SUBMISSION: THE VISUAL COMPUTER

Localization and Tracking of Stationary Users for
Augmented Reality

Lewis Baker, Jonathan Ventura, Tobias Langlotz, Steven Mills, Shazia Gul, and Stefanie Zollmann

Abstract—In Augmented Reality (AR) applications it is essen-
tial to know the position and orientation of the user to correctly
register virtual 3-D content in the user’s field of view. For this
purpose, visual tracking through Simultaneous Localization and
Mapping (SLAM) is often used. However, when applied to the
commonly occurring situation where the users are mostly sta-
tionary, many methods presented in previous research have two
key limitations. First, SLAM techniques alone do not address the
problem of global localization with respect to prior models of the
environment. Global localization is essential in many applications
where multiple users are expected to track within a shared space,
such as spectators at a sporting event. Secondly, these methods
often assume significant translational movement to accurately
reconstruct and track from a local model of the environment,
causing challenges for many stationary applications. In this
paper, we extend recent research on Spherical Localization and
Tracking (SPLAT) to support relocalization after tracking failure,
as well as global localization in large shared environments, and
optimize the method for operation on mobile hardware. We
also evaluate various state-of-the-art localization approaches, the
robustness of our visual tracking method, and demonstrate the
effectiveness of our system in real-life scenarios.

Index Terms—Localization, Tracking, Augmented Reality, Vir-
tual Reality.

I. INTRODUCTION

UGMENTED Reality (AR) provides virtual graphics and
visualizations to users, accurately aligned with the real-
world. To achieve this, it is necessary to determine the viewing
position and direction (pose) of the user and track their move-
ment in real-time. Most commonly, simultaneous localization
and mapping (SLAM) approaches [1], [2] are used to map the
environment while simultaneously estimating the pose with
6 degrees of freedom (6-DoF; 3 rotation and 3 translation).
Most traditional SLAM approaches assume that the user will
perform a significant amount of translational motion in order
to initialize a 3-D map through point triangulation. However,
there are also 3-DoF SLAM approaches that assume that the
user will perform purely rotational motion (i.e. 3-DoF) [3]-
[5]. They do not require a translational motion, in fact, they
assume a perfect rotation around a center point with no offset
(zero translation).
Unfortunately, for many practical AR scenarios the user will
remain mostly stationary (e.g. AR visualizations for seated
spectators at sporting events [6]), or will remain in one place

Lewis Baker, Tobias Langlotz, Steven Mills, Shazia Gul and Stefanie
Zollmann are with the Departments of Computer Science and Information
Science, University of Otago, New Zealand.

E-mail: stefanie.zollmann@otago.ac.nz
Jonathan Ventura is with Cal Poly, San Luis Obispo.

[7] while viewing the AR content around the location (e.g.
AR Browsers [8]). Grubert et al. found that when reviewing
AR browser usage “most of the users were experiencing the
application while standing at the same position (78%), com-
bined with rotations (90%)” [7]. In fact, previous work already
highlighted the benefits of the purely rotational movement
in several application areas [9], [10]. In all these cases, the
user’s translational motion is limited, making 6-DoF SLAM
initialization error-prone if not impossible. However, prior
work always assumed that the users perform a perfect rotation.
But specifically when the AR interface runs on mobile devices
such as phones or tablets, the device is generally handheld
at some distance from the body. This means the performed
motion is not purely rotational either, violating the assump-
tions of 3-DoF trackers. Unfortunately, this error has often
been neglected in the literature. Pure rotational models also
have the disadvantage that depth and parallax effects cannot
be rendered, so there is a need for localization and tracking
methods that can cope with the limited translational motion of
a stationary user.

Recently, there has been research into methods for recon-
struction and pose estimation under spherical motion con-
straints [11]. Spherical motion can be placed in between the
6-DoF and typical 3-DoF tracking methods, as it constrains
the translation vector, without eliminating it completely. This
provides distinct advantages over 3-DoF systems in that 3-D
visualizations can be viewed with motion parallax, and placed
at varying depths, while also allowing for mapping with global
optimization through bundle adjustment and loop closure (as
is typically used in 6-DoF SLAM methods to reduce drift
[12]). Recently, there has been work into applying these
constraints in stationary capture scenarios such as structure-
from-motion (SfM) [11], spherical localization and tracking
for AR (SPLAT) [13], and reconstruction from panoramic
videos [14], [15].

Real-world applications of augmented reality require robust
solutions to both localization and tracking, and we address
this challenge for the case of stationary spherical motion.
This restricted case is a good approximation to the motion
of users who are situated in a large-scale environment —
seated in a stadium in our primary use-case. Some previous
works propose methods for tracking within pre-computed SfM
models of an environment [16], [17]; however, they do not
address the challenges that are common in many real-life use-
cases, such as reconstruction from stationary spherical motion,
and localization and tracking in large dynamic environments.
In this paper, we address these issues by evaluating exist-
ing methods, and developing a novel approach for global

SUBMISSION: THE VISUAL COMPUTER

localization for stationary users of AR interfaces. The main
contributions of this paper are:

o Design of an overall system which incorporates both
state-of-the-art localization, and spherical tracking for AR
(Section III).

« Extension of our existing spherically constrained tracking
approach [13], with added support for relocalization and
global localization (Section IV).

o Evaluation of the complete system for accuracy and
robustness of tracking (Section V-A).

« A mobile implementation, and performance evaluation
(Sections V-A3 and V-A4).

o A technical evaluation of state-of-the-art localization ap-
proaches in a sports-spectator scenario (Section V-B).

Together these contributions demonstrate the ability to local-
ize, track, and re-localize consumer devices situated in large-
scale environments.

II. RELATED WORK

Tracking in the context of AR refers to the process of
determining the pose of a camera as it moves. For many
applications, it is also required that this camera pose is
computed in real-time. This is particularly true in the case
of AR, where the camera pose is used to render visualizations
from the user’s perspective as they move their device.

A. SLAM-based tracking

SLAM has been a popular approach to monocular tracking,
and can be used in AR scenarios to compute the position
and orientation of the viewer in real-time. Research in SLAM
originated in the field of robotics, with early work by Davison
et al. [18] which was later extended to MonoSLAM [19].
Their method uses an Extended Kalman Filter (EKF) to update
camera pose and landmark locations based on measurements
from the image. They note that the EKF update can be
expensive when there are many features in the map, and
address this by tracking a small number of dominant features.

Klein and Murray proposed to separate the mapping and
tracking into separate tasks for allowing real-time performance
in AR applications [1]. With their Parallel Tracking and
Mapping (PTAM) approach, the authors specifically target
small AR workspaces. This work was one of the first to take
a multi-threaded approach to the SLAM problem.

More recently, ORB-SLAM has been published which
offers many improvements over PTAM [12]. ORB-SLAM
has more capabilities than PTAM and is designed with the
similar idea of using multiple threads to increase compu-
tational efficiency on multi-core devices. A recent survey
of SLAM suggests that SLAM systems should cover three
basic components: initialization of a 3-D map, tracking the
motion and further map updates, while an accurate and stable
solution would additionally cover global map optimization and
relocalization [20].

B. Rotation-based tracking

The previously discussed works all share a common theme,
in that they aim to track a camera assuming it has 6 degrees-
of-freedom. That is, the camera pose can be described by a
rotation R and translation t. However, some tracking methods
reduce computation by estimating pose with fewer parameters,
such as via homography estimation [21]. Using a homography
to estimate the camera pose is accurate provided that either the
scene to be tracked is planar, or the motion being modeled is
a rotation.

There are two driving factors behind the use of homo-
graphies. Firstly, it is fair to assume that the scene may be
planar. For example, tracking a camera for field sports can
utilize the homography assumption, provided they are able
to segment the planar sports field from the image [22], or
tracking from obviously planar objects such as books [23] or
fiducial markers [24]. While not all of these works explicitly
apply homography-based tracking, they clearly demonstrate a
use-case for tracking from planar objects. Secondly, in many
AR scenarios and in particular, outdoors we only face a
mainly rotational movement which allows us to use homo-
graphies [8]. Consequently, there have been several methods
that focused on tracking rotations. Many of them can be
understood as rotational SLAM algorithms as they work in
unknown environments but instead of building 3D maps of
the environment, they commonly build 2D maps (panoramic
maps) to represent and track features in the environment [3]-
[5]. Common to all these approaches is that they assume a
perfect rotational movement around a center point. Of course,
this is almost never the case in particular when rotating a
mobile device at arm’s reach. While in theory, the error
introduced by assuming a zero translation, is relatively small
[5], evaluations under more realistic scenarios have shown
the error to be up to 4 degrees for the main rotation axis
even under optimal conditions, with large scenes containing
distant objects and while rotating the handheld phone around
an axis with a minimal offset [3]. Assuming a similar error
along all axis potentially prevents a seamless AR overlay
as rotational tracking errors are known to be more critical
when producing precisely registered AR overlays [25]. In
this work, we focus on stationary users mainly performing
rotational movements but we extend our previous work using
a spherically constrained tracking that considers an offset from
the center of rotation [13].

