -server system with uniform prices p∗K1 and p∗
∞
1

respectively. From the definition of optimal uniform price for infinite server system, it follows that p∗
∞
G(p∗

∞
) ⩾ p∗KG(p

∗

K ).
From the definition of optimal uniform price for finite server systems, it follows that

(1− πK (p∗K ))p
∗

∞
G(p∗

∞
) ⩾ (1− πK (p∗K ))p

∗

KG(p
∗

K )

⩾ (1− πK (p∗∞))p∗
∞
G(p∗

∞
).

herefore, we have πK (p∗∞) ⩾ πK (p∗K ). The result follows from the monotone decrease of blocking probability πK in uniform
rice p from Proposition 7. □

We now establish that the mean revenue rate in the infinite server system is maximized by the optimal uniform
ricing.

roposition 11. The optimal uniform pricing p∗
∞

maximizes the mean revenue rate for infinite server system.

roof. By definition of the optimal revenue rate for K servers, the optimal revenue rate R(K , p∗) with state dependent
ricing p∗ is greater than the maximum revenue rate R(K , p∗K1) under uniform pricing p∗K1. That is,

R(K , p∗K1) ⩽ R(K , p∗).

rom Eq. (4) we obtain that the optimal mean revenue is a convex combination of (λpkG(pk) : k ∈ X ), where the optimal
price vector is p∗ = (p0, . . . , pK−1). From the definition of p∗

∞
in Eq. (12), we get

R(K , p∗) ⩽ λmax
k∈X

pkG(pk) ⩽ λp∗
∞
G(p∗

∞
).

From Lemma 9, the optimal revenue rate R(K , p∗K ) is monotonically increasing in the number of servers K . The result
ollows from taking the limit K → ∞ in the above equation. □

Thus, for a system with a large number of servers, choosing the optimal uniform price, is close to optimal. We note that
ystem state for a finite server system can equivalently be represented by the number of idle servers. In an infinite server
ystem, the number of idle servers is always infinite, and hence state dependent pricing reduces to state independent
ricing. With this view, it is expected that optimal pricing for an infinite server system will be uniform. We next bound
he optimal revenue rate in terms of the maximum revenue rate under uniform pricing.

emma 12. Let p∗
∞

and p∗K be optimal uniform prices of infinite and finite K-server systems, and let p∗ be the optimal state
ependent price vector for the K server system. If the blocking probability of the K-server system under uniform price p∗

∞
is

enoted by πK (p∗∞), then

R(K , p∗K1) ⩽ R(K , p∗) ⩽
R(K , p∗K1)

∗
.

1− πK (p∞)
9
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Fig. 3. Upper and lower bounds for ratio of optimal revenue to optimal uniform revenue as a function of load ρ. We have different upper bounds
or different number of servers K , and the lower bound is uniformly 1.

roof. The first inequality follows from the definition of the optimal revenue rate. To prove the second inequality,
ecall that optimal revenue rate under uniform pricing is increasing in the number of servers, i.e. R(K , p∗) ⩽ λp∗

∞
G(p∗

∞
).

Multiplying both sides by 1− πK (p∗∞), we see that,

(1− πK (p∗∞))R(K , p∗) ⩽ R(K , p∗
∞
1).

Since the right hand side term is the revenue rate of a K server system with uniform price p∗
∞
, it can be upper bounded

by maximum revenue rate R(K , p∗K1) under optimal uniform price p∗K . □

The above lemma implies that the optimal revenue rate converges to maximum revenue rate under uniform pricing as
the number of servers K grows large. We show this bound in Fig. 3, by plotting the upper and lower bounds on R(K ,p∗)

R(K ,p∗K 1)
for

ifferent values of load factor ρ and different number of servers K . For this plot, we have taken an exponential valuation
unction with parameter 1. In addition, the arrivals are assumed to be Poisson and we have taken the memoryless service
ate to be 1 for each server. The upper bound tightens as we increase the number of servers. However, the bound can
e made loose by scaling up the load factor to an appropriate value. This feature is captured analytically in the following
orollary and the subsequent remark.

orollary 13. In terms of β1 =
1−φ(µ)
φ(µ) defined in Eq. (9), we can upper bound the difference between the optimal revenue rate

nd the maximum revenue rate under uniform pricing as

R(K , p∗)− R(K , p∗K1) ⩽
1

β1K
R(K , p∗K1).

Proof. The blocking probability of K server system given in Proposition 6 under uniform price p∗
∞
, can be upper bounded

s

πK (p∗∞) =
1∑K

j=0

(K
j

)
G(p∗

∞
)−jβj

⩽
1

1+ KG(p∗
∞
)−1β1

.

he upper bound follows by taking only two positive terms corresponding to j ∈ {0, 1} in the summation for j ∈ X .
Therefore, using the fact that G(p∞) ⩽ 1, we get

1
1− πK (p∗∞)

⩽ 1+
1

KG(p∗
∞
)−1β1

⩽ 1+
1

β1K
.

We obtain the result by substituting this expression in the upper bound for optimal revenue rate R(K , p∗) in Lemma 12. □

Remark 6. For Poisson arrivals, β1 =
1−φ(µ)
φ(µ) =

µ

λ
=

1
ρ
, and hence R(K , p∗) ⩽ (1 +

ρ

K )R(K , p∗K1). It is clear that for a
arge enough K , the optimal uniform price is a reasonable substitute for the optimal price. However, the bound is loose
or smaller values of K and higher values of ρ, corresponding to a high arrival rate.

.2. Asymptotic behavior of revenue rate

We next address the question of maximum revenue rate scaling under uniform pricing as the arrival rate increases
o infinity. For a K i.i.d. server system each serving at an exponential rate µ, the maximum system service rate is Kµ.
herefore, for a uniform price system with p = p1, the maximum revenue cannot exceed pKµ. We investigate whether
10
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e can meet this upper bound by driving the arrival rate to infinity. We observe that this is not true for all arrival
istributions. In fact, for certain interarrival distributions, the revenue rate goes to zero as arrival rate increases.
Recall that φ : R+ → R+ denotes the Laplace Stieltjes transform of the i.i.d. job interarrival times. To begin with, we

rove the following technical lemma.

emma 14. For the K-server system under uniform pricing limλ→∞ φ(θ ) = 1.

roof. For any θ ∈ R+, we have e−θU1 ⩽ 1. Further, we observe that f : R+ → R+ defined by f (y) ≜ e−θy is a convex
unction. From Jensen’s inequality, we have Ef (U1) ⩾ f (EU1). Combining both these results, we get

e−
θ
λ = e−θEU1 ⩽ φ(θ ) ⩽ 1, θ ∈ R+. (13)

aking the limit as arrival rate λ → ∞, we get the result. □

emark 7. Consider the case when limλ→∞ λ(1 − φ(µ)) = µ̃ exists. Then, from the definition of sequence β = (βj =
j
m=1

1−φ(mµ)
φ(µ) : j ∈ N) in Eq. (9), we get that

lim
λ→∞

βj = 0, lim
λ→∞

λβj = µ̃1{j=1}. (14)

Theorem 15. Consider a K server pricing system with job interarrival times being i.i.d. and having a Laplace Stieltjes transform
φ that satisfies limλ→∞ λ(1 − φ(µ)) = µ̃. The mean revenue rate for this system under a uniform price vector p = p1 such
that G(p) > 0, is bounded as the arrival rate grows. In particular, limλ→∞ R(K , p1) = µ̃pK .

