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Abstract—State-of-the-art neuromorphic computing architec-
tures to date suffer from interconnect scalability required for
large-scale neural processing. We present a high-performance and
low-overhead multicast network-on-chip (NoC) architecture for
hierarchical address event routing (Multicast-HiAER) suitable for
large-scale reconfigurable neuromorphic systems. Each building
block of this efficient NoC architecture consists of several
multi-cast advanced high-performance buses (mAHB) running in
parallel for high-bandwidth inter-core spike event transmission.
This architecture for scalable event routing can help to implement
brain-scale sparse neural network connectivity distributed across
neuromorphic processing cores, with network constraints typical
of locally dense and globally sparse neuron connectivity. For a
demonstration using a Xilinx Virtex Ultrascale VU37p FPGA, we
have shown an 8×8 grid of mAHBs running at 512MHz clock
performing Level-1 and Level-2 inter-core communication at top
bandwidth of 420M events per second per 128k neuron node in
the hierarchy. This peak absolute bandwidth supports spike event
registration with sub-ms latencies under worst-case conditions of
all postsynaptic destinations being off-core.

Index Terms—Neuromorphic Computing, Multicasting
Network-On-Chip, Advanced High-Performance Bus (AHB),
Address-event-representation (AER), Scalable AER

I. INTRODUCTION

Neuromorphic computing has gained tremendous interest in
recent years by addressing the computational bottleneck in
current high-performance computing systems limited to a
small number of cores. Mapping very large-scale models of the
biological brain into scalable silicon architectures is a complex
challenge. Apart from the scaling challenge in area, power,
and throughput, silicon models should also support dynamic
reconfigurability of synaptic connectivity in neuronal net-
works. As the axons in biological neural networks carry action
potentials (spikes), similar distributed communication needs to
be mimicked in neuromorphic chips. Currently, most of the
neuromorphic chips implement this inter-core communication
via an Address-event representation (AER) protocol, where
each core, containing an array of neurons, send the source
or destination neuron address on a shared digital bus when
they spike. AER-style communication with synaptic routing
tables in source and destination cores provides flexibility
and reconfigurability by supporting dynamical assignment of
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synaptic connections between neurons in different cores. This
is extremely crucial for reprogrammable neuromorphic cores
as well as adaptive updates of synaptic strength and neuronal
connectivity. AER-based inter-core connectivity thus presents
a suitable framework for building neuromorphic systems for
end-to-end sensory-motor tasks comprised of multichip inte-
gration of bio-inspired silicon retinae, silicon cochlea, silicon
cortex and connecting them over a unified interface to ex-
change neural events.

Bandwidth requirements for AER bus to communicate large
number of events across core are huge, thus scaling of
neuromorphic systems has proven to be a challenge. Several
neuromorphic chips have addressed this issue by incorpo-
rating differing large-scale network-on-chip (NoC) architec-
tures. Neurogrid [1] [2] has linear grid and tree topologies
for point-to-point communication using multiple AER buses
based on global addresses of neurons. Certain architectures
implementing multicasting mesh AER [3] store router-to-
router connectivity in local routing tables and suffer from
extreme bandwidth required for a larger number of cores. IBM
TrueNorth [4] implements a 2D-mesh of 64x64 cores each
with 256 crossbar connected neurons. SpiNNaker [5] [6] has
a torus network-on-chip for scalability by incorporating global
addressing strategy at the cost of a larger local routing table.
However, all these implementations are not very memory-
efficient with high cost of routing tables and reduced flexibility
and expandability to scale up to brain-scale networks. HiAER
[7] addresses this problem by partitioning a network into
multiple hierarchies and incorporating a tree-based AER NoC
using smaller routing tables and leveraging relay neurons. This
is suitable for locally dense and globally sparse connections by
keeping bandwidth the same even when having more cores at a
higher hierarchy. Usually (Pre-synaptic address, Post-synaptic
address, Synaptic weight) is sent over the AER bus for
maximum flexibility in connectivity. However, there have been
various memory-efficient reconfigurable connectivity strate-
gies [8] that have been developed to store synaptic weights
at the destination cores, sending only destination address over
AER bus, to gain performance with reduced complexity.