III. APPROACH OVERVIEW

While the previously discussed approaches to tracking are
important for AR, a key limitation to these systems is their
inability to provide global context to the visualizations they
enable. This is primarily caused by how the co-ordinate
systems are established when initializing the tracking systems
— usually one frame of the input is used to represent the origin
of the co-ordinate system, and all pose data that is output from
the tracking uses this as a reference.

In many application scenarios, it is important to maintain
global context while tracking the users. This can be achieved
through tracking within a known co-ordinate system such

SUBMISSION: THE VISUAL COMPUTER

Initialize Keyframe
Sphere

Reference Frame —

Initialization / Tracking Mapping Relocalization / Localization
Update
tch
Feature Extraction Reference Frame TEES— Reference Frame New Reference Frame New Keyframe
Tracking via KLT —t Matching (after tracking lost)
v
KLT Keypoint f
Trackyigg Feature Extraction l‘ffniyhf;i",;iiggﬁ(e Vocabulary ORB 2D-3D
Assignments SIFT Matching
Spherical Relative |Spherical Absolute
Pose (RANSAC) Pose (RANSAC) New Keyframe Vocabulary- Compute Global
based Pose (RANSAC)
. . Reference Frame . . 2D-3D QRB
Triangulation Creation Triangulation Matching Update Global

Bundle Adjustment

Transformation

Fig. 1. High level overview of our tracking and mapping system. The various tasks of the system are grouped by color, and each execution thread is surrounded
by rounded rectangles. The key difference to ORBSLAM are highlighted as bold text. The first task (yellow) handles initializing a 3-D map and the keyframe
sphere, before handing off to the tracking task (blue). This task tracks keypoints from the last reference frame and creates new reference frames when required
by the keyframe sphere. The mapping thread has a single task (green) which updates the 3D-to-2D matches of the latest reference frame asynchronously,
triangulates new points, and updates the keyframe sphere. Our third thread handles relocalization after tracking failure (red), and global localization (purple).

Specific details of the system are explained in Section IV.

as GPS, or a pre-built model of the environment that is
shared by all users of the system. There are many approaches
to the localization problem ranging from place recognition
[26], structure-from-motion (SfM) approaches which local-
ize images while reconstructing the environment [27], [28],
geometry-based methods which require prior geometric mod-
els (such as line models) of the environment [29], and deep-
learning approaches [30], [31]. However, many of these ap-
proaches do not target real-time performance and thus would
require adjustment to be used for real-time AR tracking,
particularly on mobile devices.

When localizing from pre-computed SfM models, it is
important to consider that the appearance of the pre-computed
model may differ from how the environment is presented at
the time of tracking. For example, an SfM model may be com-
puted using several thousand photographs all taken on one day
within a short time-frame. Lighting and weather conditions can
drastically affect the appearance of the environment, and make
localization through feature matching difficult. While these
approaches have shown some robustness to dynamics [32],
robustness under these conditions often involves capturing
the SfM model under varying conditions which is impossible
in the case of a sports stadium, where dynamics caused by
thousands of spectators are unique at each event.

While these works focus on the localization of single
images, there has also been work on combined localization
and tracking from SfM models [16]. In this paper, we argue
that creating a local map of the environment during tracking
can be beneficial for robust tracking with fast relocalization,
but global localization to a pre-computed model is also impor-
tant. For these reasons, we propose a global localization and
tracking system that locally maps features as they are seen,
while globally localizing to a pre-computed SfM model using
as few frames as possible.

From the related work in the previous section, we can see
a trend toward research focusing solely on either tracking
or localization, with few works developing systems that in-

corporate both. For many real-world AR applications, both
aspects are important — localization is required to align virtual
content with the real world; tracking rather than continuous
re-localization provides real-time performance; and some re-
localization is required in the case of tracking failures. In this
section, we detail a complete localization and tracking system
specifically targeting AR applications.

Our overall system consists of five tasks, distributed into
three threads. The tasks include initialization, tracking, map-
ping, relocalization, and global localization components. The
key differences between our system and state-of-the-art ORB-
SLAM are that we introduce 1) a spherical relative pose
estimation for the initialization step, 2) a keyframe sphere
instead of arbitrary keyframes and a selection of reference
frames on the keyframe sphere, 3) a spherical absolute pose
estimation for the tracking step and 4) a global localization
step (key difference are highlighted in bold in Figure 1).

We distribute the work of these four components into
three separate threads for concurrent processing. Each thread
handles a subset of the tasks of the overall system distributed
in a way that prioritizes performance in the main thread.
In our implementation, we perform both initialization and
tracking on the same thread, as these are sequential processes.
Initialization (Section IV-B) handles the construction of an
initial map using two frames from the system and needs
to be completed only once. From here, this main thread of
execution purely handles the tracking task (Section IV-C)
which determines the camera pose for each frame of the video.

The mapping task (Section IV-D) is handled entirely in its
own thread, as this is the most computationally expensive op-
eration. The mapping task takes potential keyframes (reference
frames) from the tracking task via a thread-safe queue. These
incoming frames are matched to existing map points to detect
loops, and new points are triangulated, followed by a global
bundle adjustment optimization. The tracking task can see the
new and updated map points via the reference frame.

Our third thread handles both global localization (Section

SUBMISSION: THE VISUAL COMPUTER

IV-F), and relocalization from tracking failure (Section IV-E).
The global localization task of this thread is a new addition
which is not handled by ORB-SLAM, and provides a greater
context to the tracking result, transforming the tracking pose
data to a known co-ordinate space. The purpose of the global
localization task is to process keyframes as they are created
by the mapping thread to determine their pose in the global
co-ordinate system (i.e. with respect to a pre-computed SfM
model). The relocalization task handles recovery from tracking
failure by re-establishing matches with the local SLAM map.
These two tasks are handled again with thread-safe queues,
with priority given to the relocalization task resulting in a
responsive recovery when tracking is lost.

IV. GLOBALLY LOCALIZED TRACKING FOR AR

Having discussed several state-of-the-art localization meth-
ods, we outline a complete AR tracking system that incor-
porates these global localization principles with a SLAM-
based tracking system. Our system is applicable to situations
where a model of the environment has been computed in
advance through structure-from-motion (SfM). In this case, our
approach is able to provide tracking data within the original
co-ordinate system of the SfM model. If this data is not
available, the tracking data is returned within an arbitrary local
co-ordinate system.

Our method uses real-time tracking based on the SPLAT
[13], combined with global localization based on a Bag-of-
Words approach [33], [34]. We considered two approaches to
the problem of providing global context to the tracking system,
and briefly discuss them here to justify the method we propose.

One approach is to use a pre-computed SfM model solely
for tracking, without remapping the environment. This can
support real-time tracking of SfM models pre-computed from
panoramic images, without the need for further mapping
[16]. This can cause issues when dynamics such as lighting,
shadows and other spectators change the appearance of the
environment from that of the pre-computed model. Other
approaches involve registering a local SLAM map to an
existing global model [17].

An alternative is to create a local map of the environment
as it is currently observed. The local map can then be
aligned to the pre-computed SfM model to determine the
transformation between the two. In this case, fewer features
need to be matched between the current view and the SfM
model, as this static transformation can be computed once
using two successfully localized frames. Using this approach,
the tracking can be performed using the local map, putting less
strain on the robustness of the feature matching component.

As the main application scenario of this paper is to track live
sport spectators, it is very likely that any pre-computed SfM
model will differ in appearance to the current appearance of
the environment. For this reason, we take the second approach
in an attempt to create a robust tracking system under these
conditions. Our approach to tracking is described in detail in
the following subsections, and is an extension of our previous
work on SPLAT [13] with the following key differences:

o Use of a separate processing thread for relocalization.

o Vocabulary tree based reference frame matching.

« Global localization of keyframes using a pre-computed
SfM model.

o Transformation of pose output to represent tracking in
this co-ordinate system.

A. The keyframe sphere

We use the keyframe sphere approach of SPLAT [13] to
subdivide the space of possible camera poses in a way that is
tailored to a spherically constrained keyframe SLAM system.
This is achieved by generating a fixed number of anchor points
approximately uniformly across the surface of a sphere, and
assigning keyframes to these positions.