Proof. Recall that the mean revenue rate for uniform pricing p1 of K i.i.d. exponential servers is given by R(K , p1) =

λpG(p)(1 − πK (p)) from Eq. (8). From Proposition 6, we have the blocking probability πK (p) in Eq. (10) defined in terms
f variables βj =

∏j
m=1

1−φ(mµ)
φ(mµ) given in Eq. (9) for j ∈ [K ]. Therefore, we can write the mean revenue rate as

R(K , p) = pG(p)

⎛⎝ Kλβ1
G(p)

+ λ
∑K

j=2

(K
j

)
G(p)−jβj∑K

j=0

(K
j

)
G(p)−jβj

⎞⎠ . (15)

aking the limit as arrival rate λ → ∞, substituting the limiting results from Eq. (14) in Eq. (15), we obtain the result. □

emark 8. From the inequality on Laplace Stieltjes transform φ in Eq. (13) and the fact that 1− y ⩽ e−y, we get

0 ⩽ λ(1− φ(x)) ⩽ λ(1− e−
x
λ ) ⩽ x.

From the definition of µ̃ = limλ→∞ λ(1 − φ(µ)), we obtain that 0 ⩽ µ̃ ⩽ µ. Thus, depending on the inter arrival time
istribution, the limiting revenue can lie between 0 and µpK . The quantity µ̃ can be considered an asymptotic service
ate per server.

We present examples of limiting revenue rate being µpK , zero, and between (0, µpK ) in Examples 24, 25, and 26
espectively, in Appendix A.1. We see that with the fixed uniform pricing, the limiting mean revenue rate remains
ounded, even when the arrival rate λ increases unboundedly large. We next show that it is indeed possible to scale
he mean revenue rate with the arrival rate, at least in the limiting regime, if the uniform pricing scales with the job
rrival rate λ.

emma 16. Consider a K server uniform pricing system with i.i.d. job interarrival times having Laplace Stieltjes transform
: R+ → R+. If the limit µ̃ ≜ limλ→∞ λ(1− φ(µ)) > 0, the value distribution G has the support R+, and the uniform price
∈ G

−1
( 1
λ
), then the limiting revenue rate limλ→∞ R(K , p1) = ∞.

Proof. Let p ∈ G
−1

(1/λ). Substituting G(p) = 1
λ
in the mean revenue rate in Eq. (8) for K server system under uniform

ricing, we obtain R(K , p1) = p(1 − πK (p)). From the blocking probability πK (p) expression in Eq. (10) in terms of the
positive sequence β = (βj : j ∈ [K ]) in Eq. (9), we get

πK (p) =
1∑K

j=0

(K
j

)
G(p)−jβj

⩽
1

1+ KG(p)−1β1
,

ecall that φ(µ) ⩽ 1, and hence β1 =
(1−φ(µ)

φ(µ) ⩾ 1 − φ(µ). Using this fact and substituting G(p) = 1/λ in the above
quation, we get π (p) ⩽ (1 + Kλ(1 − φ(µ)))−1. From the hypothesis lim λ(1 − φ(µ)) = µ̃ > 0, and the fact that
K λ→∞

11
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imx→0 G
−1

(x) = ∞,5 we obtain

lim
λ→∞

R(K , p1) = lim
λ→0

G
−1

(
1
λ

)
µ̃

1+ µ̃
= ∞. □

Thus, an arrival rate dependent uniform pricing can scale the revenue rate to infinity, in the asymptotic regime as the
arrival rate λ grows arbitrarily large. We show an example of linear increase of mean revenue rate with arrival rate λ in
xample 27. Since G

−1
( 1
λ
) → ∞ as λ increases, we see that to extract maximum revenue, the price should be made as

high as possible in the heavy traffic limit. However, letting the price grow too fast can cause the revenue rate to go to
zero instead of infinity, as shown in Example 28.

5. Optimal pricing for finite servers with Poisson arrivals

In the previous section, we found the optimal uniform pricing for a finite server system. Uniform pricing is optimal
when the number of servers is very large. However, this yields a sub optimal revenue rate when the number of servers is
finite. From Remark 6, it seems that uniform pricing would be sub optimal in a system with few servers or with high load,
i.e, arrival rate much higher than service rate. In order to compute the revenue maximizing price, we frame the optimal
state dependent pricing problem as a continuous time Markov decision problem [41, Chapter 5]. We derive optimal prices
and also analyze their dependence on various system parameters, e.g., the number of servers, job arrival rate, and service
rate. We first formulate the MDP for the case of Poisson arrivals, and solve it. In the subsequent section, we solve the
MDP for a system with general arrivals. These are dealt with separately because the formulation changes when we move
from Poisson to general arrivals. Furthermore, under the Poisson assumption we are able to obtain more insights into the
system behavior.

5.1. The MDP formulation

As in Section 2, we consider the number of busy servers to be the state of the system and the quoted price in any state
to be the control. Correspondingly, the state space is X ′ and the control space for price u ∈ RX ′

+
. The mean revenue rate

given a stationary state dependent policy u is,

R(K , u) = lim
t→∞

ER(t)
t

= lim
t→∞

1
t
E[
∫ t

0
g(Xs, u(Xs))ds], (16)

here g is the instantaneous reward. In our setup, the rewards are obtained only at the arrival instants, and equals the
rice u if accepted by the incoming arrival. However, the price u is changed at every transition instant. Denoting Xn as
he state of the system after n transitions, we can rewrite the reward rate as

R(K , u) = lim
t→∞

1
t
E

Nt∑
n=0

g(Xn, u(Xn)).

Following the discussion in [41], this is equivalent to

R(K , u) = lim
N→∞

1
EtN

E
N∑

n=1

g(Xn, u(Xn)),

where tN is the Nth transition epoch. We wish to find the control u∗ ∈ RX ′

+
that yields the optimal reward rate

R∗K = R(K , u∗) = maxu R(K , u).
The sojourn times in various states are independent exponentially distributed random variables depending on the

controls applied on transitions to those states. As soon as the state changes to state i, a price u is set. This price is accepted
with probability G(u) by an incoming arrival. Therefore, the sojourn times in a state i, for price u, are exponentially
istributed with parameters νi(u) = iµ + λG(u)1{i∈X ′}. The state transition probabilities are independent of the sojourn

times and dependent on the price u ∈ R+, and are given by: p0,1(u) = 1 and pK ,K−1(u) = 1, and for i ∈ [K − 1]

pij(u) =
λG(u)
νi(u)

1{j=i+1} +
iµ

νi(u)
1{j=i−1}. (17)

n addition, the rewards are accrued at the state transition instants and hence we focus only on the embedded discrete
ime Markov chain. The duration between two transitions is referred to as a stage of the MDP. When in a state i and using
ontrol u, a single stage reward u is obtained if a job arrives and joins service leading to the state i+ 1. The mean single
tage reward is

g(i, u) = upi,i+1(u) = u1{i=0} +
λuG(u)
νi(u)

1{i∈[K−1]}. (18)

5 From the definition of distribution functions, the complimentary distribution G is non-increasing and limx→∞ G(x) = 0. Further, since the support
of G is R , it follows that lim G

−1
(x) = ∞.
+ x→0

12
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.2. Uniformization of continuous time Markov chain

Using [41, Proposition 5.3.1] to solve the average reward MDP in Eq. (16) we can write the Bellman’s equation for all
tates i

h(i) = max
u

[
g(i, u)−

θ

νi(u)
+

K∑
j=0

pij(u)h(j)
]
. (19)

ere θ is the optimal average reward per stage independent of the initial state (see [41, Section 4.1]) and h(i), has
nterpretation of a relative or differential reward for each state i. Defining the uniformizing transition rate Λ ≜ Kµ + λ,
we observe that νi < Λ for all states i and control u ∈ R+. Hence we can convert the above Markov controlled process
to the one with uniform transition rate Λ by allowing fictitious self transitions such that the resulting dynamics remains
unchanged. Specifically, we redefine state transition probabilities for the uniformized Markov process as follows. For all
states i ∈ X and control u ∈ R+,

p̃ij(u) = pij(u)
νi(u)
Λ

1{j̸=i} +

(
1−

νi(u)
Λ

)
1{j=i}. (20)

e can now view the above problem as a discrete-time average reward problem with same state and control spaces,
ransition probabilities p̃ij(u) and expected single stage rewards g(i, u). The Bellman’s equation for this discrete-time
roblem has the following form for all i

h̃(i) = max
u

[
g(i, u)νi(u)− θ +

K∑
j=0

p̃ij(u)h̃(j)
]
. (21)

emark 9. The Bellman’s equations (19) and (21) are equivalent. In particular, a pair (θ, h) satisfies (19) if and only if
he pair (θ, h̃) satisfies (21), where h̃(i) = Λh(i) for all i. Moreover, for all the states, the optimal actions for the two
problems (control u achieving maxima in the right hand sides of (19) and (21)) are identical.

