
504 | Nature | Vol 608 | 18 August 2022

Article

A compute-in-memory chip based on
resistive random-access memory

Weier Wan1,2 ✉, Rajkumar Kubendran2,3, Clemens Schaefer4, Sukru Burc Eryilmaz1,

Wenqiang Zhang5, Dabin Wu5, Stephen Deiss2, Priyanka Raina1, He Qian5, Bin Gao5 ✉,

Siddharth Joshi2,4 ✉, Huaqiang Wu5 ✉, H.-S. Philip Wong1 ✉ & Gert Cauwenberghs2 ✉

Realizing increasingly complex artificial intelligence (AI) functionalities directly on

edge devices calls for unprecedented energy efficiency of edge hardware.

Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1

promises to meet such demand by storing AI model weights in dense, analogue and

non-volatile RRAM devices, and by performing AI computation directly within RRAM,

thus eliminating power-hungry data movement between separate compute and

memory2–5. Although recent studies have demonstrated in-memory matrix-vector

multiplication on fully integrated RRAM-CIM hardware6–17, it remains a goal for a

RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to

support diverse models and software-comparable accuracy. Although efficiency,

versatility and accuracy are all indispensable for broad adoption of the technology,

the inter-related trade-offs among them cannot be addressed by isolated

improvements on any single abstraction level of the design. Here, by co-optimizing

across all hierarchies of the design from algorithms and architecture to circuits and

devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers

versatility in reconfiguring CIM cores for diverse model architectures, energy

efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips

across various computational bit-precisions, and inference accuracy comparable to

software models quantized to four-bit weights across various AI tasks, including

accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification,

84.7-percent accuracy on Google speech command recognition20, and a 70-percent

reduction in image-reconstruction error on a Bayesian image-recovery task.

Early research in the area of resistive random-access memory (RRAM)

compute-in-memory (CIM) focused on demonstrating artificial intel-

ligence (AI) functionalities on fabricated RRAM devices while using

off-chip software and hardware to implement essential functionali-

ties such as analogue-to-digital conversion and neuron activations

for a complete system2,3,6,20–27. Although these studies proposed vari-

ous techniques to mitigate the impacts of analogue-related hardware

non-idealities on inference accuracy, the AI benchmark results reported

were often obtained by performing software emulation based on char-

acterized device data3,5,21,24. Such an approach often overestimates

accuracies compared with fully hardware-measured results owing to

incomplete modelling of hardware non-idealities.

More recent studies have demonstrated fully integrated RRAM

complementary metal–oxide–semiconductor (CMOS) chips capable

of performing in-memory matrix-vector multiplication (MVM)6–17.

However, for a RRAM-CIM chip to be broadly adopted in practical

AI applications, it needs to simultaneously deliver high energy effi-

ciency, the flexibility to support diverse AI model architectures and

software-comparable inference accuracy. So far, there has not been

a study aimed at simultaneously improving all these three aspects

of a design. Moreover, AI application-level benchmarks in previous

studies have limited diversity and complexity. None of the studies

have experimentally measured multiple edge AI applications with

complexity matching those in MLPerf Tiny, a commonly used bench-

mark suite for edge AI hardware28. The challenge arises from the

inter-related trade-offs between efficiency, flexibility and accuracy.

The highly-parallel analogue computation within RRAM-CIM archi-

tecture brings superior efficiency, but makes it challenging to realize

the same level of functional flexibility and computational accuracy

as in digital circuits. Meanwhile, attaining algorithmic resiliency to

hardware non-idealities becomes more difficult for more complex AI

tasks owing to using less over-parameterized models on the edge29,30.