To reduce the overhead of excessive keyframes, we use
fewer anchor points than previously [13]. We reduce the
number of anchor points from 1000 to 500, finding no
degradation of robustness. We also set a threshold requiring
that a new keyframe’s camera center must be within some
small distance of an anchor point. As we have fewer keyframe
anchors, we also increase our distance from 25% to 75% of
the distance between two neighboring anchors to ensure that
enough keyframes are created.

B. Initialization

Our system automatically initializes a map and begins
tracking when enough spherical motion has occurred, using
the process described below. The overall initialization step
is based on spherical SfM [11], but with a focus on faster
computation by only triangulating from two frames.

Feature extraction and tracking We extract 1000 ORB
features [35] in the initial frame. To match keypoints between
successive frames, we find matches using a pyramidal KLT
feature tracker [36]. At each frame, we use these 2-D matches
to make an estimate of the current pose relative to the initial
frame with a spherical constraint [11].

Relative pose estimation To determine the relative pose
for initialization, we use the spherically constrained relative
pose estimation introduced in [11]. We assume that the camera
moves on a mostly circular path with a constant radius of 1
unit from the origin, and that the viewing direction of the
camera is in alignment with the normal of the unit sphere.
These assumptions reflect the offset from the center of rotation
for stationary users (e.g. when holding a device at arm’s reach)
and allow us to simplify the pose estimation. The camera pose
is given by [R|t] where t = [0 0 —1]T, and the camera center
¢ = —RTt. We use the method of [11] for both computing and
decomposing an essential matrix to compute the spherically
constrained relative pose. In combination with Preemptive
RANSAC to discard outlier tracks [37], this determines a
relative pose between the first two camera frames.

Triangulating the initial map We use the keyframe sphere
structure to determine if the angular motion is sufficient for
initialization. If the poses of the start and end frame are
assigned to two different keyframe anchors, we proceed with
initialization. Features in the final initialization frame are
matched to the initial frame using the feature tracks, and
triangulation performed to compute the 3-D points.

SUBMISSION: THE VISUAL COMPUTER

C. Tracking

After the map has been initialized with two keyframes, and
the 3-D points from triangulation, we use this data as input
for our tracking method. The tracking step can be described
by the following components:

Feature extraction and tracking Similar to the feature
extraction from the initialization phase, we have an upper limit
of 1000 keypoints and descriptors. We again use KLT feature
tracking [36] to keep track of matches from the most recent
keyframe. We then compute a convex hull [38] surrounding
the tracked keypoints, and find new ORB features outside this
mask.

We enforce a 1000 keypoint limit which includes both the
KLT tracks (and their already known descriptors), as well as
the newly detected features. New features are extracted in
each frame, however it could be optimized to only compute
new descriptors in reference frames, as it is only here where
matching descriptors to the existing 3-D points occurs.

3D-to-2D feature matching We next use the extracted ORB
features to obtain more 3D-to-2D correspondences. The KLT
tracks maintain references to 3-D map points found in the
last reference frame, which in many cases is enough to track.
However, we must also find potential correspondences between
the newly detected features, and points which have already
been mapped to avoid triangulating duplicate points.

In a separate thread, we perform brute-force matching
between the features in the current reference frame (the origin
of the current KLT tracks), and the other keyframes. When
new matches are found, the correspondences are updated in
the reference frame, which can be accessed asynchronously
(via their corresponding feature tracks) in the main thread.

Absolute pose estimation To estimate the pose for each
frame, we use the Perspective-2-Point (P2P) method from [13]
which uses a spherical pose constraint within a preemptive
RANSAC scheme to determine the current pose, and an inlier
set of matches [37]. Again, here the spherical pose constraint
reflects the offset from the center of rotation for stationary
users.

Reference frames Once a frame is successfully tracked,
we decide whether it will become a reference frame. The
reference frame is updated when a tracked frame falls within
the keyframe sphere distance threshold of a new anchor
point. When a reference frame is created, the mapping thread
matches its keypoints to all neighboring keyframes and merges
the observations. This is equivalent in some respects to loop
closure when loops are small, and drift is relatively small.

Keyframes A reference frame will become a keyframe if
its anchor point in the keyframe sphere is unoccupied. In this
case, the feature tracks from the previous reference frame are
triangulated, and bundle adjustment takes place. Since the
tracking thread is acquiring many matches through feature
tracks to this frame, the new map points are automatically
assigned to the current tracked frame as soon as they are ready.
This allows new map points to be added asynchronously.

D. Mapping
The main purpose of the mapping step is to process potential
keyframes from the tracking task. For this step, we match

incoming frames to existing map points and detect loops as
well as perform a global optimization step on all existing
map points. This means that once a frame has been tracked
successfully by the tracking task, it is sent to the mapping
thread to use the newly visible feature points in the image to
update the map in three main stages consisting of 1) reference
frame matching, 2) triangulation to update the map and 3)
bundle adjustment.

Reference frame matching When new keyframes are
stored, the tracking thread follows 2D features from the latest
reference frame using KLT tracking. The mapping thread uses
these results to guide the matching of keypoints between these
two frames. For this purpose, we project known 2D keypoints
from the last reference frame into the current frame to help
guide the matching.

Additionally, the tracked features in the new keyframe are
matched with existing 3D points in the map using a vocabulary
based approach [34]. The use of a feature vocabulary reduces
the amount of processing required to match points compared
to brute-forced approach. This is the same matching method
we use for relocalization, which we describe further in Sec-
tion IV-H4.

Triangulation The computed matches are then triangulated
in a similar manner to the initialization phase using the pose
data of both map frames (the newly added and the existing
reference frame). If more than 50 map points were successfully
triangulated from the matches, then the new keyframe is added
to the keyframe sphere.

Bundle adjustment Bundle adjustment takes place after
triangulation to optimize the 3-D point locations and keyframe
camera poses. To enforce the spherical constraint, the camera
translation is fixed in the optimization [11]. Once this process
is complete, we remove keyframe references to outlier 3-D
points using the same reprojection threshold set in the tracking
thread. The positions of the remaining points and camera poses
of the keyframes are then updated. We found that running a
small number of iterations each time a keyframe is added is
a good way to keep map updates frequent. This also allows
for faster performance than full bundle adjustment at the cost
of some accuracy. The use of fewer iterations has also been
shown to be beneficial where fast computation is needed [39].
In our experiments, we use two iterations of bundle adjustment
between map updates.

E. Relocalization

In the case of tracking failure we relocalize by matching
the current (untracked) frame with the existing keyframes The
keyframe features are more likely to resemble the current
appearance of the environment than those in the SfM model.
This allows fast and robust relocalization in cases where the
environment is very different from the prior model.

In our implementation, we detect tracking failure when
the number of inlier 2D-to-3D correspondences falls below a
threshold of 30. The global localization thread then prioritizes
localizing the currently untracked frame using a purely ORB
variant of the BoW approach of Section IV-H4. While this
process runs, the tracking thread uses the same KLT approach

SUBMISSION: THE VISUAL COMPUTER

as Section I'V-B to re-initialize the reference frame and resume
tracking as normal.

E. Global localization

In order to align the pose to the global coordinate system
of the SfM model, we first localize at least two keyframes
with respect to the SfM model. Next, we compute the scale
factor between the local tracked coordinate system and the
SfM model, and finally we compute a transformation that
describes the rotation and translation differences between the
systems.

Keyframe localization: First, we localize two keyframes F}
and F5 from the tracking system to the COLMAP model. In
our implementation, we extract 2000 SIFT features [40] from
F) and F5, and perform brute-force matching with the existing
SIFT features from the SfM model, using a distance ratio test
to discard ambiguous matches. We then compute the global
rotation and translation, R}” and t}”, using P3P [41] within a
Preemptive RANSAC loop [37]. In our system implementa-
tion, we used this simple feature matching approach to localize
keyframes. However, we further investigate and evaluate the
state-of-the-art approaches in Section I'V-G.

Computing the transformation: We now have a global
pose R, ti’, and a local pose Ré, tﬁ from the SPLAT tracking
for two of the keyframes. To compute the difference in scale,
we take the distance between the centers of F} and F5 in both
co-ordinate systems where the camera center c; of keyframe
F; is defined as

T
C;, = _Ri ti. (1)
We then compute the scale s as the ratio of the two distances
c —c¥
| c1—c ||

Finally, we compute the transformation between the coordinate
systems using one of the localized keyframes F;. We first
define the 4 x 4 scaled local pose P! as

Rl st
Py = [(; d : 3)
and the global pose P}’ as
w Ry t¥
Py = [X d : (4)

and compute the 4 x 4 transformation T as
T =P tpy. (5)

Using T and s, the pose results from each frame of tracking
can then be transformed into the global coordinate system
of the SfM model. The resulting trajectory is spherical, and
localized within the SfM model as depicted in Figure 2.