Remark 10. Defining the uniformized reward difference ∆(i) ≜ (h̃(i)−h̃(i+1))
Λ

for all states i ∈ X ′, and substituting in Eq. (21),
along with expressions for per stage mean reward g(i, u) from Eq. (18), and transition probabilities p̃ij(u) from Eq. (20),
we get the following set of equations for all i ∈ X

θ = λmax
u

{
G(u)(u− ∆(i))

}
1{i∈X ′} + iµ∆(i− 1). (22)

.3. Auxiliary maps

We define the mapping f : R2
→ R as

f (B, u) ≜ (u− B)G(u), B, u ∈ R. (23)

emark 11. We define a set valued map u∗ that maps B ∈ R to u∗(B) ⊆ R+

u∗(B) ≜ argmax
u

f (B, u). (24)

f the maximizer is unique, then u∗ : R → R+ is a real valued map. The maximum value of f (B, u∗) is a real valued map
: R → R such that

m(B) ≜ f (B, u∗) = max
u

f (B, u). (25)

emma 17. Following statements are true for m and u∗.

(a) m is non-negative and decreasing in B.
(b) m is Lipschitz-1 continuous and convex function of B.
(c) For B1 < B2, we have sup u∗(B1) ⩽ inf u∗(B2). When f (B, u) has a unique maximizer in u, then this maximizer u∗ is

non-decreasing in B.

roof. Proof is in Appendix B.1. □

5.4. The optimal pricing

In terms of the map m, we can re-write Eq. (22) as

m(∆(i))1 ′ +
iµ

∆(i− 1) =
θ

, i ∈ X . (26)
{i∈X } λ λ

13
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bserve that if (∆∗(i) : i ∈ X ′) solves Eq. (26) then the control u∗i ≜ u∗(∆∗(i)) achieving m(∆∗(i)) in Eq. (25) is the optimal
control in each state i ∈ X ′.

Remark 12. Consider the limiting case of infinitely many servers, i.e., K = ∞. We can easily see that θ = λm(0) along with
∆(i) = 0 for all i ∈ Z+ is a solution to Eq. (26). In particular, uniform (state independent) pricing, u∗ = argmaxu≥0 uḡ(u),
achieves the optimal revenue rate as readily seen in Eq. (12).

Lemma 18. Let (θ, ∆(i), i ∈ X ′) be a solution to Eq. (26) and p∗K = (u∗0, . . . , u
∗

K−1) ∈ RX ′

+
be the optimal price vector. Then

(a) θ ⩾ 0,
(b) ∆(i) are positive and increasing in i ∈ X ′.
(c) u∗i are also increasing in i ∈ X ′.

Proof. Proof is in Appendix B.2. □

Next, we will focus on solving Eq. (26). We propose an iterative algorithm to obtain θ , which can then be used to
obtain ∆(i) and also the optimal price u∗i for all the states. Realizing that ∆(i) is a function of optimal revenue θ and state
i, we denote it as gi(θ ) ≜ ∆(i), to rewrite Eq. (26) as

θ = λm(g0(θ )), (27a)

gi−1(θ ) =
θ − λm(gi(θ ))

iµ
, i ∈ [K − 1], (27b)

gK−1(θ ) =
θ

Kµ
. (27c)

e will show that there exists a unique θ which solves Eq. (27a). We then propose Algorithm 1 that finds this unique
in terms of which the optimal prices can be found. In particular, this algorithm iteratively generates two sequences

θ k : k ∈ X ) and (θ̄k : k ∈ X ) which converge to the unique θ .

Algorithm 1

initialize k = 0, θ0 = 0, θ̄0 = λm(g0(0)),
while θ̄k − θ k > δ do ▷ δ is the desired precision.

θ̃k =
θk+θ̄k

2 ,
θ k+1 = max

{
θ k,min{θ̃k, λm(g0(θ̃k))}

}
,

θ̄k+1 = min
{
θ̄k,max{θ̃k, λm(g0(θ̃k))}

}
,

k = k+ 1

Theorem 19.

(a) The fixed point equation θ = λm(g0(θ )) has unique solution.
(b) In Algorithm 1, θ k ↑ θ∗ and θ k ↓ θ∗, where θ∗ is the unique fixed point.

Proof. We consider Eqs. (27a), (27b), (27c).

(a) Observe that λm(g0(0)) > 0. We now argue that λm(g0(θ )) is decreasing in θ . These two facts together yield
both existence and uniqueness. From the monotonicity of function m in Lemma 17(a) and definition of gi−1 from
Eq. (27b), it follows that gi−1 is increasing in θ if gi is increasing in θ . Since gK−1(θ ) = θ/Kµ is increasing in θ , it
follows that g0(θ ) is increasing in θ , and hence λm(g0(θ )) is decreasing in θ .

(b) See [42, Theorem 2.1]. □

emark 13. If we assume the valuation is exponentially distributed, i.e., G(x) = e−βx, we see that the mapping
u∗(B) = B+ 1

β
and m(B) = 1

β
e−(βB+1). The optimal prices will be u∗i = u∗(∆∗(i)) = ∆∗(i)+ 1

β
.

.5. Properties of the optimal solution

We now analyze how the optimal prices and the optimal revenue rate vary with arrival rate λ, service rate µ, and
umber of servers K . We use the fact that the optimal revenue rate θ∗ is solution to Eq. (27a), from which we inductively
14
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erive properties of the uniformized reward difference gi using the monotonic decrease of m from Lemma 17. First, we
ook at the variation of the optimal revenue rate with arrival rate λ.

.5.1. Varying arrival rate
We assume that we vary the arrival rate λ while keeping the service rate µ and number of servers K fixed.

Proposition 20. For a K server pricing system with a fixed service rate µ, the following statements are true.

(a) The optimal revenue rate θ∗(λ) increases with λ.
(b) The ratio θ∗(λ)/λ decreases with λ.

roof. Proof is in Appendix B.3. □

emark 14. The uniformized reward differences ∆(0) and ∆(K − 1) are increasing in the arrival rate λ from Eqs. (27a)
nd (27c), respectively. Consequently, the optimal prices u∗0 and u∗K−1 are also increasing in λ. We believe that all the
ptimal prices (u∗i , i ∈ X ′) are increasing in λ. While we have not been able to show this, we demonstrate it via numerical
esults in Section 7.

Next, we study how the optimal revenue rate varies as the service rate µ changes.

.5.2. Varying service rate
Here we assume that we vary the service rate µ while keeping the arrival rate λ and number of servers K fixed. Now

e express the revenue rate as θ∗(µ) to emphasize its dependence on µ.

roposition 21. For a K-server pricing system with a fixed arrival rate λ, the following statements are true.