Here we demonstrate Multicast-HiAER, which is more
scalable and flexible than HiAER to implement sparse neu-
ronal networks hierarchically partitioned into neuromorphic
cores. It further boosts the NoC performance by allowing



simultaneous event transmission across different hierarchies.
This also reduces the latency for event propagation between
two cores separated in the hierarchy. We also optimize our
multicast bus design by incorporating extreme reduction of
the routing complexity for AER communication. For each
individual multi-cast bus segment that implements AER-
based routing protocol for sending spike destination address,
we modified the industry-standard Advanced Microcontroller
Bus Architecture (AMBA5) Advanced High-performance bus
(AHB) [9] protocol, while still adhering to a similar, but
simpler handshaking mechanism. We refer to each multicast
AHB bus as mAHB.

II. MULTICAST-HIAER ARCHITECTURE

Our designed NoC consists of hierarchically arranged par-
allel multicast buses for connecting cores at different levels. In
each level of the hierarchy, total communication bandwidth is
the same, as opposed to other NoC architecture where higher-
level links are most congested. For illustration, 3 levels of
communication with an expanded view of a 2D grid of 8×8
cores interconnected by 8 level1 (L1) bus and 8 level2 (L2)
bus as shown in Fig. 1. The 2D grid consists of 8 clusters,
where each cluster consists of 8 cores that communicate
between each other with the dedicated L1 mAHB. As a
means for L2 communication, only the same core IDs in
every cluster communicate with each other using similarly
dedicated mAHB. In L3 communication, only the same core
IDs in each 2D grid are connected over a mAHB. Thus,
for an arrangement of 8×8×8 cores, we need 64 L3 buses
(each connecting 8 cores vertically) running in parallel. This
hierarchically structured communication allows keeping the
network bandwidth requirement the same even if we scale the
number of cores. As compared to an all-to-all mesh connection
where bandwidth NoC requirement increases linearly with the
number of cores and design complexity is higher and where
simple tree connection often congests the root node routers,
Multicast-HiAER offers a scalable design with simpler routing
blocks. Our architecture supports simultaneous L1, L2, and L3
event transfer, in contrast to previous HiAER [7] architecture
which has higher latency by comparison. For simplicity, hence-
forth we will only discuss hardware architecture and network
connectivity with only 2 levels of hierarchy.

An example of inter-core network connectivity and the
mapping into the NoC architecture with the simultaneous or-
thogonal routing mechanism is shown in Fig. 2. For supporting
such hierarchical and orthogonal networking architecture, the
actual network compilation to place neurons into this hier-
archically structured connectivity plays critical importance.
In case there are any diagonal connections even after the
compilation optimization, it is realized by a combination of L1
and L2 messaging via a relay neuron [7]. The compiler should
handle the network partitioning and placement of neurons
in such a way that, only the cores connected locally within
their own cluster have maximal local connectivity and inter-
cluster diagonal connectivity (via relay neurons) is minimized

Fig. 1. High-level conceptualized diagram of NoC connecting 8×8×8 cores
with multiple mAHBs at L1 (in purple), L2 (in blue) and L3 (in green)
communication. This NoC architecture supports concurrent transfer of L1,
L2 and L3 messages , thus saving the latency and improving performance
through simpler design compared to 2D mesh, torus or 2D tree architectures.

Fig. 2. Example partitioning of a neuron connectivity graph and their mapping
into final placement and routing using our Multicast-HiAER approach.

[10]. This neural compiler optimization is not in the scope of
discussion in this paper.