G. Discussion

One of the key differences between our approach and exist-
ing methods is the use of both a local map and a pre-computed
global map. Many approaches perform tracking directly from
a pre-computed SfM map [16]. Real-time tracking is achieved

Fig. 2. Two views of a spherical trajectory computed with our tracking system.
The result is rendered within the meshed COLMAP reconstruction of our
Rugby Stadium dataset to demonstrate the effect of global localization and
scaling.

by matching features in the current image to the features that
comprise the STM model. This approach provides fast real-time
tracking, as there was no need for computational resources to
be used on mapping during the tracking process. However,
when the environment is dynamic, feature matching can be
unreliable as the appearance of the environment may change.
This can cause issues when this type of feature matching needs
to occur very frequently.

Our approach handles dynamic environments by matching
as few frames as possible to the SfM model. While localization
under dynamic conditions is possible [32], our system needs
only to localize two keyframes in order to compute an approx-
imate transformation between the local and global coordinate
systems. Once these frames are localized, we track from a local
map which more accurately represents the current appearance
of the environment. Another approach that is similar to ours is
to track from a locally created SLAM map, which is registered
to a ‘2.5-D’ global representation of the environment [17].

For these reasons, our system tracks from a globally reg-
istered local map with the intention of improving robustness
in dynamic environments. In the following section, we dis-
cuss and evaluate the state-of-the art methods for solving
the localization problem, to gain better insight into which
approaches work best for stationary AR. In Section V-A, we
provide results on the accuracy and robustness of the tracking
component of our system.

H. State-of-the-art localization methods

Robust localization is an important part of our system, as
it enables us to provide global context to the pose output
from the local tracking component. Previous research on
localization with SfM models can be coarsely grouped into
three categories: feature matching [42], image retrieval [26],
and deep learning approaches [30], [31]. We focus on the
most promising open-source systems in each category: ESAC
(Expert Sample Consensus released with [31]); Active Search
released with [43]; and our own custom implementation of a
Bag-of-Words (BoW) localizer based on the implementation
of Munoz et al. [34] called fbow. We compare these methods’
ability to localize with our SfM models built using COLMAP
[27], using COLMAP’s vocabulary tree image registration as
a localization reference.

Our first method is Active Search [43], which we choose
as it is frequently used as a benchmark for image-based
localization approaches and is provided open-source. We also

SUBMISSION: THE VISUAL COMPUTER

investigate ESAC [31] as it appears to be among the most
promising and scalable of all the deep-learning approaches
to localization, while also being provided open-source by the
authors. Our third method is our own implementation of a
Bag-of-Words localizer, based on ORB and fbow for image
retrieval [33], [34] while using SIFT for registration [40].
These BoW solutions tend to focus on image-retrieval results
and do not provide results for the type of accuracy that can
be achieved when they are used for full 6-DoF localization,
so we implement our own using these libraries.

1) Data preparation: Our primary application is localiza-
tion for spectator AR in a sport stadium environment. Due to
the limited availability of public stadium datasets, we captured
our own in two stadia. The first step in our data processing
is to create a sparse reconstruction using the training images
of each dataset. For this, we used the open-source COLMAP
StM software from [27] with default parameters.

Cricket Ground (CG) Here, we captured a small dataset
of 49 images from several positions within one side of the
stadium during a single visit. The lighting condition was
sunny, and the stadium was at near-full capacity. This data
was randomly split into 39 training, and 10 test images
(approximately 8:2 split).

Rugby Stadium (RS) We captured 1,125 images from
a range of positions primarily from the two opposing main
stands, with some taken from ground level. This dataset was
captured over two daytime visits to the empty stadium, one
overcast, and one under sunny weather conditions. This dataset
was randomly split into a training set of 900, and a testing set
of 225 images (8:2 split). As this stadium has a translucent roof
structure, the cloudy and sunny conditions were similar enough
to be combined into one reconstruction. We later investigate
dynamic scenes in Section V-B3.

2) Active Search: Active Search [43] uses a bi-directional
feature matching method. First, a descriptor vocabulary is used
to quantize the descriptor space, and words are assigned to
each point in the model as well as to each feature in the query
image. For each feature f in the query image, the 3-D points
which share a node in the vocabulary tree are searched for
matches using the typical ratio test [44] resulting in an initial
match to a point P.

Then, the 3-D points in the neighborhood of this match are
prioritized and matched to the features in the inverse direction
using a coarser vocabulary. The purpose of this bi-directional
matching is to make use of the fact that points in the same
3-D region are likely to share similar visibility.

3) Expert Sample Consensus: The Expert Sample Con-
sensus (ESAC) approach introduced by [31] is to train a
convolutional neural network to learn scene co-ordinates for
a given input image using both scene co-ordinate images,
and 6-DoF pose as ground truth. The localization component
uses RANSAC to sample the output scene coordinate images,
which naturally encode 2D-to-3D correspondences for pose
estimation.

The method was first introduced in [45], where the authors
presented a modification to RANSAC which allows the entire
pipeline to be differentiable, allowing for gradient-descent end-
to-end learning. Their method was later improved in [46],

and their most recent system ESAC [31] improves scalability
by clustering the dataset and training first a scene classifier,
followed by an ensemble of expert networks that are able to
operate on the smaller scene clusters.

Pre-processing The ESAC localization approach requires
more data to train the CNN, in addition to the pose information
from COLMAP. This method uses ground truth scene coor-
dinate images for its own training process. Scene coordinate
images are like depth maps, except instead of encoding a depth
value (i.e. distance from camera to scene) into each pixel, the
full 3-D scene coordinate is stored resulting ina 3 x H x W
tensor. It is possible to attain a dense representation of this
data from a sparse model through dense MVS reconstruction
methods [28], however, a sparse representation is sufficient
[46] and in fact completely optional, as the entire pipeline is
capable of learning the scene structure.

Localization After processing the datasets with COLMAP
to acquire a sparse reconstruction, the point cloud is then
projected into a small representation of the training images
using the known pose from the reconstruction (H = 60 and
W = 80, [31]). For each pixel, we encode the 3-D coordinates
of the nearest point projected to that pixel using a z-buffer. We
exclude points behind the camera and leave zeros for empty
pixels.

4) Bag-of-Words localization: We also compare to local-
ization based on BoW techniques. Our system is designed to
operate on the output of a typical COLMAP reconstruction
and should not be considered state-of-the-art, but represents
the expected performance from the localization method with a
simple implementation. Our system can be used in two stages,
pre-processing, and localization.

We also require a vocabulary file containing representative
ORB descriptors and use the one provided with ORB-SLAM?2
[47]. The BoW approach allows for quick matching between
images using an inverted file that contains both image and
keypoint indices for each word. We investigate the feasibility
of fast image retrieval using ORB, while maintaining robust
matching via SIFT.

Pre-processing This stage only needs to be completed once
per COLMAP model. The objective of this phase is to create
an inverted index file, which stores for each word in the
vocabulary, a list of image identifiers corresponding to the
training images that contain that word. The purpose of this
file is to act as a database for image retrieval and only needs
to be computed once per SfM model.

We first detect 2000 ORB features in each training image.
Then map the descriptors to words in the vocabulary using
the optimized transformation implementation of fbow [34].
Finally, the inverted index is updated by appending the image
identifier to the corresponding list in the inverted file for all
transformed words in the image.

Localization To localize a query image, we first detect and
map ORB features to the vocabulary as before. Then for each
word in the query image, we parse the list of training images
via the inverted file and accumulate votes for each training
image that contains that descriptor. The image with the most
votes is accepted as the closest match, from which we begin
establishing matches to compute a 6-DoF pose.

SUBMISSION: THE VISUAL COMPUTER

To achieve this, we then detect SIFT features in the query
image, as they tend to show better matching rates than ORB
[48]. Then we apply a FLANN-based matching method [49]
to find the two nearest neighbors for each potential match, and
discard unreliable matches using a ratio test [44]. Finally, we
apply an iterative solution to the Perspective-n-Point (PnP)
problem based on [50] within a RANSAC scheme [51] to
compute the 6-DoF position and orientation of the query
image.

V. EVALUATION

A key aspect of our approach to AR stems from the ability
to track and localize users in an environment accurately and
robustly. In the previous section, we outlined some of the
key methods in tracking and localization, and their theoretical
limitations. In this section, we evaluate these methods in
detail to determine the most suitable approaches for globally
localized tracking in large dynamic environments with a focus
on sports spectating. Specifically, we make use of our own SfM
models created from image datasets of large sports stadium
environments. Our SfM models are generated from the image
datasets using COLMAP [27].