To address these challenges, we present NeuRRAM, a 48-core

RRAM-CIM hardware encompassing innovations across the full

stack of the design. (1) At the device level, 3 million RRAM devices

with high analogue programmability are monolithically integrated

with CMOS circuits. (2) At the circuit level, a voltage-mode neuron

circuit supports variable computation bit-precision and activation

https://doi.org/10.1038/s41586-022-04992-8

Received: 27 July 2021

Accepted: 17 June 2022

Published online: 17 August 2022

Open access

 Check for updates

1Stanford University, Stanford, CA, USA. 2University of California San Diego, La Jolla, CA, USA. 3University of Pittsburgh, Pittsburgh, PA, USA. 4University of Notre Dame, Notre Dame, IN, USA.
5Tsinghua University, Beijing, China. ✉e-mail: weierwan@stanford.edu; gaob1@tsinghua.edu.cn; sjoshi2@nd.edu; wuhq@tsinghua.edu.cn; hspwong@stanford.edu; gert@ucsd.edu

Nature | Vol 608 | 18 August 2022 | 505

functions while performing analogue-to-digital conversion at low

power consumption and compact-area footprint. (3) At the archi-

tecture level, a bidirectional transposable neurosynaptic array

(TNSA) architecture enables reconfigurability in dataflow direc-

tions with minimal area and energy overheads. (4) At the system

level, 48 CIM cores can perform inference in parallel and supports

various weight-mapping strategies. (5) Finally, at the algorithm

level, various hardware-algorithm co-optimization techniques

mitigate the impact of hardware non-idealities on inference accu-

racy. We report fully hardware-measured inference results for a

range of AI tasks including image classifications using CIFAR-1019

and MNIST18 datasets, Google speech command recognition20

and MNIST image recovery, implemented with diverse AI models

including convolutional neural networks (CNNs)31, long short-term

memory (LSTM)32 and probabilistic graphical models33 (Fig. 1e).

The chip is measured to achieve an energy-delay product (EDP)

lower than previous state-of-the-art RRAM-CIM chips, while it oper-

ates over a range of configurations to suit various AI benchmark

applications (Fig. 1d).

Reconfigurable RRAM-CIM architecture

A NeuRRAM chip consists of 48 CIM cores that can perform computa-

tion in parallel. A core can be selectively turned off through power gat-

ing when not actively used, whereas the model weights are retained by

the non-volatile RRAM devices. Central to each core is a TNSA consisting

of 256 × 256 RRAM cells and 256 CMOS neuron circuits that implement

analogue-to-digital converters (ADCs) and activation functions. Addi-

tional peripheral circuits along the edge provides inference control

and manages RRAM programming.

The TNSA architecture is designed to offer flexible control of dataflow

directions, which is crucial for enabling diverse model architectures with

different dataflow patterns. For instance, in CNNs that are commonly

applied to vision-related tasks, data flows in a single direction through

layers to generate data representations at different abstraction levels; in

LSTMs that are used to process temporal data such as audio signals, data

travel recurrently through the same layer for multiple time steps; in proba-

bilistic graphical models such as a restricted Boltzmann machine (RBM),

probabilistic sampling is performed back and forth between layers until

the network converges to a high-probability state. Besides inference, the

error back-propagation during gradient-descent training of multiple AI

models requires reversing the direction of dataflow through the network.

However, conventional RRAM-CIM architectures are limited to per-

form MVM in a single direction by hardwiring rows and columns of the

RRAM crossbar array to dedicated circuits on the periphery to drive

inputs and measure outputs. Some studies implement reconfigurable

dataflow directions by adding extra hardware, which incurs substantial

energy, latency and area penalties (Extended Data Fig. 2): executing

bidirectional (forwards and backwards) dataflow requires either dupli-

cating power-hungry and area-hungry ADCs at both ends of the RRAM

array11,34 or dedicating a large area to routing both rows and columns

of the array to shared data converters15; the recurrent connections

require writing the outputs to a buffer memory outside of the RRAM

array, and reading them back for the next time-step computation35.