Each mAHB is implemented as a multicasting architecture
where all cores take their turn to write into the bus in a time-
multiplexed manner, while all the other cores listen to the
written spike packet. Efficiency in the networking is obtained
by using mask bits to select the correct destination cores. Each
core stores the routing table containing instruction codes for
each neuron. Description of different fields in the instruction
code for i.e. an L1 or L2 message is shown in Table. I, which
is decoded to route the outgoing event in the appropriate
hierarchy. There are 2 router interfaces (RI) in each core
dedicated for Level 1 and Level 2 messages. The combined
datapath for L1 and L2 bus router interface, spike FIFOs (used
to store off-core events), and external event input processor is
shown in Fig. 3. Level 1 spike FIFOs and Level 2 spike FIFOs
store L1 and L2 outgoing events when any pre-synaptic neuron
having off-core destinations fires.



TABLE I
INSTRUCTION CODE FOR EVENT TRANSFER AT DIFFERENT NOC LEVELS

Level-1
off-core event

Op-code
2b (10)

Destination Input
(17b Address

for cores with 128k neurons)

Mask Bits
(8b for selecting

the targets for multicast)

Level-2
off-core event

Op-code
2b (11)

Destination Input
(17b Address

for cores with 128k neurons)

Mask Bits
(8b for selecting

the targets for multicast)

III. MODIFIED MULTICAST AHB (MAHB) ARCHITECTURE

For higher performance and lower complexity in the NoC,
we implemented an AER multicasting bus architecture mAHB
that follows a similar handshaking protocol as AHB, but
consists of a reduced number of lines for low-power and low-
congestion implementation. As this is a multicasting architec-
ture with mask bits in the data frame, all cores listening to the
data on the bus can decode the received mask bits to determine
if the spike intended is for them. Thus, we have removed the
address lines and address decoders, which is an important and
intensive part of the original AMBA AHB architecture. This
provides us a very compact data packet and flexibility to design
very simple peripheral circuits to perform the routing.

Each RI has a separate initiator and target interface, data and
control signals of each are described in detail in table II and
III. The initiator interface in each RI sends out the spikes to all
peer cores when it gets access to the bus. The target interface
in each RI receives the spike packets (destination address and
mask bits) and sends out the address into the external event
processor if the mask bit is “1”.

Peripheral circuits needed for simplified multicast AHB
consist of an arbiter, data mux, and control mux, as shown
in Fig. 4. Arbiter searches for all the initiators requesting
the bus with HBUSREQ signals and grants the bus to a
single master using an arbitration scheme. After the current
initiator is done with the transaction, the arbiter selects the
next initiator for access to the bus. Depending on the core
ID of the initiator having the bus access, the data multiplexer
and control multiplexer selects the appropriate initiator signals
to send to all targets. Control signals HREADY and HRESP
from all slaves are combined to generate a single control line
to inform the initiators about their availability and transaction
status. Each initiator, target interface, and arbiter consists of
optimized finite-state-machines (FSMs) for very low overheads
and minimal hardware complexity.

TABLE II
INITIATOR INTERFACE SIGNALS AND THEIR DIRECTIONS

Signal Direction Bitwidth description
HWDATA Out 32 Write databus sent
HBUSREQ Out 1 Initiator requests the bus
HGRANT In 1 Bus Access granted
HTRANS Out 2 IDLE/BUSY/Active transaction
HBURST Out 4 Used for burst transfers
HRESP In 2 Transfer status received
HREADY In 1 Targets ready

Fig. 3. Dataflow between core and mAHBs for spike transmission after event
generation, and spike processing after event reception, both via dedicated
mAHBs and router interfaces for each hierarchy. Separate initiator and target
interfaces ensure the operation of spike transmission and spike reception
within the same control logic and a simplified hardware realization for router.

Fig. 4. Routing interfaces and peripheral circuits for supporting multi-cast
data transfer over the mAHB protocol. Only a single router has the bus write
access at any given time, while all the other cores reading from it.

