L)

Check for
updates

Practical GAN-based Synthetic IP Header
Trace Generation using NetShare

Yucheng Yin
Carnegie Mellon University
Pittsburgh, PA
yyin4d@andrew.cmu.edu

Minhao Jin
Carnegie Mellon University
Pittsburgh, PA
minhaoj@andrew.cmu.edu

ABSTRACT

We explore the feasibility of using Generative Adversarial Networks
(GANSs) to automatically learn generative models to generate syn-
thetic packet- and flow header traces for networking tasks (e.g.,
telemetry, anomaly detection, provisioning). We identify key fidelity,
scalability, and privacy challenges and tradeoffs in existing GAN-
based approaches. By synthesizing domain-specific insights with
recent advances in machine learning and privacy, we identify design
choices to tackle these challenges. Building on these insights, we
develop an end-to-end framework, NetShare. We evaluate NetShare
on six diverse packet header traces and find that: (1) across all dis-
tributional metrics and traces, it achieves 46% more accuracy than
baselines and (2) it meets users’ requirements of downstream tasks
in evaluating accuracy and rank ordering of candidate approaches.

CCS CONCEPTS

» Networks — Network simulations; « Security and privacy —
Data anonymization and sanitization;

KEYWORDS

synthetic data generation, network packets, network flows, genera-
tive adversarial networks, privacy

ACM Reference Format:

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. 2022. Prac-
tical GAN-based Synthetic IP Header Trace Generation using NetShare. In
ACM SIGCOMM 2022 Conference (SIGCOMM °22), August 22—26, 2022, Am-
sterdam, Netherlands. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3544216.3544251

1 INTRODUCTION

Packet- and flow-level header traces are critical to many network
management workflows. For instance, they are used to guide the
design and development of network monitoring algorithms (e.g., [44,
45]), to develop new types of anomaly detection and fingerprinting

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08...$15.00
https://doi.org/10.1145/3544216.3544251

Giulia Fanti
Carnegie Mellon University
Pittsburgh, PA
gfanti@andrew.cmu.edu

458

Zinan Lin
Carnegie Mellon University
Pittsburgh, PA
zinanl@andrew.cmu.edu

Vyas Sekar
Carnegie Mellon University
Pittsburgh, PA
vsekar@andrew.cmu.edu

(e.g., [34, 76, 77]), and to benchmark and test new hardware and
software capabilities (e.g., [46]). Unfortunately, access to such traces
remains challenging due to business and privacy concerns.

A natural alternative is synthetic traces. There is a rich litera-
ture in the networking community on generating synthetic traces
via simulation-driven approaches (e.g., NS-2 [6]), model-driven ap-
proaches (e.g., Harpoon [66] or Swing [70]), and machine learning
models (e.g., STAN [75], Doppel GANger [39]), as well as commercial
offerings (e.g., IXIA [4]). Unfortunately, existing approaches have
notable shortcomings. Model- and simulation-based approaches
require significant domain knowledge and human effort to deter-
mine critical workload features and configure generation parameters,
while not generalizing well across applications [8, 9, 66, 70, 83]. ML-
based approaches generalize more easily, but fail to capture domain-
specific properties (e.g. packet arrival times, flow length) [39, 75] (§6).

In this work, we explore the feasibility of ML-based synthetic
packet-header (e.g., PCAP) and flow-header (e.g., Netflow) trace gen-
eration using Generative Adversarial Networks or GANs [12, 28, 29,
39]. If successful, this can lower the barrier for stakeholders with
key traces to share synthetic data with potential clients. While the
use of GANs is appealing, in practice we find that there are a num-
ber of practical challenges in our context that existing approaches
(e.g., [21,31, 39,57, 71, 74, 75]) fail to satisfy:

o Fidelity: Prior techniques (especially those based on tabular
data GANs, which dominate the synthetic header generation
literature) are unable to capture key correlations across header
fields and header fields that have large ranges of values.

o Scalability-fidelity tradeoff: Existing techniques require signif-
icant GPU-hours to train even moderately-sized traces (e.g.,
millions of records). Simple tabular GANs take a few hours
to train but suffer in fidelity, while more complex time series
GANSs can take an order of magnitude more time.

e Privacy-fidelity tradeoffs: Privacy-fidelity tradeoffs of GANs
are not well explored in the context of network header traces.
Preliminary work suggests that differentially-private learning
approaches are likely to yield poor fidelity for networking
datasets [39].

For example, Doppel GANger [39], a state-of-the-art GAN-based
approach for time series generation, cannot learn certain key header

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544216.3544251&domain=pdf&date_stamp=2022-08-22

fields (e.g., service ports) well out-of-the-box, while requiring hun-
dreds of GPU hours to train. And while it supports differentially-
private (DP) training [25], this option completely destroys its syn-
thetic data fidelity.

In designing NetShare, we tackle these key challenges by a careful
data-driven understanding of the limitations of canonical GAN-
based approaches. NetShare combines the following key ideas to
address the above issues:

o Reformulation as flow time series generation: Instead of treating
header traces from each measurement epoch as an independent
tabular dataset (i.e., rows of packets/flows with headers), we
recast the problem for learning synthetic models for a merged
flow-level trace across epochs. This reformulation allows us to
natively capture intra- and inter-epoch correlations.

o Improving scalability via fine tuning: We identify opportunities
to optimize learning time by using ideas of model fine tuning
and data-parallel learning from the ML literature [81]. Doing
so naively may fail to capture dependencies across parallel in-
stances, so we develop heuristics to preserve such correlations.

e Practical privacy reformulations: We adopt recent advances in
differentially-private model training [82] and combine a small
amount of public data with private data to improve privacy-
fidelity tradeoffs. To the best of our knowledge, this is the
first application and empirical demonstration in the context of
header trace generation.

We implement an end-to-end system: NetShare and build a web

service prototype available through https://www.pcapshare.com.

The codeis open-sourced at https://github.com/netsharecmu/NetShare.

We also tackle a number of other practical challenges that prior work
has not considered. For instance, prior work does not generate valid
traces (e.g., headers with derived fields, timestamps), does not eval-
uate if/how model training generalizes across a wide range of trace
sources (e.g., ISP vs. datacenter vs. edge), and does not consider the
fidelity of the generated traces for relevant networking use cases
(e.g., telemetry, anomaly detection, machine learning).

We empirically evaluate NetShare and show that (1) across all dis-
tributional metrics and traces [1, 2, 16, 47, 51, 59], NetShare achieves
46% more accuracy than baseline approaches that use different gener-
ative modeling techniques [21, 31, 57, 71, 74, 75]. (2) NetShare meets
users’ requirements of downstream tasks [19, 22, 44, 45, 77] which
keeps the algorithm accuracy and ordering. (3) NetShare achieves
a better scalability-fidelity tradeoff than baselines. (4) NetShare can
generate higher-quality differentially private traces than baseline
approaches.

2 MOTIVATION

In this section, we start by describing use cases for trace-driven anal-
ysis in networked systems. Then we argue why synthetic traces are
useful and then make a case for data-driven synthesis in contrast to
conventional approaches.

2.1 Motivating scenarios

We describe two illustrative use cases in data-driven network de-
sign and management that are stymied by lack of access to realistic
packet- and flow-level traces.

459

Fidelity Flexibility = Privacy Effort
Raw High X X Low
Anonymized Depends X Depends Low
Synthetic Possible High Possible High

Table 1: Trade-offs for data holders sharing Raw vs.
Anonymized vs. Synthetic traces

Telemetry algorithms. There is a lot of renewed interest in the de-
sign and development of novel telemetry algorithms including many
approximate data structures for sketching (e.g., [19, 22, 44, 45]). Sev-
eral of these approaches also make implicit assumptions on structural
properties of workloads (e.g., heavy flows) to optimize space-time
tradeoffs (e.g., [35, 78]). To systematically evaluate which approach
best suits a target deployment or system provisioning regime, we
need realistic header traces to compare different algorithms and
provisioning strategies (e.g., number of rows, counter arrays to use
for sketches).

Evaluating machine learning models:. There are also a number
of emerging use cases (including building classifiers over encrypted
traffic), where researchers and practitioners (e.g., [34, 63, 76]) are
developing novel machine learning models for various types of fin-
gerprinting (e.g., what type of application a particular session entails)
or anomaly detection (e.g., is this device compromised) using only IP
packet and flow headers [77]. Again, to systematically evaluate the
potential performance rate of these algorithms in diverse settings,
we need access to realistic header traces of normal client behav-
ior [30, 52].

These use cases (and other future scenarios) require access to real-
istic high fidelity traces. The dimensions of fidelity may be use-case
dependent; e.g., some may care about header-field value distribu-
tions, some may care about preserving “heavy hitters”, others may
care about flow-level properties, and so on.

2.2 Synthetic traces and status quo

Due to a number of concerns (e.g., policy, privacy, legal restrictions)
data holders who hold traces are usually unwilling to share raw
traces. To address these concerns, there are two main alternatives to
raw packet traces: (1) Anonymized traces (e.g., using either masking
or cryptographic techniques to hide IP addresses or (2) Synthetic
traces where some model of generating packet traces is created to
mimic properties of the raw data. At a high level, there are qualitative
tradeoffs between raw, anonymized, and synthetic trace generation
as summarized in Table 1. Raw traces require least effort, but are also
least private and least flexible (e.g., generating more data as needed
or changing specific workload characteristics). Anonymized and
synthetic data each have pros/cons in terms of fidelity, flexibility,
privacy, and effort. For example, anonymized data can be made more
private by obscuring and/or redacting more fields, but this hurts
the resulting data fidelity [50]. Similarly, there are techniques for
generating synthetic data, but the resulting privacy guarantees are
unclear, and remain an active area of research [18, 32, 41]. Our focus
in this paper is on lowering the barrier for generating and sharing
synthetic data since it offers a qualitatively different value proposi-
tion than the other two options and may lower the barrier for data
sharing, as also observed in other efforts (e.g., [39]).