The TNSA architecture realizes dynamic dataflow reconfigurability

with little overhead. Whereas in conventional designs, CMOS peripheral

circuits such as ADCs connect at only one end of the RRAM array, the

TNSA architecture physically interleaves the RRAM weights and the

CMOS neuron circuits, and connects them along the length of both

rows and columns. As shown in Fig. 2e, a TNSA consists of 16 × 16 of

Cross-layer

co-optimization

1

10

100

65 nm (ref. 7)

55 nm (ref. 10)

1 2 3 4

MVM input bit-precision

5 6 7 8

NeuRRAM

130 nm

22 nm (ref. 16)

180 nm (ref. 6)

22 nm (ref. 9)

CNN

LSTM

Car Horse Deer Bird

‘Yes’ ‘No’
‘Up’ ‘Down’…

Visual perception

Audio recognition
……

Recon�gurability

Computation granularity

E
D

P
 (
n
o

rm
a
liz

e
d

)

C
la

s
s
i�

c
a
ti
o

n
 e

rr
o

r
(%

)

L
2
-r

e
c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r

MNIST

classi�cation

(CNN)

Data-�ow direction

Computation bit-precision

Input/output dynamic range

Diverse model

architectures

Diverse

applications

…

Versatility

1.0

13.0

15.1

1.0

14.3
15.3

1.4

15.7

18.7

0

5

10

15

20

Software model

(4-bit weights)

Chip-measured

results

3

6

9

12

Software model

(3-bit weights)

70%

reduction

a

b

c

d

e

L
o

w
e
r

is
 b

e
tt

e
r

L
o

w
e
r

is
 b

e
tt

e
r

0

3.89 3.68 3.97

Noisy images: 12.20

Algorithm

Model-driven chip calibration

and chip-driven model

training and �ne-tuning

System

Multi-core parallel operation

and �exible weight mapping

Architecture

Transposable neurosynaptic

array enables versatile

data�ow directions

Circuit

Voltage-mode neuron with

variable computational bit-

precisions and activation functions

Technology

Monolithically integrated

analogue RRAM and CMOS

NeuRRAM chip:

48 cores

3 million RRAM cells

Software

comparable

accuracy

Computational

ef�ciency

CIFAR-10

classi�cation

(ResNet-20)

Voice command

recognition

(LSTM)

Image

recovery

(RBM)

Fig. 1 | Design methodology and main contributions of the NeuRRAM chip.

a, Cross-layer co-optimizations across the full stack of the design enable

NeuRRAM to simultaneously deliver high versatility, computational efficiency

and software-comparable inference accuracy. b, Micrograph of the NeuRRAM

chip. c, Reconfigurability in various aspects of the design enables NeuRRAM to

implement diverse AI models for a wide variety of applications. d, Comparison

of EDP, a commonly used energy-efficiency and performance metric among

recent RRAM-based CIM hardware. e, Fully hardware-measured inference

accuracy on NeuRRAM is comparable to software models quantized to 4-bit

weights across various AI benchmarks.

506 | Nature | Vol 608 | 18 August 2022

Article

such interleaved corelets that are connected by shared bit-lines (BLs)

and word-lines (WLs) along the horizontal direction and source-lines

(SLs) along the vertical direction. Each corelet encloses 16 × 16 RRAM

devices and one neuron circuit. The neuron connects to 1 BL and 1 SL

out of the 16 BLs and the 16 SLs that pass through the corelet, and is

responsible for integrating inputs from all the 256 RRAMs connecting

to the same BL or SL. Sixteen of these RRAMs are within the same corelet

as the neuron; and the other 240 are within the other 15 corelets along

the same row or column. Specifically, Fig. 2f shows that the neuron

within corelet (i, j) connects to the (16i + j)th BL and the (16j + i)th SL.

Such a configuration ensures that each BL or SL connects uniquely to

a neuron, while doing so without duplicating neurons at both ends of

the array, thus saving area and energy.

