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A compute-in-memory chip based on 
resistive random-access memory

   

Weier Wan1,2 ✉, Rajkumar Kubendran2,3, Clemens Schaefer4, Sukru Burc Eryilmaz1, 

Wenqiang Zhang5, Dabin Wu5, Stephen Deiss2, Priyanka Raina1, He Qian5, Bin Gao5 ✉, 

Siddharth Joshi2,4 ✉, Huaqiang Wu5 ✉, H.-S. Philip Wong1 ✉ & Gert Cauwenberghs2 ✉

Realizing increasingly complex artificial intelligence (AI) functionalities directly on 

edge devices calls for unprecedented energy efficiency of edge hardware. 

Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 

promises to meet such demand by storing AI model weights in dense, analogue and 

non-volatile RRAM devices, and by performing AI computation directly within RRAM, 

thus eliminating power-hungry data movement between separate compute and 

memory2–5. Although recent studies have demonstrated in-memory matrix-vector 

multiplication on fully integrated RRAM-CIM hardware6–17, it remains a goal for a 

RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to 

support diverse models and software-comparable accuracy. Although efficiency, 

versatility and accuracy are all indispensable for broad adoption of the technology, 

the inter-related trade-offs among them cannot be addressed by isolated 

improvements on any single abstraction level of the design. Here, by co-optimizing 

across all hierarchies of the design from algorithms and architecture to circuits and 

devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers 

versatility in reconfiguring CIM cores for diverse model architectures, energy 

efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips 

across various computational bit-precisions, and inference accuracy comparable to 

software models quantized to four-bit weights across various AI tasks, including 

accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification,  

84.7-percent accuracy on Google speech command recognition20, and a 70-percent 

reduction in image-reconstruction error on a Bayesian image-recovery task.

Early research in the area of resistive random-access memory (RRAM) 

compute-in-memory (CIM) focused on demonstrating artificial intel-

ligence (AI) functionalities on fabricated RRAM devices while using 

off-chip software and hardware to implement essential functionali-

ties such as analogue-to-digital conversion and neuron activations 

for a complete system2,3,6,20–27. Although these studies proposed vari-

ous techniques to mitigate the impacts of analogue-related hardware 

non-idealities on inference accuracy, the AI benchmark results reported 

were often obtained by performing software emulation based on char-

acterized device data3,5,21,24. Such an approach often overestimates 

accuracies compared with fully hardware-measured results owing to 

incomplete modelling of hardware non-idealities.

More recent studies have demonstrated fully integrated RRAM 

complementary metal–oxide–semiconductor (CMOS) chips capable 

of performing in-memory matrix-vector multiplication (MVM)6–17. 

However, for a RRAM-CIM chip to be broadly adopted in practical 

AI applications, it needs to simultaneously deliver high energy effi-

ciency, the flexibility to support diverse AI model architectures and 

software-comparable inference accuracy. So far, there has not been 

a study aimed at simultaneously improving all these three aspects 

of a design. Moreover, AI application-level benchmarks in previous 

studies have limited diversity and complexity. None of the studies 

have experimentally measured multiple edge AI applications with 

complexity matching those in MLPerf Tiny, a commonly used bench-

mark suite for edge AI hardware28. The challenge arises from the 

inter-related trade-offs between efficiency, flexibility and accuracy. 

The highly-parallel analogue computation within RRAM-CIM archi-

tecture brings superior efficiency, but makes it challenging to realize 

the same level of functional flexibility and computational accuracy 

as in digital circuits. Meanwhile, attaining algorithmic resiliency to 

hardware non-idealities becomes more difficult for more complex AI 

tasks owing to using less over-parameterized models on the edge29,30.

To address these challenges, we present NeuRRAM, a 48-core 

RRAM-CIM hardware encompassing innovations across the full 

stack of the design. (1) At the device level, 3 million RRAM devices 

with high analogue programmability are monolithically integrated 

with CMOS circuits. (2) At the circuit level, a voltage-mode neuron 

circuit supports variable computation bit-precision and activation 
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functions while performing analogue-to-digital conversion at low 

power consumption and compact-area footprint. (3) At the archi-

tecture level, a bidirectional transposable neurosynaptic array 

(TNSA) architecture enables reconfigurability in dataflow direc-

tions with minimal area and energy overheads. (4) At the system 

level, 48 CIM cores can perform inference in parallel and supports 

various weight-mapping strategies. (5) Finally, at the algorithm 

level, various hardware-algorithm co-optimization techniques 

mitigate the impact of hardware non-idealities on inference accu-

racy. We report fully hardware-measured inference results for a 

range of AI tasks including image classifications using CIFAR-1019 

and MNIST18 datasets, Google speech command recognition20 

and MNIST image recovery, implemented with diverse AI models 

including convolutional neural networks (CNNs)31, long short-term 

memory (LSTM)32 and probabilistic graphical models33 (Fig. 1e). 

The chip is measured to achieve an energy-delay product (EDP) 

lower than previous state-of-the-art RRAM-CIM chips, while it oper-

ates over a range of configurations to suit various AI benchmark 

applications (Fig. 1d).

Reconfigurable RRAM-CIM architecture

A NeuRRAM chip consists of 48 CIM cores that can perform computa-

tion in parallel. A core can be selectively turned off through power gat-

ing when not actively used, whereas the model weights are retained by 

the non-volatile RRAM devices. Central to each core is a TNSA consisting 

of 256 × 256 RRAM cells and 256 CMOS neuron circuits that implement 

analogue-to-digital converters (ADCs) and activation functions. Addi-

tional peripheral circuits along the edge provides inference control 

and manages RRAM programming.

The TNSA architecture is designed to offer flexible control of dataflow 

directions, which is crucial for enabling diverse model architectures with 

different dataflow patterns. For instance, in CNNs that are commonly 

applied to vision-related tasks, data flows in a single direction through 

layers to generate data representations at different abstraction levels; in 

LSTMs that are used to process temporal data such as audio signals, data 

travel recurrently through the same layer for multiple time steps; in proba-

bilistic graphical models such as a restricted Boltzmann machine (RBM), 

probabilistic sampling is performed back and forth between layers until 

the network converges to a high-probability state. Besides inference, the 

error back-propagation during gradient-descent training of multiple AI 

models requires reversing the direction of dataflow through the network.

However, conventional RRAM-CIM architectures are limited to per-

form MVM in a single direction by hardwiring rows and columns of the 

RRAM crossbar array to dedicated circuits on the periphery to drive 

inputs and measure outputs. Some studies implement reconfigurable 

dataflow directions by adding extra hardware, which incurs substantial 

energy, latency and area penalties (Extended Data Fig. 2): executing 

bidirectional (forwards and backwards) dataflow requires either dupli-

cating power-hungry and area-hungry ADCs at both ends of the RRAM 

array11,34 or dedicating a large area to routing both rows and columns 

of the array to shared data converters15; the recurrent connections 

require writing the outputs to a buffer memory outside of the RRAM 

array, and reading them back for the next time-step computation35.

The TNSA architecture realizes dynamic dataflow reconfigurability 

with little overhead. Whereas in conventional designs, CMOS peripheral 

circuits such as ADCs connect at only one end of the RRAM array, the 

TNSA architecture physically interleaves the RRAM weights and the 

CMOS neuron circuits, and connects them along the length of both 

rows and columns. As shown in Fig. 2e, a TNSA consists of 16 × 16 of 
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Fig. 1 | Design methodology and main contributions of the NeuRRAM chip. 

a, Cross-layer co-optimizations across the full stack of the design enable 

NeuRRAM to simultaneously deliver high versatility, computational efficiency 

and software-comparable inference accuracy. b, Micrograph of the NeuRRAM 

chip. c, Reconfigurability in various aspects of the design enables NeuRRAM to 

implement diverse AI models for a wide variety of applications. d, Comparison 

of EDP, a commonly used energy-efficiency and performance metric among 

recent RRAM-based CIM hardware. e, Fully hardware-measured inference 

accuracy on NeuRRAM is comparable to software models quantized to 4-bit 

weights across various AI benchmarks.
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such interleaved corelets that are connected by shared bit-lines (BLs) 

and word-lines (WLs) along the horizontal direction and source-lines 

(SLs) along the vertical direction. Each corelet encloses 16 × 16 RRAM 

devices and one neuron circuit. The neuron connects to 1 BL and 1 SL 

out of the 16 BLs and the 16 SLs that pass through the corelet, and is 

responsible for integrating inputs from all the 256 RRAMs connecting 

to the same BL or SL. Sixteen of these RRAMs are within the same corelet 

as the neuron; and the other 240 are within the other 15 corelets along 

the same row or column. Specifically, Fig. 2f shows that the neuron 

within corelet (i, j) connects to the (16i + j)th BL and the (16j + i)th SL. 

Such a configuration ensures that each BL or SL connects uniquely to 

a neuron, while doing so without duplicating neurons at both ends of 

the array, thus saving area and energy.

Moreover, a neuron uses its BL and SL switches for both its input and 

output: it not only receives the analogue MVM output coming from BL 

or SL through the switches but also sends the converted digital results 

Fig. 2 | Reconfigurable architecture of the NeuRRAM chip. a, Multi-core 

architecture of the NeuRRAM chip, and various ways, labelled (1) to (6), to map 

neural-network layers onto CIM cores. b, Zoomed-in chip micrograph on a 

single CIM core. c, A cross-sectional transmission electron microscopy image 

showing the layer stack of the monolithically integrated RRAM and CMOS.  

d, Block diagram of a CIM core. A core consists of a TNSA, drivers for BLs, WLs, 

and SLs, registers that store MVM inputs and outputs, a LFSR pseudo-random 

number generator (PRNG), and a controller. During the MVM input stage, the 

drivers convert register inputs (REG) and PRNG inputs (PRN) to analogue 

voltages and send them to TNSA; during the MVM output stage, the drivers 

pass digital outputs from neurons back to registers through REG. e, The 

architecture of a TNSA consists of 16 × 16 corelets with interleaving RRAM 

weights and CMOS neurons. Each neuron integrates inputs from 256 RRAMs 

connecting to the same horizontal BL or vertical SL. f, Each corelet contains 

16 × 16 RRAMs and 1 neuron. The neuron connects to 1 of the 16 BLs and 1 of the 

16 SLs that pass through the corelet, and can use a BL and a SL for both its input 

and output. g, The TNSA can be dynamically configured for MVM in forwards, 

backwards or recurrent directions. h, Differential input and differential output 

schemes used to implement real-valued weights during forwards and 

backwards MVMs. Weights are encoded as the differential conductance 

between two RRAM cells on adjacent rows (G+ and G-).
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to peripheral registers through the same switches. By configuring 

which switch to use during the input and output stages of the neuron, 

we can realize various MVM dataflow directions. Figure 2g shows the 

forwards, backwards and recurrent MVMs enabled by the TNSA. To 

implement forwards MVM (BL to SL), during the input stage, input 

pulses are applied to the BLs through the BL drivers, get weighted by the 

RRAMs and enter the neuron through its SL switch; during the output 

stage, the neuron sends the converted digital outputs to SL registers 

through its SL switch; to implement recurrent MVM (BL to BL), the neu-

ron instead receives input through its SL switch and sends the digital 

output back to the BL registers through its BL switch.