(a) The revenue rate θ∗(µ) increases with µ.
(b) The ratio θ∗(µ)/µ decreases with µ.

roof. Proof is in Appendix B.4. □

emark 15. Contrary to the observation in Remark 14, the uniformized reward differences ∆(0) and ∆(K − 1) are
ecreasing in the service rate µ from Eqs. (27a) and (27c), respectively. Hence, the optimal prices u∗0 and u∗K−1 are
ecreasing in µ. We believe that all the optimal prices (u∗i , i ∈ X ′) are decreasing in µ. While we have not been able
o show this, we demonstrate it via numerical results in Section 7.

Finally, we study the variation of optimal revenue rate with number of servers.

.5.3. Increasing number of servers
We assume that we vary number of servers K while keeping arrival rate λ and service rate µ fixed. Now we express

he revenue rate as θ∗(K ).

roposition 22. For a pricing system with a fixed arrival rate λ and a fixed service rate µ, the following statements are true.

(a) The revenue rate θ∗(K ) increases with K .
(b) The ratio θ∗(K )/K decreases with K .
(c) For any i < K , the optimal price u∗i (K ) is non-increasing with K .

roof. Proof is in Appendix B.5. □

eneral service times
We make an interesting observation on multiple server systems with Poisson job arrivals with rate λ and general i.i.d.

ob service times with distribution F : R+ → [0, 1] and mean 1
µ
. Suppose we continue to use the optimal state dependent

prices u∗i for i ∈ X ′ busy servers seen by an incoming arrival, that was derived for the exponential service rate system
n Section 5.4. This results in an M/G/K/K system with state dependent arrivals rates (λi ≜ u∗i λ : i ∈ X ′). Following
the insensitivity property [43, Section 8.10] of M/G/K/K systems, the steady state distribution of the number of busy
servers remains identical to the steady state distribution in the corresponding M/M/K/K system. Moreover, the average
reward rate in the M/G/K/K system with state dependent prices (u∗i : i ∈ X ′) will be same as the optimal average
eward rate in the M/M/K/K system. However, the optimal prices in the M/G/K/K systems will in general be different
rom (u∗i : i ∈ X ′). The optimal prices will depend on elapsed services times of busy servers on job arrival epochs. These
ptimal prices are not easy to determine following the techniques as used in this work. However, we make a non-trivial
nference that the optimal average reward rate in an M/G/K/K system always exceeds the optimal average reward rate
n the corresponding M/M/K/K system.
15
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. General arrival processes

In the previous section, we found the optimal pricing for a K server system with Poisson arrivals and exponential
ervice rates. In this section, we extend the setting to K server systems with general interarrival time distribution. In
articular, we assume the interarrival times (Un : n ∈ N) are i.i.d. with density f : R+ → R+ and finite mean 1/λ. We will

continue to assume that the admission price is updated only at arrival instants, and hence this price depends only on the
number of busy servers in the system. We assume that the price is infinite when all K servers are busy. As discussed in
Section 3, the system state is modeled by the number of occupied servers seen by the arriving jobs, and the state space
remains X = {0, . . . , K }, and the modified state space X ′

= {0, . . . , K1}. Similarly, the control space for price remains
RX ′

+
, and we write the problem of finding optimal revenue rate as an MDP. In the Poisson arrival setting, the process

X = (X(t) : t ⩾ 0) sampled at all transition instants, remained Markov. In contrast, in the general arrival setting, the
process X sampled only at the arrival instants, is Markov. Thus the sampled process Z = (Zn = X(A−n ) : n ∈ N) is a
ontrolled Markov chain. We modify the MDP in Section 5.1, to write the optimal revenue rate in the terms of sampled
rocess Z , and the instantaneous reward at arrival instants g(Zn, u(Zn)) = E[u(Zn)1{V>u(Zn)}|Zn] = u(Zn)G(Zn), as

R(K , u) = lim
N→∞

1
tN

E
N∑

n=1

g(Zn, u(Zn)).

he probability of k − j departures from state k is given by αk,k−j defined in Eq. (5). We recall the transition probability
rom state k ∈ X to state j ∈ {0, . . . ,min {k+ 1, K }} for the controlled Markov chain Z given in Eq. (6), with price pk
eplaced by control map u is

pkj(u) = G(u)αk+1,k+1−j + G(u)αk,k−j.

Following similar steps as in Section 5.2, we use [41, Proposition 5.3.1] to solve the average reward MDP in the above
equation. We can write the Bellman’s equations for all states i

h(i) = max
u

[
g(i, u)−

θ

λ
+

K∑
j=0

pij(u)h(j)
]
, i ∈ X ′.

Note that the mean sojourn time 1
ν(i) =

1
λ
for all states i, and θ is the optimal average reward per stage, independent

f the initial state. Substituting the instantaneous reward g(i, u) = uG(u) at arrival instants, the transition probabilities
or the sampled Markov chain Z in Eq. (6), and the probability distribution of number of departures between two arrival
nstants in Eq. (5), we get

h(i) = max
u

[
uG(u)−

θ

λ
+ G(u)

i+1∑
j=0

αi+1,i+1−jh(j)

+ G(u)
i∑

j=0

αi,i−jh(j)
]
, i ∈ X ′.

(28)

When the number of busy servers is K , we get the boundary equation

h(K ) = −
θ

λ
+

K∑
j=0

αK ,K−jh(j). (29)

e first focus on states i ∈ [K − 1]. To this end, we define the reward difference

∆(i) ≜ h(i)− h(i+ 1), i ∈ [K − 1], (30)

nd the probability of more than i− j departures from state i as

ai,j ≜
j∑

l=0

αi,i−l, i ∈ X , j ⩽ i. (31)

earranging the terms in Eq. (28), using the definition of sequences (∆(i) : i ∈ [K − 1]) and (ai,j : j ⩽ i, i ∈ X ), we get

max
u

[(
u−

i−1∑
j=0

(aij − ai+1,j)∆(j)− αi+1,0∆(i)
)
Ḡ(u)

]

+

i−1∑
aij∆(j) =

θ

λ
.

j=0

16
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ollowing similar steps for i = K in Eq. (29), we get
K−1∑
j=0

aK ,j∆(j) =
θ

λ
.

For notational convenience, we define the following sequence

bi ≜
i−1∑
j=0

(ai,j − ai+1,j)∆(j)+ αi+1,0∆(i), i ∈ X ′. (32)

rom the definition of map m(B) = maxu(u− B)G(u) defined in Eq. (25) and the definition of (bi : i ∈ X ′) in Eq. (32), we
an write the previous set of equations for the solution of average reward MDP as

m(b0) =
θ

λ
, (33a)

m(bi)+
i−1∑
j=0

ai,j∆(j) =
θ

λ
, i ∈ [K − 1], (33b)

K−1∑
j=0

aK ,j∆(j) =
θ

λ
. (33c)

heorem 23. Let (θ, (∆(i) : i ∈ X ′)) be a solution to Eqs. (33a)–(33c). Then, the following statements hold true.

(a) The optimal revenue rate θ ⩾ 0.
(b) The reward rate difference sequence (∆(i), i ∈ X ′) is positive and increasing in state i. The sequence (bi : i ∈ X ′) is also

positive and increasing in state i.
(c) The optimal price vector (u∗i : i ∈ X ′) is increasing in state i.

Proof. Proof is in Appendix C. □

When the inverse map m−1 exists, we provide an inductive procedure to get a fixed point equation to obtain the
optimal state dependent mean revenue rate θ . Given the optimal mean revenue rate θ , the reward difference ∆(i) and
hence the optimal actions u∗i can be obtained for all states i ∈ X ′. To show explicit dependence of the reward difference
on the mean revenue rate θ , we denote the reward difference ∆(i) = gi(θ ) for i ∈ X ′. Substituting this in Eqs. (33a)–(33b),
we can inductively obtain

g0(θ ) =
1

α1,0
m−1

(
θ

λ

)
,

gi(θ ) =
1

αi+1,0

[
m−1(θ

λ
−

i−1∑
j=0

ai,jgj(θ )
)

−

i−1∑
j=0

(ai,j − ai+1,j)gj(θ )
]
, i ∈ X ′

\ {0} .