Moreover, a neuron uses its BL and SL switches for both its input and

output: it not only receives the analogue MVM output coming from BL

or SL through the switches but also sends the converted digital results

Fig. 2 | Reconfigurable architecture of the NeuRRAM chip. a, Multi-core

architecture of the NeuRRAM chip, and various ways, labelled (1) to (6), to map

neural-network layers onto CIM cores. b, Zoomed-in chip micrograph on a

single CIM core. c, A cross-sectional transmission electron microscopy image

showing the layer stack of the monolithically integrated RRAM and CMOS.

d, Block diagram of a CIM core. A core consists of a TNSA, drivers for BLs, WLs,

and SLs, registers that store MVM inputs and outputs, a LFSR pseudo-random

number generator (PRNG), and a controller. During the MVM input stage, the

drivers convert register inputs (REG) and PRNG inputs (PRN) to analogue

voltages and send them to TNSA; during the MVM output stage, the drivers

pass digital outputs from neurons back to registers through REG. e, The

architecture of a TNSA consists of 16 × 16 corelets with interleaving RRAM

weights and CMOS neurons. Each neuron integrates inputs from 256 RRAMs

connecting to the same horizontal BL or vertical SL. f, Each corelet contains

16 × 16 RRAMs and 1 neuron. The neuron connects to 1 of the 16 BLs and 1 of the

16 SLs that pass through the corelet, and can use a BL and a SL for both its input

and output. g, The TNSA can be dynamically configured for MVM in forwards,

backwards or recurrent directions. h, Differential input and differential output

schemes used to implement real-valued weights during forwards and

backwards MVMs. Weights are encoded as the differential conductance

between two RRAM cells on adjacent rows (G+ and G-).

Neural network model

NeuRRAM chip (48 cores)

TNSATNSA

M5

RRAM

CMOS access

transistors

M4

M3

M2

M1

B
L
/W

L
 d

ri
v
e
rs

B
L
/W

L
 r

e
g

is
te

rs

SL drivers

100 μm

1 μm

C
o

n
tr

o
lle

r

SL registers and LFSR

8
 r

o
w

s

6 columns

RRAM weights CMOS neuron

W
1

W
2

W
3

0 15 16 31

a

d

g h

e
f

b c

–

Layer

weight

mapper

a

SL[0:255]

B
L
[0
:2
5
5
] R
E
G
_
B
L
[0
.2
5
5
]

W
L
[0

:2
5
5
]

B
L
/W

L
 d

ri
v
e
rs

B
L
/W

L
 r

e
g

is
te

rs

REG_SL[0:255] PRN[0:255]

(6)

TNSA

256 CMOS neurons and

65,536 RRAM cells

SL drivers

SL registers

Controller

LFSR PRNG

Forwards MVM Backwards MVM Recurrent MVM
Differential input

V
ref

 + V
read

V
ref

 + V
read

V
ref

 – V
read

G+

G+

G–

G–

BL

driver

Neuron

Neuron

Neuron

Differential outputSum over total 256 rows Sum over total 256 rows

S
u
m

 o
v
e
r

to
ta

l
2
5
6
 c

o
lu

m
n
s

SL drivers

B
L
/W

L
 d

ri
v
e
rs

B
L
 r

e
g

is
te

rs

B
L
/W

L
 d

ri
v
e
rs

B
L
 r

e
g

is
te

rs

B
L
/W

L
 d

ri
v
e
rs

B
L
 r

e
g

is
te

rs

SL registers

SL drivers

SL registers

SL drivers

SL registers

Neuron Neuron Neuron

(5)

(4)

(3)

(2)

(1)

b

Combine layers

to one core

Rearrange to

one core for

higher utilization

Divide to multiple

cores for parallel

execution

1 layer → 1 core

Duplicate to
multiple cores for
higher throughput

TiN

HfO
x

TiN

Thermal enhancement

layer

50 nm

Corelet

(0, 0)
(0, 1) (0, 15)

(1, 15)

(15, 15)

(1, 1)(1, 0)

(15, 1)(15, 0)