Weights of most AI models take both positive and negative values. We 

encode each weight as difference of conductance between two RRAM 

cells on adjacent rows along the same column (Fig. 2h). The forwards 

MVM is performed using a differential input scheme, where BL drivers 

send input voltage pulses with opposite polarities to adjacent BLs. The 

backwards MVM is performed using a differential output scheme, where 

we digitally subtract outputs from neurons connecting to adjacent BLs 

after neurons finish analogue-to-digital conversions.

To maximize throughput of AI inference on 48 CIM cores, we imple-

ment a broad selection of weight-mapping strategies that allow us to 

exploit both model parallelism and data parallelism (Fig. 2a) through 

multi-core parallel MVMs. Using a CNN as an example, to maximize 

data parallelism, we duplicate the weights of the most computation-

ally intensive layers (early convolutional layers) to multiple cores for 

parallel inference on multiple data; to maximize model parallelism, 

we map different convolutional layers to different cores and perform 

parallel inference in a pipelined fashion. Meanwhile, we divide the lay-

ers whose weight dimensions exceed the RRAM array size into multiple 

segments and assign them to multiple cores for parallel execution.  

A more detailed description of the weight-mapping strategies is pro-

vided in Methods. The intermediate data buffers and partial-sum accu-

mulators are implemented by a field-programmable gate array (FPGA) 

integrated on the same board as the NeuRRAM chip. Although these 

digital peripheral modules are not the focus of this study, they will even-

tually need to be integrated within the same chip in production-ready 

RRAM-CIM hardware.

Efficient voltage-mode neuron circuit

Figure 1d and Extended Data Table 1 show that the NeuRRAM chip 

achieves 1.6-times to 2.3-times lower EDP and 7-times to 13-times 

higher computational density (measured by throughput per million 

of RRAMs) at various MVM input and output bit-precisions than previ-

ous state-of-the-art RRAM-based CIM chips, despite being fabricated 

at an older technology node17–27,36. The reported energy and delay are 

measured for performing an MVM with a 256 × 256 weight matrix. It is 

noted that these numbers and those reported in previous RRAM-CIM 

work represent the peak energy efficiency achieved when the array 

utilization is 100% and does not account for energy spent on interme-

diate data transfer. Network-on-chip and program scheduling need 

to be carefully designed to achieve good end-to-end application-level 

energy efficiency37,38.

Key to the NeuRRAM’s EDP improvement is a novel in-memory MVM 

output-sensing scheme. The conventional approach is to use voltage 

as input, and measure the current as the results based on Ohm’s law 

(Fig. 3a). Such a current-mode-sensing scheme cannot fully exploit 

the high-parallelism nature of CIM. First, simultaneously turning on 

multiple rows leads to a large array current. Sinking the large current 

requires peripheral circuits to use large transistors, whose area needs to 

be amortized by time-multiplexing between multiple columns, which 

limits ‘column parallelism’. Second, MVM results produced by differ-

ent neural-network layers have drastically different dynamic ranges 

(Fig. 3c). Optimizing ADCs across such a wide dynamic range is difficult. 

To equalize the dynamic range, designs typically activate a fraction 

of input wires every cycle to compute a partial sum, and thus require 

multiple cycles to complete an MVM, which limits ‘row parallelism’.

NeuRRAM improves computation parallelism and energy efficiency 

by virtue of a neuron circuit implementing a voltage-mode sensing 

scheme. The neuron performs analogue-to-digital conversion of the 

MVM outputs by directly sensing the settled open-circuit voltage on the 

BL or SL line capacitance39 (Fig. 3b): voltage inputs are driven on the BLs 

whereas the SLs are kept floating, or vice versa, depending on the MVM 

direction. WLs are activated to start the MVM operation. The voltage on 

the output line settles to the weighted average of the voltages driven on 

the input lines, where the weights are the RRAM conductances. Upon 

deactivating the WLs, the output is sampled by transferring the charge 

on the output line to the neuron sampling capacitor (Csample in Fig. 3d). 

The neuron then accumulates this charge onto an integration capacitor 

(Cinteg) for subsequent analogue-to-digital conversion.

Such voltage-mode sensing obviates the need for power-hungry and 

area-hungry peripheral circuits to sink large current while clamping 

voltage, improving energy and area efficiency and eliminating output 

time-multiplexing. Meanwhile, the weight normalization owing to the 

conductance weighting in the voltage output (Fig. 3c) results in an 

automatic output dynamic range normalization for different weight 

matrices. Therefore, MVMs with different weight dimensions can all 

be completed within a single cycle, which significantly improves com-

putational throughput. To eliminate the normalization factor from 

the final results, we pre-compute its value and multiply it back to the 

digital outputs from the ADC.

Our voltage-mode neuron supports MVM with 1-bit to 8-bit inputs 

and 1-bit to 10-bit outputs. The multi-bit input is realized in a bit-serial 

fashion where charge is sampled and integrated onto Cinteg for 2n−1 cycles 

for the nth least significant bit (LSB) (Fig. 3e). For MVM inputs greater 

than 4 bits, we break the bit sequence into two segments, compute 

MVM for each segment separately and digitally perform a shift-and-add 

to obtain the final results (Fig. 3f). Such a two-phase input scheme 

improves energy efficiency and overcomes voltage headroom clipping 

at high-input precisions.

The multi-bit output is generated through a binary search process 

(Fig. 3g). Every cycle, neurons add or subtract CsampleVdecr amount of 

charge from Cinteg, where Vdecr is a bias voltage shared by all neurons. 

Neurons then compare the total charge on Cinteg with a fixed threshold 

voltage Vref to generate a 1-bit output. From the most significant bit (MSB) 

to the least significant bit (LSB), Vdecr is halved every cycle. Compared 

with other ADC architectures that implement a binary search, our ADC 

scheme eliminates the residue amplifier of an algorithmic ADC, and does 

not require an individual DAC for each ADC to generate reference volt-

ages like a successive approximation register (SAR) ADC40. Instead, our 

ADC scheme allows sharing a single digital-to-analogue converter (DAC) 

across all neurons to amortize the DAC area, leading to a more compact 

design. The multi-bit MVM is validated by comparing ideal and measured 

results, as shown in Fig. 3h and Extended Data Fig. 5. More details on the 

multi-bit input and output implementation can be found in Methods.

The neuron can also be reconfigured to directly implement Rectified 

Linear Unit (ReLU)/sigmoid/tanh as activations when needed. In addi-

tion, it supports probabilistic sampling for stochastic activation func-

tions by injecting pseudo-random noise generated by a linear-feedback 

shift register (LFSR) block into the neuron integrator. All the neuron 

circuit operations are performed by dynamically configuring a single 

amplifier in the neuron as either an integrator or a comparator during 

different phases of operations, as detailed in Methods. This results in 

a more compact design than other work that merges ADC and neuron 

activation functions within the same module12,13. Although most exist-

ing CIM designs use time-multiplexed ADCs for multiple rows and col-

umns to amortize the ADC area, the compactness of our neuron circuit 

allows us to dedicate a neuron for each pair of BL and SL, and tightly 

interleave the neuron with RRAM devices within the TNSA architecture, 

as can be seen in Extended Data Fig. 11d.
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Hardware-algorithm co-optimizations

The innovations on the chip architecture and circuit design bring 

superior efficiency and reconfigurability to NeuRRAM. To complete 

the story, we must ensure that AI inference accuracy can be preserved 

under various circuit and device non-idealities3,41. We developed a set of 

hardware-algorithm co-optimization techniques that allow NeuRRAM 

to deliver software-comparable accuracy across diverse AI applications. 

Importantly, all the AI benchmark results presented in this paper are 

obtained entirely from hardware measurements on complete datasets. 

Although most previous efforts (with a few exceptions8,17) have reported 

benchmark results using a mixture of hardware characterization and 

software simulation, for example, emulate the array-level MVM pro-

cess in software using measured device characteristics3,5,21,24, such an 

approach often fails to model the complete set of non-idealities exist-

ing in realistic hardware. As shown in Fig. 4a, these non-idealities may 

include (1) Voltage drop on input wires (Rwire), (2) on RRAM array driv-

ers (Rdriver) and (3) on crossbar wires (e.g. BL resistance RBL), (4) limited 

RRAM programming resolution, (5) RRAM conductance relaxation41, (6) 

capacitive coupling from simultaneously switching array wires, and (7) 

limited ADC resolution and dynamic range. Our experiments show that 

omitting certain non-idealities in simulation leads to over-optimistic 

Fig. 3 | Voltage-mode MVM with multi-bit inputs and outputs. 

 a, Conventional current-mode-sensing scheme needs to activate a small  

fraction of total N rows each cycle to limit total current ISL and time-multiplex 

ADCs across multiple columns to amortize ADC area, thus limiting its 

computational parallelism. b, Voltage-mode sensing employed by NeuRRAM 

can activate all the rows and all the columns in a single cycle, enabling  

higher parallelism. c, MVM output distribution from a CNN layer and from  

an LSTM layer (weights normalized to the same range). Voltage-mode  

sensing intrinsically normalizes wide variation in output dynamic range.  

d, Schematic of the voltage-mode neuron circuit, where BLsel, SLsel, Sample, 

Integ, Reset, Latch, Decr, and WR are digital signals controlling state of the 

switches. e, Sample waveforms to perform MVM and 4-bit signed inputs 
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sampling and integration are performed 2n−1 times for the nth LSB. f, Two-phase 

MVM: for input precision greater than 4 bits, inputs are divided into a MSB 

segment and a LSB segment. MVMs and ADCs are performed separately for 

each segment, followed by a shift-and-add to obtain final outputs. g, Sample 

waveforms to perform 5-bit signed outputs analogue-to-digital conversion. 

The sign-bit is first generated by a comparison operation. The magnitude-bits 

are generated through a binary search process realized by adding/subtracting 

charge on Cinteg. From MSB to LSB, added/subtracted charge is halved every bit. 

h, Chip-measured 64 × 64 MVM outputs versus ideal outputs under 4-bit input 

and 6-bit output.
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prediction of inference accuracy. For example, the third and the fourth 

bars in Fig. 5a show a 2.32% accuracy difference between simulation 

and measurement for CIFAR-10 classification19, whereas the simulation 

accounts for only non-idealities (5) and (7), which are what previous 

studies most often modelled5,21.