TABLE III
TARGET INTERFACE SIGNALS AND THEIR DIRECTIONS

Signal Direction Bitwidth description
HWDATA In 32 Read Databus received
HTRANS In 2 IDLE/BUSY/Active transaction
HBURST In 4 Used for burst transfers
HRESP Out 2 Data Transfer status
HREADY Out 1 Availability for new packets

IV. PERFORMANCE RESULTS

FPGA resource utilization for the NoC backbone for L1
and L2 communication, containing 16 mAHBs and peripheral
circuits is shown in table IV.

For a small-world graph with significant randomness where
on-core and off-core connections are equally likely, we com-
pare the synaptic event throughput and average latency per



TABLE IV
FPGA RESOURCE UTILIZATION SUMMARY FOR 16 MAHBS

(SYNTHESIZED ON A XILINX VIRTEX ULTRASCALE VU37P FPGA)

Resources Usage
CLB LUTs 3120
CLB Registers 4032
F7 Muxes 608

Fig. 5. Synaptic event throughput (per sec per 128-k neuron node) comparison
between HiAER and Multicast-HiAER for various communication hierarchies.

spike metrics with previously benchmarks in HiAER [7].
Fig. 5 represents the event throughput per 128k-neuron node
comparison between HiAER and Multicast-HiAER. Here, we
observe that Multicast-HiAER provides a linear scaling in total
event throughput, as we increase the number of hierarchies.
The highest possible bandwidth out of 2-level 8×8 grid is
128M events per sec per 128k Neuron mode (when burst
length=1). Therefore, it can handle the worst-case spike rate
of 1000 Hz with 100% off-core messages. As compared to
HiAER, where NoCs are arranged in a tree fashion and
upper hierarchy messages still have to cross through the lower
hierarchy routers, Multicast-HiAER provides a 10x more event
throughput. This improvement is also due to the multicast rout-
ing topology which drastically decreases the communication
traffic. Due to the orthogonal arrangement of mAHBs, we also
obtain an almost linear scaling of throughput with the number
of hierarchies.

We also compare the average latency per spike between
HiAER and Multicast-HiAER in Fig. 6 in order to calcu-
late the total communication overhead due to the shared
mAHBs where each initiator interface takes its turn in a
time-multiplexed manner using arbitration logic. Because of
simultaneous event transfers and separate event FIFOs, the
average latency for this NoC is drastically reduced from the
previous work. All the eight cores connected to each mAHB
have equal chances to get access to mAHB if they have any
pending outgoing events. Also, there is some control overhead
due to the initiator and target handshaking via READY and
RESP signals. As the average latency is highly dependent on
spike rate as well, we show the average latency numbers at
different spiking rates. We see an overall reduction of 100% in
average latency. This improvement is because of simultaneous
multi-level event transfers possible by orthogonal mAHBs.

Fig. 6. Average spike latency (in us) comparison between HiAER and
Multicast-HiAER for different spiking rates (all neuron spiking at same rate).

Fig. 7. Synaptic event throughput (per sec per 128-k neuron node) with
Multicast-HiAER for messaging with different burst lengths.

While Fig. 5 and Fig. 6 show the number with spikes
transaction burst length of 1, the synaptic event throughput is
further enhanced if we utilize the higher burst lengths available
using HBURST lines. As shown in Fig. 7, total synaptic event
throughput per sec per 128k-neuron core improves from 128M
to 420M events/sec with a burst size of 16×. Higher burst
size hides the overall control overhead for HREADY/HRESP
handshaking between initiators and targets, thus offering low
latency in large-scale sparse connections. This bandwidth
enhancement helps us to scale the number of neurons per core
while ensuring communication of all events on time.

V. CONCLUSION

We presented a very high-performance network-on-chip that
provides massive bandwidth for interconnecting neuromorphic
cores with a large number of neurons and reconfigurable
connectivity between them through AER. Our multicast AHB
(mAHB) architecture handles spike transmission at high effi-
ciency allowing increased bandwidth and reduced spike trans-
mission latency beyond what’s observed from prior state-of-
the-art neuromorphic chips. This NoC architecture can further
scale to interconnect extremely large neuromorphic compute
clusters while maintaining the reduced hardware cost and
complexity to realize that.
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