A. Tracking Results

To evaluate the tracking component of our system, we com-
pared the rate of successful tracking between state-of-the-art
monocular ORB-SLAM?2 [12], [47] and our approach across
multiple sequences in two different real-life environments (a
sports stadium, and an outdoor basketball court).

To provide insight into the accuracy, we also compare the
output pose results to state-of-the-art monocular ORB-SLAM?2
[12], [47] in a synthetic environment to provide insight into
the accuracy of the tracking.

We then show some qualitative results output from our AR
prototype to demonstrate how accurate the registration appears
in real AR use-cases. Finally, we evaluate the computational
performance of our approach on different hardware platforms.

1) Robustness results on real datasets: To evaluate our sys-
tem, we investigate the robustness of tracking under realistic
scenarios. We compare the successful tracking rate of our
system to ORB-SLAM?2 [12], [47] on eight different video
sequences. Results using 1000 and 2000 ORB features per
frame, are shown in Figure 3.

Four sequences (Stadium A-D) were captured in a sports
stadium from a spectator’s perspective, and we used the RS
StM dataset (Section V-B) as our prior global model. The
other four sequences (Court A-D) were captured at an outdoor
basketball court, again from a spectator’s perspective, and
include two sequences that deliberately obstruct the camera
to test relocalization (Court B, and C). For the court dataset,
we captured 211 images from various perspectives around the
court and used the same COLMAP process [27] as for the RS
data to create a prior SfM model.

2) Synthetic tests for accuracy evaluation: For evaluating
the accuracy of the overall approach on a large scale, we
decided to use synthetic data as it allows us to measure
deviations from the ground truth pose in more depth.

To compare the accuracy of our system to state-of-the-art,
we compare the absolute trajectory error (ATE) and relative
pose error (RPE) [52] of our system and state-of-the-art ORB-
SLAM?2 to synthetic ground-truth. We generate ground-truth
data by moving a camera in a circle within a textured sphere,
and compare trajectories using the evo odometry evaluation
tools [53]. The ATE is the average difference between two
estimated positions at each time point after they have been
aligned, while the RPE measures the difference in estimated
trajectories over short time intervals.

To determine how the accuracy of the systems scale with
the size of the environment, we increase the textured sphere
radius to generate sequences from environments of varying
scale from 2x up to 50x the radius of the camera motion. In
Figure 4, we plot the mean ATE and RPE for each synthetic
video sequence against the 3-D sphere size. The RPE metrics
were taken at 1-frame intervals, which corresponds to 0.36°
of circular motion at radius 1.

3) Results in AR Spectating application: To demonstrate
the accuracy of our tracking approach qualitatively, we also
implemented an AR rendering system based on OpenGL as
well as one using Unity3D. In the case of the RS dataset, we
had a textured CAD model of the stadium which could be used
as a basis for AR content creation. We aligned this CAD model
to the SfM model by manually identifying corresponding
points, and aligning these with 3D modeling software. We
then applied the resulting 4 x 4 transformation to our model
matrix when loading the CAD model. The resulting alignment
demonstrates that the measured accuracy (as evaluated in
Section V-A2) is sufficient to place 3D content within the
stadium environment to visualize game-related content such
as heat maps or scoreboards (Figures 5 and 6).

4) Performance Evaluation: In addition to the accuracy and
robustness evaluation, we also provide results on the runtime
performance of our approach (Table I). Since AR applications
are time critical, we measured the framerate of our method
on two hardware platforms. We recorded the minimum, max-
imum, and mean framerate (in frames per second) of our
tracking approach using the Stadium-A sequence on a 2016
laptop PC with an Intel i7 6200U processor at 2.3 GHz. We
also record the same metrics on an Android smartphone with a
Snapdragon 845 (2018). On the smartphone implementation,
we used a live feed from the device’s camera as input and
moved the device in a similar pattern as done in the Stadium
sequences. Neither smartphone or desktop implementations
make use of the GPU.

The results from our performance experiment are shown
in Table I. We were able to achieve essentially real-time
performance on the laptop PC with a mean framerate of 29.5
frames per second. Our Android implementation ran at an
average of 12 fps which is not realtime, but still offers an
interactive experience for the user. In the future, this could be
improved by combining our tracking approach with inertial
data from mobile device sensors, which are often available at
much faster rates.

SUBMISSION: THE VISUAL COMPUTER

1000 Features

ORB-SLAM SPLAT
- | (I
Stadium | | | [
AD | I [
- l[i [
court | [N N [BN B |
A0 | [N E [S

2000 Features

ORB-SLAM SPLAT
stagiom | [|[I
A0 | [[I
court | [N N TN [BN B
Ao | (N [B B 1

Fig. 3. Comparison of the tracking rate of ORB-SLAM?2 [47], and our proposed system with two different configurations for the number of features per
frame. Each bar represents a tracking timeline for a test video sequence. White represents an untracked frame. Grey represents a frame tracked in the local

SLAM coordinate system.

Absolute Trajectory Error on Synthetic Data

m

< 0.5 T T T T T

‘e' 0.4 SPLAT —=—
5] ’ ORB_SLAM2 - -e- -
g 03) .
% 02f e et Nt et
@ 0.1 “‘d“ \o. ¢ L %e

=

o

3

<

Space size

Relative Pose Error on Synthetic Data

E 0-12 T T T T T T T T T
£ 01 ® SPLAT —=— |
2 0.08 Ve PRBSLAMZ - ‘; E
g 0.06 PR I W "
@ . o I, (1] ' l" R .
S 0.04 MR B8 e o
o %’y ®) 1 @ b o
£ 002 U .
& 0

5 10 15 20 25 30 35 40 45 50

Space size

Fig. 4. Pose error from synthetic testing of our tracking system (blue), compared to monocular ORB-SLAM?2 (red [12]) with different 3-D sphere radii. The
radius of the camera motion is fixed at 1 unit, and the size of the surrounding textured sphere was varied from 2 to 50 units.

Fig. 5. Example input frames (top row), and corresponding output frames
from our AR renderer (bottom row). Both a CAD model of the environment
(lower left) and a heatmap overlay (lower right) are shown to demonstrate the
cababilities for AR to display in-place sports statistics.

TABLE I
FRAMERATE STATISTICS OF OUR TRACKING APPROACH ON TWO DEVICES.

Device | Min (fps) | Mean (fps) | Max (fps)
i7 6200U 10.417 29.514 45.455
Snapdragon 845 4.999 12.006 29.994

B. Localization Results

We were also interested in providing more insights into the
performance of the different localization options we identified.
For this, we tested the methods’ ability to localize the test set
images against the SfM models. In this section, we compare
the computation time of both training (one-off computation),
and the localization itself, as well as accuracy metrics when
compared to the COLMAP reference method. We also provide
and compare qualitative results from renderings of the sparse
point clouds overlaid with the input query images.

Fig. 6. Example of our AR spectating application showing a virtual score-
board overlaid with the input frame using the result of the global localization.
The AR app is implemented using Unity3D.

1) Computation time: The computation times for each of
the methods are reported in Table II. Localization time refers to
the mean time to localize over all query images. Training time
refers to the time taken to pre-process the model or images for
each localization method. Computation times were measured
on a PC with an Intel Core i9-9900KF CPU at 3.60GHz, 32
GiB memory, and a GeForce RTX 2080 Ti video card.

For ESAC, the training time includes initializing the gating
network (classifier), initializing and refining 4 experts, and the
end-to-end training stage. For Active Search, this includes the
pre-processing stages of parsing the SfM data and computing
descriptor assignments with the vocabulary. For our BoW
method, this includes all steps detailed under pre-processing in
Section IV-H4, namely ORB detection, fbow transformation,

SUBMISSION: THE VISUAL COMPUTER

TABLE II
COMPUTATION TIMES FROM LOCALIZATION APPROACHES ON STADIUM
DATASETS.
Dataset = CG, Dataset = RS,
Test Set Size = 10 Test Set Size = 225
Method Train Localize Train Localize
Active Search 277 s 158 ms 116 s 221 ms
ESAC (4 experts) 101 h 88 ms 85h 75.2 ms
ESAC (1 expert) 34 h 92 ms 22 h 145 ms
BoW 1.27 s 603 ms 30.2 s 1559 ms
COLMAP — 420 ms — 468 ms

ot 45 O

Fig. 7. Example of accurate localization results from ESAC on the RS dataset.
We render the sparse point cloud from COLMAP over the input images using
the pose estimate. An accurate localization results in good alignment of the
keypoints (white) with their corresponding structures in the image.

and creation of the inverted index.