Our hardware-algorithm co-optimization approach includes three 

main techniques: (1) model-driven chip calibration, (2) noise-resilient 

neural-network training and analogue weight programming, and (3) 

chip-in-the-loop progressive model fine-tuning. Model-driven chip 

calibration uses the real model weights and input data to optimize 

Fig. 4 | Hardware-algorithm co-optimization techniques to improve 

NeuRRAM inference accuracy. a, Various device and circuit non-idealities 

(labelled (1) to (7)) of in-memory MVM. b, Model-driven chip calibration 

technique to search for optimal chip operating conditions and record offsets 

for subsequent cancellation. c, Noise-resilient neural-network training 

technique to train the model with noise injection. The noise distribution is 

obtained from hardware characterization. The trained weights are 

programmed to the continuous analogue conductance of RRAMs without 

quantization as shown by the continuous diagonal band at the bottom. d, Chip- 

in-the-loop progressive fine-tuning technique: weights are progressively 

mapped onto the chip one layer at a time. The hardware-measured outputs 

from layer n are used as inputs to fine-tune the remaining layers n + 1 to N.

−4 −2 0

0.6 0.7 0.8 0.9 1.0 1.1 1.2

2 4
Ideal output

Input voltage (V)

−4

−2

0

2

4

ADC 1

ADC 2

0.3 0.5 0.7 0.9 1.1 1.3 1.5

0
0 10 20

Conductance (μG)

Conductance (μG)

30 40

0 10 20 30 40

500

1,000

1,500

2,000

0

500

1,000

1,500

2,000

0 10 20 30 40
0

10

20

30

40

a

b c d

During programming

Model-driven chip calibration

Inject noises with

characterized

distribution

Weights already

programmed

on chip

Use the measured

outputs from layer n to

�ne-tune the weights

of the rest of the layers

(not on chip yet)

Program the weights of

layer n, and run inference

Noise-resilient neural-network training and

analogue weight programming

Chip-in-the-loop progressive model �ne-tuning

Step n Step n + 1

Layer 1 Layer 1

Layer n – 1 Layer n – 1

Layer n + 1

Layer n + 2

Layer n

Layer n + 1

Layer n + 2 

Layer n

Layer N Layer N

Quantize

W
1

W
2

W
3

Quantize

Quantize

Initialize chip

operating conditions

Yes

No

Perform MVM using

training-set data

Record operating

conditions and

offsets to be used

during inference

Output fully utilizing

and not saturating ADC

input swing?

Adjust operating

conditions

Initial MVM output

distribution

Program analogue

conductance into

RRAMs
After calibration and

offset compensation

Core N

Core 1

(1) R
wire

(2) R
driver (3) R

BL

(4) Limited programming

resolution

(6) ADC output offsets owing to

capacitive coupling from WLs

(7) ADC discretization

and limited input swing

A
c
tu

a
l 
o

u
tp

u
t

(5) RRAM

conductance

relaxation

Pad

IN

ADC
OUT

IN

ADC
OUT

Output voltage (μ) M
e
a
s
u
re

d
 c

o
n
d

u
c
ta

n
c
e
 (
μ

S
)

Target conductance (μS)ADC input voltage swing

30 min after programming

Fig. 5 | Measured results showing the efficacy of the hardware-algorithm 

co-optimization techniques. a, Simulated (blue) and measured (red) 

CIFAR-10 test-set classification accuracies. b, CIFAR-10 classification accuracy 

at various time steps of chip-in-the-loop fine-tuning. From left to right, each 

data point represents a new layer (Conv0 to Dense) programmed onto the chip. 

The accuracy at a layer is evaluated by using the hardware-measured outputs 

from that layer as inputs to the remaining layers that are simulated in software. 

Two curves compare the test-set inference accuracy with and without applying 

fine-tuning during training. c, RBM-based image recovery on noisy images 

(top) and partially occluded images measured on NeuRRAM (bottom).

CIFAR-10 classi�cation using ResNet-20

Chip-in-the-loop �ne-tuning layer

RBM

on chip

Simulation

Measurement

83.5

84.0

84.5

85.0

85.5

86.0

86.5

N
o

n
e

C
o

n
v
0

C
o

n
v
1

C
o

n
v
2

C
o

n
v
3

C
o

n
v
4

C
o

n
v
5

C
o

n
v
6

C
o

n
v
7

C
o

n
v
8

C
o

n
v
9

C
o

n
v
1
0

C
o

n
v
1
1

C
o

n
v
1
2

C
o

n
v
1
3

C
o

n
v
1
4

C
o

n
v
1
5

C
o

n
v
1
6

C
o

n
v
1
7

C
o

n
v
1
8

C
o

n
v
1
9

C
o

n
v
2
0

D
e
n
s
e

C
la

s
s
i	

c
a
ti
o

n
 a

c
c
u
ra

c
y
 (
%

)

Off-line trained

and programmed

87.81

Ideal software

(64-bit weights,

3-bit inputs)

85.99

83.67

85.66

24

26

80

82

84

86

88

90

C
la

s
s
i	

c
a
ti
o

n
 a

c
c
u
ra

c
y
 (
%

)

25.34

a b

In situ 	ne-tuned

1.99

85.99

85.66

83.67

c

Simulate

with non-

idealities

(iv)–(vii)

+ Noise-

resilient

training

(simulation)

Chip

measurement

+ Chip-in-

the-loop

	ne-tuning

(measurement)



510 | Nature | Vol 608 | 18 August 2022

Article

chip operating conditions such as input voltage pulse amplitude, and 

records any ADC offsets for subsequent cancellation during inference. 

Ideally, the MVM output voltage dynamic range should fully utilize the 

ADC input swing to minimize discretization error. However, without 

calibration, the MVM output dynamic range varies with network layers 

even with the weight normalization effect of the voltage-mode sensing. 

To calibrate MVM to the optimal dynamic range, for each network layer, 

we use a subset of training-set data as calibration input to search for the 

best operating conditions (Fig. 4b). Extended Data Fig. 6 shows that 

different calibration input distributions lead to different output dis-

tributions. To ensure that the calibration data can closely emulate the 

distribution seen at test time, it is therefore crucial to use training-set 

data as opposed to randomly generated data during calibration. It is 

noted that when performing MVM on multiple cores in parallel, those 

shared bias voltages cannot be optimized for each core separately, 

which might lead to sub-optimal operating conditions and additional 

accuracy loss (detailed in Methods).

Stochastic non-idealities such as RRAM conductance relaxation and 

read noises degrade the signal-to-noise ratio (SNR) of the computation, 

leading to an inference accuracy drop. Some previous work obtained a 

higher SNR by limiting each RRAM cell to store a single bit, and encoding 

higher-precision weights using multiple cells9,10,16. Such an approach 

lowers the weight memory density. Accompanying that approach, the 

neural network is trained with weights quantized to the corresponding 

precision. In contrast, we utilize the intrinsic analogue programmability 

of RRAM42 to directly store high-precision weights and train the neural 

networks to tolerate the lower SNR. Instead of training with quantized 

weights, which is equivalent to injecting uniform noise into weights, 

we train the model with high-precision weights while injecting noise 

with the distribution measured from RRAM devices. RRAMs on NeuR-

RAM are characterized to have a Gaussian-distributed conductance 

spread, caused primarily by conductance relaxation. Therefore, we 

inject a Gaussian noise into weights during training, similar to a previ-

ous study21. Figure 5a shows that the technique significantly improves 

the model’s immunity to noise, from a CIFAR-10 classification accuracy 

of 25.34% without noise injection to 85.99% with noise injection. After 

the training, we program the non-quantized weights to RRAM analogue 

conductances using an iterative write–verify technique, described in 

Methods. This technique enables NeuRRAM to achieve an inference 

accuracy equivalent to models trained with 4-bit weights across vari-

ous applications, while encoding each weight using only two RRAM 

cells, which is two-times denser than previous studies that require 

one RRAM cell per bit.

By applying the above two techniques, we already can measure infer-

ence accuracy comparable to or better than software models with 4-bit 

weights on Google speech command recognition, MNIST image recov-

ery and MNIST classification (Fig. 1e). For deeper neural networks, we 

found that the error caused by those non-idealities that have nonlinear 

effects on MVM outputs, such as voltage drops, can accumulate through 

layers, and become more difficult to mitigate. In addition, multi-core 

parallel MVM leads to large instantaneous current, further exacerbating 

non-idealities such as voltage drop on input wires ((1) in Fig. 4a). As a 

result, when performing multi-core parallel inference on a deep CNN, 

ResNet-2043, the measured accuracy on CIFAR-10 classification (83.67%) 

is still 3.36% lower than that of a 4-bit-weight software model (87.03%).

To bridge this accuracy gap, we introduce a chip-in-the-loop progres-

sive fine-tuning technique. Chip-in-the-loop training mitigates the 

impact of non-idealities by measuring training error directly on the 

chip44. Previous work has shown that fine-tuning the final layers using 

the back-propagated gradients calculated from hardware-measured 

outputs helped improve accuracy5. We find this technique to be of 

limited effectiveness in countering those nonlinear non-idealities. Such 

a technique also requires re-programming RRAM devices, which con-

sumes additional energy. Our chip-in-the-loop progressive fine-tuning 

overcomes nonlinear model errors by exploiting the intrinsic nonlinear 

universal approximation capacity of the deep neural network45, and 

furthermore eliminates the need for weight re-programming. Figure 4d 

illustrates the fine-tuning procedure. We progressively program the 

weights one layer at a time onto the chip. After programming a layer, 

we perform inference using the training-set data on the chip up to that 

layer, and use the measured outputs to fine-tune the remaining layers 

that are still training in software. In the next time step, we program 

and measure the next layer on the chip. We repeat this process until 

all the layers are programmed. During the process, the non-idealities 

of the programmed layers can be progressively compensated by the 

remaining layers through training. Figure 5b shows the efficacy of this 

progressive fine-tuning technique. From left to right, each data point 

represents a new layer programmed onto the chip. The accuracy at each 

layer is evaluated by using the chip-measured outputs from that layer 

as inputs to the remaining layers in software. The cumulative CIFAR-10 

test-set inference accuracy is improved by 1.99% using this technique. 

Extended Data Fig. 8a further illustrates the extent to which fine-tuning 

recovers the training-set accuracy loss at each layer, demonstrating the 

effectiveness of the approach in bridging the accuracy gap between 

software and hardware measurements.