Existing approaches for synthetic header trace generation be
divided into three categories: (1) Simulation-based (e.g., NS-2 [6],
OSTINATO [7], SEAGULL [9]); (2) Model-driven (e.g., Harpoon [66],
SWING [70]); and (3) Data-driven or machine learning driven (e.g.,
STAN [75]). While these prior efforts have been immensely valuable
to the community, they suffer from one or more fundamental short-
comings. The simulation- and model-driven generators have two key
drawbacks. First, system designers need to manually determine the
important set of features and choose the model which requires signif-
icant domain knowledge and human efforts [6, 66, 70]. Second, such
models usually make assumptions about the underlying workloads
and downstream tasks [66, 70] which makes them hard to generalize
across traces with potentially significant deployments/topologies/-
workloads. Existing data-driven or machine-learned approaches are
more automated but have more fundamental structural limitations.
For instance, STAN [75] only generate flow-level summary statistics
while HMM-based IP generators [54] only generates IP addresses.
Furthermore, existing frameworks do not evaluate the fidelity of
these synthetic traces across diverse datasets and downstream tasks.

3 OVERVIEW AND CHALLENGES

Our overarching goal is to develop a data-driven synthetic header
trace generation workflow that requires minimal manual tuning
and expert knowledge, and can support a wide range of traces from
diverse deployments and diverse downstream applications. We start
by defining our goals and how we propose to achieve this using a
GAN-based workflow.

3.1 Problem formulation

We are given as input a dataset of header-level traces split into n
consecutive epochs. For each epoch t, we are given D; := unsampled,
IPv4 packet header trace. These could be packet- or flow-level traces
depending on scenario.

o Packet header trace: Each record in a packet header trace con-
sists of packet header fields (e.g., source/destination IP headers)
associated with some measured values (e.g., timestamp, packet
size).

o Flow header trace: Each record in a flow header trace consists of
the IP 5-tuple header (e.g., source/destination IP headers, ports,
and protocol) associated with some measured values (e.g., start
time, end time of flow, total number of packets, total number
of bytes).

Scope and goals. Our goal is to learn a generative model of {D; :
t=1,2,---,n} that satisfies different types of fidelity metrics specified
by domain experts and downstream applications. We specifically
focus on IPv4 header 5-tuple fields. Packet payloads and other high-
layer headers (e.g., TCP/UDP header, application protocol header)
are outside of the current scope.

We expect three categories of fidelity metrics of interest:

e Header-level distributional properties: For each header
field, we want to ensure the distribution of the synthetic and
raw trace match quantitatively; e.g., popularity rank of IP ad-
dresses or distribution of packet sizes.

460

e Flow-level properties: Other than per-header (or packet-
level) metrics, flow-level metrics are also common in network-
ing apps [19, 22, 44, 45, 77]: e.g., flow size distribution or flow
duration distribution.

e Use-case specific properties: To ensure the utility of syn-
thetic header traces we consider two use-case specific proper-
ties: (1) Accuracy preservation: Can one particular algorithm/ap-
plication achieve similar accuracy on the raw and synthetic
header traces? (2) Order preservation: Is the relative perfor-
mance of algorithms preserved between raw and synthetic
traces; e.g., if Count-Sketch is better for detecting heavy hitters
in real traces, is that ordering preserved?

We also want the header traces to satisfy key semantic and syntac-
tic correctness conditions; e.g., IP addresses in valid ranges, packet
sizes in ranges (e.g., TCP packet, the minimum size is 40 bytes, while
for aUDP packet, the minimum size is 28 bytes); relationship between
port number and protocol (e.g., 80 for HTTP and 53 for DNS).

Non goals. We acknowledge some types of properties are out of
scope for our current work. Specifically, we do not capture stateful
session semantics (e.g., TCP sessions), application layer protocol
semantics (e.g., HTTP headers), packet payloads, or fine-grained tem-
poral properties (e.g., distribution of inter-arrival times of packets).
These are interesting directions for future work, as we discuss in §8.

3.2 Why GANs

Generative adversarial networks (GANSs) are a popular class of gener-
ative model [27]. Given a set of training data x1,...,x,, where samples
x; € X belong to universe X and are drawn from some underlying
distribution x; ~ Py, the goal is to learn to generate new samples
from Py. GANSs achieve this through adversarial training; that s, they
learn two competing models. The generator maps low-dimensional
random noise to output samples. The discriminator takes as input
either areal training sample or a generated sample, and must classify
which it is seeing. These two models (usually neural networks), are
trained in alternation to convergence.

GANSs have been used with great success in the image domain,
achieving state-of-the-art image and video generation [36, 37]. They
are able to learn both local and global correlations in training data to
produce high-resolution samples. Hence, there is reason to believe
that they may also be good at modeling correlations in network
traffic, which involve both short- and long-term correlations [62].
GAN:Ss can be tailored to different types of data, including tabular
data [74] and time series [26, 39, 80].

3.3 Strawman approaches and limitations

We begin by understanding the limitations of canonical GAN-based
architectures in our context before we explain our design choices
to tackle these challenges in the next section.

Strawman solutions. While GANs have most popularly been used
for generating image data, they have also been used to generate struc-
tured tabular data that appear in many application domains [74].
As such, a very natural starting point for using GANS is to treat
packet- or flow-header traces as tabular data (e.g., CTGAN ([74]).
Here, each row represents a packet/flow with columns capturing var-
ious features of interest (e.g., IP addresses, port, packet/byte counts,
timestamp information). Indeed, many existing efforts for extending
GAN to networking contexts (e.g., E-WGAN-GP [57]) adopt this

approach with some extensions. A recently proposed GAN architec-
ture called Doppel GANger [39] considers other types of metadata-
measurement traces modeled as timeseries. However, it is not clear
if, and how, this work can apply to packet- and flow-header traces.
As a point of reference, we also consider a state-of-art non-GAN
approach called STAN that uses autoregressive neural networks [75].
We defer a full description of these baselines to Section 6.

Challenge 1 (C1): Baselines do not accurately capture header
correlations of packets/flows, e.g., flow length.

Real

w w
§oss —— Real o) —— CTGAN
002 . CTGAN 07 —— PAC-GAN
—— STAN PacketCGAN
0.90 E-WGAN-GP 0.6 —— Flow-WGAN

NetShare NetShare

10° 10! 10? 10° 104
Flow size (# of packets perflow)

100 10! 10? 103
of records with the same five tuple

(a) CDF of NetFlow records with (b) CDF of flow size (# of packets)
same five tuples (UGR16). on CAIDA.

Figure 1: Distribution of # of records/packets with the same
five tuples on UGR16 (NetFlow, left) and CAIDA (PCAP, right).
All baselines are missing in Fig. 1b as they don’t generate
flows with > 1 packet.

Many downstream tasks (e.g., sketch-based telemetry [19, 22, 44,
45], header-based anomaly detection algorithms [77]) need datasets
to accurately capture properties that span across packets and flows
(e.g., flow size). In the case of packet header traces, we see in Fig. 1b
that the baselines are actually absent in the CDF plot of flow size.
This is because they do not generate multiple packets for the same
flow! This is not surprising as prior GAN-based work has treated
each packet as a record in a tabular database, without timestamps
[21,31,71]. A similar challenge arise with flow data. Long-lived flows
can span multiple measurement epochs, and it is not uncommon to
see flow records spanning multiple epochs. Moreover, given the way
flow collectors are configured (e.g., inactive timeouts, max time of
flow), the same flow record can also appear multiple times within a
single measurement epoch. As we see in Fig. 1a, baselines either gen-
erate much longer flow records (e.g., CTGAN [74], up to a few thou-
sand) or consistently generate short flows (e.g., EEWGAN-GP [57]).

Challenge 2 (C2): Baselines struggle to accurately capture the
distributions for fields with large support.

The support of a field refers to the possible range of values it
can take. Several of the fields we aim to generate have a large sup-
port,including source/destinations ports, source/destination IPs, and
number of packets/bytes per flow. Fields with extremely small/large
values could indicate a potential anomaly which are crucial to down-
stream tasks e.g., anomaly detection [77]. Unfortunately, existing
GAN-based baselines do not capture such fields well. Consider the
following illustrative examples. In flow-header traces, the “number
of packets per flow” and “number of bytes per flow” can range from
tens for mice flows to hundreds of millions for elephant flows. Fig.

461

1.0

0.8 0.8

0.6 0.6

L w
8 Real 8 m— Real
0.4 —— CTGAN 0.4 —— CTGAN
—— STAN —— STAN
0217/ E-WGAN-GP 02 E-WGAN-GP

NetShare

NetShare

0.0 0.0

10° 10t 102 10° 104 10°

of packets per flow

10° 10° 107
of bytes per flow

10°

(a) # of packets per flow

Figure 2: Distribution of NetFlow’s (unbounded) fields on
UGR16 dataset: left: flow size; right: flow volume.

(b) # of bytes per flow

2 shows that baselines generate a much more limited range and also
miss the correct distribution for small values. As another example,
consider the port number field in headers. Correctly learning the
distribution of port numbers (especially the service ports < 1024)
is key for many measurement tasks (e.g., anomaly detection [77]).
Fig. 3 shows the baselines do not accurately capture the structure
of top-K ports (and nearly miss all of them).

Real Real
0.2 CTGAN | 02 STAN
>
g
g o1 0.1
=]
g
E 00753 g0 ads aa3 21 %0 53 g0 4ads 443 21
[
-E Real Real
©
o 02 E-WGAN-GP 0.2 NetShare
-4
0.1 0.1
0.0 0.0

53 80 445 443 21 53 80 445

Top 5 service destination port number

443 21

Figure 3: Top 5 service destination ports in TON (NetFlow):
baselines fail to capture most frequent service ports while
NetShare captures each mode of them by simpler and more
effective IP2Vec.

Challenge 3 (C3): Existing GAN-based frameworks exhibit poor
scalability-fidelity tradeoffs on network traces.

In theory, some of these fidelity challenges can be partially ad-
dressed with larger training datasets, as deep generative models gen-
erally achieve better results with more parameters and more data [14].
However, this approach quickly encounters scalability challenges.

