
SUBMISSION: THE VISUAL COMPUTER 1

Localization and Tracking of Stationary Users for

Augmented Reality
Lewis Baker, Jonathan Ventura, Tobias Langlotz, Steven Mills, Shazia Gul, and Stefanie Zollmann

Abstract—In Augmented Reality (AR) applications it is essen-
tial to know the position and orientation of the user to correctly
register virtual 3-D content in the user’s field of view. For this
purpose, visual tracking through Simultaneous Localization and
Mapping (SLAM) is often used. However, when applied to the
commonly occurring situation where the users are mostly sta-
tionary, many methods presented in previous research have two
key limitations. First, SLAM techniques alone do not address the
problem of global localization with respect to prior models of the
environment. Global localization is essential in many applications
where multiple users are expected to track within a shared space,
such as spectators at a sporting event. Secondly, these methods
often assume significant translational movement to accurately
reconstruct and track from a local model of the environment,
causing challenges for many stationary applications. In this
paper, we extend recent research on Spherical Localization and
Tracking (SPLAT) to support relocalization after tracking failure,
as well as global localization in large shared environments, and
optimize the method for operation on mobile hardware. We
also evaluate various state-of-the-art localization approaches, the
robustness of our visual tracking method, and demonstrate the
effectiveness of our system in real-life scenarios.

Index Terms—Localization, Tracking, Augmented Reality, Vir-
tual Reality.

I. INTRODUCTION

A
UGMENTED Reality (AR) provides virtual graphics and

visualizations to users, accurately aligned with the real-

world. To achieve this, it is necessary to determine the viewing

position and direction (pose) of the user and track their move-

ment in real-time. Most commonly, simultaneous localization

and mapping (SLAM) approaches [1], [2] are used to map the

environment while simultaneously estimating the pose with

6 degrees of freedom (6-DoF; 3 rotation and 3 translation).

Most traditional SLAM approaches assume that the user will

perform a significant amount of translational motion in order

to initialize a 3-D map through point triangulation. However,

there are also 3-DoF SLAM approaches that assume that the

user will perform purely rotational motion (i.e. 3-DoF) [3]–

[5]. They do not require a translational motion, in fact, they

assume a perfect rotation around a center point with no offset

(zero translation).

Unfortunately, for many practical AR scenarios the user will

remain mostly stationary (e.g. AR visualizations for seated

spectators at sporting events [6]), or will remain in one place

Lewis Baker, Tobias Langlotz, Steven Mills, Shazia Gul and Stefanie
Zollmann are with the Departments of Computer Science and Information
Science, University of Otago, New Zealand.
E-mail: stefanie.zollmann@otago.ac.nz

Jonathan Ventura is with Cal Poly, San Luis Obispo.

[7] while viewing the AR content around the location (e.g.

AR Browsers [8]). Grubert et al. found that when reviewing

AR browser usage ”most of the users were experiencing the

application while standing at the same position (78%), com-

bined with rotations (90%)” [7]. In fact, previous work already

highlighted the benefits of the purely rotational movement

in several application areas [9], [10]. In all these cases, the

user’s translational motion is limited, making 6-DoF SLAM

initialization error-prone if not impossible. However, prior

work always assumed that the users perform a perfect rotation.

But specifically when the AR interface runs on mobile devices

such as phones or tablets, the device is generally handheld

at some distance from the body. This means the performed

motion is not purely rotational either, violating the assump-

tions of 3-DoF trackers. Unfortunately, this error has often

been neglected in the literature. Pure rotational models also

have the disadvantage that depth and parallax effects cannot

be rendered, so there is a need for localization and tracking

methods that can cope with the limited translational motion of

a stationary user.

Recently, there has been research into methods for recon-

struction and pose estimation under spherical motion con-

straints [11]. Spherical motion can be placed in between the

6-DoF and typical 3-DoF tracking methods, as it constrains

the translation vector, without eliminating it completely. This

provides distinct advantages over 3-DoF systems in that 3-D

visualizations can be viewed with motion parallax, and placed

at varying depths, while also allowing for mapping with global

optimization through bundle adjustment and loop closure (as

is typically used in 6-DoF SLAM methods to reduce drift

[12]). Recently, there has been work into applying these

constraints in stationary capture scenarios such as structure-

from-motion (SfM) [11], spherical localization and tracking

for AR (SPLAT) [13], and reconstruction from panoramic

videos [14], [15].

Real-world applications of augmented reality require robust

solutions to both localization and tracking, and we address

this challenge for the case of stationary spherical motion.

This restricted case is a good approximation to the motion

of users who are situated in a large-scale environment –

seated in a stadium in our primary use-case. Some previous

works propose methods for tracking within pre-computed SfM

models of an environment [16], [17]; however, they do not

address the challenges that are common in many real-life use-

cases, such as reconstruction from stationary spherical motion,

and localization and tracking in large dynamic environments.

In this paper, we address these issues by evaluating exist-

ing methods, and developing a novel approach for global

SUBMISSION: THE VISUAL COMPUTER 2

localization for stationary users of AR interfaces. The main

contributions of this paper are:

• Design of an overall system which incorporates both

state-of-the-art localization, and spherical tracking for AR

(Section III).

• Extension of our existing spherically constrained tracking

approach [13], with added support for relocalization and

global localization (Section IV).

• Evaluation of the complete system for accuracy and

robustness of tracking (Section V-A).

• A mobile implementation, and performance evaluation

(Sections V-A3 and V-A4).

• A technical evaluation of state-of-the-art localization ap-

proaches in a sports-spectator scenario (Section V-B).

Together these contributions demonstrate the ability to local-

ize, track, and re-localize consumer devices situated in large-

scale environments.

II. RELATED WORK

Tracking in the context of AR refers to the process of

determining the pose of a camera as it moves. For many

applications, it is also required that this camera pose is

computed in real-time. This is particularly true in the case

of AR, where the camera pose is used to render visualizations

from the user’s perspective as they move their device.

A. SLAM-based tracking

SLAM has been a popular approach to monocular tracking,

and can be used in AR scenarios to compute the position

and orientation of the viewer in real-time. Research in SLAM

originated in the field of robotics, with early work by Davison

et al. [18] which was later extended to MonoSLAM [19].

Their method uses an Extended Kalman Filter (EKF) to update

camera pose and landmark locations based on measurements

from the image. They note that the EKF update can be

expensive when there are many features in the map, and

address this by tracking a small number of dominant features.

Klein and Murray proposed to separate the mapping and

tracking into separate tasks for allowing real-time performance

in AR applications [1]. With their Parallel Tracking and

Mapping (PTAM) approach, the authors specifically target

small AR workspaces. This work was one of the first to take

a multi-threaded approach to the SLAM problem.

More recently, ORB-SLAM has been published which

offers many improvements over PTAM [12]. ORB-SLAM

has more capabilities than PTAM and is designed with the

similar idea of using multiple threads to increase compu-

tational efficiency on multi-core devices. A recent survey

of SLAM suggests that SLAM systems should cover three

basic components: initialization of a 3-D map, tracking the

motion and further map updates, while an accurate and stable

solution would additionally cover global map optimization and

relocalization [20].

B. Rotation-based tracking

The previously discussed works all share a common theme,

in that they aim to track a camera assuming it has 6 degrees-

of-freedom. That is, the camera pose can be described by a

rotation R and translation t. However, some tracking methods

reduce computation by estimating pose with fewer parameters,

such as via homography estimation [21]. Using a homography

to estimate the camera pose is accurate provided that either the

scene to be tracked is planar, or the motion being modeled is

a rotation.

There are two driving factors behind the use of homo-

graphies. Firstly, it is fair to assume that the scene may be

planar. For example, tracking a camera for field sports can

utilize the homography assumption, provided they are able

to segment the planar sports field from the image [22], or

tracking from obviously planar objects such as books [23] or

fiducial markers [24]. While not all of these works explicitly

apply homography-based tracking, they clearly demonstrate a

use-case for tracking from planar objects. Secondly, in many

AR scenarios and in particular, outdoors we only face a

mainly rotational movement which allows us to use homo-

graphies [8]. Consequently, there have been several methods

that focused on tracking rotations. Many of them can be

understood as rotational SLAM algorithms as they work in

unknown environments but instead of building 3D maps of

the environment, they commonly build 2D maps (panoramic

maps) to represent and track features in the environment [3]–

[5]. Common to all these approaches is that they assume a

perfect rotational movement around a center point. Of course,

this is almost never the case in particular when rotating a

mobile device at arm’s reach. While in theory, the error

introduced by assuming a zero translation, is relatively small

[5], evaluations under more realistic scenarios have shown

the error to be up to 4 degrees for the main rotation axis

even under optimal conditions, with large scenes containing

distant objects and while rotating the handheld phone around

an axis with a minimal offset [3]. Assuming a similar error

along all axis potentially prevents a seamless AR overlay

as rotational tracking errors are known to be more critical

when producing precisely registered AR overlays [25]. In

this work, we focus on stationary users mainly performing

rotational movements but we extend our previous work using

a spherically constrained tracking that considers an offset from

the center of rotation [13].