Using the techniques described above, we achieve inference accu-

racy comparable to software models trained with 4-bit weights across 

all the measured AI benchmark tasks. Figure 1e shows that we achieve 

a 0.98% error rate on MNIST handwritten digit recognition using a 

7-layer CNN, a 14.34% error rate on CIFAR-10 object classification using 

ResNet-20, a 15.34% error rate on Google speech command recognition 

using a 4-cell LSTM, and a 70% reduction of L2 image-reconstruction 

error compared with the original noisy images on MNIST image recov-

ery using an RBM. Some of these numbers are not yet to the accuracies 

achieved by full-precision digital implementations. The accuracy gap 

mainly comes from low-precision (≤4-bit) quantization of inputs and 

activations, especially on the most sensitive input and output lay-

ers46. For instance, Extended Data Fig. 8b presents an ablation study 

that shows that quantizing input images to 4-bit alone results in a 

2.7% accuracy drop for CIFAR-10 classification. By contrast, the input 

Table 1 | Summary of AI applications and models demonstrated on NeuRRAM

Application Dataset Model architecture Dataflow 

type

Activation precision Number of 

parameters

Number 

of RRAMs 

used

 Number of 

cores used

Average core 

utilization (%)

Image classification CIFAR-10 ResNet-20 (CNN) Forward 3-bit unsigned, input 

image 4-bit unsigned

274,461 553,524 48 17.6

MNIST 7-layer CNN Forwards 3-bit unsigned 23,170 46,664 16 4.5

Voice recognition Google voice 

command

4 parallel LSTM 

cells

Recurrent + 

forwards

4-bit signed 281,392 570,048 36 24.2

Image recovery MNIST RBM Forwards + 

backwards

Visible: 3-bit 

unsigned. Hidden: 

binary

96,194 200,880 8 38.3
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layer only accounts for 1.08% of compute and 0.16% of weights of a 

ResNet-20 model. Therefore, they can be off-loaded to higher-precision 

digital compute units with little overheads. In addition, applying 

more advanced quantization techniques and optimizing training 

procedures such as data augmentation and regularization should 

further improve the accuracy for both quantized software models 

and hardware-measured results.

Table 1 summarizes the key features of each demonstrated model. 

Most of the essential neural-network layers and operations are imple-

mented on the chip, including all the convolutional, fully connected 

and recurrent layers, neuron activation functions, batch normaliza-

tion and the stochastic sampling process. Other operations such as 

average pooling and element-wise multiplications are implemented 

on an FPGA integrated on the same board as NeuRRAM (Extended 

Data Fig. 11a). Each of the models is implemented by allocating the 

weights to multiple cores on a single NeuRRAM chip. We developed 

a software toolchain to allow easy deployment of AI models on the 

chip47. The implementation details are described in Methods. Funda-

mentally, each of the selected benchmarks represents a general class 

of common edge AI tasks: visual recognition, speech processing and 

image de-noising. These results demonstrate the versatility of the TNSA 

architecture and the wide applicability of the hardware-algorithm 

co-optimization techniques.

The NeuRRAM chip simultaneously improves efficiency, flexibility 

and accuracy over existing RRAM-CIM hardware by innovating across 

the entire hierarchy of the design, from a TNSA architecture enabling 

reconfigurable dataflow direction, to an energy- and area-efficient 

voltage-mode neuron circuit, and to a series of algorithm-hardware 

co-optimization techniques. These techniques can be more generally 

applied to other non-volatile resistive memory technologies such 

as phase-change memory8,17,21,23,24, magnetoresistive RAM48 and fer-

roelectric field-effect transistors49. Going forwards, we expect Neu-

RRAM’s peak energy efficiency (EDP) to improve by another two to 

three orders of magnitude while supporting bigger AI models when 

scaling from 130-nm to 7-nm CMOS and RRAM technologies (detailed 

in Methods). Multi-core architecture design with network-on-chip 

that realizes efficient and versatile data transfers and inter-array 

pipelining is likely to be the next major challenge for RRAM-CIM37,38, 

which needs to be addressed by further cross-layer co-optimization. 

As resistive memory continues to scale towards offering tera-bits of 

on-chip memory50, such a co-optimization approach will equip CIM 

hardware on the edge with sufficient performance, efficiency and 

versatility to perform complex AI tasks that can only be done on the 

cloud today.
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Methods

Core block diagram and operating modes

Figure 2d and Extended Data Fig. 1 show the block diagram of a single 

CIM core. To support versatile MVM directions, most of the design is 

symmetrical in the row (BLs and WLs) and column (SLs) directions. The 

row and column register files store the inputs and outputs of MVMs, and 

can be written externally by either an Serial Peripheral Interface (SPI) or 

a random-access interface that uses an 8-bit address decoder to select 

one register entry, or internally by the neurons. The SL peripheral circuits 

contain an LFSR block used to generate pseudo-random sequences used 

for probabilistic sampling. It is implemented by two LFSR chains propa-

gating in opposite directions. The registers of the two chains are XORed to 

generate spatially uncorrelated random numbers51. The controller block 

receives commands and generates control waveforms to the BL/WL/SL 

peripheral logic and to the neurons. It contains a delay-line-based pulse 

generator with tunable pulse width from 1 ns to 10 ns. It also implements 

clock-gating and power-gating logic used to turn off the core in idle mode. 

Each WL, BL and SL of the TNSA is driven by a driver consisting of multiple 

pass gates that supply different voltages. On the basis of the values stored 

in the register files and the control signals issued by the controller, the 

WL/BL/SL logic decides the state of each pass gate.

The core has three main operating modes: a weight-programming 

mode, a neuron-testing mode and an MVM mode (Extended Data Fig. 1). 

In the weight-programming mode, individual RRAM cells are selected 

for read and write. To select a single cell, the registers at the correspond-

ing row and column are programmed to ‘1’ through random access with 

the help of the row and column decoder, whereas the other registers 

are reset to ‘0’. The WL/BL/SL logic turns on the corresponding driver 

pass gates to apply a set/reset/read voltage on the selected cell. In the 

neuron-testing mode, the WLs are kept at ground voltage (GND). Neu-

rons receive inputs directly from BL or SL drivers through their BL or 

SL switch, bypassing RRAM devices. This allows us to characterize the 

neurons independently from the RRAM array. In the MVM mode, each 

input BL and SL is driven to Vref − Vread, Vref + Vread or Vref depending on 

the registers’ value at that row or column. If the MVM is in the BL-to-SL 

direction, we activate the WLs that are within the input vector length 

while keeping the rest at GND; if the MVM is in the SL-to-BL direction, 

we activate all the WLs. After neurons finish analogue-to-digital con-

version, the pass gates from BLs and SLs to the registers are turned on 

to allow neuron-state readout.

Device fabrication

RRAM arrays in NeuRRAM are in a one-transistor–one-resistor (1T1R) 

configuration, where each RRAM device is stacked on top of and con-

nects in series with a selector NMOS transistor that cuts off the sneak 

path and provides current compliance during RRAM programming 

and reading. The selector n-type metal-oxide-semiconductor (NMOS), 

CMOS peripheral circuits and the bottom four back-end-of-line intercon-

nect metal layers are fabricated in a standard 130-nm foundry process. 

Owing to the higher voltage required for RRAM forming and program-

ming, the selector NMOS and the peripheral circuits that directly inter-

face with RRAM arrays use thick-oxide input/output (I/O) transistors 

rated for 5-V operation. All the other CMOS circuits in neurons, digital 

logic, registers and so on use core transistors rated for 1.8-V operations.

The RRAM device is sandwiched between metal-4 and metal-5 layers 

shown in Fig. 2c. After the foundry completes the fabrication of CMOS 

and the bottom four metal layers, we use a laboratory process to finish 

the fabrication of the RRAM devices and the metal-5 interconnect, and 

the top metal pad and passivation layers. The RRAM device stack con-

sists of a titanium nitride (TiN) bottom-electrode layer, a hafnium oxide 

(HfOx) switching layer, a tantalum oxide (TaOx) thermal-enhancement 

layer52 and a TiN top-electrode layer. They are deposited sequentially, 

followed by a lithography step to pattern the lateral structure of the 

device array.

RRAM write–verify programming and conductance relaxation

Each neural-network weight is encoded by the differential conductance 

between two RRAM cells on adjacent rows along the same column. The 

first RRAM cell encodes positive weight, and is programmed to a low 

conductance state (gmin) if the weight is negative; the second  

cell encodes negative weight, and is programmed to gmin if the weight 

is positive. Mathematically, the conductances of the two cells are 

g gmax( , )
W

wmax minmax
 and g gmax( − , )

W

wmax minmax
 respectively, where  

gmax and gmin are the maximum and minimum conductance of  

the RRAMs, wmax is the maximum absolute value of weights, and W is 

the unquantized high-precision weight.

To program an RRAM cell to its target conductance, we use an 

incremental-pulse write–verify technique42. Extended Data Fig. 3a,b 

illustrates the procedure. We start by measuring the initial conduct-

ance of the cell. If the value is below the target conductance, we apply a 

weak set pulse aiming to slightly increase the cell conductance. Then we 

read the cell again. If the value is still below the target, we apply another 

set pulse with amplitude incremented by a small amount. We repeat 

such set–read cycles until the cell conductance is within an acceptance 

range to the target value or overshoots to the other side of the target. 

In the latter case, we reverse the pulse polarity to reset, and repeat 

the same procedure as with set. During the set/reset pulse train, the 

cell conductance is likely to bounce up and down multiple times until 

eventually it enters the acceptance range or reaches a time-out limit.

There are a few trade-offs in selecting programming conditions. (1) A 

smaller acceptance range and a higher time-out limit improve program-

ming precision, but require a longer time. (2) A higher gmax improves 

the SNR during inference, but leads to higher energy consumption 

and more programming failures for cells that cannot reach high con-

ductance. In our experiments, we set the initial set pulse voltage to 

be 1.2 V and the reset pulse voltage to be 1.5 V, both with an increment 

of 0.1 V and pulse width of 1 μs. A RRAM read takes 1–10 μs, depend-

ing on its conductance. The acceptance range is ±1 μS to the target 

conductance. The time-out limit is 30 set–reset polarity reversals. 

We used gmin = 1 μS for all the models, and gmax = 40 μS for CNNs and 

gmax = 30 μS for LSTMs and RBMs. With such settings, 99% of the RRAM 

cells can be programmed to the acceptance range within the time-out 

limit. On average each cell requires 8.52 set/reset pulses. In the current 

implementation, the speed of such a write–verify process is limited 

by external control of DAC and ADC. If integrating everything into a 

single chip, such write–verify will take on average 56 μs per cell. Having 

multiple copies of DAC and ADC to perform write–verify on multiple 

cells in parallel will further improve RRAM programming throughput, 

at the cost of more chip area.

Besides the longer programming time, another reason to not use 

an overly small write–verify acceptance range is RRAM conductance 

relaxation. RRAM conductance changes over time after programming. 