Fig. 4 shows the trade-offs between scalability and fidelity of base-
lines on a NetFlow dataset (Fig. 4a, Fig. 4b) and a PCAP dataset (Fig.
4c,Fig. 4d). We measure scalability as the total CPUhours (as opposed
to the wall clock time since multiple machines are used simultane-
ously) and the fidelity as average JS divergence and normalized EMD
across different metrics (refer to Section 6 for details). Simple tabular
approaches (e.g., CTGAN, E-WGAN-GP) use the fewest CPU hours
while achieving worse fidelity due to their modeling assumptions.
We were unable to train the synthetic time series trace generator
DoppelGANger [39] on our datasets due to memory constraints. As
an intermediate design we modified Doppel GANger to include our
proposed merging and encoding techniques (described in §4), shown

a)
0.35 = = "
. Yos
a 0.30{"@ ® CTGAN B ® CTGAN
D g5 W STAN No04 W STAN
& ® E-WGAN-GP © ® E-WGAN-GP
3: 0.20 X NetShare-VO § 0.3 % NetShare-V0
015 * NetShare 202 * NetShare
N .
0.10 x| o1{ @ * X
102 < 102
Training time (CPU hours) Training time (CPU hours)
(a) UGR16 (NetFlow) JSD (b) UGR16 (NetFlow) EMD
0.6 =
® S e . °
05 ° + CTGAN ﬁ ’ + CTGAN
a n ® PAC-GAN 9] 0.5 ® PAC-GAN
j0.4 B PacketCGAN % 0.4 gk B PacketCGAN
<>>1 ® Flow-WGAN £ ® Flow-WGAN
03 < NetShare-V0 S 03 * NetShare-V0
0.2 * NetShare 02 * NetShare
* X o1 * X
10 00 < 102 10°
Training time (CPU hours) Training time (CPU hours)
(c) CAIDA (PCAP) JSD (d) CAIDA (PCAP) EMD

Figure 4: Scalability-fidelity trade-offs: Scalability is mea-
sured with total CPU hours () and fidelity is measured with
the average JSD across categorical fields and the average
normalized EMD across continuous fields (]).

a
0.30 ;
0.28 —e— Naive DP E 0.6 —e— Naive DP
5 —=— DP Pretrained-SAME | O —=— DP Pretrained-SAME
0026 —— DP Pretrained-DIFF gos —«— DP Pretrained-DIFF
v 0.24 =
- © 0.4
$0.22 =
Z0.20 503
0.18 So02
0.16 S
zo
107 10° 10° 105 10° 107 108 107 10° 10% 105 106 107 10°
Epsilon Epsilon
(a) NetFlow (UGR16) JSD (b) NetFlow (UGR16) EMD
2 .
0.375 Naive DP
Naive DP w
0.350 o NaweDP p —=— DP Pretrained-SAME
0.325 ' DPPretrained SAME | @ —— DP Pretrained-DIFF
2 —— DP Pretrained-DIFF | N 0.4
£ 0.300 ©
90275 Eo03
[e)
< 0.250 €002
0.225 &
0.200 Z 01
107 103 10° 105 10° 107 10° 102 107 107105 10° 107 10°
Epsilon Epsilon
(c) PCAP (CAIDA) JSD (d) PCAP (CAIDA) EMD

Figure 5: Privacy-fidelity trade-offs: Privacy is measured with
(¢,0) in DP (|) and fidelity is measured as average JSD across
categorical fields and the average normalized EMD'across
continuous fields (|).

as ‘NetShare-V0’ in Figure 4. While this can achieve better fidelity,
it also uses 10x more CPU hours.

Challenge 4 (C4): Existing frameworks exhibit poor
privacy-fidelity tradeoffs.

462

Most prior work on GAN-based trace generation does not evaluate
explicit privacy mechanisms [21,31,57,71,74, 75]. Thisisinadequate,
as synthetic data may present privacy concerns [68]. In the prior
work that does explicitly consider privacy [39], the main conclusion
is that differentially-private (DP) training via DP-SGD destroys the
fidelity of generated signals.? Indeed, we can see in Figure 5 that as
we decrease the DP privacy parameter € (lower €,0 indicate better
privacy; we set § = 107°), synthetic data fidelity is destroyed even
for weak parameters like € =10° (which means almost no privacy)
with an average JS divergence up to 0.21 on UGR16 dataset (Fig. 5a).
In other words, even very weak privacy breaks the fidelity. The full
experimental setup of Figure 5 is explained in §6.2, Finding 3.

4 NETSHARE DESIGN

Next, we present the design of NetShare via four high-level insights
in §4.1 with an end-to-end system overview in §4.2.

4.1 High-level insights

Insight 1 (I1): We reformulate header trace generation as a time
series generation problem of generating flow records for the
entire trace rather than a per-epoch tabular approach (Fig-
ure6).

Real Data

Synthetic Data
== Tabular-
Dy EEE N bosed GAN

b/

Sa8 Tabular- 3 n
o. 22— — (7

(a) Strawman Approach

ReDal Data Synthetic Data
= Merge Flow-based pflow D'flow
EEE R = e
..... === Time-series Five Record)
Dy (GI | Tuples
EEE |

(b) NetShare Approach

Figure 6: Instead of generating measurement epochs D;
through a tabular GAN, we merge multiple epochs D; into
a giant trace D, split the trace into flows D/1°% and use
time-series GAN.

As we saw earlier, existing approaches do not learn header field
correlations spanning multiple packets or epochs (e.g., flow size).
The root cause is these approaches treat each packet or flow record
independently and ignore intra- and inter- measurement epoch cor-
relations.

To systematically capture these cross-record correlations, we re-
formulate the header generation problem as a time series generation
problem rather than a tabular generation problem as shown in Fig-
ure 6. Specifically, we begin by merging data from measurement
epochs D; into one giant trace D to capture inter-measurement epoch
correlations. Given this giant trace D, we split it into a set of flows
!For each continuous fields, we normalize the EMDs of all models across all epsilons
to [0.1,0.9].
2We do not argue that DP is necessarily the best or only privacy definition for a network-

ing setting. Itis a widely-accepted metric in the privacy community [25]. At the very least,
it is natural and desirable to generate DP synthetic data without destroying its fidelity.

fields/embedding fidelity scalability — privacy
IP/byte X %4 v
IP/bit v v v
IP/vector v v X
port/byte X v v
port/bit v 4 4
port/vector v L4 v

Table 2: Encoding tradeoffs for various fields. A v/'v'indicates
(qualitatively) good performance on the metric and v'indi-
cates acceptable performance. NetShare uses bit encoding for
IP and embedded vector representation for port numbers.

Df1°% based on five-tuples to explicitly capture flow-level metrics
(e.g., flow size/duration). Each sample in D/ has a five-tuple as
metadata, and a record (or “measurement data”) corresponding to a
sequence of packets for PCAP data and flow records for NetFlow data.
Specifically, for PCAP data, each sequence element (packet) includes
a raw timestamp, packet size, and other IP header fields (we exclude
the IP option field and checksum—detailed reasoning in §4.2); for
NetFlow, each time series element contains flow start time/duration,
packets/bytes per flow, type (attack/benign when applicable).

Finally, we use a time series GAN to model this data. (While au-
toregressive models [75] also use a time series approach, they are
less effective for learning implicit distributions (e.g., flow length
[39]), and achieve worse fidelity (§6).) Specifically, we build on an
open-source tool called Doppel GANger [39]. Note, however, that
natively using a timeseries GAN like Doppel GANger would run into
the same issues as the tabular GANs as each flow or packet record
will be a timeseries record of length 1 and will miss the key cross-
record effects. Furthermore, we will also encounter other challenges
regarding encoding, scalability, and privacy.

As shown in Fig. 1, this merge-split-timeseries generation work-
flow learns a much better flow length distribution compared with
baselines. That said, this increases the computational complexity
of learning, as seen in Figure 4. We revisit this scalability challenge
below.

Insight 2 (12): We use a careful combination of domain knowl-
edge and machine learning to inform the representation of
header fields to balance fidelity-privacy-scalability tradeoffs
(Table 2).

Recall that baselines struggle to accurately learn the distribution
of fields with large support. Hence, instead of training a GAN on the
original data representation, we use domain knowledge to transform
certain fields (especially those with large support) into a format that
is more tractable for GANS.

For fields with numerical semantics like packets/bytes per flow
with a large support, we use log transformation, i.e., log(1+x) to
effectively reduce the range. This simple yet effective technique
helps NetShare achieve a better distribution of large-support fields
than baselines (Fig. 2). For categorical fields like IP address/port
number/protocol, prior work has adopted one or more of the fol-
lowing ideas from the ML literature on feature representation: byte-
encoding [21, 31, 71], bit encoding [74], one-hot encoding [75] or
advanced vector encoding such as IP2Vec [57] which encodes IPs/-
ports/protocols into fixed-length vectors. Unfortunately, these have
been adopted without considering robustness across datasets (e.g.,

463

number of unique IPs/ports in the dataset), scalability, and privacy.
Indeed, while IP2Vec is conceptually appealing (using tools from
natural language processing [56, 57]), Fig. 3 shows that E-WGAN-GP,
which uses IP2Vec, does not learn the heavy-hitter port distribution.

Table 2 shows a qualitative analysis of different embedding choices
for IP/port with respect to fidelity, scalability and privacy. If we look
only at fidelity and scalability, a vector embedding of both IP and
port (using IP2Vec [56] with careful tuning) outperforms other em-
beddings. However, if we consider privacy, this approach does not
work for a subtle reason. The basic idea of IP2Vec is as follows: as in
Word2Vec [49], each five-tuple indexes a sentence, and the sequence
of IPs, ports, and protocol values are words. The collection of five-
tuples is used to build a dictionary where each unique word (IP or
portor protocol) gets mapped to a numeric vector, or embedding. The
generator is trained on these embeddings; upon generating a new
embedding, it is mapped to a word via nearest-neighbor search over
the dictionary. However, the dictionary is training data-dependent
and therefore not DP.

To resolve this issue, we use bitwise encodings of IP addresses
while using IP2Vec to encode only port numbers and protocols; the
embedding was trained on public data (CAIDA backbone trace from
a Chicago collector, 2015), which naturally contains almost every
possible port number and protocol. In addition, the pairs of (port
number, protocol) are diverse enough to cover the common combi-
nations (e.g., 53 for UDP, 80 for TCP). Hence, the IP2Vec mapping
is expressive enough to capture the words seen in our private data
without violating privacy. As shown in Fig. 3, this variant of IP2Vec
captures the top-K service ports (other results are qualitatively sim-
ilar and not shown for brevity).

Dflow

Model D'flow

Time-series .
GAN

(a) Strawman Approach
Model, Dl’ﬂ"w
Time-series
GAN

Drflow

4

—

1flow
i

Model, = . Model, D
ime-series
1

(b) NetShare Approach

M Evenly sliced
chunks by time|
interval

—_

N
\\Q/
Q&

Q’D

Figure 7: We split DY into M evenly time-spaced chunks
with explicit “flow tags” to capture cross-chunk correlations.
We use the first chunk as a pre-trained model for parallel
training of later chunks.

Insight 3 (I3): We can improve the scalability-fidelity tradeoff
via fine tuning and parallel training (Fig. 7).