Finally, using the sequence of functions (gj(θ ) : j ∈ X ′) to replace reward difference (∆(j) : j ∈ X ′) in Eq. (33c), we obtain
the following fixed point equation

θ = λ

K−1∑
j=0

aK ,jgj(θ ). (34)

We can solve the fixed point equation in Eq. (34) to obtain the optimal mean revenue rate θ and the optimal prices
u∗i : i ∈ X ′).

. Numerical evaluation

We first obtain the optimal price vectors for a 5 server system, for three different inter arrival time distributions. The
rrival rate is λ = 25 and service rate µ = 2 for all these systems, and the valuation distribution is G(p) = e−p. The optimal

price as a function of the number of busy servers, for exponential, uniform and constant inter arrival time distributions,
are plotted in Fig. 4. Note that the mean inter arrival time will be 1 . All the prices are increasing in the number of busy
λ

17
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Fig. 4. Optimal price vectors for different inter arrival time distributions.

Fig. 5. Variation of optimal revenue rate, revenue rate per arrival rate and price with arrival rate.

ervers, as shown before in Lemma 18(c) and Theorem 23(c). Also observe that the exponential inter arrival time attracts
he highest price in any system state.

Next, we study the variation of the optimal revenue rate and optimal price with respect to arrival rate, service rate and
umber of servers. Consider a 5 server system. The service rate µ = 2 and job valuations are distributed exponentially,
ith G(p) = e−p. In Fig. 5(a), we see that the optimal revenue increases monotonically as the arrival rate increases. This is
xpected, since a good pricing policy will be able to extract more revenue from increased demand. However, in Fig. 5(a),
e also see that the revenue per unit arrival rate is actually decreasing, as we scale up the arrival rate. This implies that
he rate at which revenue can be extracted per unit arrival rate is decreasing. Both these observations validate the results
f Proposition 20. In Fig. 5(b), we have plotted the price vector for different arrival rates. As the arrival rate increases, the
rice vector increases in all its components. Recall that this was conjectured in Remark 14.
For studying the effect of service rate variation on optimal revenue rate, we again consider a 5 server system, with

rrival rate λ = 25. As before, G(p) = e−p. In Fig. 6(a), we see that revenue scales monotonically with service rate. Thus, by
increasing the service capacity, we can extract more revenue. The revenue per service rate, however, decreases as service
rate increases, in Fig. 6(a). This implies that the marginal returns per unit service capacity decreases. These results are in
line with Proposition 21. In Fig. 6(b), we see how the price vector decreases component wise as we increase the service
rate, as expected in Remark 15.

For studying the relation between number of servers and optimal revenue/price, we consider a system with arrival
rate λ = 25, service rate µ = 2 and valuation distribution G(p) = e−p. In Fig. 7(a), we see how the optimal revenue
and the optimal revenue per server vary, as we increase the number of servers. While we can extract more revenue as
increase the number of servers, the revenue rate per server decreases. We also see how the price vector itself behaves, as
we increase the number of servers, in Fig. 7(b). We see that the components of the price vector decrease and come closer
18
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Fig. 6. Variation of optimal revenue rate, revenue rate per service rate and price with service rate.

Fig. 7. Variation of optimal revenue rate, revenue rate per service rate and price with number of servers.

Fig. 8. Variation of optimal revenue rate and revenue rate per server, with number of servers, when arrival rate is also scaled as the number of
servers increases.

to the optimal infinite server price p∗
∞

(which equals 1 in this case), as we increase the number of servers. The trends are
as predicted in Proposition 22. However, we have observed that if we increase both the number of servers and the arrival
rate in the same ratio, then the revenue rate per server increases. Such an effect is shown in Fig. 8, where we look at the
revenue rate as we vary number of servers as well as the arrival rate. The arrival rate is λ = 4K , and the service rate is
µ = 2.

To optimally price the multi-server system, the service provider would need to estimate the valuation and service
distribution. We observe that an incorrect estimation of system parameters can negatively impact the revenue, and
19
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Fig. 9. Impact of incorrect estimation of system parameters on revenue rate.

Fig. 10. Variation of optimal revenue and price with number of servers.

illustrate this through numerical examples. To understand the impact of incorrectly estimated valuation distribution on
optimal revenue, we consider a 5 server system with Poisson arrivals of rate λ = 25 and exponential service of rate

= 5. The valuation distribution G(p) = e−γ p, where γ = 1. However, for the calculation of p∗ by Algorithm 1, we
ssume that the parameter γ is incorrectly estimated as γ ′, leading to a different price vector. The revenue rates obtained
y running Algorithm 1 with the incorrect parameter is plotted in Fig. 9(a). Note that the parameter value 1 is the true
alue, and hence the revenue rate obtained using any other γ ′ is lower than the revenue achieved with γ ′

= 1. It is
lear that incorrect estimation of customer valuations may significantly degrade the revenue rate. In Fig. 9(b), we present
he results of a similar study, this time assuming that the service rate has been incorrectly estimated. The true service
ate is µ = 5; however, we assume this has been estimated incorrectly. Unlike the previous case, we see that incorrect
stimation of service rate does not have a major impact on the revenue rate.
We compare differential pricing and uniform pricing for a system with Poisson arrivals (or equivalently, exponential

nter arrival time). We consider a 5-server system, with µ = 2. For different values of load ρ =
λ

µ
, we compare the

evenue under the optimal price p∗ with the revenue under uniform prices p∗
∞

and p∗5, and p5◦, which is the optimal step
rice (i.e., the optimal among prices of the form p = (p, p, . . . , p, q, q..q), which is a generalization of the uniform price).

The valuation function G(p) = e−p. The resultant values are displayed in Fig. 10(a).
At low values of arrival rates, differential pricing does not offer substantial gains over uniform pricing. At higher arrival

rates, however, we begin to see that revenue rates show a significant improvement using differential pricing. One can also
see that these effects are more pronounced beyond ρ = 5, the number of servers. The step price p5◦ performs better than
the uniform price, but is still sub optimal for high load values. A similar effect is seen in the case of 10 servers as well,
as seen in Fig. 10(b) (all other parameters remaining same). Beyond ρ = 10, differential pricing begins to outperform
niform pricing and step pricing.
In Fig. 10(c), we also study how quickly the optimal differential revenue for a finite server system converges to the

ptimal revenue with infinite servers, for a system with Poisson arrivals. We fix λ = 20 and µ = 2 and G(p) = e−p. It is
lear that the infinite server optimal revenue, R(∞, p∗

∞
1) = 7.36. With as few as 10 servers, we come close to the infinite

server revenue. With these many servers, optimal pricing can be closely approximated by optimal uniform pricing. Recall
from Remark 6 that with K = 10, the optimal revenue can exceed the optimal uniform revenue by at most 5%.
20
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. Conclusion