We found that the ESAC approach has the longest training
time, which is to be expected from a deep learning approach.
However, training time is not particularly critical, and 101
hours is not prohibitively long for a one-off computation. We
thus deem all methods to be viable for localization with regard
to training time. ESAC [31] reported the fastest localization
time with an average of 88 and 75.2 ms on the CG and RS
datasets respectively.

In Table II, we see that the BoW approach had the
fastest training time, likely due to the optimizations of fbow,
combined with more compact ORB descriptors. However,
the localization time was the slowest, due to the overhead
introduced by requiring both ORB and SIFT computation
for the query images. For this reason, we conclude that the
performance potential from using ORB over SIFT is beneficial
in the indexing and pre-processing stages, but attempting
to leverage the matching robustness of SIFT in conjunction
with the simpler computation of ORB can be detrimental to
performance. This suggests that using ORB features for both
tasks might produce better results.

We find that all methods produce acceptable localization
times, with the slowest being our BoW approach, which is
not yet optimized for speed on the localization side. While
our method localized the slowest, realistically the localization
process would only need to happen occasionally in an overall
AR system. For example, localizing with only the initial
frames or keyframes of a SLAM system. These methods,
therefore, do not need to perform in real-time.

2) Error metrics: The localization results showed potential
for most of the methods, especially with ESAC, and Active
Search. ESAC results from the RS dataset are shown in
Figure 7.

Out of the 10 CG test cases, 4 were reported successful by
our BoW approach. We note, however, that some cases are
reported successful but exhibit visible errors when overlaying
the points with the image. In our results, we use ‘# Reported’
to refer to the number of images reported to be successfully
registered by the method itself.

Due to the potential for false positives, we take the local-
ization results from COLMAP as a reference, IS and compare
them with the reported successful pose, P, using a geometric

error over all co-visible points x1, ..., Xy,
n .
|| PXZ' — PXZ' H
y PPl ©
i=1

where P=K[R|t].

We then flag any result with a geometric error of less than
10 pixels as a successful registration (# Actual). To get an
idea of how accurate the successful registrations are with each
method, we also compute the mean (Err. M) and standard
deviation (Err. SD) of the geometric error over all the true
positive cases. All methods were tested with images of the
same resolution (480 pixels in the shortest dimension, as
required by ESAC). The 10 pixel threshold corresponds to
approximately 1.5% of the image width.

To avoid making comparisons between potentially erro-
neous poses from the COLMAP reference, each reference
registration was visually checked for quality. Ideally, we would
have a higher quality reference or ground-truth poses for the
test set, which is an area for future work.

The results for all methods on the CG and RS datasets are
shown in Tables III, and IV respectively.

TABLE III
ERROR AND SUCCESS RATE OF LOCALIZATION APPROACHES ON THE CG
DATASET.

Dataset = C'G, Test Set Size — 10

ESAC (4 Active BoW COLMAP
experts) Search (reference)
Reported 10 0 4 7
Actual 6 0 3 7
Err. M (px) 1.67 — 6.99 —
Err. SD (px) 0.86 — 3.04 —
TABLE IV
ERROR AND SUCCESS RATE OF LOCALIZATION APPROACHES ON THE RS
DATASET.
Dataset = RS, Test Set Size = 225
ESAC (4 Active BoW COLMAP
experts) Search (reference)
Reported 225 215 161 221
Actual 209 203 119 221
Err. M (px) 1.91 3.27 3.43 —
Err. SD (px) 1.68 2.00 1.81 —

3) Dynamic localization: As we have seen in the previous
section, the ESAC and Active Search localization approaches

SUBMISSION: THE VISUAL COMPUTER

both appear promising for localizing sport spectators. How-
ever, in our RS dataset, we only evaluated with images of an
empty stadium (for both reconstruction, and localization). The
accuracy results we previously saw from ESAC showed small
errors, which suggest a very accurate alignment to the poses
from the COLMAP reference, from which that method was
trained.

We present a qualitative view of how these results would
be visualized in a realistic scenario, with reconstruction made
from images of an empty stadium, and localization images
taken under different dynamic conditions, such as changes in
lighting and the presence of spectators. For these tests, we use
different images from those previously used, captured during
a live rugby game.

As shown in Figure 8, we can see that both the Active
Search and ESAC approaches have the potential to produce
highly accurate localization. As we do not have ground-
truth poses for these additional images, we are unable to
perform more evaluation on the accuracy. Though, upon visual
inspection of the projected points in Figure 8, both methods
produce very similar results with good overall alignment of
the sparse model to the image. Though these results appear
promising, a more thorough evaluation of the effects of the
dynamic elements would be needed in the future.

Dynamic rugby stadium To test our method in a more
realistic scenario, we extended a dataset which contains hand-
annotated reference points for each image which can be used
as an independent reference to measure reprojection error [54].
The dataset is captured in the same rugby stadium environment
from previous experiments, and is split by three conditions
to test this environment in a range of different dynamic
complexity: Empty, Semi-crowded, and Crowded.

We then ran our experiment again across all four localization
approaches, and present the resulting reprojection errors in
Tables V, VI, and VII. We used the same error metrics outlined
in Section V-B2, with a threshold of 1.5% of the image width
as before (10.8 pixels for Empty cases, and 28.8 pixels for
Semi-crowded and Crowded cases). And example image from
each sub-dataset is shown in Figure 9.

TABLE V
LOCALIZATION RESULTS ON THE EMPTY RUGBY STADIUM DATASET.

Dataset = E'mpty, Test Set Size = 15, Err Thresh = 10.8pz

ESAC (4 Active BoW COLMAP
experts) Search
Reported 15 14 14 15
Actual 15 14 11 15
Err. M (px) 2.87 3.34 3.77 4.72
Err. SD (px) 0.76 0.87 1.70 1.05

VI. DISCUSSION

In this section, we discuss the results of our evaluation
on tracking and localization, a comparison of the tracking
component with ORB-SLAM?2, and the limitations of our
system.

TABLE VI
LOCALIZATION RESULTS ON THE SEMI-CROWDED RUGBY STADIUM
DATASET.

Dataset = Semicrowded, Test Set Size = 32, Err Thresh = 28.8px

ESAC 4 Active BoW COLMAP
experts) Search
Reported 32 28 10 32
Actual 29 22 0 12
Err. M (px) 11.39 11.94 - 21.08
Err. SD (px) 5.52 4.48 - 6.22
TABLE VII

LOCALIZATION RESULTS ON THE CROWDED RUGBY STADIUM DATASET.

Dataset = C'rowded, Test Set Size = 14, Err Thresh = 28.8px

ESAC (4 Active BoW COLMAP
experts) Search
Reported 14 10 3 14
Actual 12 10 0 7
Err. M (px) 12.68 12.28 - 16.07
Err. SD (px) 5.78 6.37 - 6.15

A. Real data tracking

When compared to ORB-SLAM?2 [12], [47], our system is
able to track successfully more often. Most notably, ORB-
SLAM?2 was unable to initialize reliably in the stadium test
videos when 1000 ORB features per frame were used, though
initialization was successful with 2000 features. However,
even with this many features, tracking was lost shortly after
initialization on the Stadium A and B sequences.

In the Stadium environment, there are many repetitive
features from empty seats in the stands. ORB-SLAM2’s failure
to initialize could be due to its use of a feature vocabulary that
quantizes the descriptor space too coarsely, combined with
an over-reliance on feature matching during tracking. In our
SPLAT-based system, we only use a feature vocabulary during
relocalization, and track features frame-to-frame with KLT,
which relies less on correct descriptor matching under these
challenging conditions.

In the Court environment, both approaches work reason-
ably well but interestingly both approaches seem to perform
better with 1000 features per frame. This could be due to
the relatively low resolution of the images compared to the
number of features. An increased number of features can
solve some problems, as in the ORB-SLAM?2 Stadium cases,
but in other scenarios may add unnecessary noise to the
feature matching processes by detecting ORB features at less
dominant keypoints.

One apparent limitation of our system is that we can see
three instances where tracking appears to become less robust
after the relocalization point in Court B and C. While both
approaches could successfully relocalize, our approach lost
tracking for some frames in some instances. This could be
due to the lack of matches to the existing map points after
relocalization. During tracking, and before a tracking failure,
our system is usually able to maintain many 2D-to-3D matches
aided by the robustness of the KLT tracking. However, after
a tracking failure fewer matches could be re-established using
our vocabulary tree based relocalization approach. For future
work, this could be improved such as by using an Active

SUBMISSION: THE VISUAL COMPUTER

12

Active search

Fig. 8. Qualitative results of localization in a dynamic stadium with spectators, and different lighting (Rugby Stadium - Crowded dataset). Both ESAC and
Active Search produce very similar results when aligning the sparse point cloud with the image using the pose outputs.

g

Fig. 9. Samples from our second Rugby Stadium dataset, extended with three conditions. Left to right: Empty, Semi-crowded, and Crowded.