III. APPROACH OVERVIEW

While the previously discussed approaches to tracking are

important for AR, a key limitation to these systems is their

inability to provide global context to the visualizations they

enable. This is primarily caused by how the co-ordinate

systems are established when initializing the tracking systems

— usually one frame of the input is used to represent the origin

of the co-ordinate system, and all pose data that is output from

the tracking uses this as a reference.

In many application scenarios, it is important to maintain

global context while tracking the users. This can be achieved

through tracking within a known co-ordinate system such

SUBMISSION: THE VISUAL COMPUTER 3

Initialization / Tracking Mapping

Reference Frame
Tracking via KLT

Feature Extraction

Spherical Absolute
Pose (RANSAC)

Reference Frame
Creation

Feature Extraction

KLT Keypoint
Tracking

Spherical Relative
Pose (RANSAC)

Initialize Keyframe
Sphere

Triangulation

Reference Frame
Matching

If Keyframe Sphere
anchor is vacant

Bundle Adjustment

Triangulation

New Keyframe

Update
matches

Reference Frame

Vocabulary ORB
Assignments

Relocalization / Localization

Vocabulary-
based

2D-3D ORB
Matching

2D-3D
SIFT Matching

Update Global
Transformation

Compute Global
Pose (RANSAC)

New Reference Frame
(after tracking lost)

New Keyframe

Reference Frame

Fig. 1. High level overview of our tracking and mapping system. The various tasks of the system are grouped by color, and each execution thread is surrounded
by rounded rectangles. The key difference to ORBSLAM are highlighted as bold text. The first task (yellow) handles initializing a 3-D map and the keyframe
sphere, before handing off to the tracking task (blue). This task tracks keypoints from the last reference frame and creates new reference frames when required
by the keyframe sphere. The mapping thread has a single task (green) which updates the 3D-to-2D matches of the latest reference frame asynchronously,
triangulates new points, and updates the keyframe sphere. Our third thread handles relocalization after tracking failure (red), and global localization (purple).
Specific details of the system are explained in Section IV.

as GPS, or a pre-built model of the environment that is

shared by all users of the system. There are many approaches

to the localization problem ranging from place recognition

[26], structure-from-motion (SfM) approaches which local-

ize images while reconstructing the environment [27], [28],

geometry-based methods which require prior geometric mod-

els (such as line models) of the environment [29], and deep-

learning approaches [30], [31]. However, many of these ap-

proaches do not target real-time performance and thus would

require adjustment to be used for real-time AR tracking,

particularly on mobile devices.

When localizing from pre-computed SfM models, it is

important to consider that the appearance of the pre-computed

model may differ from how the environment is presented at

the time of tracking. For example, an SfM model may be com-

puted using several thousand photographs all taken on one day

within a short time-frame. Lighting and weather conditions can

drastically affect the appearance of the environment, and make

localization through feature matching difficult. While these

approaches have shown some robustness to dynamics [32],

robustness under these conditions often involves capturing

the SfM model under varying conditions which is impossible

in the case of a sports stadium, where dynamics caused by

thousands of spectators are unique at each event.

While these works focus on the localization of single

images, there has also been work on combined localization

and tracking from SfM models [16]. In this paper, we argue

that creating a local map of the environment during tracking

can be beneficial for robust tracking with fast relocalization,

but global localization to a pre-computed model is also impor-

tant. For these reasons, we propose a global localization and

tracking system that locally maps features as they are seen,

while globally localizing to a pre-computed SfM model using

as few frames as possible.

From the related work in the previous section, we can see

a trend toward research focusing solely on either tracking

or localization, with few works developing systems that in-

corporate both. For many real-world AR applications, both

aspects are important – localization is required to align virtual

content with the real world; tracking rather than continuous

re-localization provides real-time performance; and some re-

localization is required in the case of tracking failures. In this

section, we detail a complete localization and tracking system

specifically targeting AR applications.

Our overall system consists of five tasks, distributed into

three threads. The tasks include initialization, tracking, map-

ping, relocalization, and global localization components. The

key differences between our system and state-of-the-art ORB-

SLAM are that we introduce 1) a spherical relative pose

estimation for the initialization step, 2) a keyframe sphere

instead of arbitrary keyframes and a selection of reference

frames on the keyframe sphere, 3) a spherical absolute pose

estimation for the tracking step and 4) a global localization

step (key difference are highlighted in bold in Figure 1).

We distribute the work of these four components into

three separate threads for concurrent processing. Each thread

handles a subset of the tasks of the overall system distributed

in a way that prioritizes performance in the main thread.

In our implementation, we perform both initialization and

tracking on the same thread, as these are sequential processes.

Initialization (Section IV-B) handles the construction of an

initial map using two frames from the system and needs

to be completed only once. From here, this main thread of

execution purely handles the tracking task (Section IV-C)

which determines the camera pose for each frame of the video.

The mapping task (Section IV-D) is handled entirely in its

own thread, as this is the most computationally expensive op-

eration. The mapping task takes potential keyframes (reference

frames) from the tracking task via a thread-safe queue. These

incoming frames are matched to existing map points to detect

loops, and new points are triangulated, followed by a global

bundle adjustment optimization. The tracking task can see the

new and updated map points via the reference frame.

Our third thread handles both global localization (Section

SUBMISSION: THE VISUAL COMPUTER 4

IV-F), and relocalization from tracking failure (Section IV-E).

The global localization task of this thread is a new addition

which is not handled by ORB-SLAM, and provides a greater

context to the tracking result, transforming the tracking pose

data to a known co-ordinate space. The purpose of the global

localization task is to process keyframes as they are created

by the mapping thread to determine their pose in the global

co-ordinate system (i.e. with respect to a pre-computed SfM

model). The relocalization task handles recovery from tracking

failure by re-establishing matches with the local SLAM map.

These two tasks are handled again with thread-safe queues,

with priority given to the relocalization task resulting in a

responsive recovery when tracking is lost.

IV. GLOBALLY LOCALIZED TRACKING FOR AR

Having discussed several state-of-the-art localization meth-

ods, we outline a complete AR tracking system that incor-

porates these global localization principles with a SLAM-

based tracking system. Our system is applicable to situations

where a model of the environment has been computed in

advance through structure-from-motion (SfM). In this case, our

approach is able to provide tracking data within the original

co-ordinate system of the SfM model. If this data is not

available, the tracking data is returned within an arbitrary local

co-ordinate system.

Our method uses real-time tracking based on the SPLAT

[13], combined with global localization based on a Bag-of-

Words approach [33], [34]. We considered two approaches to

the problem of providing global context to the tracking system,

and briefly discuss them here to justify the method we propose.

One approach is to use a pre-computed SfM model solely

for tracking, without remapping the environment. This can

support real-time tracking of SfM models pre-computed from

panoramic images, without the need for further mapping

[16]. This can cause issues when dynamics such as lighting,

shadows and other spectators change the appearance of the

environment from that of the pre-computed model. Other

approaches involve registering a local SLAM map to an

existing global model [17].

An alternative is to create a local map of the environment

as it is currently observed. The local map can then be

aligned to the pre-computed SfM model to determine the

transformation between the two. In this case, fewer features

need to be matched between the current view and the SfM

model, as this static transformation can be computed once

using two successfully localized frames. Using this approach,

the tracking can be performed using the local map, putting less

strain on the robustness of the feature matching component.

As the main application scenario of this paper is to track live

sport spectators, it is very likely that any pre-computed SfM

model will differ in appearance to the current appearance of

the environment. For this reason, we take the second approach

in an attempt to create a robust tracking system under these

conditions. Our approach to tracking is described in detail in

the following subsections, and is an extension of our previous

work on SPLAT [13] with the following key differences:

• Use of a separate processing thread for relocalization.

• Vocabulary tree based reference frame matching.

• Global localization of keyframes using a pre-computed

SfM model.

• Transformation of pose output to represent tracking in

this co-ordinate system.

A. The keyframe sphere

We use the keyframe sphere approach of SPLAT [13] to

subdivide the space of possible camera poses in a way that is

tailored to a spherically constrained keyframe SLAM system.

This is achieved by generating a fixed number of anchor points

approximately uniformly across the surface of a sphere, and

assigning keyframes to these positions.