We studied optimal service pricing in server farms where customers arrive according to a renewal process and have
.i.d. exponential service times and i.i.d. valuations of the service. We showed that fixed pricing achieves optimal revenue
ate in infinite server systems but can guarantee only close to optimal revenue rate in finite server systems. However,
ixed pricing suffices to drive revenue rate to infinity in infinite server systems as the arrival rates increase. We also
howed that the optimal prices for finite server systems increase with the number of busy servers. In case of exponential
nterarrival times, we derived several properties of the optimal prices vis a vis arrival rates, service rates, and the number
f servers in the system.
We argued that for a given service rate, the optimal revenue rates in server farms with non-exponential service times

enerally exceed those in server farms with exponential service times. But, the optimal prices in the former systems
epend on the elapsed service times in the busy servers and cannot be obtained using the Markov control framework
s we have done in this work. Similarly, optimal pricing for processor sharing systems and systems with queues where
ustomers can wait for service are also challenging problems. These are potential topics for future research.
In addition, we observed via a numerical example, that an incorrect estimation of the valuation distribution can

egatively impact the revenue. Theoretical characterization of the sensitivity of the revenue rate to the estimation error
n valuation distribution is also an interesting direction for future research. Another possible extension is to consider jobs
elonging to multiple classes, each with different service requirements and valuations. The service provider may choose to
rioritize some jobs over others, and pool many servers together to serve high priority jobs. This is an open and complex
cheduling problem.
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ppendix A. Examples for asymptotic revenue rates

.1. Fixed uniform pricing

We first present an example where the limiting revenue rate is µpK .

xample 24. Consider the Poisson arrival process for jobs, with rate λ. Then, the interarrival times are exponential, and
he Laplace Stieltjes transform φ(µ) = λ

λ+µ
. We can write the limit limλ→∞ λ(1− φ(µ)) = limλ→∞ µ λ

λ+µ
= µ. It follows

that µ̃ = µ in Theorem 15, and hence the limiting mean revenue rate limλ→∞ R(K , p1) = µKp for K server system under
uniform price p1.

We next present an example of an interarrival distribution for which the limiting revenue rate goes to 0.

Example 25. For some m > 1, we consider the job interarrival times (Un ∈
{√

m, 1
m

}
: n ∈ N) such that P

{
U1 =

√
m
}
=

1/m. In this case the arrival rate λ = 1/EU1 where the mean interarrival time EU1 =
1

√
m +

1
m (1 −

1
m ). It follows that

m → ∞ implies λ → ∞. We next compute the Laplace Stieltjes transform φ(x) = Ee−xU1 of interarrival times as

φ(x) = (1−
1
m

)e−
x
m +

e−x
√
m

m
.

Using the fact that λ = 1/EU1, we can write the limit

lim
m→∞

λ(1− φ(x)) = lim
m→∞

m2

m−1 −me−
x
m −

m
m−1 e

−x
√
m

1+ m
√
m

m−1

= 0.

For this interarrival distribution, it follows from Theorem 15 that the limiting mean revenue rate is zero for any uniform
rice p. One would expect the mean revenue rate to increase with the arrival rate, since the mean interarrival time
ecreases. However, for this example distribution, the mean revenue rate instead of increasing with the arrival rate, goes
o zero. Such a behavior arises due to slow decay of the tail of the interarrival time distribution.

There are distributions for which the limiting revenue is non zero but strictly less than µpK , as in the following
xample.
21
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xample 26. For m > 1, consider the i.i.d. job interarrival times (Un ∈
{
1, 1

m

}
: n ∈ N) with P {U1 = 1} = 1

m . That is, the
ean interarrival time 1/λ = EU1 =

2m−1
m2 and the Laplace Stieltjes transform φ(x) = Ee−xU1 =

1
m e−x

+ (1 −
1
m )e−

x
m for

∈ R+. It follows that λ → ∞ as m grows large, and the limit

µ̃ = lim
m→∞

λ(1− φ(µ)) =
1− e−µ

2
.

It follows from Theorem 15 that the limiting revenue rate is limλ→∞ R(K , p1) =
1− e−µ

2
pK . Since 1 − e−µ ⩽ µ, the

limiting revenue rate is smaller than
µpK
2

.

.2. Arrival rate dependent uniform pricing

xample 27. If the arrival process is Poisson and the value distribution is Pareto, i.e. G(x) = θ
x 1{x⩾θ}, then the choice

f uniform price p(λ) = G
−1

( 1
λ
) = λθ that grows linearly with the arrival rate λ. Further, we have the Laplace Stieltjes

transform or i.i.d. interarrival times φ(µ) = λ
λ+µ

, and hence ν̃ = limλ→∞ λ(1− φ(µ)) = µ > 0. Thus results in the mean
evenue rate R(K , p1) are asymptotically linearly increasing in the arrival rate λ.

Example 28. Let the arrival process be Poisson with rate λ and the complimentary value distribution G(x) =

c1e−c2x2 . Since the arrival process is Poisson, µ̃ = µ. Choosing the uniform price p(λ) =

√
1
c2

log(c1λ), we see that
limλ→∞ R(K , p1) = ∞. Contrastingly, for a uniform price p(λ) = log λ, we get limλ→∞ R(K , p1) = 0.

Appendix B. Proofs for MDP with Poisson arrival process

B.1. Proof of Lemma 17

Let m and u∗ be as defined in Eq. (25) and Eq. (24) respectively. For B1, B2 ∈ R, we let ui ∈ u∗(Bi) for i ∈ {1, 2}. From
the definition of f , we have f (B2, u2) − f (B1, u2) = −(B2 − B1)G(u2). In addition, we have f (B1, u1) ⩾ f (B1, u2) from the
definition of m, u1, u2. Therefore, we can lower bound the difference

m(B1)−m(B2) ⩾ (B2 − B1)G(u2). (B.1)

imilarly, we have f (B1, u1) − f (B2, u1) = (B2 − B1)G(u1) and f (B2, u2) ⩾ f (B2, u1). Therefore, we can upper bound the
ifference

m(B1)−m(B2) ⩽ (B2 − B1)G(u1). (B.2)

(a) Since f (B, B) = 0, it follows that m(B) ⩾ 0 for all B. Since G ⩾ 0, it follows that m(B2)−m(B1) ⩽ 0 for B1 < B2 from
Eq. (B.1).

(b) Since G ⩽ 1, it follows from Eq. (B.2) that 0 ⩽ m(B1) − m(B2) ⩽ B2 − B1. Similarly for B2 < B1, we observe that
0 ⩽ m(B2)−m(B1) ⩽ B1−B2. Combining these, we have |m(B1)−m(B2)| ⩽ |B1 − B2|, implying Lipschitz-1 continuity
of m. Finally, f (B, u) is affine, and hence, convex in B. Hence, the maximum m of convex functions f (B, u) is also
convex in B [44, Section 3.2.3] .

(c) Subtracting Eq. (B.1) from Eq. (B.2), we get (B2 − B1)(G(u2) − G(u1)) ⩽ 0. This implies that if B2 > B1, then
G(u2) ⩽ G(u1). The monotonic decrease of G implies that u2 ⩾ u1.

.2. Proof of Lemma 18

We assume the Lemma hypothesis.

(a) Using Eq. (26) for i = 0, we see that θ = λm(∆(0)). The result follows from the non-negativity of m from Lemma 17.
(b) We first prove that ∆(0) > 0 via contradiction. Assume that ∆(0) ⩽ 0, and assume the inductive hypothesis that

∆(i) ⩽ 0 for some i ∈ X ′
\ {0}. Then, it follows from Eq. (26)

m(∆(i)) =
θ − iµ∆(i− 1)

λ
⩾

θ

λ
= m(∆(0)) ⩾ 0.