Most of the change happens within a short time window (less than 1 s)  

immediately following the programming, after which the change 

becomes much slower, as shown in Extended Data Fig. 3d. The abrupt 

initial change is called ‘conductance relaxation’ in the literature41. Its 

statistics follow a Gaussian distribution at all conductance states except 

when the conductance is close to gmin. Extended Data Fig. 3c,d shows 

the conductance relaxation measured across the whole gmin-to-gmax 

conductance range. We found that the loss of programming precision 

owing to conductance relaxation is much higher than that caused by 

the write–verify acceptance range. The average standard deviation 

across all levels of initial conductance is about 2.8 μS. The maximum 

standard deviation is about 4 μS, which is close to 10% of gmax.

To mitigate the relaxation, we use an iterative programming tech-

nique. We iterate over the RRAM array for multiple times. In each itera-

tion, we measure all the cells and re-program those whose conductance 

has drifted outside the acceptance range. Extended Data Fig. 3e shows 

that the standard deviation becomes smaller with more programming 
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iterations. After 3 iterations, the standard deviation becomes about 

2 μS, a 29% decrease compared with the initial value. We use 3 iterations 

in all our neural-network demonstrations and perform inference at 

least 30 min after the programming such that the measured inference 

accuracy would account for such conductance relaxation effects. 

By combining the iterative programming with our hardware-aware 

model training approach, the impact of relaxation can be largely  

mitigated.

Implementation of MVM with multi-bit inputs and outputs

The neuron and the peripheral circuits support MVM at configurable 

input and output bit-precisions. An MVM operation consists of an ini-

tialization phase, an input phase and an output phase. Extended Data 

Fig. 4 illustrates the neuron circuit operation. During the initialization 

phase (Extended Data Fig. 4a), all BLs and SLs are precharged to Vref. 

The sampling capacitors Csample of the neurons are also precharged to 

Vref, whereas the integration capacitors Cinteg are discharged.

During the input phase, each input wire (either BL or SL depending 

on MVM direction) is driven to one of three voltage levels, Vref − Vread, 

Vref and Vref + Vread, through three pass gates, as shown in Fig. 3b. Dur-

ing forwards MVM, under differential-row weight mapping, each 

input is applied to a pair of adjacent BLs. The two BLs are driven to the 

opposite voltage with respect to Vref. That is, when the input is 0, both 

wires are driven to Vref; when the input is +1, the two wires are driven 

to Vref + Vread and Vref − Vread; and when the input is −1, to Vref − Vread and 

Vref + Vread. During backwards MVM, each input is applied to a single SL. 

The difference operation is performed digitally after neurons finish 

analogue-to-digital conversions.
After biasing the input wires, we then pulse those WLs that have 

inputs for 10 ns, while keeping output wires floating. As voltages of the 

output wires settle to V =j
V G

G

∑

∑

i i ij

i ij
, where Gij represents conductance of 

RRAM at the i-th row and the j-th column, we turn off the WLs to stop 
all current flow. We then sample the charge remaining on the output 

wire parasitic capacitance to Csample located within neurons, followed 

by integrating the charge onto Cinteg, as shown in Extended Data Fig. 4b. 

The sampling pulse is 10 ns (limited by the 100-MHz external clock 

from the FPGA); the integration pulse is 240 ns, limited by large integra-

tion capacitor (104 fF), which was chosen conservatively to ensure 

function correctness and testing different neuron operating condi-

tions.
The multi-bit input digital-to-analogue conversion is performed 

in a bit-serial fashion. For the nth LSB, we apply a single pulse to the 

input wires, followed by sampling and integrating charge from output 

wires onto Cinteg for 2n−1 cycles. At the end of multi-bit input phase, 

the complete analogue MVM output is stored as charge on Cinteg. For 

example, as shown in Fig. 3e, when the input vectors are 4-bit signed 

integers with 1 sign-bit and 3 magnitude-bits, we first send pulses 

corresponding to the first (least significant) magnitude-bit to input 

wires, followed by sampling and integrating for one cycle. For the 

second and the third magnitude-bits, we again apply one pulse to 

input wires for each bit, followed by sampling and integrating for 

two cycles and four cycles, respectively. In general, for n-bit signed 

integer inputs, we need a total of n − 1 input pulses and 2n−1 − 1 sampling 

and integration cycles.

Such a multi-bit input scheme becomes inefficient for high-input 

bit-precision owing to the exponentially increasing sampling and 

integration cycles. Moreover, headroom clipping becomes an issue 

as charge integrated at Cinteg saturates with more integration cycles. The 

headroom clipping can be overcome by using lower Vread, but at the cost 

of a lower SNR, so the overall MVM accuracy might not improve when 

using higher-precision inputs. For instance, Extended Data Fig. 5a,c 

shows the measured root-mean-square error (r.m.s.e.) of the MVM 

results. Quantizing inputs to 6-bit (r.m.s.e. = 0.581) does not improve 

the MVM accuracy compared with 4-bit (r.m.s.e. = 0.582), owing to 

the lower SNR.

To solve both the issues, we use a 2-phase input scheme for input 

greater than 4-bits. Figure 3f illustrates the process. To perform MVM 

with 6-bit inputs and 8-bit outputs, we divide inputs into two segments, 

the first containing the three MSBs and the second containing the three 

LSBs. We then perform MVM including the output analogue-to-digital 

conversion for each segment separately. For the MSBs, neurons (ADCs) 

are configured to output 8-bits; for the LSBs, neurons output 5-bits. The 

final results are obtained by shifting and adding the two outputs in digi-

tal domain. Extended Data Fig. 5d shows that the scheme lowers MVM 

r.m.s.e. from 0.581 to 0.519. Extended Data Fig. 12c–e further shows that 

such a two-phase scheme both extends the input bit-precision range 

and improves the energy efficiency.

Finally, during the output phase, the analogue-to-digital conver-

sion is again performed in a bit-serial fashion through a binary search 

process. First, to generate the sign-bit of outputs, we disconnect the 

feedback loop of the amplifier to turn the integrator into a compara-

tor (Extended Data Fig. 4c). We drive the right side of Cinteg to Vref. If the 

integrated charge is positive, the comparator output will be GND, and 

supply voltage VDD otherwise. The comparator output is then inverted, 

latched and readout to the BL or SL via the neuron BL or SL switch before 

being written into the peripheral BL or SL registers.

To generate k magnitude-bits, we add or subtract charge from Cinteg 

(Extended Data Fig. 4d), followed by comparison and readout for k 

cycles. From MSB to LSB, the amount of charge added or subtracted 

is halved every cycle. Whether to add or to subtract is automatically 

determined by the comparison result stored in the latch from the pre-

vious cycle. Figure 3g illustrates such a process. A sign-bit of ‘1’ is first 

generated and latched in the first cycle, representing a positive out-

put. To generate the most significant magnitude-bit, the latch turns 

on the path from Vdecr− = Vref − Vdecr to Csample. The charge sampled by 

Csample is then integrated on Cinteg by turning on the negative feedback 

loop of the amplifier, resulting in CsampleVdecr amount of charge being 

subtracted from Cinteg. In this example, CsampleVdecr is greater than the 

original amount of charge on Cinteg, so the total charge becomes nega-

tive, and the comparator generates a ‘0’ output. To generate the second 

magnitude-bit, Vdecr is reduced by half. This time, the latch turns on the 

path from Vdecr+ = Vref + 1/2Vdecr to Csample. As the total charge on Cinteg after 

integration is still negative, the comparator outputs a ‘0’ again in this 

cycle. We repeat this process until the least significant magnitude-bit 

is generated. It is noted that if the initial sign-bit is ‘0’, all subsequent 

magnitude-bits are inverted before readout.

Such an output conversion scheme is similar to an algorithmic ADC 

or a SAR ADC in the sense that a binary search is performed for n cycles 

for a n-bit output. The difference is that an algorithmic ADC uses a resi-

due amplifier, and a SAR ADC requires a multi-bit DAC for each ADC, 

whereas our scheme does not need a residue amplifier, and uses a single 

DAC that outputs 2 × (n − 1) different Vdecr+ and Vdecr− levels, shared by all 

neurons (ADCs). As a result, our scheme enables a more compact design 

by time-multiplexing an amplifier for integration and comparison, 

eliminating the residual amplifier, and amortizing the DAC area across 

all neurons in a CIM core. For CIM designs that use a dense memory 

array, such a compact design allows each ADC to be time-multiplexed 

by a fewer number of rows and columns, thus improving throughput.

To summarize, both the configurable MVM input and output 

bit-precisions and various neuron activation functions are imple-

mented using different combinations of the four basic operations: 

sampling, integration, comparison and charge decrement. Importantly, 

all the four operations are realized by a single amplifier configured in 

different feedback modes. As a result, the design realizes versatility 

and compactness at the same time.

Multi-core parallel MVM

NeuRRAM supports performing MVMs in parallel on multiple CIM 

cores. Multi-core MVM brings additional challenges to computational 

accuracy, because certain hardware non-idealities that do not manifest 



in single-core MVM become more severe with more cores. They include 

voltage drop on input wires, core-to-core variation and supply voltage 

instability. voltage drop on input wires (non-ideality (1) in Fig. 4a) is 

caused by large current drawn from a shared voltage source simul-

taneously by multiple cores. It makes equivalent weights stored in 

each core vary with applied inputs, and therefore have a nonlinear 

input-dependent effect on MVM outputs. Moreover, as different cores 

have a different distance from the shared voltage source, they expe-

rience a different amounts of voltage drops. Therefore, we cannot 

optimize read-voltage amplitude separately for each core to make 

its MVM output occupy exactly the full neuron input dynamic range.

These non-idealities together degrade the multi-core MVM accuracy. 

Extended Data Fig. 5e,f shows that when performing convolution in 

parallel on the 3 cores, outputs of convolutional layer 15 are measured 

to have a higher r.m.s.e. of 0.383 compared with 0.318 obtained by 

performing convolution sequentially on the 3 cores. In our ResNet-20 

experiment, we performed 2-core parallel MVMs for convolutions 

within block 1 (Extended Data Fig. 9a), and 3-core parallel MVMs for 

convolutions within blocks 2 and 3.

The voltage-drop issue can be partially alleviated by making the 

wires that carry large instantaneous current as low resistance as pos-

sible, and by employing a power delivery network with more optimized 

topology. But the issue will persist and become worse as more cores 

are used. Therefore, our experiments aim to study the efficacy of 

algorithm-hardware co-optimization techniques in mitigating the 

issue. Also, it is noted that for a full-chip implementation, additional 

modules such as intermediate result buffers, partial-sum accumulators 

and network-on-chip will need to be integrated to manage inter-core 

data transfers. Program scheduling should also be carefully optimized 

to minimize buffer size and energy spent at intermediate data move-

ment. Although there are studies on such full-chip architecture and 

scheduling37,38,53, they are outside the scope of this study.