To reduce the overhead of excessive keyframes, we use

fewer anchor points than previously [13]. We reduce the

number of anchor points from 1000 to 500, finding no

degradation of robustness. We also set a threshold requiring

that a new keyframe’s camera center must be within some

small distance of an anchor point. As we have fewer keyframe

anchors, we also increase our distance from 25% to 75% of

the distance between two neighboring anchors to ensure that

enough keyframes are created.

B. Initialization

Our system automatically initializes a map and begins

tracking when enough spherical motion has occurred, using

the process described below. The overall initialization step

is based on spherical SfM [11], but with a focus on faster

computation by only triangulating from two frames.

Feature extraction and tracking We extract 1000 ORB

features [35] in the initial frame. To match keypoints between

successive frames, we find matches using a pyramidal KLT

feature tracker [36]. At each frame, we use these 2-D matches

to make an estimate of the current pose relative to the initial

frame with a spherical constraint [11].

Relative pose estimation To determine the relative pose

for initialization, we use the spherically constrained relative

pose estimation introduced in [11]. We assume that the camera

moves on a mostly circular path with a constant radius of 1

unit from the origin, and that the viewing direction of the

camera is in alignment with the normal of the unit sphere.

These assumptions reflect the offset from the center of rotation

for stationary users (e.g. when holding a device at arm’s reach)

and allow us to simplify the pose estimation. The camera pose

is given by [R |t] where t = [0 0 −1]T, and the camera center

c = −R
T
t. We use the method of [11] for both computing and

decomposing an essential matrix to compute the spherically

constrained relative pose. In combination with Preemptive

RANSAC to discard outlier tracks [37], this determines a

relative pose between the first two camera frames.

Triangulating the initial map We use the keyframe sphere

structure to determine if the angular motion is sufficient for

initialization. If the poses of the start and end frame are

assigned to two different keyframe anchors, we proceed with

initialization. Features in the final initialization frame are

matched to the initial frame using the feature tracks, and

triangulation performed to compute the 3-D points.

SUBMISSION: THE VISUAL COMPUTER 5

C. Tracking

After the map has been initialized with two keyframes, and

the 3-D points from triangulation, we use this data as input

for our tracking method. The tracking step can be described

by the following components:

Feature extraction and tracking Similar to the feature

extraction from the initialization phase, we have an upper limit

of 1000 keypoints and descriptors. We again use KLT feature

tracking [36] to keep track of matches from the most recent

keyframe. We then compute a convex hull [38] surrounding

the tracked keypoints, and find new ORB features outside this

mask.

We enforce a 1000 keypoint limit which includes both the

KLT tracks (and their already known descriptors), as well as

the newly detected features. New features are extracted in

each frame, however it could be optimized to only compute

new descriptors in reference frames, as it is only here where

matching descriptors to the existing 3-D points occurs.

3D-to-2D feature matching We next use the extracted ORB

features to obtain more 3D-to-2D correspondences. The KLT

tracks maintain references to 3-D map points found in the

last reference frame, which in many cases is enough to track.

However, we must also find potential correspondences between

the newly detected features, and points which have already

been mapped to avoid triangulating duplicate points.

In a separate thread, we perform brute-force matching

between the features in the current reference frame (the origin

of the current KLT tracks), and the other keyframes. When

new matches are found, the correspondences are updated in

the reference frame, which can be accessed asynchronously

(via their corresponding feature tracks) in the main thread.

Absolute pose estimation To estimate the pose for each

frame, we use the Perspective-2-Point (P2P) method from [13]

which uses a spherical pose constraint within a preemptive

RANSAC scheme to determine the current pose, and an inlier

set of matches [37]. Again, here the spherical pose constraint

reflects the offset from the center of rotation for stationary

users.

Reference frames Once a frame is successfully tracked,

we decide whether it will become a reference frame. The

reference frame is updated when a tracked frame falls within

the keyframe sphere distance threshold of a new anchor

point. When a reference frame is created, the mapping thread

matches its keypoints to all neighboring keyframes and merges

the observations. This is equivalent in some respects to loop

closure when loops are small, and drift is relatively small.

Keyframes A reference frame will become a keyframe if

its anchor point in the keyframe sphere is unoccupied. In this

case, the feature tracks from the previous reference frame are

triangulated, and bundle adjustment takes place. Since the

tracking thread is acquiring many matches through feature

tracks to this frame, the new map points are automatically

assigned to the current tracked frame as soon as they are ready.

This allows new map points to be added asynchronously.

D. Mapping

The main purpose of the mapping step is to process potential

keyframes from the tracking task. For this step, we match

incoming frames to existing map points and detect loops as

well as perform a global optimization step on all existing

map points. This means that once a frame has been tracked

successfully by the tracking task, it is sent to the mapping

thread to use the newly visible feature points in the image to

update the map in three main stages consisting of 1) reference

frame matching, 2) triangulation to update the map and 3)

bundle adjustment.

Reference frame matching When new keyframes are

stored, the tracking thread follows 2D features from the latest

reference frame using KLT tracking. The mapping thread uses

these results to guide the matching of keypoints between these

two frames. For this purpose, we project known 2D keypoints

from the last reference frame into the current frame to help

guide the matching.

Additionally, the tracked features in the new keyframe are

matched with existing 3D points in the map using a vocabulary

based approach [34]. The use of a feature vocabulary reduces

the amount of processing required to match points compared

to brute-forced approach. This is the same matching method

we use for relocalization, which we describe further in Sec-

tion IV-H4.

Triangulation The computed matches are then triangulated

in a similar manner to the initialization phase using the pose

data of both map frames (the newly added and the existing

reference frame). If more than 50 map points were successfully

triangulated from the matches, then the new keyframe is added

to the keyframe sphere.

Bundle adjustment Bundle adjustment takes place after

triangulation to optimize the 3-D point locations and keyframe

camera poses. To enforce the spherical constraint, the camera

translation is fixed in the optimization [11]. Once this process

is complete, we remove keyframe references to outlier 3-D

points using the same reprojection threshold set in the tracking

thread. The positions of the remaining points and camera poses

of the keyframes are then updated. We found that running a

small number of iterations each time a keyframe is added is

a good way to keep map updates frequent. This also allows

for faster performance than full bundle adjustment at the cost

of some accuracy. The use of fewer iterations has also been

shown to be beneficial where fast computation is needed [39].

In our experiments, we use two iterations of bundle adjustment

between map updates.

E. Relocalization

In the case of tracking failure we relocalize by matching

the current (untracked) frame with the existing keyframes The

keyframe features are more likely to resemble the current

appearance of the environment than those in the SfM model.

This allows fast and robust relocalization in cases where the

environment is very different from the prior model.

In our implementation, we detect tracking failure when

the number of inlier 2D-to-3D correspondences falls below a

threshold of 30. The global localization thread then prioritizes

localizing the currently untracked frame using a purely ORB

variant of the BoW approach of Section IV-H4. While this

process runs, the tracking thread uses the same KLT approach

SUBMISSION: THE VISUAL COMPUTER 6

as Section IV-B to re-initialize the reference frame and resume

tracking as normal.

F. Global localization

In order to align the pose to the global coordinate system

of the SfM model, we first localize at least two keyframes

with respect to the SfM model. Next, we compute the scale

factor between the local tracked coordinate system and the

SfM model, and finally we compute a transformation that

describes the rotation and translation differences between the

systems.

Keyframe localization: First, we localize two keyframes F1

and F2 from the tracking system to the COLMAP model. In

our implementation, we extract 2000 SIFT features [40] from

F1 and F2, and perform brute-force matching with the existing

SIFT features from the SfM model, using a distance ratio test

to discard ambiguous matches. We then compute the global

rotation and translation, Rw

i
and t

w

i
, using P3P [41] within a

Preemptive RANSAC loop [37]. In our system implementa-

tion, we used this simple feature matching approach to localize

keyframes. However, we further investigate and evaluate the

state-of-the-art approaches in Section IV-G.

Computing the transformation: We now have a global

pose R
w

i
, tw

i
, and a local pose R

l

i
, tl

i
from the SPLAT tracking

for two of the keyframes. To compute the difference in scale,

we take the distance between the centers of F1 and F2 in both

co-ordinate systems where the camera center ci of keyframe

Fi is defined as

ci = −R
T

i
ti. (1)

We then compute the scale s as the ratio of the two distances

s =
|| cw

1
− c

w
2
||

|| cl
1
− cl

2
||
. (2)

Finally, we compute the transformation between the coordinate

systems using one of the localized keyframes Fi. We first

define the 4× 4 scaled local pose P
l

i
as

P
l

i
=

[

R
l

i
stl

i

0 1

]

, (3)

and the global pose P
w

i
as

P
w

i
=

[

R
w

i
t
w

i

0 1

]

, (4)

and compute the 4× 4 transformation T as

T = P
l−1

i
P
w

i
. (5)

Using T and s, the pose results from each frame of tracking

can then be transformed into the global coordinate system

of the SfM model. The resulting trajectory is spherical, and

localized within the SfM model as depicted in Figure 2.