0

15

16

31

240

255

240 255

BL 16j

BL 16j + k

BL 16j + 15

WL 16j + 15

BL switch

S
L
 1

6
k
 +

 1
5

S
L
 1

6
k
 +

 j

S
L
 1

6
k SL

switch
Neuron

(j, k)

WL 16j + k

WL 16j

BL

driver

SL

driver

a

a

b

b

Nature | Vol 608 | 18 August 2022 | 507

to peripheral registers through the same switches. By configuring

which switch to use during the input and output stages of the neuron,

we can realize various MVM dataflow directions. Figure 2g shows the

forwards, backwards and recurrent MVMs enabled by the TNSA. To

implement forwards MVM (BL to SL), during the input stage, input

pulses are applied to the BLs through the BL drivers, get weighted by the

RRAMs and enter the neuron through its SL switch; during the output

stage, the neuron sends the converted digital outputs to SL registers

through its SL switch; to implement recurrent MVM (BL to BL), the neu-

ron instead receives input through its SL switch and sends the digital

output back to the BL registers through its BL switch.

Weights of most AI models take both positive and negative values. We

encode each weight as difference of conductance between two RRAM

cells on adjacent rows along the same column (Fig. 2h). The forwards

MVM is performed using a differential input scheme, where BL drivers

send input voltage pulses with opposite polarities to adjacent BLs. The

backwards MVM is performed using a differential output scheme, where

we digitally subtract outputs from neurons connecting to adjacent BLs

after neurons finish analogue-to-digital conversions.

To maximize throughput of AI inference on 48 CIM cores, we imple-

ment a broad selection of weight-mapping strategies that allow us to

exploit both model parallelism and data parallelism (Fig. 2a) through

multi-core parallel MVMs. Using a CNN as an example, to maximize

data parallelism, we duplicate the weights of the most computation-

ally intensive layers (early convolutional layers) to multiple cores for

parallel inference on multiple data; to maximize model parallelism,

we map different convolutional layers to different cores and perform

parallel inference in a pipelined fashion. Meanwhile, we divide the lay-

ers whose weight dimensions exceed the RRAM array size into multiple

segments and assign them to multiple cores for parallel execution.

A more detailed description of the weight-mapping strategies is pro-

vided in Methods. The intermediate data buffers and partial-sum accu-

mulators are implemented by a field-programmable gate array (FPGA)

integrated on the same board as the NeuRRAM chip. Although these

digital peripheral modules are not the focus of this study, they will even-

tually need to be integrated within the same chip in production-ready

RRAM-CIM hardware.

Efficient voltage-mode neuron circuit

Figure 1d and Extended Data Table 1 show that the NeuRRAM chip

achieves 1.6-times to 2.3-times lower EDP and 7-times to 13-times

higher computational density (measured by throughput per million

of RRAMs) at various MVM input and output bit-precisions than previ-

ous state-of-the-art RRAM-based CIM chips, despite being fabricated

at an older technology node17–27,36. The reported energy and delay are

measured for performing an MVM with a 256 × 256 weight matrix. It is

noted that these numbers and those reported in previous RRAM-CIM

work represent the peak energy efficiency achieved when the array

utilization is 100% and does not account for energy spent on interme-

diate data transfer. Network-on-chip and program scheduling need

to be carefully designed to achieve good end-to-end application-level

energy efficiency37,38.

Key to the NeuRRAM’s EDP improvement is a novel in-memory MVM

output-sensing scheme. The conventional approach is to use voltage

as input, and measure the current as the results based on Ohm’s law

(Fig. 3a). Such a current-mode-sensing scheme cannot fully exploit

the high-parallelism nature of CIM. First, simultaneously turning on

multiple rows leads to a large array current. Sinking the large current

requires peripheral circuits to use large transistors, whose area needs to

be amortized by time-multiplexing between multiple columns, which

limits ‘column parallelism’. Second, MVM results produced by differ-

ent neural-network layers have drastically different dynamic ranges

(Fig. 3c). Optimizing ADCs across such a wide dynamic range is difficult.