Recall that reformulating our problem as timeseries generation
brings much better header/temporal correlations but increases the
total CPU hours. As we can see in Fig. 4, using timeseries GANSs to
feed the entire giant trace D% into the generative model increases
training time and potentially poses the risk of running out of memory.

One opportunity to improve scalability is via parallelism. How-
ever, naively dividing the giant trace into chunks and parallelizing

training across chunks poses two limitations. First, we again incur
the risk of losing correlations across chunks,? e.g., flow size distribu-
tion for flows that span multiple chunks. Second, while the wall clock
time decreases the total CPU hours consumed remains the same.
We avoid these limitations as shown in Fig. 7. First, we borrow the
idea of fine tuning from the ML literature, i.e., we use a pre-trained
model as a “warm start” to seed training for future models [53, 82].
Specifically, we use the first chunk as the “seed” chunk to give a
warm-start and subsequent chunks are fine-tuned using the model
trained from the first chunk. This permits parallel training across
chunks. One concern remains regarding the cross-chunk correla-
tions; fine tuning alone cannot preserve these. To this end, we append
“flow tags” to each flow header to capture the inter-chunk correlation.
Specifically, we annotate each flow header with a 0-1 flag denoting
whether it starts in “this” chunk. We append a 0-1 vector after the
flag with length equal to the total number of chunks, with each bit
indicating whether the flow header appears in that specific chunk.
When splitting the giant trace D" into chunks, we have two
natural choices: split by fixed time interval or by number of packets
per chunk. Splitting by a fixed number of packets per chunk may
impact differential privacy guarantees, as the presence of any single
packet could change the final trained model in an unbounded way:
removing any packet could change the packet assignment of all fol-
lowing trunks. Thus, we choose to split by fixed time intervals rather
than fixed number of packets. We leave the choice of M (number of
chunks) as a configurable tradeoff; a higher M would give fewer total
CPU hours while increasing the learning complexity across chunks.
In our case, we choose M =10 for each dataset with 1 million records.

flow MOdelprivateD’ﬂDW

private DP-SGD private
Time-series —_—
GAN

(a) Strawman Approach

flow
public Model,ypiic Model..... p/flow
BEET private “private
> Time-series —_—
Dflow GAN
private

(b) NetShare Approach

Figure 8: We use public traces to pre-train a public model
Modely,,pjic, then fine-tune on private data.

Insight 4 (14): Wecan improve privacy-fidelity tradeoffs by care-
fully using public datasets (Fig.8).

Prior attempts to train DP synthetic network data models using deep
generative models have utilized DP-SGD, which modifies stochastic
gradient descent (SGD) by clipping each gradient and adding Gauss-
ian noise [11]. For a fixed amount of added noise, the more rounds of
DP-SGD we run, the greater the cost in privacy budget. In NetShare,
we exploit the observation that one can reduce the number of rounds
of DP-SGD needed to achieve a fixed fidelity level by pre-training
NetShare on a related public dataset; then, we take the learned pa-
rameters from the public dataset, and fine-tune them using DP-SGD

3These chunks are logically independent from the measurement epochs in the original
dataset; chunks are merely a construct for parallelizing training.

464

over the private dataset. In doing so, we reduce the required number
of iterations of DP-SGD. This insight has been explored in related
work from the DP community [15, 38, 43, 82], but it has not been
utilized in the networking domain to the best of our knowledge.
Figure 5 illustrates that this approach can significantly improve the
privacy-fidelity tradeoff if used judiciously. We describe the nuances
of this approach further in §é6.

We also use public data to improve our privacy-fidelity tradeoff
due to our IP2Vec encoding. Specifically, we train our IP2Vec map-
ping on a public dataset with a large number of port/protocol pairs,
which helps us learn an embedding without affecting our DP budget
(details in §4.1, Insight 2).

Real Data pflow
BEE D
D EEE Merge === Flow-based
_ split
D,
N EEE Encoding M Evenly sliced chunks

by time interval

Model, D' D’

N
_ 10——'Modell Merge
<Pz >

\—&M Loubtic S
Yes odel public == /b\'\?’\
\S
Q’b

Figure 9: NetShare: end-to-end overview.

Time-series

—

GAN

4.2 End-to-end view

Combining the key insights above, our end-to-end design is summa-
rized in Fig. 9.

Pre-processing: (Insight 1) Merge data from different measurement
epochs D; into one giant trace D with a flow-based split as Dflow
(Insight 2): Encode header fields based on domain knowledge and
fidelity-scalability-privacy tradeoffs.

Training: (Insights 1/3/4) Evenly slice flow traces into M fixed-time
chunks with explicit flow tags added. Train a time-series GAN for
each chunk; we use Doppel GANger [39] (configuration details in Ap-
pendix C). If DP is not required, use the model from the first chunk as
the pre-trained model to improve scalability-fidelity tradeoff; If DP is
desired, use model pre-trained on public data to fine-tune DP-SGD.

Post-processing: After generating D;f low, we map transformed
fields back to their natural representations (e.g., map IP2Vec em-
beddings to (port, protocol) via nearest-neighbor search). Then,
we generate derived fields (e.g., checksum).? Finally, we convert
to PCAP/NetFlow dataset by merging packets/NetFlow records ac-
cording to the raw timestamp (for PCAP) or raw flow start time (for
NetFlow).

5 IMPLEMENTATION

We implement a prototype of NetShare with Tensorflow 1.15; DP-
SGD is implemented using tensorflow-privacy 0.5.0 [10]. In the
spirit of reproducible research, we release open source code and de-
tailed documentation at https://github.com/netsharecmu/NetShare.

4We make an explicit design choice to exclude such derived fields, which are likely
intractable to learn automatically. As such, we use a two-step generation mechanism:
(1) use NetShare to generate the native fields (e.g., IP/port/timestamp) and (2) compute
the checksum based on that to ensure the correctness of packets. Additionally, we did
not take into account the option field in the IP header which is rarely used (and we
do not observe the appearance of IP option field in all three PCAP-related datasets).

We also provide a web service prototype available at https://www.
pcapshare.com.

For consistent runtime measurement, all experiments are run on
the same set of 10 Cloudlab machines [24]. Each machine has Two
Intel Xeon Silver 4114 10-core CPUs at 2.20 GHz and 192GB DDR4
memory.

We pre-define a list of relevant hyperparameters (e.g., learning
rates, discriminator/generator neural network size, rounds of dis-
criminator/generator alternative training). We evaluated 3-5 options
for each hyperparameter, tuned in sequence, prior to running our
evaluation. Hyperparameters were tuned over the full training data,
as data holders can also do this prior to releasing synthetic data. How-
ever, we found that NetShare is not sensitive to these hyperparame-
ters across datasets, and we used the same configuration in all experi-
ments. Our metric for hyperparameter tuning is the relative ordering
of Jensen-Shannon Divergence and Earth Mover’s Distance between
the real and synthetic data for various domain-relevant distributions
(details in §6). If downstream tasks are known as a priori, they could
be used as one of the “selection criteria” for picking the best model
among various hyperparameter setups or training snapshots, which
could potentially boost the performance of specific tasks.

We envision data holders sharing the synthetic traces generated
from NetShare rather than the learned model [41].> We also imple-
ment two optional domain-specific privacy extensions that can be
applied to the generated traces: (1) IP transformation which transfers
synthetic IPs to a user-specified range or a default private range; (2)
Specific attributes (e.g., IP addresses/port numbers/protocol) can be
retrained to a user-desired distribution to further protect the privacy.

6 EVALUATION

Next, we evaluate NetShare and compare it to existing ML-based
synthetic trace generators. We start by describing the datasets and
baselines we use.

6.1 Setup

Datasets. In the interest of reproducibility, we select 6 public
datasets (3 flow header, 3 packet header). These traces are diverse
in the deployments, collection logic, and timescales. For flow header
datasets, we consider 11 fields in the flow records: (1) source IP ad-
dress (2) destination IP address (3) source port number (4) destination
port number (5) protocol (6) start time of a flow (7) duration of a
flow (8) number of packets per flow (9) number of bytes per flow (10)
label (if any, benign/attack) (11) attack type (if any, e.g., DoS, brute
force, port scans). For packet header datasets, we consider the IP
header along with the packet arrival timestamp and L4 port numbers
(for TCP/UDP only). For each dataset, we evaluate NetShare and
baselines on a dataset of 1 million consecutive samples; this is done
for consistency with the evaluations in prior work.

e Flow traces: (NetFlow-1) UGR16 [47] consists of traffic (in-
cluding attacks) from NetFlow v9 collectors in a Spanish ISP
network. We used data from the third week of March 2016.
The (NetFlow-2) CIDDS [58, 59] dataset emulates a small
business environment with several clients and servers (e.g.,
email, web) with injected malicious traffic was executed. Each

5Sharing the model reveals more information than a finite number of synthetic data
samples. Thus, we posit that in practice stakeholders will be more likely to share
synthetic data rather than the models.

465

NetFlow entry recorded with the label (benign/attack) and
attack type (DoS, brute force, port scan). The (NetFlow-3)
TON_IoT (TON) dataset [51] represents telemetry IoT sensors.
We use a sub-dataset (“Train_Test_datasets”) for evaluating
cybersecurity-related ML algorithms; of its 461,013 records,
300,000 (65.07%) are normal, and the rest (34.93%) combine nine
evenly-distributed attack types (e.g., backdoor, DDoS, injection,
MITM).
Packet traces: The (PCAP-1) CAIDA: This dataset [1] contains
anonymized traces from high-speed monitors on a commercial
backbone link. Our subset is from the New York collector in
March 2018. The (PCAP-2) Data Center (DC) dataset is a
packet capture from the “UNI1” data center studied in the IMC
2010 paper [16]. The (PCAP-3) Cyber Attack (CA): dataset [2]
is traces from The U.S. National CyberWatch Mid-Atlantic
Collegiate Cyber Defense Competitions from March 2012.
Baselines. We compare NetShare to the state-of-the-art GAN-based
network traffic synthesizers and a recent auto-regressive-based Net-
Flow synthesizer [75].°
e CTGAN [74]: CTGAN is the state-of-the-art GAN for tabular
data. While it is not designed for network traffic, we extend it
in the following way. We encode IP/port into bits with each bit
as a 2-class categorical variable. Other fields are encoded by
data type, e.g., timestamp/packet size are treated as continuous
fields, protocol is categorical. We use CTGAN as a baseline for
NetFlow and PCAP datasets.

o E-WGAN-GP [57]: E-WGAN-GP first extends [P2Vec [56] to
embed all typical fields in a NetFlow record, i.e., IP address/-
port/protocol/pkts per flow/bytes per flow/flow start time/flow
duration into a fixed-length vector. It then trains a Wasserstein
GAN with gradient penalty [29].

e STAN [75]: STAN is an autoregressive neural network-based
NetFlow synthesizer that is designed to capture dependency
structures between attributes and across time. STAN groups
NetFlow records by host and only ensures correct marginal dis-
tributions within the same host. To generate data from multiple
hosts, we randomly draw host IPs from the real data.

e PAC-GAN [21]: PAC-GAN encodes each network packet into
agreyscale image and generatesIP packets using Convolutional
Neural Network (CNN) GANs. It does not generate packet
timestamps and there is no natural way to encode them. Hence,
the timestamp is randomly drawn from a Gaussian distribution
learned from training data and appended to each synthetic
packet.

e PacketCGAN [71]: PacketCGAN uses conditional GANSs to
augment the encrypted traffic datasets which converts each
byte of the packet (including the cleartext header) into one bit
in the vector. It does not generate timestamps, so we append
timestamps to each vector during training.

e Flow-WGAN [31]: Flow-WGAN uses Wasserstein GAN [12]
on a byte-level embedding. It generates random IP addresses
and sets a maximum flow and packet length. Flow-WGAN does
not generate timestamps so we again append a timestamp to
each byte-embedded vector in training,.