G. Discussion

One of the key differences between our approach and exist-

ing methods is the use of both a local map and a pre-computed

global map. Many approaches perform tracking directly from

a pre-computed SfM map [16]. Real-time tracking is achieved

Fig. 2. Two views of a spherical trajectory computed with our tracking system.
The result is rendered within the meshed COLMAP reconstruction of our
Rugby Stadium dataset to demonstrate the effect of global localization and
scaling.

by matching features in the current image to the features that

comprise the SfM model. This approach provides fast real-time

tracking, as there was no need for computational resources to

be used on mapping during the tracking process. However,

when the environment is dynamic, feature matching can be

unreliable as the appearance of the environment may change.

This can cause issues when this type of feature matching needs

to occur very frequently.

Our approach handles dynamic environments by matching

as few frames as possible to the SfM model. While localization

under dynamic conditions is possible [32], our system needs

only to localize two keyframes in order to compute an approx-

imate transformation between the local and global coordinate

systems. Once these frames are localized, we track from a local

map which more accurately represents the current appearance

of the environment. Another approach that is similar to ours is

to track from a locally created SLAM map, which is registered

to a ‘2.5-D’ global representation of the environment [17].

For these reasons, our system tracks from a globally reg-

istered local map with the intention of improving robustness

in dynamic environments. In the following section, we dis-

cuss and evaluate the state-of-the art methods for solving

the localization problem, to gain better insight into which

approaches work best for stationary AR. In Section V-A, we

provide results on the accuracy and robustness of the tracking

component of our system.

H. State-of-the-art localization methods

Robust localization is an important part of our system, as

it enables us to provide global context to the pose output

from the local tracking component. Previous research on

localization with SfM models can be coarsely grouped into

three categories: feature matching [42], image retrieval [26],

and deep learning approaches [30], [31]. We focus on the

most promising open-source systems in each category: ESAC

(Expert Sample Consensus released with [31]); Active Search

released with [43]; and our own custom implementation of a

Bag-of-Words (BoW) localizer based on the implementation

of Muñoz et al. [34] called fbow. We compare these methods’

ability to localize with our SfM models built using COLMAP

[27], using COLMAP’s vocabulary tree image registration as

a localization reference.

Our first method is Active Search [43], which we choose

as it is frequently used as a benchmark for image-based

localization approaches and is provided open-source. We also

SUBMISSION: THE VISUAL COMPUTER 7

investigate ESAC [31] as it appears to be among the most

promising and scalable of all the deep-learning approaches

to localization, while also being provided open-source by the

authors. Our third method is our own implementation of a

Bag-of-Words localizer, based on ORB and fbow for image

retrieval [33], [34] while using SIFT for registration [40].

These BoW solutions tend to focus on image-retrieval results

and do not provide results for the type of accuracy that can

be achieved when they are used for full 6-DoF localization,

so we implement our own using these libraries.

1) Data preparation: Our primary application is localiza-

tion for spectator AR in a sport stadium environment. Due to

the limited availability of public stadium datasets, we captured

our own in two stadia. The first step in our data processing

is to create a sparse reconstruction using the training images

of each dataset. For this, we used the open-source COLMAP

SfM software from [27] with default parameters.

Cricket Ground (CG) Here, we captured a small dataset

of 49 images from several positions within one side of the

stadium during a single visit. The lighting condition was

sunny, and the stadium was at near-full capacity. This data

was randomly split into 39 training, and 10 test images

(approximately 8:2 split).

Rugby Stadium (RS) We captured 1,125 images from

a range of positions primarily from the two opposing main

stands, with some taken from ground level. This dataset was

captured over two daytime visits to the empty stadium, one

overcast, and one under sunny weather conditions. This dataset

was randomly split into a training set of 900, and a testing set

of 225 images (8:2 split). As this stadium has a translucent roof

structure, the cloudy and sunny conditions were similar enough

to be combined into one reconstruction. We later investigate

dynamic scenes in Section V-B3.

2) Active Search: Active Search [43] uses a bi-directional

feature matching method. First, a descriptor vocabulary is used

to quantize the descriptor space, and words are assigned to

each point in the model as well as to each feature in the query

image. For each feature f in the query image, the 3-D points

which share a node in the vocabulary tree are searched for

matches using the typical ratio test [44] resulting in an initial

match to a point P.

Then, the 3-D points in the neighborhood of this match are

prioritized and matched to the features in the inverse direction

using a coarser vocabulary. The purpose of this bi-directional

matching is to make use of the fact that points in the same

3-D region are likely to share similar visibility.

3) Expert Sample Consensus: The Expert Sample Con-

sensus (ESAC) approach introduced by [31] is to train a

convolutional neural network to learn scene co-ordinates for

a given input image using both scene co-ordinate images,

and 6-DoF pose as ground truth. The localization component

uses RANSAC to sample the output scene coordinate images,

which naturally encode 2D-to-3D correspondences for pose

estimation.

The method was first introduced in [45], where the authors

presented a modification to RANSAC which allows the entire

pipeline to be differentiable, allowing for gradient-descent end-

to-end learning. Their method was later improved in [46],

and their most recent system ESAC [31] improves scalability

by clustering the dataset and training first a scene classifier,

followed by an ensemble of expert networks that are able to

operate on the smaller scene clusters.

Pre-processing The ESAC localization approach requires

more data to train the CNN, in addition to the pose information

from COLMAP. This method uses ground truth scene coor-

dinate images for its own training process. Scene coordinate

images are like depth maps, except instead of encoding a depth

value (i.e. distance from camera to scene) into each pixel, the

full 3-D scene coordinate is stored resulting in a 3×H ×W

tensor. It is possible to attain a dense representation of this

data from a sparse model through dense MVS reconstruction

methods [28], however, a sparse representation is sufficient

[46] and in fact completely optional, as the entire pipeline is

capable of learning the scene structure.

Localization After processing the datasets with COLMAP

to acquire a sparse reconstruction, the point cloud is then

projected into a small representation of the training images

using the known pose from the reconstruction (H = 60 and

W = 80, [31]). For each pixel, we encode the 3-D coordinates

of the nearest point projected to that pixel using a z-buffer. We

exclude points behind the camera and leave zeros for empty

pixels.

4) Bag-of-Words localization: We also compare to local-

ization based on BoW techniques. Our system is designed to

operate on the output of a typical COLMAP reconstruction

and should not be considered state-of-the-art, but represents

the expected performance from the localization method with a

simple implementation. Our system can be used in two stages,

pre-processing, and localization.

We also require a vocabulary file containing representative

ORB descriptors and use the one provided with ORB-SLAM2

[47]. The BoW approach allows for quick matching between

images using an inverted file that contains both image and

keypoint indices for each word. We investigate the feasibility

of fast image retrieval using ORB, while maintaining robust

matching via SIFT.

Pre-processing This stage only needs to be completed once

per COLMAP model. The objective of this phase is to create

an inverted index file, which stores for each word in the

vocabulary, a list of image identifiers corresponding to the

training images that contain that word. The purpose of this

file is to act as a database for image retrieval and only needs

to be computed once per SfM model.

We first detect 2000 ORB features in each training image.

Then map the descriptors to words in the vocabulary using

the optimized transformation implementation of fbow [34].

Finally, the inverted index is updated by appending the image

identifier to the corresponding list in the inverted file for all

transformed words in the image.

Localization To localize a query image, we first detect and

map ORB features to the vocabulary as before. Then for each

word in the query image, we parse the list of training images

via the inverted file and accumulate votes for each training

image that contains that descriptor. The image with the most

votes is accepted as the closest match, from which we begin

establishing matches to compute a 6-DoF pose.

SUBMISSION: THE VISUAL COMPUTER 8

To achieve this, we then detect SIFT features in the query

image, as they tend to show better matching rates than ORB

[48]. Then we apply a FLANN-based matching method [49]

to find the two nearest neighbors for each potential match, and

discard unreliable matches using a ratio test [44]. Finally, we

apply an iterative solution to the Perspective-n-Point (PnP)

problem based on [50] within a RANSAC scheme [51] to

compute the 6-DoF position and orientation of the query

image.

V. EVALUATION

A key aspect of our approach to AR stems from the ability

to track and localize users in an environment accurately and

robustly. In the previous section, we outlined some of the

key methods in tracking and localization, and their theoretical

limitations. In this section, we evaluate these methods in

detail to determine the most suitable approaches for globally

localized tracking in large dynamic environments with a focus

on sports spectating. Specifically, we make use of our own SfM

models created from image datasets of large sports stadium

environments. Our SfM models are generated from the image

datasets using COLMAP [27].