Search [55] based relocalization approach to establish more
correspondences.

B. Synthetic data tracking

The ATE results for ORB-SLAM?2 suggest that increasing
the space size beyond 10 units introduces large variations in
the ATE. Looking at the RPE metric, there is a more steady
increase of error up to approximately radius 15, which is
similar to the point where previous work found the tracking
rate of ORB-SLAM2 began to fail [13]. The large variations
beyond this point are likely due to early tracking failure,
resulting in fewer successfully tracked frames to compare with
the reference poses. Overall, the results suggest that SPLAT
has a lower pose error with both metrics. The error remains
low with respect to space size, without suffering from the
steady RPE error scaling exhibited by ORB-SLAM?2.

C. Stadium localization

The Active Search method of [43] produced robust reg-
istration with the RS dataset, with a higher success rate
compared to our BoW results, and with a faster localization
time. However, Active Search failed completely on the CG
dataset likely due to the low number of points in the sparse
model.

In our initial testing, many results from Active Search
were reported as ‘successfully registered’ while the point
renderings were noticeably misaligned. This could be because
the provided Active Search implementation computes both
intrinsic and extrinsic camera parameters, and often incorrectly
estimates large skew values in the intrinsic matrix. For this
reason, we modified the original implementation of Active
Search to use the same PnP solver as our BoW implementation
[50], [51]. Using this method, we supply a fixed camera matrix
and estimate the pose directly, achieving more consistent
results.

To compare the accuracy between the three methods we
make three comparisons, so we must account for this. We
start with a typical threshold of p = .05 and apply Bonferroni
correction to get an adjusted threshold of p = .016. As each
method has the potential to succeed or fail on each sample
(producing no accuracy output), performing a paired test is
impractical. For this reason, we use two-tailed unpaired ¢-tests
here. We compared three groups of accuracy results: ESAC,
Active Search, and BoW. ESAC (M = 1.91, SD = 1.68)
showed significantly lower geometric error when compared
to Active Search (M = 3.27, SD = 2.00) with p < .0001
and BoW (M = 3.43, SD = 1.81) with p < .0001 in both
cases. However, comparing Active Search to BoW showed no
significant difference, (p = .474).

The smaller error output by ESAC could be due to the
fact that our COLMAP poses are actually a reference and
cannot be regarded as ground-truth. As Active Search and
BoW compute poses independently of the COLMAP training
poses, their error could be attributed to the noise in the point
cloud, whereas ESAC is trained specifically to replicate the
training poses, and is able to refine the point estimates that
were provided in the form of the scene coordinate images. An
example of successful localization from the ESAC approach
are shown in Figure 7.

1) Dynamic stadium localization: The results from this
experiment showed that the key state-of-the-art localization
approaches performed well when localizing under different
environmental conditions to those when the original model was
captured. Active Search, and ESAC both performed robustly
with high localization success rate in all three cases, but ESAC
had a higher success rate while maintaining a similar level of
reprojection error to Active Search.

The BoW approach was much less robust in these con-
ditions, and most cases had failed due to too few matching
features between the query image and the most similar training
image. This result demonstrates that robust localization is

SUBMISSION: THE VISUAL COMPUTER

heavily reliant on a good feature matching strategy.

COLMAP performed well with the empty stadium, with
lower success rate on the Semi-crowded and Crowded datasets
showing a higher mean reprojection error. In these cases,
COLMAP was able to produce a localization result (shown by
high values for ‘# Reported‘ metric) with the failure cases not
quite meeting the success threshold of 1.5% image width. This
is likely related to this method using an internal heuristic for
estimating the focal length for the images, rather than relying
on a prior calibration.

Overall we found that the state-of-the-art approaches are
able to localize within these prior-captured SfM environments
even with the addition of dynamic elements, with good ro-
bustness.

VII. CONCLUSION

In this paper, we presented our work on globally localized
tracking of stationary users for AR. We proposed an overall
pipeline that integrates localization from pre-computed SfM
models with spherical SLAM-based tracking. We compared
our localization and tracking method for stationary users to
state-of-the-art ORB-SLAM?2 in two large, open environments.
Furthermore, we investigated the feasibility of different state-
of-the-art localization method for usage in large sports stadium
environments.

The results from comparing our system to ORB-SLAM?2
suggest that our approach can lead to more robust tracking,
particularly in very large spaces such as sports stadia. Through
our synthetic testing, we saw that our approach also has the
potential to produce more accurate pose results when the true
motion is spherical. We also demonstrated the feasibility of
using our approach in AR scenarios through implementation of
an AR renderer to visualize the registration of the AR content.

In our evaluation of state-of-the-art localization approaches,
we found that the Active Search approach [43] performed
well, as did ESAC [31]. We conclude that ESAC may be
better suited to server-based localization with GPUs, whereas
the Active Search approach has potential to be applied to
localization on mobile device hardware. BoW may be a
better choice for on-device computations for venues where the
capture of large amount of images is not possible and there
is not too much variations in conditions between the captured
dataset and the testing conditions.

The main limitation of our approach is its restriction to
spherical and stationary movements. The point of our sys-
tem is to alleviate the tracking issues that arise in these
stationary scenarios. While we focus on sports spectating
in this paper, there is a typical usage pattern in AR where
users are often stationary when using an AR application [7].
Other application scenarios include an audience in a lecture
hall and even tourists that use their mobile phones to access
information while exploring a single location. However, in all
these scenarios it is possible that users may perform stationary
motion initially, and switch to general motion later (such
as a spectator leaving their seat, for example). However, a
more sophisticated error analysis could automatically detect
this and switch to more traditional SLAM tracking when

sufficiently translational movement is detected. Additionally,
as our solution is targeting mobile devices, future work could
investigate making use of internal motion sensors readily
available to improve the tracking results. Another limitation of
our approach is the robustness of tracking after a relocalization
has taken place; future work could investigate how to acquire
more correspondences to the existing model to improve this.

ACKNOWLEDGMENTS

We thank Animation Research Ltd, Forsyth Barr Stadium,
the Highlanders, Otago Rugby (ORFU), and OptaPerform for
their support. We also thank Mike Denham and Craig Tidey
from the School of Surveying at the University of Otago for
their support in surveying the stadium.

DECLARATIONS
Data Availability Statement

The datasets generated during and/or analyzed during the
current study are available from the corresponding author on
reasonable request.

Funding

This project is supported by an MBIE Endeavour Smart
Ideas grant (UOOX1705) and NSF Award 2144822.

Conflict of Interest Statement

The authors have no competing interests to declare that are
relevant to the content of this article.

REFERENCES

[1] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. 1EEE, 2007, pp. 225-234.

[2] H. Liu, G. Zhang, and H. Bao, “Robust keyframe-based monocular slam
for augmented reality,” in 2016 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR). 1EEE, 2016, pp. 1-10.

[3] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time
panoramic mapping and tracking on mobile phones,” in 2010 IEEE
virtual reality conference (VR). 1EEE, 2010, pp. 211-218.

[4] T. Langlotz, C. Degendorfer, A. Mulloni, G. Schall, G. Reitmayr,
and D. Schmalstieg, “Robust detection and tracking of annotations for
outdoor augmented reality browsing,” Computers & graphics, vol. 35,
no. 4, pp. 831-840, 2011.

[5] S. DiVerdi, J. Wither, and T. Hollerer, “Envisor: Online environment
map construction for mixed reality,” in 2008 IEEE Virtual Reality
Conference, 2008, pp. 19-26.

[6] S. Zollmann, T. Langlotz, M. Loos, W. H. Lo, and L. Baker, “ARSpec-
tator: Exploring augmented reality for sport events,” in SIGGRAPH Asia
2019 Technical Briefs, 2019, pp. 75-78.

[7]1 J. Grubert, T. Langlotz, and R. Grasset, “Augmented reality browser
survey,” Graz University of Technology, Tech. Rep., 2012.

[8] T. Langlotz, T. Nguyen, D. Schmalstieg, and R. Grasset, “Next-
generation augmented reality browsers: rich, seamless, and adaptive,”
Proceedings of the IEEE, vol. 102, no. 2, pp. 155-169, 2014.

[9] T. Langlotz, D. Wagner, A. Mulloni, and D. Schmalstieg, “Online

creation of panoramic augmented reality annotations on mobile phones,”

IEEE pervasive computing, vol. 11, no. 2, pp. 56-63, 2010.