®We were unable to reproduce the PcapGAN [23] work as its details and code are lacking,

6.2 Key findings

Finding 1: NetShare achieves 46% better fidelity than baselines
on feature distribution metrics across traces.

o
g
a

= NetShare

JS divergence

Normalized EMD
o o
N w
SR

o
=3
S

(a) UGR16 (NetFlow) JSD

(b) UGR16 (NetFlow) EMD

== CTGAN
mmm PAC-GAN
BEE PacketCGAN
mmm Flow-WGAN
NetShare

s CTGAN
m— PAC-GAN

0.75] st packetCGAN
W Flow-WGAN
mEE NetShare

o
o

I
IS

o
N

JS divergence
Normalized EMD

o
o

(c) CAIDA (PCAP) JSD (d) CAIDA (PCAP) EMD

Figure 10: Jensen-Shannon divergence (|) and normalized
Earth Mover’s Distance (EMD) (|) between real and synthetic
distributions on UGR16 (NetFlow) and CAIDA (PCAP).

We evaluate the fidelity of synthetic data by computing distance
metrics between real and synthetic distributions of various packet-
and flow-header fields of interest. The fields include: SA/DA: Rela-
tive frequency of Source IP/Destination IP Addresses ranking from
most- to least-frequent; SP/DP: Source/Destination Port number
distribution (from 0 to 65535); PR: Relative frequency of IP Protocol
(e.g., TCP/UDP/ICMP). For NetFlow-specific metrics, we consider: TS:
flow start time (in milliseconds); TD: flow duration (in milliseconds);
PKT: number of packets per flow; BYT: number of bytes per flow.
For PCAP-specific metrics, we consider: PS: Packet Size (in bytes);
PAT: Packet Arrival Time (in milliseconds); FS: Flow Size, number
of packets per flow. For our distance metrics, we follow common
practice in prior work [39, 75]: we use Jensen-Shannon divergence
(JSD) for categorical fields (SA/DA, SP/DP, PR), and Earth Mover’s
Distance (EMD) (also called Wasserstein-1 distance) for continuous
fields (TS, TD, PKT, BYT, PS, PAT, FS).”. Since EMD has very different
scales for different fields, we normalize the EMDs of each field to
[0.1,0.9] for better visualization in the figures.

Overall, we find that NetShare is 48% better across NetFlow-
related distribution metrics and 41% better across PCAP-related
distribution metrics across various traces. Fig. 10 shows a more
detailed quantitative comparison of NetShare to baselines on two
specific datasets (results on other datasets are qualitatively same,
shown in Appendix A). The overall performance of NetShare is con-
sistently better than most baselines. There are cases where NetShare
performs worse than some baselines.

7Some prior work has also used JSD for continuous fields (e.g., [75]) However, to
compute JSD for continuous fields, we need to compute histograms of observed values,
and we find that JSD is very sensitive to the bin size. We hence adopt EMD instead,
as in [39]. EMD has an intuitive geometric meaning; it is equivalent to the integrated
absolute error between the CDFs of the two distributions.

466

For instance, PAC-GAN appears to achieve perfect packet arrival
time distribution across all datasets (e.g., in Fig. 10d). In hindsight,
this is not surprising as we explicitly sample packet timestamps from
training data out of band and append it to the synthetic data.

We also confirmed visually that the structure of these distribu-
tions (e.g., CDF and histograms) better match the original raw trace.
We do not show these in the interest of brevity and refer readers to
the illustrative examples presented in §3.3.

Finding 2: NetShare provides better fidelity for downstream net-
work management tasks across different traces.

We next evaluate whether NetShare synthetic data can be used for
downstream applications that utilize different properties of traffic
traces. We consider 3 tasks: (1) ML-based traffic type prediction on
header data; (2) sketch-based network measurement [19, 22, 44, 45];
and (3) ML-based anomaly detection [77]. For each application, we
evaluate: (1) accuracy preservation (i.e., if an algorithm performs
similarly on real/synthetic data) and (2) order preservation (i.e., if al-
gorithms have the same relative performance on real/synthetic data).
Flow-based traffic type prediction. An important use of la-
beled NetFlow data is to design network traffic type prediction
algorithms [51, 58, 59]. We use the fields port number, protocol,
bytes/flow, packets/flow, and flow duration to predict the type of a
given NetFlow record (e.g., benign/malicious and attack type). We
use five common supervised models: Decision Tree (DT), Logistic
Regression (LR), Random Forest (RF), Gradient Boosting (GB) and
Multi-layer Perceptron (MLP). Fig. 11 describes our evaluation setup.
We use real data A to generate synthetic data B and B’. Real and syn-
thetic data are sorted by timestamp and split into train:test 80%:20%.
Earlier data is used to train the classifier; later data is used for testing.

Real data Synthetic data

Earlier Generative

Models

Bl

Figure 11: NetFlow traffic type prediction setup

Time

Later

Real
NetShare

E-WGAN-GP

Accuracy

Figure 12: NetFlow traffic type prediction accuracy (T) on TON:
all classifiers achieve the highest accuracy with synthetic
data generated by NetShare.

We compare the accuracy between training on real (A)/testing
on real (A’) and training on synthetic (B)/testing on real (A”); this
tests the generalization of models trained on synthetic data. Fig. 12

shows results on TON dataset: real data should achieve the highest
accuracy. NetShare outperforms all baselines across five classifiers.
For example, on the MLP predictor, NetShare achieves 12% higher
accuracy than the next-best baselines (E-WGAN-GP) and 84% of the
real data accuracy.

Table 3: Rank correlation (T) of prediction algorithms on
CIDDS and TON. Higher is better.

NetShare CTGAN STAN E-WGAN-GP
CIDDS 0.90 0.60 0.60 0.70
TON 0.70 0.10 0.60 -0.60

We compare the rankings of models (Decision Tree, Logistic
Regression, Random Forest, Gradient Boosting, MLP) when they
are trained on real (A)/tested on real (A”) vs. trained on synthetic
(B)/tested on synthetic (B’). We compute Spearman’s rank correla-
tion coefficient between rankings on synthetic and real rankings
(1.00 means a perfect match). Table 3 shows that NetShare outper-
forms all baselines with a higher rank correlation on both CIDDS
and TON datasets.

App #2: Sketch-based network telemetry. A growing body of
work [19, 22, 44, 45] has studied the use of sketch-based network
telemetry.® We study a typical downstream task of heavy hitter count
estimation, and choose four common sketching algorithms: Count-
Min Sketch (CMS) [22], Count Sketch (CS) [22], Universal Monitor-
ing [45], NitroSketch [44]. The threshold for heavy hitters is set at
0.1% with all four sketches use roughly the same memory (our goal is
not to compare sketches but to evaluate the value of synthetic traces).

We run the four sketching algorithms on real and synthetic data

to get error rates for heavy hitter count estimation error,.,; and

errorsyn, which should be equal. We measure their relative error,

|errorsyn—errorrear| .
——¥ "¢ for three heavy hitter counts on three datasets:
erroryeal

Destination IP for CAIDA, Source IP for DC, and Five-tuple aggre-
gation for CA. Fig. 13 shows the results on these three datasets. A
baseline may be missing for a dataset if the baseline finds no heavy
hitters according to the given threshold. For each real/synthetic
dataset, every sketching algorithm is independently run 10 times.

NetShare outperforms all valid baselines across different sketch-
ing algorithms/heavy hitters of interest/datasets, achieving 48%
smaller relative errors on average. We compare the rankings of
sketching algorithms’ mean heavy hitter estimation error rates, again
using Spearman’s rank correlation coefficient. NetShare achieves
perfect rankings, outperforming the only valid baseline (CTGAN),
whose rank correlation can be as low as 0.4 (not shown for brevity).
App #3: Header-based anomaly detection. NetML [77] isarecent
open source library for anomaly detection from various flow-based
header representations. We use the default one-class support vector
machine (OCSVM) and the following supported representations (or
“modes") of flows [77]: IAT, SIZE, IAT_SIZE, STATS, SAMP-NUMP
(SN), SAMP-SIZE (SS). We defer readers to NetML [77] for a full
description.

We run different modes of NetML for real and synthetic data,
and get two anomaly ratios: ratioy.,; and ratiosyn, which should be

8Sketches uses compact data structures to summarize network traffic.

467

Table 4: Rank correlation (T) of modes of NetML for PCAP
anomaly detection.

NetShare CTGAN PAC-GAN PacketCGAN Flow-WGAN
CAIDA 1.00 N/A N/A N/A N/A
DC 0.94 0.43 N/A N/A N/A
CA 0.88 -0.26 0.37 -0.26 N/A
. . ti syn— ti rea
equal. We compute their relative error, lmw'rZTm;O”. For each

real/synthetic dataset, every mode of NetML is independently run 5
times. Fig. 14 plots the relative errors for different modes on CAIDA,
DC and CA datasets. Note that NetML only processes flows with
packet count greater than one, and only baselines that generate such
flows are presented in the plots.