A. Tracking Results

To evaluate the tracking component of our system, we com-

pared the rate of successful tracking between state-of-the-art

monocular ORB-SLAM2 [12], [47] and our approach across

multiple sequences in two different real-life environments (a

sports stadium, and an outdoor basketball court).

To provide insight into the accuracy, we also compare the

output pose results to state-of-the-art monocular ORB-SLAM2

[12], [47] in a synthetic environment to provide insight into

the accuracy of the tracking.

We then show some qualitative results output from our AR

prototype to demonstrate how accurate the registration appears

in real AR use-cases. Finally, we evaluate the computational

performance of our approach on different hardware platforms.

1) Robustness results on real datasets: To evaluate our sys-

tem, we investigate the robustness of tracking under realistic

scenarios. We compare the successful tracking rate of our

system to ORB-SLAM2 [12], [47] on eight different video

sequences. Results using 1000 and 2000 ORB features per

frame, are shown in Figure 3.

Four sequences (Stadium A-D) were captured in a sports

stadium from a spectator’s perspective, and we used the RS

SfM dataset (Section V-B) as our prior global model. The

other four sequences (Court A-D) were captured at an outdoor

basketball court, again from a spectator’s perspective, and

include two sequences that deliberately obstruct the camera

to test relocalization (Court B, and C). For the court dataset,

we captured 211 images from various perspectives around the

court and used the same COLMAP process [27] as for the RS

data to create a prior SfM model.

2) Synthetic tests for accuracy evaluation: For evaluating

the accuracy of the overall approach on a large scale, we

decided to use synthetic data as it allows us to measure

deviations from the ground truth pose in more depth.

To compare the accuracy of our system to state-of-the-art,

we compare the absolute trajectory error (ATE) and relative

pose error (RPE) [52] of our system and state-of-the-art ORB-

SLAM2 to synthetic ground-truth. We generate ground-truth

data by moving a camera in a circle within a textured sphere,

and compare trajectories using the evo odometry evaluation

tools [53]. The ATE is the average difference between two

estimated positions at each time point after they have been

aligned, while the RPE measures the difference in estimated

trajectories over short time intervals.

To determine how the accuracy of the systems scale with

the size of the environment, we increase the textured sphere

radius to generate sequences from environments of varying

scale from 2× up to 50× the radius of the camera motion. In

Figure 4, we plot the mean ATE and RPE for each synthetic

video sequence against the 3-D sphere size. The RPE metrics

were taken at 1-frame intervals, which corresponds to 0.36◦

of circular motion at radius 1.

3) Results in AR Spectating application: To demonstrate

the accuracy of our tracking approach qualitatively, we also

implemented an AR rendering system based on OpenGL as

well as one using Unity3D. In the case of the RS dataset, we

had a textured CAD model of the stadium which could be used

as a basis for AR content creation. We aligned this CAD model

to the SfM model by manually identifying corresponding

points, and aligning these with 3D modeling software. We

then applied the resulting 4 × 4 transformation to our model

matrix when loading the CAD model. The resulting alignment

demonstrates that the measured accuracy (as evaluated in

Section V-A2) is sufficient to place 3D content within the

stadium environment to visualize game-related content such

as heat maps or scoreboards (Figures 5 and 6).

4) Performance Evaluation: In addition to the accuracy and

robustness evaluation, we also provide results on the runtime

performance of our approach (Table I). Since AR applications

are time critical, we measured the framerate of our method

on two hardware platforms. We recorded the minimum, max-

imum, and mean framerate (in frames per second) of our

tracking approach using the Stadium-A sequence on a 2016

laptop PC with an Intel i7 6200U processor at 2.3 GHz. We

also record the same metrics on an Android smartphone with a

Snapdragon 845 (2018). On the smartphone implementation,

we used a live feed from the device’s camera as input and

moved the device in a similar pattern as done in the Stadium

sequences. Neither smartphone or desktop implementations

make use of the GPU.

The results from our performance experiment are shown

in Table I. We were able to achieve essentially real-time

performance on the laptop PC with a mean framerate of 29.5

frames per second. Our Android implementation ran at an

average of 12 fps which is not realtime, but still offers an

interactive experience for the user. In the future, this could be

improved by combining our tracking approach with inertial

data from mobile device sensors, which are often available at

much faster rates.

SUBMISSION: THE VISUAL COMPUTER 9

Fig. 3. Comparison of the tracking rate of ORB-SLAM2 [47], and our proposed system with two different configurations for the number of features per
frame. Each bar represents a tracking timeline for a test video sequence. White represents an untracked frame. Grey represents a frame tracked in the local
SLAM coordinate system.

0

0.02

0.04

0.06

0.08

0.1

0.12

5 10 15 20 25 30 35 40 45 50

R
e
la

ti
v
e
 p

o
se

 e
rr

o
r

(R
P
E
)

Space size

Relative Pose Error on Synthetic Data

SPLAT

ORB_SLAM2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40 45 50A
b
so

lu
te

 t
ra

je
ct

o
ry

 e
rr

o
r

(A
T
E
)

Space size

Absolute Trajectory Error on Synthetic Data

SPLAT

ORB_SLAM2

Fig. 4. Pose error from synthetic testing of our tracking system (blue), compared to monocular ORB-SLAM2 (red [12]) with different 3-D sphere radii. The
radius of the camera motion is fixed at 1 unit, and the size of the surrounding textured sphere was varied from 2 to 50 units.

Fig. 5. Example input frames (top row), and corresponding output frames
from our AR renderer (bottom row). Both a CAD model of the environment
(lower left) and a heatmap overlay (lower right) are shown to demonstrate the
cababilities for AR to display in-place sports statistics.

TABLE I
FRAMERATE STATISTICS OF OUR TRACKING APPROACH ON TWO DEVICES.

Device Min (fps) Mean (fps) Max (fps)

i7 6200U 10.417 29.514 45.455
Snapdragon 845 4.999 12.006 29.994

B. Localization Results

We were also interested in providing more insights into the

performance of the different localization options we identified.

For this, we tested the methods’ ability to localize the test set

images against the SfM models. In this section, we compare

the computation time of both training (one-off computation),

and the localization itself, as well as accuracy metrics when

compared to the COLMAP reference method. We also provide

and compare qualitative results from renderings of the sparse

point clouds overlaid with the input query images.

Fig. 6. Example of our AR spectating application showing a virtual score-
board overlaid with the input frame using the result of the global localization.
The AR app is implemented using Unity3D.

1) Computation time: The computation times for each of

the methods are reported in Table II. Localization time refers to

the mean time to localize over all query images. Training time

refers to the time taken to pre-process the model or images for

each localization method. Computation times were measured

on a PC with an Intel Core i9-9900KF CPU at 3.60GHz, 32

GiB memory, and a GeForce RTX 2080 Ti video card.

For ESAC, the training time includes initializing the gating

network (classifier), initializing and refining 4 experts, and the

end-to-end training stage. For Active Search, this includes the

pre-processing stages of parsing the SfM data and computing

descriptor assignments with the vocabulary. For our BoW

method, this includes all steps detailed under pre-processing in

Section IV-H4, namely ORB detection, fbow transformation,

SUBMISSION: THE VISUAL COMPUTER 10

TABLE II
COMPUTATION TIMES FROM LOCALIZATION APPROACHES ON STADIUM

DATASETS.

Dataset = CG, Dataset = RS,
Test Set Size = 10 Test Set Size = 225

Method Train Localize Train Localize

Active Search 2.77 s 158 ms 116 s 221 ms
ESAC (4 experts) 101 h 88 ms 85 h 75.2 ms
ESAC (1 expert) 34 h 92 ms 22 h 145 ms

BoW 1.27 s 603 ms 30.2 s 1559 ms
COLMAP — 420 ms — 468 ms

Fig. 7. Example of accurate localization results from ESAC on the RS dataset.
We render the sparse point cloud from COLMAP over the input images using
the pose estimate. An accurate localization results in good alignment of the
keypoints (white) with their corresponding structures in the image.

and creation of the inverted index.

We found that the ESAC approach has the longest training

time, which is to be expected from a deep learning approach.

However, training time is not particularly critical, and 101

hours is not prohibitively long for a one-off computation. We

thus deem all methods to be viable for localization with regard

to training time. ESAC [31] reported the fastest localization

time with an average of 88 and 75.2 ms on the CG and RS

datasets respectively.