To equalize the dynamic range, designs typically activate a fraction

of input wires every cycle to compute a partial sum, and thus require

multiple cycles to complete an MVM, which limits ‘row parallelism’.

NeuRRAM improves computation parallelism and energy efficiency

by virtue of a neuron circuit implementing a voltage-mode sensing

scheme. The neuron performs analogue-to-digital conversion of the

MVM outputs by directly sensing the settled open-circuit voltage on the

BL or SL line capacitance39 (Fig. 3b): voltage inputs are driven on the BLs

whereas the SLs are kept floating, or vice versa, depending on the MVM

direction. WLs are activated to start the MVM operation. The voltage on

the output line settles to the weighted average of the voltages driven on

the input lines, where the weights are the RRAM conductances. Upon

deactivating the WLs, the output is sampled by transferring the charge

on the output line to the neuron sampling capacitor (Csample in Fig. 3d).

The neuron then accumulates this charge onto an integration capacitor

(Cinteg) for subsequent analogue-to-digital conversion.

Such voltage-mode sensing obviates the need for power-hungry and

area-hungry peripheral circuits to sink large current while clamping

voltage, improving energy and area efficiency and eliminating output

time-multiplexing. Meanwhile, the weight normalization owing to the

conductance weighting in the voltage output (Fig. 3c) results in an

automatic output dynamic range normalization for different weight

matrices. Therefore, MVMs with different weight dimensions can all

be completed within a single cycle, which significantly improves com-

putational throughput. To eliminate the normalization factor from

the final results, we pre-compute its value and multiply it back to the

digital outputs from the ADC.

Our voltage-mode neuron supports MVM with 1-bit to 8-bit inputs

and 1-bit to 10-bit outputs. The multi-bit input is realized in a bit-serial

fashion where charge is sampled and integrated onto Cinteg for 2n−1 cycles

for the nth least significant bit (LSB) (Fig. 3e). For MVM inputs greater

than 4 bits, we break the bit sequence into two segments, compute

MVM for each segment separately and digitally perform a shift-and-add

to obtain the final results (Fig. 3f). Such a two-phase input scheme

improves energy efficiency and overcomes voltage headroom clipping

at high-input precisions.

The multi-bit output is generated through a binary search process

(Fig. 3g). Every cycle, neurons add or subtract CsampleVdecr amount of

charge from Cinteg, where Vdecr is a bias voltage shared by all neurons.

Neurons then compare the total charge on Cinteg with a fixed threshold

voltage Vref to generate a 1-bit output. From the most significant bit (MSB)

to the least significant bit (LSB), Vdecr is halved every cycle. Compared

with other ADC architectures that implement a binary search, our ADC

scheme eliminates the residue amplifier of an algorithmic ADC, and does

not require an individual DAC for each ADC to generate reference volt-

ages like a successive approximation register (SAR) ADC40. Instead, our

ADC scheme allows sharing a single digital-to-analogue converter (DAC)

across all neurons to amortize the DAC area, leading to a more compact

design. The multi-bit MVM is validated by comparing ideal and measured

results, as shown in Fig. 3h and Extended Data Fig. 5. More details on the

multi-bit input and output implementation can be found in Methods.

The neuron can also be reconfigured to directly implement Rectified

Linear Unit (ReLU)/sigmoid/tanh as activations when needed. In addi-

tion, it supports probabilistic sampling for stochastic activation func-

tions by injecting pseudo-random noise generated by a linear-feedback

shift register (LFSR) block into the neuron integrator. All the neuron

circuit operations are performed by dynamically configuring a single

amplifier in the neuron as either an integrator or a comparator during

different phases of operations, as detailed in Methods. This results in

a more compact design than other work that merges ADC and neuron

activation functions within the same module12,13. Although most exist-

ing CIM designs use time-multiplexed ADCs for multiple rows and col-

umns to amortize the ADC area, the compactness of our neuron circuit

allows us to dedicate a neuron for each pair of BL and SL, and tightly

interleave the neuron with RRAM devices within the TNSA architecture,

as can be seen in Extended Data Fig. 11d.