NetShare outperforms baselines on most datasets and modes of
NetML with few exceptions: for mode IAT/SIZE/SS on CA, NetShare
achieves the second-best relative error. However, those baselines
(e.g., CTGAN, PacketCGAN) are neither robust across datasets, nor
do they preserve rankings of NetML modes. Also, their average JSD
and normalized EMD across distributional metrics is worse than
NetShare (Fig. 10).

In addition, NetShare outperforms all baselines in terms of pre-
serving the rankings of different modes of NetML. Additionally,
compared with groundtruth ranking, NetShare achieves a perfect
match on CAIDA. Table 4 shows the exact rank correlations on these
three datasets.

Finding 3: Pre-training NetShare on public data can improve
the fidelity of differentially-private traces.

Asdescribed in §4, we address the challenges associated with training
differentially-private (DP) GANs by fine-tuning models trained on
public datasets, only using DP optimization (DP-SGD) on the fine-
tuning steps. Figure 5 shows that this approach can achieve a better
privacy-fidelity tradeoff than the naive approach of training the GAN
from scratch with DP-SGD; privacy is measured by DP parameter €
(we fix §=107>), and fidelity is measured as the mean JSD across all
distributions of categorical fields and the mean normalized EMD
across all distributions of continuous fields. This gain is more obvious
when the public dataset is similar to the private data; in Figure 5, when
the model is pre-trained on a public header trace from a different
domain, the privacy-fidelity tradeoff is closer to that of training from
scratch. For example, in Figure 5c and Figure 5d, the ‘DP Pretrained-
SAME’ curve was pre-trained on a CAIDA dataset from the Chicago
collector in March 2015, and finetuned on our standard “private”
CAIDA dataset (New York collector, March 2018). Although these
datasets likely see different traffic patterns, they are from the same
domain, and we observe significant gains in privacy-fidelity tradeoff.
In contrast, the ‘DP Pretrained-DIFF’ curve was pre-trained on the
data center (DC) dataset, and pre-training gives less benefit. This
suggests that pre-training can be effective, but care must be taken to
select sufficiently close pre-training public datasets.

Nonetheless, fine-tuning does not fully resolve the privacy chal-
lenges of training DP GAN-based synthetic data. Table 5 shows that
for a moderate privacy guarantee (€ =24.24), on the CAIDA dataset,
pre-training on a similar public dataset still incurs a 2.3x increase
(degradation) in mean EMD (our fidelity metric). This is better than

—— 'NetShare

Sw0%]= | i i S =

) i i 1 o

: =T = =

£ — CTGAN i ! T 40% T !

@ 50%7] — NetShare i i g !

I | ! =N == £20%{ — CTGAN

o | | | K

9] 1 ' ' [9) —— NetShare l%l

< 0% T = 0% —
CMS cs UnivMon NitroSketch CMS Cs

(a) CAIDA (HH: Destination IP)

(b) DC (HH: Source IP)

i = 1 i

| Sl L —
Los ok T

1 o 50% | | |

| o IR

SR s

: < 0% o= [

UnivMon NitroSketch cms cs UnivMon NitroSketch

(c) CA (HH: Five-tuple)

Figure 13: Relative error (|) of heavy hitter count estimation by various sketching algorithms on real and synthetic PCAP datasets.

60%

S ==l : | —— Netshare 4009 T {— cean R 750% [
S i : : : i = i 1 i | — NetShare ! i i - —— PACGAN
£ 40% : : : : : 2 - i i i i 2 500% g - PacketCGAN
9} ! ! ! i : i i i i | i i i 4
¢ P T g200% b v e
2 20% i i : : =N i i i : | 2 250% : : o :
© ! ! i ! ! ! © f— [© [! . !
ol ! ! ! : : o ! { I i b7 ! N
€ ol = : b : £ 0%t —! fooeed i e
IAT SIZE IS STATS SN SS IAT SIZE IS STATS SN SS IAT SIZE IS STATS SN SS
NetML modes NetML modes NetML modes
(a) CAIDA (b)DC (c)CA
Figure 14: Relative error (|) of anomaly detection by NetML modes on real and synthetic PCAP datasets.
€(5=107) 2424 2735 3628 9352 64114 10° 10° w/oDP the real distribution. However, when adding differential privacy
Naive DP 035 041 051 057 041 031 016 o (e.g., € = 24), naive DP-SGD training does not give a satisfactory
DP-pretrain-SAME 023 012 038 011 017 018 0.16 distribution. Though pre-training on datasets from the same domain

Table 5: Normalized EMD () between real and DP synthetic
CAIDA data as a function of € (expansion of Fig. 5d).

not pre-training, which incurs a 3.5x increase in mean EMD, but may
still be insufficient for practical purposes.

1.0

—— Real

—— NetShare (¢ = 24, Naive DP)

—— NetShare (¢ = 24, DP-pretrain-SAME)
NetShare (¢ =)

[= Real
,‘H’ —— NetShare (¢ = 24, Naive DP)
—— NetShare (& = 24, DP-pretrain-SAME)
NetShare (£ = «)
0

/

10°

10! 102 10° 10*
Source port number

10° 250 500 750 1000 1250 1500

Packet length (bytes)

(a) Source port (b) Packet length (bytes)

Figure 15: Packet length and port CDFs computed without
noise and under the same (¢,0) with or without pre-training.

We next show how DP affects the distribution of specific packet-
level queries in the data. Note that prior work [48] has studied how
to build DP analytics pipelines for a pre-specified set of supported
queries, including such packet-level queries. However, a fair compar-
ison to [48] is difficult, as NetShare is tackling a harder problem and
aims to generate DP synthetic data that can handle any type of query.

We conduct two examples of packet-level analysis from [48]:
(1) port numbers and (2) packet length. Figure 15a and Figure 15b
visualize the distribution of the two fields under different privacy
budgets compared with ground truth data. We observe that without
adding noise (i.e., € = o), NetShare achieves a close match with

468

(“DP-pretrain-SAME”) mitigates these problems, it does not resolve
the issue. In contrast, [48] reported minimal degradation in query
fidelity, even with stronger privacy parameters. Indeed, generating
high-dimensional DP synthetic data remains an open question, both
in our domain and in general [15, 39, 69, 84].

Finding 4: NetShare achieves a better scalability-fidelity trade-
off than baselines.

Recall from §4 that NetShare trains a model by first splitting the
dataset into chunks, then trains a seed GAN model on the first chunk,
then fine-tunes that model for successive chunks in parallel. This
approach can introduce loss of fidelity, since we are implicitly as-
suming similarity with the first chunk. However, Figure 4 shows
that the resulting scalability-fidelity tradeoff is better than for other
baselines. Here, we summarize fidelity by the average JSD across all
distributional microbenchmarks on categorical fields and the aver-
age normalized EMD across all distributional microbenchmarks on
continuous fields, and efficiency by the number of CPU-hours needed
to train the model. Particularly for PCAP datasets, we see almost an
order of magnitude better JSD compared to the next most-efficient
baseline (CTGAN), and almost an order of magnitude faster training
compared to the baseline that is closest in fidelity (Doppel GANger).

7 RELATED WORK

Synthetic trace generation has a long history in the networking
community. We briefly discuss this related work next.

Network Simulators. Using network simulators to generate traffic
traces [6, 7] entails configuring simulators with a number of param-
eters (e.g., clients, workloads) to ensure these traces match realistic
settings. This requires substantial manual effort to extract parameter

from traces, which are often incomplete. Further, most simulators are
tied to specific protocols protocols [8, 9, 83] and generalize poorly.
Structural Traffic Generators. A complementary body of trace
generation uses structural or statistical models to represent and gen-
erate network traffic (e.g., [60, 66, 70, 72]). For example, Harpoon
[66] uses a set of distributional parameters extracted from traces
to generate flow level traffic that matches both temporal volume
characteristics and spatial characteristics (source and destination
IP address frequency) of the given trace. Swing [70] extracts key
user/session/connection/network level distributions to reproduce
the network traffic. LitGen [60] uses a renewal process abstraction
to model behavior. Tmix [72] first extracts TCP connection informa-
tion and creates connection vectors to represent the connection to
feed into emulation tools [6]. The key challenge here is to choose
an appropriate model and parameters that achieve high fidelity for
(possibly unforeseen) downstream tasks. These methods implicitly
make assumptions about the workload, which prevents generaliza-
tion. That said, some generators capture stateful and session-level
properties that are currently outside our scope.

Non-GAN ML-based Traffic Generators. STAN [75] uses autore-
gressive neural models to generate synthetic network traffic in a
flow-level while it fails to generate more fine-grained features such
as individual packet sizes and arrival times within each flow. Red-
zovic et. al [54] uses Hidden Markov Models (HMM) to generate
only packet sizes and packet interarrival time of IP traffic which are
quite limited in the coverage of various packet fields. These are com-
plementary efforts; our work is a systematic application of GANs
building on their success in other domains.

GAN-based generators We discussed a number of GAN-based base-
lines (e.g., [29, 71, 74]) in §6. At a high level, we observe that many
of the architectural choices these prior efforts make (e.g., tabular
data, using IP2vec, encoding packets as images, ignoring temporal
aspects) result in suboptimal fidelity, privacy, and scalability. Net-
Share uses a timeseries GAN like Doppel GANger [39] as a building
block, it does not tackle the specific fidelity, scalability, and privacy
challenges that arise in the context f of header traces. GANs can
also be used to augment imbalanced datasets in intrusion detection
algorithms [64, 73, 79] or for generating malicious/adversarial traffic
[20, 42, 55, 76]. While NetShare can be extended to these settings,
this is outside our scope.

Other generative models The success of GANs has also inspired a
number of other types of generative models for synthetic data gener-
ation such as Denoising Diffusion Probabilistic Models [33, 65] and
score-based models [67]. In general, these are less mature than GANs
for synthetic data generation and their fidelity-privacy-scalability
tradeoffs are less well understood. Applying them to the networking
domain is an interesting direction for future work.

8 DISCUSSION AND FUTURE WORK

While NetShare lowers the barrier for synthetic header trace gen-
eration, it is only a starting point. We conclude with limitations and
directions for further research.

Fine-grained temporal properties. While NetShare may poten-
tially capture fine-grained inter-arrival properties, we do not ex-
tensively evaluate them or related network management tasks (e.g.,
congestion control, buffer provisioning) in this paper. We leave this
for future work.