In Table II, we see that the BoW approach had the

fastest training time, likely due to the optimizations of fbow,

combined with more compact ORB descriptors. However,

the localization time was the slowest, due to the overhead

introduced by requiring both ORB and SIFT computation

for the query images. For this reason, we conclude that the

performance potential from using ORB over SIFT is beneficial

in the indexing and pre-processing stages, but attempting

to leverage the matching robustness of SIFT in conjunction

with the simpler computation of ORB can be detrimental to

performance. This suggests that using ORB features for both

tasks might produce better results.

We find that all methods produce acceptable localization

times, with the slowest being our BoW approach, which is

not yet optimized for speed on the localization side. While

our method localized the slowest, realistically the localization

process would only need to happen occasionally in an overall

AR system. For example, localizing with only the initial

frames or keyframes of a SLAM system. These methods,

therefore, do not need to perform in real-time.

2) Error metrics: The localization results showed potential

for most of the methods, especially with ESAC, and Active

Search. ESAC results from the RS dataset are shown in

Figure 7.

Out of the 10 CG test cases, 4 were reported successful by

our BoW approach. We note, however, that some cases are

reported successful but exhibit visible errors when overlaying

the points with the image. In our results, we use ‘# Reported’

to refer to the number of images reported to be successfully

registered by the method itself.

Due to the potential for false positives, we take the local-

ization results from COLMAP as a reference, P̂, and compare

them with the reported successful pose, P, using a geometric

error over all co-visible points x1, . . . ,xn,

n
∑

i=1

|| Pxi − P̂xi ||

n
, (6)

where P = K [R | t].
We then flag any result with a geometric error of less than

10 pixels as a successful registration (# Actual). To get an

idea of how accurate the successful registrations are with each

method, we also compute the mean (Err. M) and standard

deviation (Err. SD) of the geometric error over all the true

positive cases. All methods were tested with images of the

same resolution (480 pixels in the shortest dimension, as

required by ESAC). The 10 pixel threshold corresponds to

approximately 1.5% of the image width.

To avoid making comparisons between potentially erro-

neous poses from the COLMAP reference, each reference

registration was visually checked for quality. Ideally, we would

have a higher quality reference or ground-truth poses for the

test set, which is an area for future work.

The results for all methods on the CG and RS datasets are

shown in Tables III, and IV respectively.

TABLE III
ERROR AND SUCCESS RATE OF LOCALIZATION APPROACHES ON THE CG

DATASET.

Dataset = CG, Test Set Size = 10

ESAC (4
experts)

Active
Search

BoW COLMAP
(reference)

Reported 10 0 4 7
Actual 6 0 3 7

Err. M (px) 1.67 — 6.99 —
Err. SD (px) 0.86 — 3.04 —

TABLE IV
ERROR AND SUCCESS RATE OF LOCALIZATION APPROACHES ON THE RS

DATASET.

Dataset = RS, Test Set Size = 225

ESAC (4
experts)

Active
Search

BoW COLMAP
(reference)

Reported 225 215 161 221
Actual 209 203 119 221

Err. M (px) 1.91 3.27 3.43 —
Err. SD (px) 1.68 2.00 1.81 —

3) Dynamic localization: As we have seen in the previous

section, the ESAC and Active Search localization approaches

SUBMISSION: THE VISUAL COMPUTER 11

both appear promising for localizing sport spectators. How-

ever, in our RS dataset, we only evaluated with images of an

empty stadium (for both reconstruction, and localization). The

accuracy results we previously saw from ESAC showed small

errors, which suggest a very accurate alignment to the poses

from the COLMAP reference, from which that method was

trained.

We present a qualitative view of how these results would

be visualized in a realistic scenario, with reconstruction made

from images of an empty stadium, and localization images

taken under different dynamic conditions, such as changes in

lighting and the presence of spectators. For these tests, we use

different images from those previously used, captured during

a live rugby game.

As shown in Figure 8, we can see that both the Active

Search and ESAC approaches have the potential to produce

highly accurate localization. As we do not have ground-

truth poses for these additional images, we are unable to

perform more evaluation on the accuracy. Though, upon visual

inspection of the projected points in Figure 8, both methods

produce very similar results with good overall alignment of

the sparse model to the image. Though these results appear

promising, a more thorough evaluation of the effects of the

dynamic elements would be needed in the future.

Dynamic rugby stadium To test our method in a more

realistic scenario, we extended a dataset which contains hand-

annotated reference points for each image which can be used

as an independent reference to measure reprojection error [54].

The dataset is captured in the same rugby stadium environment

from previous experiments, and is split by three conditions

to test this environment in a range of different dynamic

complexity: Empty, Semi-crowded, and Crowded.

We then ran our experiment again across all four localization

approaches, and present the resulting reprojection errors in

Tables V, VI, and VII. We used the same error metrics outlined

in Section V-B2, with a threshold of 1.5% of the image width

as before (10.8 pixels for Empty cases, and 28.8 pixels for

Semi-crowded and Crowded cases). And example image from

each sub-dataset is shown in Figure 9.

TABLE V
LOCALIZATION RESULTS ON THE EMPTY RUGBY STADIUM DATASET.

Dataset = Empty, Test Set Size = 15, Err Thresh = 10.8px

ESAC (4
experts)

Active
Search

BoW COLMAP

Reported 15 14 14 15
Actual 15 14 11 15

Err. M (px) 2.87 3.34 3.77 4.72
Err. SD (px) 0.76 0.87 1.70 1.05

VI. DISCUSSION

In this section, we discuss the results of our evaluation

on tracking and localization, a comparison of the tracking

component with ORB-SLAM2, and the limitations of our

system.

TABLE VI
LOCALIZATION RESULTS ON THE SEMI-CROWDED RUGBY STADIUM

DATASET.

Dataset = Semicrowded, Test Set Size = 32, Err Thresh = 28.8px

ESAC (4
experts)

Active
Search

BoW COLMAP

Reported 32 28 10 32
Actual 29 22 0 12

Err. M (px) 11.39 11.94 - 21.08
Err. SD (px) 5.52 4.48 - 6.22

TABLE VII
LOCALIZATION RESULTS ON THE CROWDED RUGBY STADIUM DATASET.

Dataset = Crowded, Test Set Size = 14, Err Thresh = 28.8px

ESAC (4
experts)

Active
Search

BoW COLMAP

Reported 14 10 3 14
Actual 12 10 0 7

Err. M (px) 12.68 12.28 - 16.07
Err. SD (px) 5.78 6.37 - 6.15

A. Real data tracking

When compared to ORB-SLAM2 [12], [47], our system is

able to track successfully more often. Most notably, ORB-

SLAM2 was unable to initialize reliably in the stadium test

videos when 1000 ORB features per frame were used, though

initialization was successful with 2000 features. However,

even with this many features, tracking was lost shortly after

initialization on the Stadium A and B sequences.

In the Stadium environment, there are many repetitive

features from empty seats in the stands. ORB-SLAM2’s failure

to initialize could be due to its use of a feature vocabulary that

quantizes the descriptor space too coarsely, combined with

an over-reliance on feature matching during tracking. In our

SPLAT-based system, we only use a feature vocabulary during

relocalization, and track features frame-to-frame with KLT,

which relies less on correct descriptor matching under these

challenging conditions.

In the Court environment, both approaches work reason-

ably well but interestingly both approaches seem to perform

better with 1000 features per frame. This could be due to

the relatively low resolution of the images compared to the

number of features. An increased number of features can

solve some problems, as in the ORB-SLAM2 Stadium cases,

but in other scenarios may add unnecessary noise to the

feature matching processes by detecting ORB features at less

dominant keypoints.

One apparent limitation of our system is that we can see

three instances where tracking appears to become less robust

after the relocalization point in Court B and C. While both

approaches could successfully relocalize, our approach lost

tracking for some frames in some instances. This could be

due to the lack of matches to the existing map points after

relocalization. During tracking, and before a tracking failure,

our system is usually able to maintain many 2D-to-3D matches

aided by the robustness of the KLT tracking. However, after

a tracking failure fewer matches could be re-established using

our vocabulary tree based relocalization approach. For future

work, this could be improved such as by using an Active

SUBMISSION: THE VISUAL COMPUTER 12

Fig. 8. Qualitative results of localization in a dynamic stadium with spectators, and different lighting (Rugby Stadium - Crowded dataset). Both ESAC and
Active Search produce very similar results when aligning the sparse point cloud with the image using the pose outputs.

Fig. 9. Samples from our second Rugby Stadium dataset, extended with three conditions. Left to right: Empty, Semi-crowded, and Crowded.

Search [55] based relocalization approach to establish more

correspondences.