T. Langlotz, M. Zingerle, R. Grasset, H. Kaufmann, and G. Reitmayr,

“Ar record&replay: situated compositing of video content in mobile

augmented reality,” in Proceedings of the 24th Australian Computer-

Human Interaction Conference, 2012, pp. 318-326.

J. Ventura, “Structure from motion on a sphere,” in European Conference

on Computer Vision. Springer, 2016, pp. 53-68.

[10]

(11]

SUBMISSION: THE VISUAL COMPUTER

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE transactions on
robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

L. Baker, J. Ventura, S. Zollmann, S. Mills, and T. Langlotz, “SPLAT:
Spherical localization and tracking in large spaces,” in 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR). IEEE,
2020, pp. 809-817.

C. Sweeney, A. Holynski, B. Curless, and S. M. Seitz, “Structure from
motion for panorama-style videos,” arXiv preprint arXiv:1906.03539,
2019.

L. Baker, S. Mills, S. Zollmann, and J. Ventura, “CasualStereo: Casual
capture of stereo panoramas with spherical structure-from-motion,” in
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, 2020, pp. 782-790.

J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg, “Global localiza-
tion from monocular SLAM on a mobile phone,” IEEE transactions on
visualization and computer graphics, vol. 20, no. 4, pp. 531-539, 2014.
C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit,
“Instant outdoor localization and slam initialization from 2.5 d maps,”
IEEE Annals of the History of Computing, no. 11, pp. 1309-1318, 2015.
A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Proceedings Ninth IEEE International Conference
on Computer Vision, 2003, pp. 1403-1410 vol.2.

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052-1067, 2007.

T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: a
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision and
Applications, vol. 9, no. 1, p. 16, 2017.

S. J. Prince, K. Xu, and A. D. Cheok, “Augmented reality camera track-
ing with homographies,” IEEE Computer graphics and Applications,
vol. 22, no. 6, pp. 39-45, 2002.

M. Hadian and S. Kasaei, “Fast homography refinement in soccer
videos,” in 2015 9th Iranian Conference on Machine Vision and Image
Processing (MVIP). 1EEE, 2015, pp. 185-188.

M. Billinghurst, H. Kato, and I. Poupyrev, “The magicbook-moving
seamlessly between reality and virtuality,” IEEE Computer Graphics
and applications, vol. 21, no. 3, pp. 6-8, 2001.

D. Wagner, T. Langlotz, and D. Schmalstieg, “Robust and unobtrusive
marker tracking on mobile phones,” in 2008 7th IEEE/ACM Interna-
tional Symposium on Mixed and Augmented Reality. 1EEE, 2008, pp.
121-124.

R. Azuma, “Tracking requirements for augmented reality,” Communica-
tions of the ACM, vol. 36, no. 7, pp. 50-51, 1993.

N. Y. Khan and B. McCane, “Smartphone application for indoor scene
localization,” in Proceedings of the 14th international ACM SIGACCESS
conference on Computers and accessibility, 2012, pp. 201-202.

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision (ECCV), 2016.

P. David, D. DeMenthon, R. Duraiswami, and H. Samet, “Simultaneous
pose and correspondence determination using line features,” in Com-
puter Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, vol. 2. 1EEE, 2003, pp. II-II.

A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional
network for real-time 6-DOF camera relocalization,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 2938—
2946.

E. Brachmann and C. Rother, “Expert sample consensus applied to
camera re-localization,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2019, pp. 7525-7534.

T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg,
D. Safari, M. Okutomi, M. Pollefeys, J. Sivic et al., “Benchmarking 6dof
outdoor visual localization in changing conditions,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 8601-8610.

D. Gélvez-Lopez and J. D. Tardés, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188-1197, 2012.

R. Muiioz-Salinas and R. Medina-Carnicer, “UcoSLAM: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,” Pattern Recognition, vol. 101, p. 107193, 2020.

(35]

[36]

[37]

[38]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in 2011 International conference on
computer vision. leee, 2011, pp. 2564-2571.

J.-Y. Bouguet et al., “Pyramidal implementation of the affine Lucas
Kanade feature tracker description of the algorithm,” Intel corporation,
vol. 5, no. 1-10, p. 4, 2001.

D. Nistér, “Preemptive RANSAC for live structure and motion estima-
tion,” Machine Vision and Applications, vol. 16, no. 5, pp. 321-329,
2005.

J. Sklansky, “Finding the convex hull of a simple polygon,” Pattern
Recognition Letters, vol. 1, no. 2, pp. 79-83, 1982.

C. Engels, H. Stewénius, and D. Nistér, “Bundle adjustment rules,”
Photogrammetric computer vision, vol. 2, no. 32, 2006.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the seventh IEEE international conference on computer
vision, vol. 2. Ieee, 1999, pp. 1150-1157.

X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 25, no. 8, pp.
930-943, 2003.

Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using
prioritized feature matching,” in European conference on computer
vision. Springer, 2010, pp. 791-804.

T. Sattler, B. Leibe, and L. Kobbelt, “Improving image-based local-
ization by active correspondence search,” in European conference on
computer vision. Springer, 2012, pp. 752-765.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91-110,
2004.

E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold,
and C. Rother, “DSAC-differentiable RANSAC for camera localization,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 6684-6692.

E. Brachmann and C. Rother, “Learning less is more-6D camera
localization via 3D surface regression,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4654-4662.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM?2: An open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

E. Karami, S. Prasad, and M. Shehata, “Image matching using SIFT,
SUREF, BRIEF and ORB: performance comparison for distorted images,”
arXiv preprint arXiv:1710.02726, 2017.

M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 573-580.

M. Grupp, “evo: Python package for the evaluation of odometry and
SLAM.” https://github.com/MichaelGrupp/evo, 2017, [Software; odom-
etry benchmarking tools].

S. Gul, L. Baker, R. Boult, S. Mills, and S. Zollmann, “Expert sample
consensus applied to camera localization for ar sports spectators,” in
2021 36th International Conference on Image and Vision Computing
New Zealand (IVCNZ). 1EEE, 2021, pp. 1-6.

T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized
matching for large-scale image-based localization,” IEEE transactions
on pattern analysis and machine intelligence, vol. 39, no. 9, pp. 1744—
1756, 2016.

SUBMISSION: THE VISUAL COMPUTER

Lewis Baker is a PhD graduand at the University
of Otago. Lewis has been a member of the Graphics
and Vision, and Human Computer Interaction labs
at Otago since starting his postgraduate studies, and
since then has worked on several projects within the
subjects of Computer Vision, Graphics, and Aug-
mented Reality. His main research interests are in
tracking and localization, particularly in challenging
edge cases such as stationary applications and large
environments, which form the basis for his PhD
topic.

Jonathan Ventura is an Associate Professor at
California Polytechnic State University. He received
his Ph.D. in Computer Science from the University
of California, Santa Barbara in 2012. Previously, he
was an assistant professor at University of Colorado
Colorado Springs and before that a postdoctoral
researcher with the Institute for Computer Graphics
and Vision at Graz University of Technology in
Austria. His main research focus is 3D computer
vision for virtual and augmented reality.

Tobias Langlotz is an Associate Professor at the
University of Otago. Tobias was previously a senior
researcher at the Institute for Computer Graphics
and Vision (Graz University of Technology, Aus-
tria) where he also obtained his PhD. Tobias main
research interest is Vision Augmentations and Com-
putational Glasses utilizing AR technology, spon-
taneous interaction for wearable AR systems, and
nomadic mobile telepresence solutions, where he
works at the intersection of HCI, Computer Graph-
ics, Computer Vision and Ubiquitous Computing.

Shazia Gul is currently a PhD student at the
University of Otago. During her master’s thesis,
she conducted research on the subject of Computer
Vision. Before her doctoral studies., she has devel-
oped several mobile applications and obtained an
interest in the field of Augmented Reality and Vir-
tual Reality. Her research investigates tracking and
localization for Augmented Reality in large dynamic
environments, particularly for sports spectating.

Steven Mills is an Associate Professor at the Uni-
versity of Otago, where he gained his PhD in 2000.
Between being a student and an academic at Otago
he worked in a variety of commercial research and
development roles and as a lecturer at The University
of Nottingham. His interests lie in computer vision,
particularly 3D reconstruction from images and ap-
plications with cultural and heritage value.

15

Stefanie Zollmann is an Associate Professor at the
University of Otago in New Zealand. Before, she
worked at Animation Research Ltd on XR visualiza-
tion and tracking technology for sports broadcasting.
She worked as postdoctoral researcher at the Institute
for Computer Graphics and Vision (Graz University
of Technology) where she also obtained a PhD
degree in 2013. Her main research interests are XR
for sports and media, visualization techniques for
augmented reality, but also include capturing for XR
and immersive experiences.