469

Extending NetShare to other protocols. NetShare currently op-
erates over Layer 3 IP headers (plus port numbers) . While we believe
NetShare can be extended to support other flow representations (e.g.,
fbflow [61], AWS VPC flows [5]), supporting higher-layer headers
will require supporting stateful protocols (e.g., TCP). The NetShare
architecture does not currently support stateful protocols, and is
unlikely to naturally learn stateful generation. We hypothesize that
supporting stateful protocols will require combining the data-driven
generator with domain-specific protocol rules. This is an interesting
direction for future work.

Extending NetShare to other downstream tasks. Even constrain-
ing to header traces, our scope of downstream tasks is admittedly
limited. A natural next step is to evaluate the utility in a broader
spectrum of header-based inference tasks; e.g., QoE inference over
encrypted headers, device/application fingerprinting from header
traces, and so on. Looking forward, we also envision new uses for
NetShare including potential avenues for collaborative data augmen-
tation or serving as a toolkit for data holders to contribute to public
domain data repositories (e.g., CAIDA [1], CRAWDAD [3]).
Payload data. NetShare does not currently generate payloads,
which are much higher-dimensional than the headers generated
in this work. We expect that realistic payload generation would be
challenging, and require different techniques; e.g., it may be possible
to train transformer-based language models [17] over payload data.
Measuring overfitting. In the image domain, overfitted generative
models are evaluated by looking for duplicates in the synthetic and
training data [13]. In our domain, this metric does not apply: a model
may memorize some fields without memorizing others, and it is
unclear how to measure packet closeness since fields have different
units. Our preliminary analysis by measuring the ratio of overlap
between synthetic and real values of src/dst IPs and 5-tuples) sug-
gests that NetShare is not memorizing (not shown), but finding a
principled way to measure overfitting in the networking domain is
an important question for future work.

Ethical Considerations. We evaluated NetShare on public datasets
for reproducibility; this does not raise ethical concerns. In general,
systems like NetShare should be used with care to ensure that the
privacy requirements of the data holder are accounted for as gener-
ative models can memorize and leak individual records [68]. While
training a DP-NetShare mitigates this risk, it may not hide other
aggregate properties of interest. Thus, actual use of such tools must
also take into account data holder’s privacy expectations.

ACKNOWLEDGMENTS

We thank our shepherd Hamed Haddadi and the anonymous SIG-
COMM reviewers for their insightful feedback on the paper. We
thank Haonan Wang for the help with earlier versions of NetShare.
This work was supported in part by the National Science Foundation
through Convergence Accelerator grant CA-2040675 and RINGS
grant 2148359. The authors also acknowledge the generous support
of the Sloan Foundation, Intel, Siemens, Bosch, J.P. Morgan Chase,
and Cisco.

REFERENCES

(1]

[12]

(13

[14]

[15]

[16

[17]

[18

[19]

[20]

[21

[22]

[23

[24

[25

[26]

[27

[28]

[n. d]. The CAIDA UCSD Anonymized Internet Traces. https:
//www.caida.org/catalog/datasets/passive_dataset. ([n. d.]). Accessed: 2022-01-30.
[n. d.]. Capture files from Mid-Atlantic CCDC. https://www.netresec.com/?page=
MACCDC. ([n. d.]). Accessed: 2022-01-30.

[n. d.]. A Community Resource for Archiving Wireless Data At Dartmouth.
https://crawdad.org/. ([n. d.]). Accessed: 2022-06-30.

[n. d]. IXIA. https://www.keysight.com/us/en/cmp/2020/
network-visibility-network-test.html. ([n. d.]). Accessed: 2022-02-02.

[n. d.]. Logging IP traffic with VPC Flow Logs. https://docs.aws.amazon.com/
vpc/latest/userguide/flow-logs.html. ([n. d.]). Accessed: 2022-02-02.

[n. d.]. ns-2. http://nsnam.sourceforge.net/wiki/index.php/Main_Page. ([n. d.]).
Accessed: 2021-02-10.

[n. d.]. OSTINATO. https://ostinato.org/. ([n. d.]). Accessed: 2021-02-10.

[n. d.]. RUDE&CRUDE. http://rude.sourceforge.net/. ([n. d.]). Accessed:
2021-02-10.

[n. d.]. SEAGULL. http://gull.sourceforge.net/. ([n. d.]). Accessed: 2021-02-10.
[n. d.]. Tensorflow Privacy. https://github.com/tensorflow/privacy. ([n. d.]).
Accessed on Feb. 1, 2022.

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308-318.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein
generative adversarial networks. In International conference on machine learning.
PMLR, 214-223.

Sanjeev Arora and Yi Zhang. 2017. Do gans actually learn the distribution? an
empirical study. arXiv preprint arXiv:1706.08224 (2017).

Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund Kalibhat, Mucong Ding,
Dominik Stéger, Mahdi Soltanolkotabi, and Soheil Feizi. 2021. Understanding
overparameterization in generative adversarial networks. arXiv preprint
arXiv:2104.05605 (2021).

Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan Ullman,
and Steven Wu. 2020. Private query release assisted by public data. In International
Conference on Machine Learning. PMLR, 695-703.

Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. 267-280.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, and Dawn Song. 2019.
The secret sharer: Evaluating and testing unintended memorization in neural
networks. In 28th USENIX Security Symposium (USENIX Security 19). 267-284.
Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. In International Colloquium on Automata, Languages, and
Programming. Springer, 693-703.

Jeremy Charlier, Aman Singh, Gaston Ormazabal, Radu State, and Henning
Schulzrinne. 2019. SynGAN: Towards generating synthetic network attacks using
GANSs. arXiv preprint arXiv:1908.09899 (2019).

Adriel Cheng. 2019. Pac-gan: Packet generation of network traffic using generative
adversarial networks. In 2019 IEEE 10th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON). IEEE, 0728-0734.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55,
1(2005), 58-75.

Baik Dowoo, Yujin Jung, and Changhee Choi. 2019. PcapGAN: Packet capture
file generator by style-based generative adversarial networks. In 2019 18th IEEE
International Conference On Machine Learning And Applications (ICMLA). IEEE,
1149-1154.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19
Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211-407.
Cristobal Esteban, Stephanie L Hyland, and Gunnar Ritsch. 2017. Real-valued
(medical) time series generation with recurrent conditional gans. arXiv preprint
arXiv:1706.02633 (2017).

Tan Goodfellow. 2016. Nips 2016 tutorial: Generative adversarial networks. arXiv
preprint arXiv:1701.00160 (2016).

TanJ. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial

470

[29

[30

[31

[33

[34

[35

(36]

®
=

(38

[39

[40

[41]

~
&

[43

[44

[45

=
&

[47

(48

[49

[50

[52]

[53

[54

Nets. In Proceedings of the 27th International Conference on Neural Information Pro-
cessing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA, USA, 2672-2680.
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. 2017. Improved training of wasserstein gans. arXiv preprint
arXiv:1704.00028 (2017).

Steffen Haas, Robin Sommer, and Mathias Fischer. 2020. Zeek-osquery: Host-
network correlation for advanced monitoring and intrusion detection. In IFIP
International Conference on ICT Systems Security and Privacy Protection. Springer,
248-262.

Luchao Han, Yigiang Sheng, and Xuewen Zeng. 2019. A packet-length-
adjustable attention model based on bytes embedding using flow-wgan for smart
cybersecurity. IEEE Access 7 (2019), 82913-82926.

J Hayes, L Melis, G Danezis, and E De Cristofaro. 2019. LOGAN: Membership
Inference Attacks Against Generative Models. In Proceedings on Privacy Enhancing
Technologies (PoPETs), Vol. 2019. De Gruyter, 133-152.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. arXiv preprint arXiv:2006.11239 (2020).

Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2020. New
directions in automated traffic analysis. arXiv preprint arXiv:2008.02695 (2020).
Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and Gong
Zhang. 2017. Sketchvisor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 113-126.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator
architecture for generative adversarial networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4401-4410.

TeroKarras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. 2020. Analyzing and improving the image quality of stylegan. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8110-8119.
Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis,
and Abhradeep Thakurta. 2022. Toward Training at ImageNet Scale with
Differential Privacy. (2022). arXiv:cs.LG/2201.12328

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2020. Using
GANSs for Sharing Networked Time Series Data: Challenges, Initial Promise, and
Open Questions. In Proceedings of the ACM Internet Measurement Conference.
464-483.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. 2018. Pacgan: The
power of two samples in generative adversarial networks. Advances in neural
information processing systems (2018).

Zinan Lin, Vyas Sekar, and Giulia Fanti. 2021.
GAN-generated Samples. In AISTATS.

Zilong Lin, Yong Shi, and Zhi Xue. 2018. Idsgan: Generative adversarial networks
for attack generation against intrusion detection. arXiv preprint arXiv:1809.02077
(2018).

Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Zhi-
wei Steven Wu. 2021. Leveraging Public Data for Practical Private Query Release.
arXiv preprint arXiv:2102.08598 (2021).

Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy
Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In Proceedings of the ACM Special Interest Group
on Data Communication. 334-350.

Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference. 101-114.
Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:
A high-performance switch-native approach for detecting and mitigating
volumetric ddos attacks with programmable switches. In 30th { USENIX} Security
Symposium ({USENIX} Security 21).

Gabriel Macia-Fernandez, José Camacho, Roberto Magan-Carrion, Pedro Garcia-
Teodoro, and Roberto Therén. 2018. UGR ‘16: A new dataset for the evaluation of
cyclostationarity-based network IDSs. Computers & Security 73 (2018), 411-424.
Frank McSherry and Ratul Mahajan. 2010. Differentially-private network trace
analysis. ACM SIGCOMM Computer Communication Review 40, 4 (2010), 123-134.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781(2013).
Meisam Mohammady, Lingyu Wang, Yuan Hong, Habib Louafi, Makan Pourzandi,
and Mourad Debbabi. 2018. Preserving Both Privacy and Utility in Network Trace
Anonymization. 459-474. https://doi.org/10.1145/3243734.3243809

Nour Moustafa. 2021. A new distributed architecture for evaluating Al-based
security systems at the edge: Network TON_IoT datasets. Sustainable Cities and
Society 72 (2021), 102994.

Vern Paxson. 1999. Bro: A system for detecting network intruders in real-time.
Computer networks 31, 23-24 (1999), 2435-2463.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.
Improving language understanding by generative pre-training. (2018).

Hasan RedZzovi¢, Aleksandra Smiljani¢, and Milan Bjelica. [n. d.]. IP Traffic
Generator Based on Hidden Markov Models. parameters 1,2 ([n. d.]), 1.