B. Synthetic data tracking

The ATE results for ORB-SLAM2 suggest that increasing

the space size beyond 10 units introduces large variations in

the ATE. Looking at the RPE metric, there is a more steady

increase of error up to approximately radius 15, which is

similar to the point where previous work found the tracking

rate of ORB-SLAM2 began to fail [13]. The large variations

beyond this point are likely due to early tracking failure,

resulting in fewer successfully tracked frames to compare with

the reference poses. Overall, the results suggest that SPLAT

has a lower pose error with both metrics. The error remains

low with respect to space size, without suffering from the

steady RPE error scaling exhibited by ORB-SLAM2.

C. Stadium localization

The Active Search method of [43] produced robust reg-

istration with the RS dataset, with a higher success rate

compared to our BoW results, and with a faster localization

time. However, Active Search failed completely on the CG

dataset likely due to the low number of points in the sparse

model.

In our initial testing, many results from Active Search

were reported as ‘successfully registered’ while the point

renderings were noticeably misaligned. This could be because

the provided Active Search implementation computes both

intrinsic and extrinsic camera parameters, and often incorrectly

estimates large skew values in the intrinsic matrix. For this

reason, we modified the original implementation of Active

Search to use the same PnP solver as our BoW implementation

[50], [51]. Using this method, we supply a fixed camera matrix

and estimate the pose directly, achieving more consistent

results.

To compare the accuracy between the three methods we

make three comparisons, so we must account for this. We

start with a typical threshold of p = .05 and apply Bonferroni

correction to get an adjusted threshold of p = .016̇. As each

method has the potential to succeed or fail on each sample

(producing no accuracy output), performing a paired test is

impractical. For this reason, we use two-tailed unpaired t-tests

here. We compared three groups of accuracy results: ESAC,

Active Search, and BoW. ESAC (M = 1.91, SD = 1.68)

showed significantly lower geometric error when compared

to Active Search (M = 3.27, SD = 2.00) with p < .0001
and BoW (M = 3.43, SD = 1.81) with p < .0001 in both

cases. However, comparing Active Search to BoW showed no

significant difference, (p = .474).

The smaller error output by ESAC could be due to the

fact that our COLMAP poses are actually a reference and

cannot be regarded as ground-truth. As Active Search and

BoW compute poses independently of the COLMAP training

poses, their error could be attributed to the noise in the point

cloud, whereas ESAC is trained specifically to replicate the

training poses, and is able to refine the point estimates that

were provided in the form of the scene coordinate images. An

example of successful localization from the ESAC approach

are shown in Figure 7.

1) Dynamic stadium localization: The results from this

experiment showed that the key state-of-the-art localization

approaches performed well when localizing under different

environmental conditions to those when the original model was

captured. Active Search, and ESAC both performed robustly

with high localization success rate in all three cases, but ESAC

had a higher success rate while maintaining a similar level of

reprojection error to Active Search.

The BoW approach was much less robust in these con-

ditions, and most cases had failed due to too few matching

features between the query image and the most similar training

image. This result demonstrates that robust localization is

SUBMISSION: THE VISUAL COMPUTER 13

heavily reliant on a good feature matching strategy.

COLMAP performed well with the empty stadium, with

lower success rate on the Semi-crowded and Crowded datasets

showing a higher mean reprojection error. In these cases,

COLMAP was able to produce a localization result (shown by

high values for ‘# Reported‘ metric) with the failure cases not

quite meeting the success threshold of 1.5% image width. This

is likely related to this method using an internal heuristic for

estimating the focal length for the images, rather than relying

on a prior calibration.

Overall we found that the state-of-the-art approaches are

able to localize within these prior-captured SfM environments

even with the addition of dynamic elements, with good ro-

bustness.

VII. CONCLUSION

In this paper, we presented our work on globally localized

tracking of stationary users for AR. We proposed an overall

pipeline that integrates localization from pre-computed SfM

models with spherical SLAM-based tracking. We compared

our localization and tracking method for stationary users to

state-of-the-art ORB-SLAM2 in two large, open environments.

Furthermore, we investigated the feasibility of different state-

of-the-art localization method for usage in large sports stadium

environments.

The results from comparing our system to ORB-SLAM2

suggest that our approach can lead to more robust tracking,

particularly in very large spaces such as sports stadia. Through

our synthetic testing, we saw that our approach also has the

potential to produce more accurate pose results when the true

motion is spherical. We also demonstrated the feasibility of

using our approach in AR scenarios through implementation of

an AR renderer to visualize the registration of the AR content.

In our evaluation of state-of-the-art localization approaches,

we found that the Active Search approach [43] performed

well, as did ESAC [31]. We conclude that ESAC may be

better suited to server-based localization with GPUs, whereas

the Active Search approach has potential to be applied to

localization on mobile device hardware. BoW may be a

better choice for on-device computations for venues where the

capture of large amount of images is not possible and there

is not too much variations in conditions between the captured

dataset and the testing conditions.

The main limitation of our approach is its restriction to

spherical and stationary movements. The point of our sys-

tem is to alleviate the tracking issues that arise in these

stationary scenarios. While we focus on sports spectating

in this paper, there is a typical usage pattern in AR where

users are often stationary when using an AR application [7].

Other application scenarios include an audience in a lecture

hall and even tourists that use their mobile phones to access

information while exploring a single location. However, in all

these scenarios it is possible that users may perform stationary

motion initially, and switch to general motion later (such

as a spectator leaving their seat, for example). However, a

more sophisticated error analysis could automatically detect

this and switch to more traditional SLAM tracking when

sufficiently translational movement is detected. Additionally,

as our solution is targeting mobile devices, future work could

investigate making use of internal motion sensors readily

available to improve the tracking results. Another limitation of

our approach is the robustness of tracking after a relocalization

has taken place; future work could investigate how to acquire

more correspondences to the existing model to improve this.

ACKNOWLEDGMENTS

We thank Animation Research Ltd, Forsyth Barr Stadium,

the Highlanders, Otago Rugby (ORFU), and OptaPerform for

their support. We also thank Mike Denham and Craig Tidey

from the School of Surveying at the University of Otago for

their support in surveying the stadium.

DECLARATIONS

Data Availability Statement

The datasets generated during and/or analyzed during the

current study are available from the corresponding author on

reasonable request.

Funding

This project is supported by an MBIE Endeavour Smart

Ideas grant (UOOX1705) and NSF Award 2144822.

Conflict of Interest Statement

The authors have no competing interests to declare that are

relevant to the content of this article.

REFERENCES

[1] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on

mixed and augmented reality. IEEE, 2007, pp. 225–234.
[2] H. Liu, G. Zhang, and H. Bao, “Robust keyframe-based monocular slam

for augmented reality,” in 2016 IEEE International Symposium on Mixed

and Augmented Reality (ISMAR). IEEE, 2016, pp. 1–10.
[3] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time

panoramic mapping and tracking on mobile phones,” in 2010 IEEE

virtual reality conference (VR). IEEE, 2010, pp. 211–218.
[4] T. Langlotz, C. Degendorfer, A. Mulloni, G. Schall, G. Reitmayr,

and D. Schmalstieg, “Robust detection and tracking of annotations for
outdoor augmented reality browsing,” Computers & graphics, vol. 35,
no. 4, pp. 831–840, 2011.

[5] S. DiVerdi, J. Wither, and T. Hollerer, “Envisor: Online environment
map construction for mixed reality,” in 2008 IEEE Virtual Reality

Conference, 2008, pp. 19–26.
[6] S. Zollmann, T. Langlotz, M. Loos, W. H. Lo, and L. Baker, “ARSpec-

tator: Exploring augmented reality for sport events,” in SIGGRAPH Asia

2019 Technical Briefs, 2019, pp. 75–78.
[7] J. Grubert, T. Langlotz, and R. Grasset, “Augmented reality browser

survey,” Graz University of Technology, Tech. Rep., 2012.
[8] T. Langlotz, T. Nguyen, D. Schmalstieg, and R. Grasset, “Next-

generation augmented reality browsers: rich, seamless, and adaptive,”
Proceedings of the IEEE, vol. 102, no. 2, pp. 155–169, 2014.

[9] T. Langlotz, D. Wagner, A. Mulloni, and D. Schmalstieg, “Online
creation of panoramic augmented reality annotations on mobile phones,”
IEEE pervasive computing, vol. 11, no. 2, pp. 56–63, 2010.

[10] T. Langlotz, M. Zingerle, R. Grasset, H. Kaufmann, and G. Reitmayr,
“Ar record&replay: situated compositing of video content in mobile
augmented reality,” in Proceedings of the 24th Australian Computer-

Human Interaction Conference, 2012, pp. 318–326.
[11] J. Ventura, “Structure from motion on a sphere,” in European Conference

on Computer Vision. Springer, 2016, pp. 53–68.

SUBMISSION: THE VISUAL COMPUTER 14

[12] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE transactions on

robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[13] L. Baker, J. Ventura, S. Zollmann, S. Mills, and T. Langlotz, “SPLAT:
Spherical localization and tracking in large spaces,” in 2020 IEEE

Conference on Virtual Reality and 3D User Interfaces (VR). IEEE,
2020, pp. 809–817.