From monotone decrease of m in Lemma 17(a) and the induction step, it follows that ∆(i) ⩽ ∆(0) ⩽ 0 for all i ∈ X ′.
From Eq. (26) for i = K , we get ∆(K − 1) = θ

Kµ
⩾ 0 from the non negativity of θ from part (a). This leads to a

contradiction and hence we see that ∆(0) > 0.
From Eq. (26) for i = 1 and positivity of ∆(0), we observe that

m(∆(1)) =
θ − µ∆(0)

⩽
θ
= m(∆(0)).
λ λ
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B

F
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Lemma 17(a) implies that m is decreasing. It follows that ∆(1) ⩾ ∆(0). Assuming the inductive hypothesis
∆(i− 1) ⩾ ∆(i− 2) for some i ∈ {2, . . . , K − 1} and positivity of ∆(i)s, we get from Eq. (26)

m(∆(i− 1))−m(∆(i)) =
µ

λ
(i∆(i− 1)− (i− 1)∆(i− 2)) ⩾ 0.

From monotone decrease of m and the induction step, it follows that ∆(i) ⩾ ∆(i− 1) for all i ∈ X ′
\ {0}.

(c) This follows by combining the monotone increase of ∆(i) shown in part (b), and monotonicity of u∗(B) in B shown
in Lemma 17(c).

.3. Proof of Proposition 20

Notice that the optimal revenue rate θ∗(λ) is the solution to Eqs. (27a)–(27c) as a function of λ, for a fixed µ and K .

(a) To begin with let us fix both θ and µ and vary λ in Eqs. (27b) and (27c). It follows that if gi is non-increasing in λ,
then m(gi) is non-decreasing in λ from its monotone decrease property. Since gi−1 ∝ θ −λm(gi), it follows that gi−1
is decreasing and m(gi−1) is increasing in λ. Since gK−1 = θ/Kµ is constant in λ, it follows that m(gi) is increasing
in λ for all i ∈ X ′ and fixed θ and µ. Since θ∗(λ) = λm(g0) from Eq. (27a), it follows that the optimal revenue rate
θ∗(λ) is increasing in λ for a fixed µ.

(b) The argument is via contradiction. Let θ∗(λ)/λ increase with λ. Observe that gK−1(θ∗(λ)) = θ∗(λ)
Kµ

increases with λ.
Since θ∗ is the solution to Eqs. (27a)–(27c) for all i ∈ X ,

gi−1(θ∗(λ))
λ

=
θ∗(λ)/λ −m(gi(θ∗(λ)))

iµ
, i ∈ [K − 1].

It follows that gi−1(θ∗(λ))/λ is an increasing function of λ, if gi is an increasing function of λ. It follows from
induction that g0(θ∗(λ)) is an increasing function of λ, and hence m(g0(θ∗(λ))) = θ∗(λ)/λ is a decreasing function
of λ. This leads to a contradiction.

.4. Proof of Proposition 21

The optimal revenue rate θ∗(µ) is the solution to Eqs. (27a)–(27c) as a function of µ, for a fixed λ and K .

(a) To begin with let us fix both θ and µ and vary λ in Eqs. (27b) and Eq. (27c). From Eq. (27b), we observe that
gi−1 = (θ − λm(gi))/iµ for i ∈ [K − 1]. Hence, if gi is decreasing with µ, then m(gi) is increasing in µ due to its
monotone decrease property, and hence gi−1 is decreasing with µ. Since gK−1 = θ/Kµ from Eq. (27c) for i = K , it
follows by induction that g0 is decreasing and hence λm(g0) is increasing in µ. As a result, if we increase µ keeping
λ fixed, the average revenue rate θ∗(µ), the solution to θ = λm(g0(θ )) increases in µ.

(b) The argument is via contradiction. Let θ∗(µ)/µ increase with µ. We obtain from Eq. (27b) for i ∈ [K − 1],

gi(θ∗(µ)) = m−1
(
iµ

(
θ∗(µ)/iµ − gi−1(θ∗(µ))

λ

))
.

Then, it follows that if gi−1 is decreasing with µ, then gi is also decreasing in µ. From Eq. (27a) for i = 0, we see
that g0(θ∗(µ)) = m−1( θ∗(µ)

λ
) is decreasing with µ, and hence it follows that gK−1 is decreasing and in µ. However

gK−1(θ∗) = θ∗(µ)/Kµ was assumed to be increasing in µ, that leads to a contradiction.

B.5. Proof of Proposition 22

We define functions

ḡ0(θ ) ≜ m−1
(

θ

λ

)
,

ḡi(θ ) ≜ m−1
(

θ − iµḡi−1(θ )
λ

)
, i ∈ [K − 1].

ollowing similar arguments as in the proof of Theorem 19(a) we can iteratively show that ḡi(θ ) are decreasing in θ for
ll i < K .

(a) It follows that λm(ḡ0) = θ . and ḡi−1 = (θ − λm(ḡi))/iµ for i ∈ [K − 1]. Hence, from Eqs. (27a)–(27c) it follows that
the optimal average reward θ∗(K ) is the solution to the fixed point equation θ = KµḡK−1(θ ). From Lemma 18(b),
we have ḡi(θ ) > ḡi−1(θ ) for all θ ⩾ 0 and i ∈ X ′. In particular, (K + 1)µḡK (θ ) > KµḡK−1(θ ) for all θ ⩾ 0. Hence we
can infer that θ∗(K ) increases with K .
23
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(b) Since ḡK−1(θ∗(K )) = θ∗(K )/Kµ, it suffices to show that ḡK−1(θ∗(K )) is decreasing in K . We show this by
contradiction. To this end, we assume that ḡK (θ∗(K+1)) > ḡK−1(θ∗(K )). Together with this hypothesis and monotone
increase of ḡi from Lemma 18(b), we obtain

(K + 1)ḡK (θ∗(K + 1))− KḡK−1(θ∗(K )) > ḡ0(θ∗(K + 1)).

Multiplying both the sides by µ/λ and using definitions of θ∗(K ) and θ∗(K + 1), the above inequality reduces to

θ∗(K + 1)− µḡ0(θ∗(K + 1))
λ

>
θ∗(K )

λ
.

From the monotone decrease property of m and definition of ḡ1 and ḡ0, we obtain ḡ1(θ∗(K + 1)) < ḡ0(θ∗(K )). We
will inductively show that ḡi(θ∗(K +1)) < ḡi−1(θ∗(K )) for all i ∈ [K ]. We have already shown the base case of i = 1.
We assume that the inductive hypothesis holds for some i ∈ [K−1]. Further, Lemma 18(b) implies that ḡi increases
in i for a fixed argument. Together with inductive and initial hypothesis, we obtain

K (ḡK (θ∗(K + 1))− ḡK−1(θ∗(K )))
+ (ḡK (θ∗(K + 1))− ḡi(θ∗(K + 1)))

> 0 > i(ḡi(θ∗(K + 1))− ḡi−1(θ∗(K ))).

Rearranging the terms, multiplying both the sides by µ/λ, using definitions of θ∗(K ), θ∗(K + 1), ḡi, ḡi+1, and from
the monotone decrease of m, we get

ḡi+1(θ∗(K + 1)) < ḡi(θ∗(K )).

This completes the induction step. We thus see that ḡi(θ∗(K + 1)) < ḡi−1(θ∗(K )) for all i ∈ [K ]. In particular, we get
ḡK (θ∗(K + 1)) < ḡK−1(θ∗(K )) which contradicts the initial hypothesis.

(c) Recall that the optimal price for i busy servers, when the system has K servers is given by

u∗i (K ) = u∗(ḡi(θ∗(K ))).

We know that θ∗(K ) is increasing in K from part (a) of the proof, ḡi(θ ) is decreasing in θ as observed in the beginning
of the proof, and u∗ is non-decreasing in its argument from Lemma 17(c). The result follows from the combination
of these three observations.

ppendix C. Proofs for MDP with general arrival process

emma 29. For the probability αk,j of j departures from state k defined in Eq. (5), for the K server system with i.i.d. exponential
ervice with rate µ and i.i.d. job interarrival times (Un : n ∈ N), the following statements are true for all i ∈ X ′.