On the Privacy Properties of

[55

[56

[57]

[58

[60]

[61]

[62

[63]

[64]

[65]

Maria Rigaki and Sebastian Garcia. 2018. Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection. In 2018 IEEE Security and Privacy
Workshops (SPW). IEEE, 70-75.

Markus Ring, Alexander Dallmann, Dieter Landes, and Andreas Hotho. 2017.
Ip2vec: Learning similarities between ip addresses. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW). IEEE, 657-666.

Markus Ring, Daniel Schlér, Dieter Landes, and Andreas Hotho. 2019. Flow-based
network traffic generation using generative adversarial networks. Computers
& Security 82 (2019), 156-172.

Markus Ring, Sarah Wunderlich, Dominik Griidl, Dieter Landes, and Andreas
Hotho. 2017. Creation of Flow-Based Data Sets for Intrusion Detection. Journal
of Information Warfare 16 (2017), 40-53. Issue 4.

Markus Ring, Sarah Wunderlich, Dominik Griidl, Dieter Landes, and Andreas
Hotho. 2017. Flow-based benchmark data sets for intrusion detection. In
Proceedings of the 16th European Conference on Cyber Warfare and Security
(ECCWS). ACPI, 361-369.

Chloé Rolland, Julien Ridoux, and Bruno Baynat. 2007. LiTGen, a lightweight
traffic generator: application to P2P and mail wireless traffic. In International
Conference on Passive and Active Network Measurement. Springer, 52-62.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 123-137.
Matthew N. O. Sadiku and Sarhan M. Musa. 2013. Self-Similarity of
Network Traffic. Springer International Publishing, Cham, 251-265.
https://doi.org/10.1007/978-3-319-01646-7_10

Paul Schmitt, Francesco Bronzino, Sara Ayoubi, Guilherme Martins, Re-
nata Teixeira, and Nick Feamster. 2020. Inferring Streaming Video
Quality from Encrypted Traffic: Practical Models and Deployment Ex-
perience. In ACM SIGMETRICS, Vol. 3. Boston, Massachusetts, 1-25.
https://dl.acm.org/doi/10.1145/3366704?cid=81548029281

Md Hasan Shahriar, Nur Imtiazul Haque, Mohammad Ashiqur Rahman, and
Miguel Alonso. 2020. G-ids: Generative adversarial networks assisted intrusion
detection system. In 2020 IEEE 44th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 376-385.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International Conference on Machine Learning. PMLR, 2256-2265.

[66] Joel Sommers, Hyungsuk Kim, and Paul Barford. 2004. Harpoon: A Flow-Level

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79

Traffic Generator for Router and Network Tests. SIGMETRICS Perform. Eval. Rev.
32,1 (June 2004), 392. https://doi.org/10.1145/1012888.1005733

Yang Song and Stefano Ermon. 2019. Generative modeling by estimating gradients
of the data distribution. arXiv preprint arXiv:1907.05600 (2019).

Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. 2021. Synthetic
Data—Anonymisation Groundhog Day. arXiv preprint arXiv:2011.07018 (2021).
Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. 2020.
New oracle-efficient algorithms for private synthetic data release. In International
Conference on Machine Learning. PMLR, 9765-9774.

Kashi Venkatesh Vishwanath and Amin Vahdat. 2009. Swing: Realistic and
responsive network traffic generation. IEEE/ACM Transactions on Networking
17,3 (2009), 712-725.

Pan Wang, Shuhang Li, Feng Ye, Zixuan Wang, and Moxuan Zhang. 2020.
PacketCGAN: Exploratory study of class imbalance for encrypted traffic
classification using CGAN. In ICC 2020-2020 IEEE International Conference on
Communications (ICC). IEEE, 1-7.

Michele C Weigle, Prashanth Adurthi, Félix Hernandez-Campos, Kevin Jeffay, and
F Donelson Smith. 2006. Tmix: a tool for generating realistic TCP application work-
loadsinns-2. ACM SIGCOMM Computer Communication Review 36,3 (2006), 65-76.
Korakoch Wilailux and Sudsanguan Ngamsuriyaroj. 2021. Novel Bi-directional
Flow-based Traffic Generation Framework for IDS Evaluation and Exploratory
Data Analysis. Journal of Information Processing 29 (2021), 256-265.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.
2019. Modeling tabular data using conditional gan. arXiv preprint arXiv:1907.00503
(2019).

Shengzhe Xu, Manish Marwah, and Naren Ramakrishnan. 2020. STAN: Synthetic
Network Traffic Generation using Autoregressive Neural Models. arXiv preprint
arXiv:2009.12740 (2020).

Junhua Yan and Jasleen Kaur. 2018. Feature Selection for Website Fingerprinting.
Proc. Priv. Enhancing Technol. 2018, 4 (2018), 200-219.

Kun Yang, Samory Kpotufe, and Nick Feamster. 2020. A Comparative Study
of Network Traffic Representations for Novelty Detection. arXiv preprint
arXiv:2006.16993 (2020).

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui
Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast
network-wide measurements. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. 561-575.

Chuanlong Yin, Yuefei Zhu, Shengli Liu, Jinlong Fei, and Hetong Zhang. 2018. An
enhancing framework for botnet detection using generative adversarial networks.
In 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD).

IEEE, 228-234.

[80] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. 2019. Time-series

generative adversarial networks. (2019).

[81] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable

are features in deep neural networks? arXiv preprint arXiv:1411.1792 (2014).

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam
Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
et al. 2021. Differentially private fine-tuning of language models. arXiv preprint
arXiv:2110.06500 (2021).

Sebastian Zander, David Kennedy, and Grenville Armitage. 2005. Kute a high
performance kernel-based udp traffic engine. (2005).

Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo
He, Jiming Chen, and Yang Zhang. 2021. Privsyn: Differentially private data
synthesis. In 30th { USENIX} Security Symposium ({USENIX} Security 21).

APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A ADDITIONAL FIDELITY RESULTS

0.6 a
[} - STAN
© 2075
%0 " mmm NetShare - R NetShare
20 Lo.50
2 E
0.2
a £0.25
=

o
=3
S

(a) CIDDS (NetFlow) JSD (b) CIDDS (NetFlow) EMD
0 0.6{ mm STAN)
I B E-WGAN-GP 2075
5 B NetShare, =
go04 £0.50
= ©
202 Eoas
=

o
o
o
o
=)

(c) TON (NetFlow) JSD (d) TON (NetFlow) EMD

Figure 16: Jensen-Shannon divergence (|) and normalized
Earth Mover’s Distance (EMD) () between real and synthetic
NetFlow distributions.

Ia) W CTGAN
o 0.6 S .75 = PACGAN
c w mmE PacketCGAN
g = py == Flow-WGAN
are Q = NetShare
go4 : So.s0
2]
el
002 Eozs
2

o
S

0.00

(a) DC (PCAP) JSD (b) DC (PCAP) EMD

== CTGAN
EEE PAC-GAN

mW CTGAN
- PAC-GAN

o

o
<)
g
a

BB PacketCGAN
mm Flow-WGAN
NetShare

B PacketCGAN
= Flow-WGAN
EEE NetShare

o
'S

0.2

JS divergence
Normalized EMD
=)

S e
<)

o
N
o

o
o
o
o
S

(c) CA (PCAP) JSD (d) CA (PCAP) EMD
Figure 17: Jensen-Shannon divergence (|) and normalized

Earth Mover’s Distance (EMD) (|) between real and synthetic
PCAP distributions.

Fig. 16 and Fig. 17 show additional results of Jensen-Shannon diver-
gence between real and synthetic datasets that are not shown in §é:
NetShare is 48% better across flow-based distribution metricsand 41%
better across packet-based distribution metrics across various traces.

B PROTOCOL-COMPLIANT
TRACE GENERATION

We also want the packet traces to satisfy key correctness conditions
[57, 75] to be valid packet headers. Specifically,

o Test 1: Validity of IP address. Source IP address should not

be multicast (from 224.0.0.0 to 239.255.255.255) or broadcast

472

Table 6: Netflow consistency check on UGR16: NetShare can
generate protocol- and domain knowledge-compliant data.

CTGAN STAN E-WGAN-GP NetShare

Test1 96.90% 90.7% 94.38% 98.05%
Test2 32.38% 93.64% 38.55% 98.41%
Test3 99.37% 99.91% 100% 99.90%

Table 7: PCAP consistency check on CAIDA: NetShare can
generate protocol and domain knowledge complaint data.

CTGAN PAC-GAN PacketCGAN Flow-WGAN NetShare

Test1 95.59% 92.98% 92.81% 94.92% 95.06%
Test2 67.69% 0.02% 99.16% 61.50% 76.59%
Test3 70.18% 0.40% 99.16% 61.50% 99.77%
Test4 99.73% 99.94% 99.49% 99.74% 89.71%

(255.xxx.xxx.xxx); Destination IP address should not be of the
form 0.XXX.XXX.XXX.

o Test 2: Relationship between number of bytes (byt) and
number of packets (pkt). (i) For a TCP flow, 40*pkt < byt
< 65535*pkt. (ii) Similarly, for a UDP flow, 28*pkt < byt <
65535*pkt.

o Test 3: Relationship between port number and protocol.
If the port number (e.g., 80 for HTTP and 53 for DNS) indicates
one specific type of protocol (TCP/UDP), the protocol field
needs to comply with that.

e Test 4: Packet minimum size (Only valid for PCAP). For
a TCP packet, the minimum size is 40 bytes, while for a UDP
packet, the minimum size is 28 bytes.

Table 6 and Table 7 shows the correctness check results on UGR16
and CAIDA, respectively, with NetShare compared to other base-
lines. Though NetShare does not achieve the highest correctness on
multiple tests, the ratio is still reasonably high. Additionally, base-
lines that occasionally achieve high correctness do not exhibit good
performance in terms of distributional metrics, downstream tasks,
scalability-fidelity and privacy-fidelity trade-offs, as we show in §6,
which significantly degrades the usefulness of the synthetic datasets
generated by baselines.

C IMPLEMENTATION DETAILS OF NETSHARE

For time-series GAN, we use the open source implementation Dop-
pelGANger [39] available at https://github.com/fjxmlzn/doppel GANger
with the following configurations:

e Auto-normalization is disabled.

o Auxiliary discriminator is enabled.

[0,1] normalization for the continuous fields.

Packing [40] is not used as it empirically does not help improve
the fidelity in our context.

e The architecture and the loss function remain the same as
Doppel GANger