Noise-resilient neural-network training

During noise-resilient neural-network training, we inject noise into 

weights of all fully connected and convolutional layers during the 

forwards pass of neural-network training to emulate the effects of 

RRAM conductance relaxation and read noises. The distribution of 

the injected noise is obtained by RRAM characterization. We used the 

iterative write–verify technique to program RRAM cells into different 

initial conductance states and measure their conductance relaxation 

after 30 min. Extended Data Fig. 3d shows that measured conductance 

relaxation has an absolute value of mean <1 μS (gmin) at all conductance 

states. The highest standard deviation is 3.87 μS, about 10% of the gmax 

40 μS, found at about 12 μS initial conductance state. Therefore, to 

simulate such conductance relaxation behaviour during inference, 

we inject a Gaussian noise with a zero mean and a standard deviation 

equal to 10% of the maximum weights of a layer.

We train models with different levels of noise injection from 0% to 

40%, and select the model that achieves the highest inference accu-

racy at 10% noise level for on-chip deployment. We find that injecting 

a higher noise during training than testing improves models’ noise 

resiliency. Extended Data Fig. 7a–c shows that the best test-time 

accuracy in the presence of 10% weight noise is obtained with 20% 

training-time noise injection for CIFAR-10 image classification, 15% 

for Google voice command classification and 35% for RBM-based 

image reconstruction.

For CIFAR-10, the better initial accuracy obtained by the model 

trained with 5% noise is most likely due to the regularization effect 

of noise injection. A similar phenomenon has been reported in 

neural-network quantization literature where a model trained with 

quantization occasionally outperforms a full-precision model54,55. In 

our experiments, we did not apply additional regularization on top of 

noise injection for models trained without noise, which might result 

in sub-optimal accuracy.

For RBM, Extended Data Fig. 7d further shows how reconstruction 

errors reduce with the number of Gibbs sampling steps for models 

trained with different noises. In general, models trained with higher 

noises converge faster during inference. The model trained with 20% 

noise reaches the lowest error at the end of 100 Gibbs sampling steps.

Extended Data Fig. 7e shows the effect of noise injection on weight 

distribution. Without noise injection, the weights have a Gaussian dis-

tribution. The neural-network outputs heavily depend on a small frac-

tion of large weights, and thus become vulnerable to noise injection. 

With noise injection, the weights distribute more uniformly, making 

the model more noise resilient.

To efficiently implement the models on NeuRRAM, inputs to all con-

volutional and fully connected layers are quantized to 4-bit or below. 

The input bit-precisions of all the models are summarized in Table 1. 

We perform the quantized training using the parameterized clipping 

activation technique46. The accuracies of some of our quantized models 

are lower than that of the state-of-the-art quantized model because 

we apply <4-bit quantization to the most sensitive input and output 

layers of the neural networks, which have been reported to cause large 

accuracy degradation and are thus often excluded from low-precision 

quantization46,54. To obtain better accuracy for quantized models, one 

can use higher precision for sensitive input and output layers, apply 

more advanced quantization techniques, and use more optimized data 

preprocessing, data augmentation and regularization techniques dur-

ing training. However, the focus of this work is to achieve comparable 

inference accuracy on hardware and on software while keeping all these 

variables the same, rather than to obtain state-of-the-art inference 

accuracy on all the tasks. The aforementioned quantization and training 

techniques will be equally beneficial for both our software baselines 

and hardware measurements.

Chip-in-the-loop progressive fine-tuning

During the progressive chip-in-the-loop fine-tuning, we use the 

chip-measured intermediate outputs from a layer to fine-tune the 

weights of the remaining layers. Importantly, to fairly evaluate the effi-

cacy of the technique, we do not use the test-set data (for either training 

or selecting checkpoint) during the entire process of fine-tuning. To 

avoid over-fitting to a small fraction of data, measurements should be 

performed on the entire training-set data. We reduce the learning rate 

to 1/100 of the initial learning rate used for training the baseline model, 

and fine-tune for 30 epochs, although we observed that the accuracy 

generally plateaus within the first 10 epochs. The same weight noise 

injection and input quantization are applied during the fine-tuning.

Implementations of CNNs, LSTMs and RBMs

We use CNN models for the CIFAR-10 and MNIST image classification 

tasks. The CIFAR-10 dataset consists of 50,000 training images and 

10,000 testing images belonging to 10 object classes. We perform image 

classification using the ResNet-2043, which contains 21 convolutional 

layers and 1 fully connected layer (Extended Data Fig. 9a), with batch 

normalizations and ReLU activations between the layers. The model 

is trained using the Keras framework. We quantize the input of all con-

volutional and fully connected layers to a 3-bit unsigned fixed-point 

format except for the first convolutional layer, where we quantize the 

input image to 4-bit because the inference accuracy is more sensitive 

to the input quantization. For the MNIST handwritten digits classifica-

tion, we use a seven-layer CNN consisting of six convolutional layers 

and one fully connected layer, and use max-pooling between layers to 

down-sample feature map sizes. The inputs to all the layers, including 

the input image, are quantized to a 3-bit unsigned fixed-point format.

All the parameters of the CNNs are implemented on a single NeuR-

RAM chip including those of the convolutional layers, the fully con-

nected layers and the batch normalization. Other operations such as 

partial-sum accumulation and average pooling are implemented on an 

FPGA integrated on the same board as the NeuRRAM. These operations 
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amount to only a small fraction of the total computation and integrating 

their implementation in digital CMOS would incur negligible overhead; 

the FPGA implementation was chosen to provide greater flexibility 

during test and development.

Extended Data Fig. 9a–c illustrates the process to map a convolutional 

layer on a chip. To implement the weights of a four-dimensional convo-

lutional layer with dimension H (height), W (width), I (number of input 

channels), O (number of output channels) on two-dimensional RRAM 

arrays, we flatten the first three dimensions into a one-dimensional 

vector, and append the bias term of each output channel to each vec-

tor. If the range of the bias values is B times of the weight range, we 

evenly divide the bias values and implement them using B rows. Fur-

thermore, we merge the batch normalization parameters into convo-

lutional weights and biases after training (Extended Data Fig. 9b), and 

program the merged Wʹ and bʹ onto RRAM arrays such that no explicit 

batch normalization needs to be performed during inference.

Under the differential-row weight-mapping scheme, the parameters 

of a convolutional layer are converted into a conductance matrix of 

size (2(HWI + B), O). If the conductance matrix fits into a single core, 

an input vector is applied to 2(HWI + B) rows and broadcast to O col-

umns in a single cycle. HWIO multiply–accumulate (MAC) operations 

are performed in parallel. Most ResNet-20 convolutional layers have a 

conductance matrix height of 2(HWI + B) that is greater than the RRAM 

array length of 256. We therefore split them vertically into multiple 

segments, and map the segments either onto different cores that are 

accessed in parallel, or onto different columns within a core that are 

accessed sequentially. The details of the weight-mapping strategies 

are described in the next section.

The Google speech command dataset consists of 65,000 1-s-long audio 

recordings of voice commands, such as ‘yes’, ‘up’, ‘on’, ‘stop’ and so on, 

spoken by thousands of different people. The commands are categorized 

into 12 classes. Extended Data Fig. 9d illustrates the model architecture. 

We use the Mel-frequency cepstral coefficient encoding approach to 

encode every 40-ms piece of audio into a length-40 vector. With a hop 

length of 20 ms, we have a time series of 50 steps for each 1-s recording.

We build a model that contains four parallel LSTM cells. Each cell has 

a hidden state of length 112. The final classification is based on summa-

tion of outputs from the four cells. Compared with a single-cell model, 

the 4-cell model reduces the classification error (of an unquantized 

model) from 10.13% to 9.28% by leveraging additional cores on the 

NeuRRAM chip. Within a cell, in each time step, we compute the values 

of four LSTM gates (input, activation, forget and output) based on the 

inputs from the current step and hidden states from the previous step. 

We then perform element-wise operations between the four gates to 

compute the new hidden-state value. The final logit outputs are calcu-

lated based on the hidden states of the final time step.

Each LSTM cell has 3 weight matrices that are implemented on the 

chip: an input-to-hidden-state matrix with size 40 × 448, a hidden- 

state-to-hidden-state matrix with size 112 × 448 and a hidden-state- 

to-logits matrix with size 112 × 12. The element-wise operations are 

implemented on the FPGA. The model is trained using the PyTorch 

framework. The inputs to all the MVMs are quantized to 4-bit signed 

fixed-point formats. All the remaining operations are quantized to 8-bit.

An RBM is a type of generative probabilistic graphical model. Instead 

of being trained to perform discriminative tasks such as classification, 

it learns the statistical structure of the data itself. Extended Data Fig. 9e 

shows the architecture of our image-recovery RBM. The model consists 

of 794 fully connected visible neurons, corresponding to 784 image 

pixels plus 10 one-hot encoded class labels and 120 hidden neurons. 

We train the RBM using the contrastive divergence learning procedure 

in software.

During inference, we send 3-bit images with partially corrupted or 

blocked pixels to the model running on a NeuRRAM chip. The model 

then performs back-and-forth MVMs and Gibbs sampling between 

visible and hidden neurons for ten cycles. In each cycle, neurons  

sample binary states h and v from the MVM outputs based on the  

probability distributions: v∣ ∑p h σ b vw( = 1 ) = ( + )j j i i ij  and p h( = 1 )=j v∣  

∑σ b vw( + )j i i ij , where σ is the sigmoid function, ai is a bias for hidden 

neurons (h) and bj is a bias for visible neurons (v). After sampling, we 

reset the uncorrupted pixels (visible neurons) to the original pixel 

values. The final inference performance is evaluated by computing the 

average L2-reconstruction error between the original image and the 

recovered image. Extended Data Fig. 10 shows some examples of the 

measured image recovery.

When mapping the 794 × 120 weight matrix to multiple cores of the 

chip, we try to make the MVM output dynamic range of each core rela-

tively consistent such that the recovery performance will not overly 

rely on the computational accuracy of any single core. To achieve this, 

we assign adjacent pixels (visible neurons) to different cores such that 

every core sees a down-sampled version of the whole image, as shown 

in Extended Data Fig. 9f). Utilizing the bidirectional MVM functionality 

of the TNSA, the visible-to-hidden neuron MVM is performed from the 

SL-to-BL direction in each core; the hidden-to-visible neuron MVM is 

performed from the BL-to-SL direction.