(a) ai+1,j ⩽ ai,j for all j ⩽ i− 1.
(b) ai,i−1 + αi,0 = 1.
(c)

∑i
j=0 ai+1,j −

∑i−1
j=0 ai,j = α1,1.

roof. Given the first interarrival time U1, we can define a sequence of conditionally i.i.d. Bernoulli random variables
ξr : r ∈ N) such that E[ξr |U1] = 1 − e−µU1 . We define a sequence of increasing binomial random variables (Xk : k ∈ N)
uch that Xk ≜

∑
r∈[k] ξr . We observe that

E[1{Xk=k−i}|U1] =

(
k

k− i

)
(1− e−µU1 )k−ie−iµU1 .

herefore, it follows from Eq. (5) that the probability of k− i departures from state k is αk,k−i = P {Xk = k− i}.

(a) Recall that ai,j =
∑j

l=0 αi,i−l and hence we can write ai,j = P {Xi ⩽ j}. Since X is monotonically increasing
{Xk+1 ⩽ j} ⊆ {Xk ⩽ j}, and the result follows from the monotonicity of probability.

(b) From the definition of random sequence X and ai,j =
∑j

l=0 αi,i−l, we have ai,i = P {Xi ⩽ i} = 1 = αi,0 + ai,i−1.
(c) From the definition of (aij : j ⩽ i) and monotone sequence X , we can write

i∑
j=0

ai+1,j =

i+1∑
l=1

lP {Xi+1 = l} = EXi+1.

Since X − X = ξ and Eξ = E(1− e−µU1 ) = α , the result follows. □
i+1 i i+1 i+1 1,1
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.1. Proof of Theorem 23

Recall that the map m is non-negative and monotonically decreasing from Lemma 17(a), and that m is Lipschitz-1
ontinuous from Lemma 17(b).

(a) From the non-negativity of m and writing θ = λm(b0) from Eq. (33a), we get the result.
(b) We first prove that ∆(0) > 0 via contradiction. Assume that ∆(0) ⩽ 0. We will show by induction that for all

i ∈ {2, . . . , K }, the following two conditions hold true,

∆(i− 1) < · · · < ∆(0) ⩽ 0, (C.1a)
i−1∑
j=0

ai,j∆(j) <

i−2∑
j=0

ai−1,j∆(j) ⩽ 0. (C.1b)

The inductive hypothesis in Eqs. (C.1a)–(C.1b) at i = K , together with equality in Eq. (33c), we get θ
λ

=∑K−1
j=0 aK ,j∆(j) < 0. This contradicts the part (a) of the theorem, which we have already established. The

contradiction implies that following two conditions hold true for all i ∈ [K ],

∆(i− 1) ⩾ . . . ⩾ ∆(0) > 0, (C.2a)
i−1∑
j=0

ai,j∆(j) ⩾
i−2∑
j=0

ai−1,j∆(j) > 0. (C.2b)

From Eqs. (33a)–(33b) and the condition (C.2b), we observe that m(bi) < m(bi−1). From the monotonicity of map
m in Lemma 17, we observe that the sequence b is non-decreasing. Further, since b0 = m−1( θ

λ
) ⩾ 0, and the result

follows. Therefore, it suffices to show the inductive hypothesis in Eqs. (C.1a), (C.1a) holds true for all i ⩾ 2.
Step 1: Base case of induction. We will first show the base case of i = 2 holds true for the induction. From
Eq. (33a)–(33b), we get

m(b1) = m(b0)− a1,0∆(0).

Since ai,j are the sum of probabilities, they are nonnegative. Therefore, −a1,0∆(0) ⩾ 0 from the hypothesis, and the
above equation implies that m(b1) ⩾ m(b0). Since m is a nonincreasing function, it follows that b1 ⩽ b0. Further,
from the Lipschitz-1 continuity of m, we get m(b1)−m(b0) ⩽ |b1 − b0| = b0− b1. It follows that b1 ⩽ b0+ a1,0∆(0).
From the definition of sequence b in Eq. (32) and the definition of aij =

∑j
l=0 αi,i−l, we get

α2,0∆(1) ⩽ (α1,0 + α2,2)∆(0).

Since 0 < α2,0 < α1,0 + α2,2, we see that ∆(1) < ∆(0) ⩽ 0. Using the fact ∆(1) < ∆(0) ⩽ 0 and from the definition
of aij =

∑j
l=0 αi,i−l, we can write the following inequality

a2,0∆(0)+ a2,1∆(1) < (a2,0 + a2,1)∆(0)
= (2α2,2 + α2,1)∆(0)
= 2α1,1∆(0) ⩽ a1,0∆(0).

Step 2: Inductive step of induction. We have shown the base case of i = 2 holds true for the induction, and
assume the inductive hypothesis in Eqs. (C.1a), (C.1a) holds true for some i ⩾ 2. From Eq. (33b), we can write the
difference for i ∈ [K − 1]

m(bi)−m(bi−1) =
i−2∑
j=0

ai−1,j∆(j)−
i−1∑
j=0

ai,j∆(j).

From the inductive hypothesis for i, it follows thatm(bi) > m(bi−1). Following the similar discussion to the base case,
from the monotone nonincreasing and Lipschitz-1 continuity of the mapm, it follows that bi < bi−1+m(bi−1)−m(bi).
Using Eq. (33b) to write the difference m(bi) − m(bi−1), sequence b = (bi : i ∈ X ′) defined in Eq. (32) to write the
difference bi−1 − bi, and substituting ai,j =

∑j
l=0 αi,i−l where αk,j is the probability of j departures from state k in

Eq. (5), we get

αi+1,0∆(i) ⩽
i−2∑
j=0

(ai+1,j − ai,j)∆(j)

+ (αi,0 + ai+1,i−1)∆(i− 1).

From Lemma 29(a), we have ai+1,j ⩽ ai,j for all j ⩽ i and from inductive hypothesis ∆(i − 1) = minj⩽i−1 ∆(j) ⩽ 0.
Further, from Lemma 29(c), we have

∑i a −
∑i−1 a = α . Using these three facts in the above equation,
j=1 i+1,j j=1 i,j 1,1
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we get

αi+1,0∆(i) ⩽ (αi,0 − ai+1,i + ai,i−1 + α1,1)∆(i− 1).

From Lemma 29(b), we have ai,i = 1−αi,0 for all i ∈ X ′ and hence we get αi+1,0∆(i) ⩽ (αi+1,0+α1,1)∆(i−1). Since
αi,j are probabilities, the first inductive result ∆(i) < ∆(i − 1) follows. Together with the inductive hypothesis in
Eqs. (C.1a), (C.1a), we get minj⩽i ∆(j) = ∆(i) ⩽ 0. From Lemma 29(a), we have ai+1,j ⩽ ai,j for all i ∈ X ′ and j ⩽ i.
Therefore,

∑i−1
j=0(ai+1,j − ai,j)∆(j) ⩽

∑i−1
j=0(ai+1,j − ai,j)∆(i), and we can write the difference

i∑
j=0

ai+1,j∆(j)−
i−1∑
j=0

ai,j∆(j)

⩽ (
i∑

j−0

ai+1,j −

i−1∑
j=0

ai,j)∆(i).

From Lemma 29(c), we have
∑i

j=0 ai+1,j −
∑i−1

j=0 ai,j = α1,1 for all i ∈ X ′. Substituting this result in the above
equation, we get the second inductive result, and this completes the induction.

(c) Recall that the optimal price in state i is u∗i = argmaxu f (bi, u) for the map f defined in Eq. (25), where the sequence
b = (bi : i ∈ X ′) is positive and increasing from part (b). Therefore, it follows from Lemma 17(c) that the optimal
price u∗i is increasing with the number of busy servers i.
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