[14] C. Sweeney, A. Holynski, B. Curless, and S. M. Seitz, “Structure from
motion for panorama-style videos,” arXiv preprint arXiv:1906.03539,
2019.

[15] L. Baker, S. Mills, S. Zollmann, and J. Ventura, “CasualStereo: Casual
capture of stereo panoramas with spherical structure-from-motion,” in
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 2020, pp. 782–790.

[16] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg, “Global localiza-
tion from monocular SLAM on a mobile phone,” IEEE transactions on

visualization and computer graphics, vol. 20, no. 4, pp. 531–539, 2014.

[17] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit,
“Instant outdoor localization and slam initialization from 2.5 d maps,”
IEEE Annals of the History of Computing, no. 11, pp. 1309–1318, 2015.

[18] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Proceedings Ninth IEEE International Conference

on Computer Vision, 2003, pp. 1403–1410 vol.2.

[19] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE transactions on pattern analysis

and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[20] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: a
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision and

Applications, vol. 9, no. 1, p. 16, 2017.

[21] S. J. Prince, K. Xu, and A. D. Cheok, “Augmented reality camera track-
ing with homographies,” IEEE Computer graphics and Applications,
vol. 22, no. 6, pp. 39–45, 2002.

[22] M. Hadian and S. Kasaei, “Fast homography refinement in soccer
videos,” in 2015 9th Iranian Conference on Machine Vision and Image

Processing (MVIP). IEEE, 2015, pp. 185–188.

[23] M. Billinghurst, H. Kato, and I. Poupyrev, “The magicbook-moving
seamlessly between reality and virtuality,” IEEE Computer Graphics

and applications, vol. 21, no. 3, pp. 6–8, 2001.

[24] D. Wagner, T. Langlotz, and D. Schmalstieg, “Robust and unobtrusive
marker tracking on mobile phones,” in 2008 7th IEEE/ACM Interna-

tional Symposium on Mixed and Augmented Reality. IEEE, 2008, pp.
121–124.

[25] R. Azuma, “Tracking requirements for augmented reality,” Communica-

tions of the ACM, vol. 36, no. 7, pp. 50–51, 1993.

[26] N. Y. Khan and B. McCane, “Smartphone application for indoor scene
localization,” in Proceedings of the 14th international ACM SIGACCESS

conference on Computers and accessibility, 2012, pp. 201–202.

[27] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[28] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European

Conference on Computer Vision (ECCV), 2016.

[29] P. David, D. DeMenthon, R. Duraiswami, and H. Samet, “Simultaneous
pose and correspondence determination using line features,” in Com-

puter Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE

Computer Society Conference on, vol. 2. IEEE, 2003, pp. II–II.

[30] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional
network for real-time 6-DOF camera relocalization,” in Proceedings of

the IEEE international conference on computer vision, 2015, pp. 2938–
2946.

[31] E. Brachmann and C. Rother, “Expert sample consensus applied to
camera re-localization,” in Proceedings of the IEEE International Con-

ference on Computer Vision, 2019, pp. 7525–7534.

[32] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg,
D. Safari, M. Okutomi, M. Pollefeys, J. Sivic et al., “Benchmarking 6dof
outdoor visual localization in changing conditions,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8601–8610.

[33] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[34] R. Muñoz-Salinas and R. Medina-Carnicer, “UcoSLAM: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,” Pattern Recognition, vol. 101, p. 107193, 2020.

[35] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in 2011 International conference on

computer vision. Ieee, 2011, pp. 2564–2571.
[36] J.-Y. Bouguet et al., “Pyramidal implementation of the affine Lucas

Kanade feature tracker description of the algorithm,” Intel corporation,
vol. 5, no. 1-10, p. 4, 2001.

[37] D. Nistér, “Preemptive RANSAC for live structure and motion estima-
tion,” Machine Vision and Applications, vol. 16, no. 5, pp. 321–329,
2005.

[38] J. Sklansky, “Finding the convex hull of a simple polygon,” Pattern

Recognition Letters, vol. 1, no. 2, pp. 79–83, 1982.
[39] C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment rules,”

Photogrammetric computer vision, vol. 2, no. 32, 2006.
[40] D. G. Lowe, “Object recognition from local scale-invariant features,” in

Proceedings of the seventh IEEE international conference on computer

vision, vol. 2. Ieee, 1999, pp. 1150–1157.
[41] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution

classification for the perspective-three-point problem,” IEEE transac-

tions on pattern analysis and machine intelligence, vol. 25, no. 8, pp.
930–943, 2003.

[42] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using
prioritized feature matching,” in European conference on computer

vision. Springer, 2010, pp. 791–804.
[43] T. Sattler, B. Leibe, and L. Kobbelt, “Improving image-based local-

ization by active correspondence search,” in European conference on

computer vision. Springer, 2012, pp. 752–765.
[44] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[45] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold,
and C. Rother, “DSAC-differentiable RANSAC for camera localization,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 6684–6692.
[46] E. Brachmann and C. Rother, “Learning less is more-6D camera

localization via 3D surface regression,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp.
4654–4662.

[47] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Transactions

on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
[48] E. Karami, S. Prasad, and M. Shehata, “Image matching using SIFT,

SURF, BRIEF and ORB: performance comparison for distorted images,”
arXiv preprint arXiv:1710.02726, 2017.

[49] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

[50] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[51] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[52] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 573–580.

[53] M. Grupp, “evo: Python package for the evaluation of odometry and
SLAM.” https://github.com/MichaelGrupp/evo, 2017, [Software; odom-
etry benchmarking tools].

[54] S. Gul, L. Baker, R. Boult, S. Mills, and S. Zollmann, “Expert sample
consensus applied to camera localization for ar sports spectators,” in
2021 36th International Conference on Image and Vision Computing

New Zealand (IVCNZ). IEEE, 2021, pp. 1–6.
[55] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized

matching for large-scale image-based localization,” IEEE transactions

on pattern analysis and machine intelligence, vol. 39, no. 9, pp. 1744–
1756, 2016.

SUBMISSION: THE VISUAL COMPUTER 15

Lewis Baker is a PhD graduand at the University
of Otago. Lewis has been a member of the Graphics
and Vision, and Human Computer Interaction labs
at Otago since starting his postgraduate studies, and
since then has worked on several projects within the
subjects of Computer Vision, Graphics, and Aug-
mented Reality. His main research interests are in
tracking and localization, particularly in challenging
edge cases such as stationary applications and large
environments, which form the basis for his PhD
topic.

Jonathan Ventura is an Associate Professor at
California Polytechnic State University. He received
his Ph.D. in Computer Science from the University
of California, Santa Barbara in 2012. Previously, he
was an assistant professor at University of Colorado
Colorado Springs and before that a postdoctoral
researcher with the Institute for Computer Graphics
and Vision at Graz University of Technology in
Austria. His main research focus is 3D computer
vision for virtual and augmented reality.

Tobias Langlotz is an Associate Professor at the
University of Otago. Tobias was previously a senior
researcher at the Institute for Computer Graphics
and Vision (Graz University of Technology, Aus-
tria) where he also obtained his PhD. Tobias main
research interest is Vision Augmentations and Com-
putational Glasses utilizing AR technology, spon-
taneous interaction for wearable AR systems, and
nomadic mobile telepresence solutions, where he
works at the intersection of HCI, Computer Graph-
ics, Computer Vision and Ubiquitous Computing.

Shazia Gul is currently a PhD student at the
University of Otago. During her master’s thesis,
she conducted research on the subject of Computer
Vision. Before her doctoral studies., she has devel-
oped several mobile applications and obtained an
interest in the field of Augmented Reality and Vir-
tual Reality. Her research investigates tracking and
localization for Augmented Reality in large dynamic
environments, particularly for sports spectating.

Steven Mills is an Associate Professor at the Uni-
versity of Otago, where he gained his PhD in 2000.
Between being a student and an academic at Otago
he worked in a variety of commercial research and
development roles and as a lecturer at The University
of Nottingham. His interests lie in computer vision,
particularly 3D reconstruction from images and ap-
plications with cultural and heritage value.

Stefanie Zollmann is an Associate Professor at the
University of Otago in New Zealand. Before, she
worked at Animation Research Ltd on XR visualiza-
tion and tracking technology for sports broadcasting.
She worked as postdoctoral researcher at the Institute
for Computer Graphics and Vision (Graz University
of Technology) where she also obtained a PhD
degree in 2013. Her main research interests are XR
for sports and media, visualization techniques for
augmented reality, but also include capturing for XR
and immersive experiences.