Weight-mapping strategy onto multiple CIM cores

To implement an AI model on a NeuRRAM chip, we convert the weights, 

biases and other relevant parameters (for example, batch normaliza-

tion) of each model layer into a single two-dimensional conductance 

matrix as described in the previous section. If the height or the width 

of a matrix exceed the RRAM array size of a single CIM core (256 × 256), 

we split the matrix into multiple smaller conductance matrices, each 

with maximum height and width of 256.

We consider three factors when mapping these conductance 

matrices onto the 48 cores: resource utilization, computational load 

balancing and voltage drop. The top priority is to ensure that all con-

ductance matrices of a model are mapped onto a single chip such that 

no re-programming is needed during inference. If the total number of 

conductance matrices does not exceed 48, we can map each matrix 

onto a single core (case (1) in Fig. 2a) or multiple cores. There are two 

scenarios when we map a single matrix onto multiple cores. (1) When a 

model has different computational intensities, defined as the amount 

of computation per weights, for different layers, for example, CNNs 

often have higher computational intensity for earlier layers owing to 

larger feature map dimensions, we duplicate the more computation-

ally intensive matrices to multiple cores and operate them in parallel 

to increase throughput and balance the computational loads across 

the layers (case (2) in Fig. 2a). (2) Some models have ‘wide’ conduct-

ance matrices (output dimension >128), such as our image-recovery 

RBM. If mapping the entire matrix onto a single core, each input driver 

needs to supply large current for its connecting RRAMs, resulting in a 

significant voltage drop on the driver, deteriorating inference accuracy. 

Therefore, when there are spare cores, we can split the matrix vertically 

into multiple segments and map them onto different cores to mitigate 

the voltage drop (case (6) in Fig. 2a).

By contrast, if a model has more than 48 conductance matrices, we 

need to merge some matrices so that they can fit onto a single chip. 

The smaller matrices are merged diagonally such that they can be 

accessed in parallel (case (3) in Fig. 2a). The bigger matrices are merged 

horizontally and accessed by time-multiplexing input rows (case (4) in 

Fig. 2a). When selecting the matrices to merge, we want to avoid the 

matrices that belong to the same two categories described in the previ-

ous paragraph: (1) those that have high computational intensity (for 

example, early layers of ResNet-20) to minimize impact on throughput; 

and (2) those with ‘wide’ output dimension (for example, late layers 

of ResNet-20 have large number of output channels) to avoid a large 

voltage drop. For instance, in our ResNet-20 implementation, among 

a total of 61 conductance matrices (Extended Data Fig. 9a: 1 from input 

layer, 12 from block 1, 17 from block 2, 28 from block 3, 2 from shortcut 

layers and 1 from final dense layer), we map each of the conductance 



matrices in blocks 1 and 3 onto a single core, and merge the remaining 

matrices to occupy the 8 remaining cores.

Table 1 summarizes core usage for all the models. It is noted that 

for partially occupied cores, unused RRAM cells are either unformed 

or programmed to high resistance state; WLs of unused rows are not 

activated during inference. Therefore, they do not consume additional 

energy during inference.

Test-system implementation

Extended Data Fig. 11a shows the hardware test system for the NeuR-

RAM chip. The NeuRRAM chip is configured by, receives inputs from 

and sends outputs to a Xilinx Spartan-6 FPGA that sits on an Opal Kelly 

integrated FPGA board. The FPGA communicates with the PC via a 

USB 3.0 module. The test board also houses voltage DACs that provide 

various bias voltages required by RRAM programming and MVM, and 

ADCs to measure RRAM conductance during the write–verify program-

ming. The power of the entire board is supplied by a standard ‘cannon 

style’ d.c. power connector and integrated switching regulators on 

the Opal Kelly board such that no external lab equipment is needed 

for the chip operation.

To enable fast implementation of various machine-learning applica-

tions on the NeuRRAM chip, we developed a software toolchain that 

provides Python-based application programming interfaces (APIs) 

at various levels. The low-level APIs provide access to basic opera-

tions of each chip module such as RRAM read and write and neuron 

analogue-to-digital conversion; the middle-level APIs include essen-

tial operations required for implementing neural-network layers such 

as the multi-core parallel MVMs with configurable bit-precision and 

RRAM write–verify programming; the high-level APIs integrate vari-

ous middle-level modules to provide complete implementations of 

neural-network layers, such as weight mapping and batch inference of 

convolutional and fully connected layers. The software toolchain aims to 

allow software developers who are not familiar with the NeuRRAM chip 

design to deploy their machine-learning models on the NeuRRAM chip.

Power and throughput measurements

To characterize MVM energy efficiency at various input and output 

bit-precisions, we measure the power consumption and latency of the 

MVM input and output stages separately. The total energy consump-

tion and the total time are the sum of input and output stages because 

the two stages are performed independently as described in the above 

sections. As a result, we can easily obtain the energy efficiency of any 

combinations of input and output bit-precisions.

To measure the input-stage energy efficiency, we generate a 256 × 256 

random weight matrix with Gaussian distribution, split it into 2 seg-

ments, each with dimension 128 × 256, and program the two segments 

to two cores using the differential-row weight mapping. We measure 

the power consumption and latency for performing 10 million MVMs, 

or equivalently 655 billion MAC operations. The comparison with pre-

vious work shown in Fig. 1d uses the same workload as benchmark.

Extended Data Fig. 12a shows the energy per operation consumed 

during the input and the output stages of MVMs under various 

bit-precisions. The inputs are in the signed integer format, where the 

first bit represents the sign, and the other bits represent the magnitude. 

One-bit (binary) and two-bit (ternary) show similar energy because each 

input wire is driven to one of three voltage levels. Binary input is there-

fore just a special case for ternary input. It is noted that the curve shown 

in Extended Data Fig. 12a is obtained without the two-phase operation. 

As a result, we see a super-linear increase of energy as input bit-precision 

increases. Similar to the inputs, the outputs are also represented in the 

signed integer format. The output-stage energy consumption grows 

linearly with output bit-precision because one additional binary search 

cycle is needed for every additional bit. The output stage consumes less 

energy than the input stage because it does not involve toggling highly 

capacitive WLs that are driven at a higher voltage, as we discuss b el ow.

For the MVM measurements shown in Extended Data Fig. 12b–e, 

the MVM output stage is assumed to use 2-bit-higher precision 

than inputs to account for the additional bit-precision required for 

partial-sum accumulations. The required partial-sum bit-precision 

for the voltage-mode sensing implemented by NeuRRAM is much 

lower than that required by the conventional current-mode sens-

ing. As explained before, conventional current-sensing designs can 

only activate a fraction of rows each cycle, and therefore need many 

partial-sum accumulation steps to complete an MVM. In contrast, the 

proposed voltage-sensing scheme can activate all the 256 input wires 

in a single cycle, and therefore requires less partial-sum accumulation 

steps and lower partial-sum precisions.

Extended Data Fig. 12b shows the energy consumption breakdown.  

A large fraction of energy is spent in switching on and off the WLs that 

connect to gates of select transistors of RRAM devices. These transistors 

use thick-oxide I/O transistors to withstand high-voltage during RRAM 

forming and programming. They are sized large enough (width 1 μm  

and length 500 nm) to provide sufficient current for RRAM program-

ming. As a result, they require high operating voltages and add large 

capacitance to the WLs, both contributing to high power consumption 

(P = fCV2, where f is the frequency at which the capacitance is charged 

and discharged). Simulation shows that each of the 256 access transis-

tors contributes about 1.5 fF to a WL; WL drivers combined contribute 

about 48 fF to each WL; additional WL capacitance is mostly from the 

inter-wire capacitance from neighbouring BLs and WLs. The WL energy 

is expected to decrease significantly if RRAMs can be written by a lower 

voltage and have a lower conductance state, and if a smaller transistor 

with better drivability can be used.

For applications that require probabilistic sampling, the two 

counter-propagating LFSR chains generate random Bernoulli noises 

and inject the noises as voltage pulses into neurons. We measure each 

noise-injection step to consume on average 121 fJ per neuron, or 0.95 fJ 

per weight, which is small compared with other sources of energy con-

sumption shown in Extended Data Fig. 12b.

Extended Data Fig. 12c–e shows the measured latency, peak through-

put and throughput-power efficiency for performing the 256 × 256 

MVMs. It is noted that we used EDP as a figure of merit for comparing 

designs rather than throughput-power efficiency as tera-operations 

per second per watt (TOPS W−1, reciprocal of energy per operation), 

because it captures the time-to-solution aspect in addition to energy 

consumption. Similar to previous work in this field, the reported 

throughput and energy efficiency represent their peak values when 

the CIM array utilization is 100%, and does not include time and energy 

spent at buffering and moving intermediate data. Future work that 

integrates intermediate data buffers, partial-sum accumulators and 

so on within a single complete CIM chip should show energy efficiency 

measured on end-to-end AI applications.

Projection of NeuRRAM energy efficiency with technology 

scaling

The current NeuRRAM chip is fabricated using a 130-nm CMOS technol-

ogy. We expect the energy efficiency to improve with the technology 

scaling. Importantly, isolated scaling of CMOS transistors and intercon-

nects is not sufficient for the overall energy-efficiency improvement. 

RRAM device characteristics must be optimized jointly with CMOS. The 

current RRAM array density under a 1T1R configuration is limited not 

by the fabrication process but by the RRAM write current and voltage. 

The current NeuRRAM chip uses large thick-oxide I/O transistors as 

the ‘T’ to withstand >4-V RRAM forming voltage and provide enough 

write current. Only if we lower both the forming voltage and the write 

current can we obtain higher density and therefore lower parasitic 

capacitance for improved energy efficiency.

Assuming that RRAM devices at a newer technology node can be 

programmed at a logic-compatible voltage level, and the required write 

current can be reduced such that the size of the connecting transistor 
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keeps shrinking, the EDP improvements will come from (1) lower oper-

ating voltage and (2) smaller wire and transistor capacitance, that is, 

Energy ∝ CV2 and Delay ∝ CV/I. At 7 nm, for instance, we expect the 

WL switching energy (Extended Data Fig. 12b) to reduce by about 22.4 

times, including 2.6 times from WL voltage scaling (1.3 V → 0.8 V), and 

8.5 times from capacitance scaling (capacitance from select transistors, 

WL drivers and wires are all assumed to scale with minimum metal pitch 

340 nm → 40 nm). Peripheral circuit energy (dominated by the neuron 

readout process) is projected to reduce by 42 times, including 5 times 

from VDD scaling (1.8 V → 0.8 V) and 8.5 times from smaller parasitic 

capacitance. The energy consumed by the MVM pulses and charge 

transfer process is independent of the range of RRAM conductance, as 

power consumption and settling time of the RRAM array scale with the 

same conductance factor that cancels in their product. Specifically the 

energy per RRAM MAC is EMAC = Cpar var(Vin), limited only by the parasitic 

capacitance per unit RRAM cell Cpar, and the variance in the driven input 

voltage var(Vin). Therefore, the MVM energy consumption will reduce 

by approximately 34 times, including 4 times from read-voltage scal-

ing (0.5 V → 0.25 V), and 8.5 times from smaller parasitic capacitance. 

Overall, we expect an energy consumption reduction of about 34 times 

when scaling the design from 130 nm to 7 nm.

In terms of the latency, the current design is limited by the long 

integration time of neuron, caused primarily by the relatively large 

integration capacitor size (104 fF), which was chosen conservatively 

to ensure function correctness and testing different neuron operat-

ing conditions. At more advanced technology nodes, one could use a 

much smaller capacitor size to achieve a higher speed. The main con-

cern for scaling-down capacitor size is that the fabrication-induced 

capacitor size mismatch will take up a higher fraction of total capaci-

tance, resulting in a lower SNR. However, previous ADC designs have 

used a unit capacitor size as small as 50 aF (ref. 56; 340 times smaller 

than our Csample). For a more conservative design, a study has shown 

that in a 32-nm process, a 0.45-fF unit capacitor has only 1.2% average 

standard deviation57. Besides, the integration time also depends on the 

drive current of the transistors. Assuming that the transistor current 

density (μA μm−1) stays relatively unchanged after VDD scaling, and 

that the transistor width in the neuron scales with the contact gate 

pitch (310 nm → 57 nm), the total transistor drive current will reduce 

by 5.4 times. As a result, when scaling Csample from 17 fF to 0.2 fF and 

Cinteg proportionally from 104 fF to 1.22 fF, the latency will improve 

by 15.7 times. Therefore, conservatively, we expect the overall EDP to 

improve by at least 535 times when scaling the design from 130-nm to 

7-nm technology. Extended Data Table 2 shows that such scaling will 

enable NeuRRAM to deliver higher energy and area efficiency than 

today’s state-of-the-art edge inference accelerators58–61.

Data availability

The datasets used for benchmarks are publicly available18–20. Other 

data that support the findings of this study are available in a public 

repository47.

Code availability

The software toolchain used to test and deploy AI tasks on the NeuR-

RAM chip, and the codes used to perform noise-resilient model training 

and chip-in-the-loop progressive model fine-tuning are available in a 

public repository47.
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Extended Data Fig. 1 | Peripheral driver circuits for TNSA and chip operating 

modes. a, driver circuits’ configuration under the weight-programming mode. 

b, under the neuron-testing mode. c, under the MVM mode. d, circuit diagram of 

the two counter-propagating LFSR chains XORed to generate pseudo-random 

sequences for probabilistic sampling.
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Extended Data Fig. 2 | Various MVM dataflow directions and their CIM 

implementations. Left, various MVM dataflow directions commonly seen in 

different AI models. Middle, conventional CIM implementation of various 

dataflow directions. Conventional designs typically locate all peripheral 

circuits such as ADCs outside of RRAM array. The resulting implementations of 

bidirectional and recurrent MVMs incur overheads in area, latency, and energy. 

Right, the Transposable Neurosynaptic Array (TNSA) interleaves RRAM 

weights and CMOS neurons across the array and supports diverse MVM 

directions with minimal overhead.



Extended Data Fig. 3 | Iterative write–verify RRAM programming.  

a, Flowchart of the incremental-pulse write–verify technique to program 

RRAMs into target analogue conductance range. b, An example sequence of 

the write–verify programming. c, RRAM conductance distribution measured 

during and after the write–verify programming. Each blue dot represents one 

RRAM cell measured during write–verify. The grey shades show that the RRAM 

conductance relaxation cause the distribution to spread out from the target 

values. The darker shade shows that the iterative programming helps narrow 

the distribution. d, Standard deviation of conductance change measured at 

different initial conductance states and different time duration after the initial 

programming. The initial conductance relaxation happens at a faster rate than 

longer term retention degradation. e, Standard deviation of conductance 

relaxation decreases with increasing iterative programming cycles.  

f, Distribution of the number of SET/RESET pulses needed to reach 

conductance acceptance range.
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Extended Data Fig. 4 | 4 basic neuron operations that enable MVM with 

multi-bit inputs and outputs. a, Initialization, precharge sampling capacitor 

Csample and output wires (SLs), and discharge integration capacitor Cinteg.  

b, Sampling and integration, sample SL voltage onto Csample, followed by 

integrating the charge onto Cinteg. c, Comparison and readout. The amplifier is 

turned into comparator mode to determine the polarity of the integrated 

voltage. Comparator outputs are written out of the neuron through the outer 

feedback loop. d, Charge decrement, charge is added or subtracted on Cinteg 

through the outer feedback loop, depending on value stored in the latch.



Extended Data Fig. 5 | Scatter plots of measured MVMs vs. ideal MVMs. 

Results in a-d are generated using the same 64×64 normally distributed 

random matrix and 1000 uniformed distributed floating-point vectors ϵ [-1, 1]. 

a, Forward MVM using differential input scheme with inputs quantized to 4-bit 

and outputs 6-bit. b, Backward MVM using differential output scheme. The 

higher RMSE is caused by more voltage drop on each SL driver that needs to 

drive 128 RRAM cells, compared to 64 cells driven by each BL driver during 

forward MVM. c, MVM root-mean-square error (RMSE) does not reduce when 

increasing input from 4-bit (a) to 6-bit. This is caused by using a lower input 

voltage that leads to worse signal-to-noise-ratio. d, 2-phase operation reduces 

MVM RMSE with 6-bit input by breaking inputs into 2 segments and performing 

MVMs separately, such that input voltage does not need to be reduced. e–f, 

Outputs from conv15 layer of ResNet-20. Weights of conv15 are divided to 3 CIM 

cores. Layer outputs show a higher RMSE when performing MVM in parallel on 

the 3 cores (f) than sequentially on the 3 cores (e).
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Extended Data Fig. 6 | Data distribution with and without model-driven 

chip calibration. Left, Distribution of inputs to the final fully connected layer 

of ResNet-20 when the inputs are generated from (top-to-bottom) CIFAR-10 

test-set data, training-set data, and random uniform data. Right, Distribution 

of outputs from the final fully connected layer of ResNet-20. The test-set and 

training-set have similar distributions while random uniform data produces a 

markedly different output distribution. To ensure that the MVM output voltage 

dynamic range during testing is calibrated to occupy the full ADC input swing, 

the calibration data should come from training-set data that closely resembles 

the test-set data.



Extended Data Fig. 7 | Noise-resilient training of CNNs, LSTMs and RBMs.  

a, Change in CIFAR-10 test-set classification accuracy under different weight 

noise levels during inference. Noise is represented as fraction of the maximum 

absolute value of weights. Different curves represent models trained at 

different levels of noise injection. b, Change in voice command recognition 

accuracy with weight noise levels. c, Change in MNIST image-reconstruction 

error with weight noise levels. d, Decreasing of image-reconstruction error 

with Gibbs sampling steps during RBM inference. e, Differences in weight 

distributions when trained without and with noise injection.
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Extended Data Fig. 8 | Measured chip inference performance. a, CIFAR-10 

training-set accuracy loss due to hardware non-idealities, and accuracy 

recovery at each step of the chip-in-the-loop progressive fine-tuning. From left 

to right, each data point represents a new layer programmed onto the chip.  

The blue solid lines represent the accuracy loss measured when performing 

inference of that layer on-chip. The red dotted lines represent the measured 

recovery in accuracy by fine-tuning subsequent layers. b, Ablation study 

showing the impacts of input, activation, and weight quantizations, and weight 

noise injection on inference errors.



Extended Data Fig. 9 | Implementation of various AI models. a, Architecture 

of ResNet-20 for CIFAR-10 classification. b, The batch normalization 

parameters are merged into convolutional weights and biases before mapping 

on-chip. c, Illustration of the process to map 4-dimensional weights of a 

convolutional layer to NeuRRAM CIM cores. d, Architecture of the LSTM model 

used for Google speech command recognition. The model contains 4 parallel 

LSTM cells and makes predictions based on the sum of outputs from the 4 cells. 

e, Architecture of the RBM model used for MNIST image recovery. During 

inference, MVMs and Gibbs sampling are performed back and-forth between 

visible and hidden neurons. f, Process to map RBM on NeuRRAM CIM cores. 

Adjacent pixels are assigned to different cores to equalize the MVM output 

dynamic range at different cores.
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Extended Data Fig. 10 | Chip-measured image recovery using RBM. Top: Recovery of MNIST test-set images with randomly selected 20% of pixels flipped to 

complementary intensity. Bottom: Recovery of MNIST test-set images with bottom 1/3 of pixels occluded.



Extended Data Fig. 11 | NeuRRAM test system and chip micrographs at 

various scales. a, A NeuRRAM chip wire-bonded to a package. b, Measurement 

board that connects a packaged NeuRRAM chip (left) to a field-programmable 

gate array (FPGA, right). The board houses all the components necessary to 

power, operate and measure the chip. No external lab equipment is needed for 

the chip operations. c, Micrograph of a 48-core NeuRRAM chip. d, Zoomed-in 

micrograph of a single CIM core. e, Zoomed-in micrograph of 2×2 corelets 

within the TNSA. One neuron circuit occupies 1270 μm2, which is >100× smaller 

than most ADC designs in 130-nm summarized in an ADC survey62. f, Chip area 

breakdown.
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Extended Data Fig. 12 | Energy consumption, latency, and throughput 

measurement results. a, Measured energy consumption per operation during 

the MVM input stage (without 2-phase operation) and output stage, where one 

multiply–accumulate (MAC) counts as two operations. b, Energy consumption 

breakdown at various MVM input and output bit-precisions. Outputs are 2-bit 

higher than inputs during a MVM to account for additional precision requirements 

from partial-sum accumulation. c, Latency for performing one MVM with 256×256 

weight matrix. d, Peak computational throughput (in giga-operations per second). 

e, Throughput-power efficiency (in tera-operations per watt).



Extended Data Table 1 | Comparison of fully integrated RRAM-based CIM hardware

Notes: 

1. The table does not include studies that do not report detailed performance metrics. 

2. All the reported metrics are measured for performing 256×256 matrix-vector multiplications. 

3. All reported numbers represent peak throughput/efficiency when array utilization is 100%.
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Extended Data Table 2 | Comparison with digital CMOS AI inference accelerators

Notes: 

1. The method to project NeuRRAM efficiency to 7 nm is explained in Methods. 

2. The energy-efficiency projection of digital accelerators is based on CV2 scaling, where C scales with minimum metal pitch and V is adjusted to nominal VDD of 7 nm. 

3. The area-efficiency projection of digital accelerators is based on minimum metal pitch scaling along both horizontal and vertical directions.
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