508 | Nature | Vol 608 | 18 August 2022

Article

Hardware-algorithm co-optimizations

The innovations on the chip architecture and circuit design bring

superior efficiency and reconfigurability to NeuRRAM. To complete

the story, we must ensure that AI inference accuracy can be preserved

under various circuit and device non-idealities3,41. We developed a set of

hardware-algorithm co-optimization techniques that allow NeuRRAM

to deliver software-comparable accuracy across diverse AI applications.

Importantly, all the AI benchmark results presented in this paper are

obtained entirely from hardware measurements on complete datasets.

Although most previous efforts (with a few exceptions8,17) have reported

benchmark results using a mixture of hardware characterization and

software simulation, for example, emulate the array-level MVM pro-

cess in software using measured device characteristics3,5,21,24, such an

approach often fails to model the complete set of non-idealities exist-

ing in realistic hardware. As shown in Fig. 4a, these non-idealities may

include (1) Voltage drop on input wires (Rwire), (2) on RRAM array driv-

ers (Rdriver) and (3) on crossbar wires (e.g. BL resistance RBL), (4) limited

RRAM programming resolution, (5) RRAM conductance relaxation41, (6)

capacitive coupling from simultaneously switching array wires, and (7)

limited ADC resolution and dynamic range. Our experiments show that

omitting certain non-idealities in simulation leads to over-optimistic

Fig. 3 | Voltage-mode MVM with multi-bit inputs and outputs.

 a, Conventional current-mode-sensing scheme needs to activate a small

fraction of total N rows each cycle to limit total current ISL and time-multiplex

ADCs across multiple columns to amortize ADC area, thus limiting its

computational parallelism. b, Voltage-mode sensing employed by NeuRRAM

can activate all the rows and all the columns in a single cycle, enabling

higher parallelism. c, MVM output distribution from a CNN layer and from

an LSTM layer (weights normalized to the same range). Voltage-mode

sensing intrinsically normalizes wide variation in output dynamic range.

d, Schematic of the voltage-mode neuron circuit, where BLsel, SLsel, Sample,

Integ, Reset, Latch, Decr, and WR are digital signals controlling state of the

switches. e, Sample waveforms to perform MVM and 4-bit signed inputs

digital-to-analogue conversion. WLs are pulsed once per magnitude-bit;

sampling and integration are performed 2n−1 times for the nth LSB. f, Two-phase

MVM: for input precision greater than 4 bits, inputs are divided into a MSB

segment and a LSB segment. MVMs and ADCs are performed separately for

each segment, followed by a shift-and-add to obtain final outputs. g, Sample

waveforms to perform 5-bit signed outputs analogue-to-digital conversion.

The sign-bit is first generated by a comparison operation. The magnitude-bits

are generated through a binary search process realized by adding/subtracting

charge on Cinteg. From MSB to LSB, added/subtracted charge is halved every bit.

h, Chip-measured 64 × 64 MVM outputs versus ideal outputs under 4-bit input

and 6-bit output.

Voltage-mode sensing

Current mode:

4-bit signed inputs
MSB LSB

5

–2

I
out,j

 = Σ
i
V
i
G

ij V
out,j

Output current (μA) Output voltage (V)

MVM output dynamic

range varies with models Normalize dynamic range

Voltage mode:

Current-mode sensing

=

a

c

b

0 1 1 0 0 1

0 1 1 0 0 1

0 1 0 0 1 1 0 1 1 1 0 1 0

0 1 0 1 0 1 1 1

+

1 1

Magnitude bitsSign-bit

1
00

d e

f g h

0
BL 0

SL 0 SL 1

WL 0

BL 1

WL 1

BL 0

WL 0

BL 1

WL 1

BL N

WL N

WL

GND

GND

GND

GND

V
read

V
ref

V
ref

 + V
read

V
ref

 – V
read

BL

V
read

V
ref

Ampli�er

C
sample

17 fF

C
integ

V
ref

V
decr

 + GND

V
ref

 + V
decr V

ref
 + ½V

decr

V
ref

 – ½V
decr

V
ref

 + ¼V
decr

V
ref

 – ¼V
decr

V
decr+

V
decr–

V
integ

V
latch

V
ref

 – V
decr

V
ref

V
decr

 – VDD

104 fF

WR

I
SL

1

Multiplexor

Voltage clamp

Current mirror

Current ADC

1 0 1

0 –1 0

−400 −200 0 200 400

LSTM

−0.2 −0.1 0 0.1 0.2

−10.0 −7.5 −5.0 −2.5 0 2.5 5.0 7.5 10.0

Expected inner product output

−10.0

−7.5

−5.0

−2.5

0

2.5

5.0

7.5

10.0

M
e
a
s
u
re

d
 i
n
n
e
r

p
ro

d
u
c
t

o
u
tp

u
t

0

1

–1

WL N – 2

WL N – 1

WL N

Turn on a fraction

of rows each cycle
Turn on all the

rows at the

same time

Dedicated ADC

for each column

Peripheral circuits

time-multiplexed by

many columns

SL 0 SL 1

C
SL

C
SL

C
SL

C
sample

e–

e–

e–

Voltage

ADC

Voltage

ADC

CNN

LSTM

CNN

Σ
i
V

i
G

ij

Σ
i
G

ij

SL

SL
sel

6-bit MAC input

8-bit neuron output

8-bit MVM output

5-bit neuron output

3 MSBs 3 LSBs

R
e
s
e
t

B
L

s
e
l

L
o

o
p

Loop

Latch

Latch

D
e
c
r

D
e
c
r

Sample

Phase 1

MVM

Phase 2

MVM

Integ

BL 0

BL 1

BL 2

BL 3

WLs

Sample

Sample

Integ

0 V

Loop/latch/

decr

Integ

r.m.s.e = 0.519

6-b input, 8-b output

V
ref

 + V
read

V
ref

 – V
read V

ref
 – V

read

V
ref

 + V
read

V
ref

V
ref

V
ref

V
ref

Nature | Vol 608 | 18 August 2022 | 509

prediction of inference accuracy. For example, the third and the fourth

bars in Fig. 5a show a 2.32% accuracy difference between simulation

and measurement for CIFAR-10 classification19, whereas the simulation

accounts for only non-idealities (5) and (7), which are what previous

studies most often modelled5,21.

Our hardware-algorithm co-optimization approach includes three

main techniques: (1) model-driven chip calibration, (2) noise-resilient

neural-network training and analogue weight programming, and (3)

chip-in-the-loop progressive model fine-tuning. Model-driven chip

calibration uses the real model weights and input data to optimize

Fig. 4 | Hardware-algorithm co-optimization techniques to improve

NeuRRAM inference accuracy. a, Various device and circuit non-idealities

(labelled (1) to (7)) of in-memory MVM. b, Model-driven chip calibration

technique to search for optimal chip operating conditions and record offsets

for subsequent cancellation. c, Noise-resilient neural-network training

technique to train the model with noise injection. The noise distribution is

obtained from hardware characterization. The trained weights are

programmed to the continuous analogue conductance of RRAMs without

quantization as shown by the continuous diagonal band at the bottom. d, Chip-

in-the-loop progressive fine-tuning technique: weights are progressively

mapped onto the chip one layer at a time. The hardware-measured outputs

from layer n are used as inputs to fine-tune the remaining layers n + 1 to N.

−4 −2 0

0.6 0.7 0.8 0.9 1.0 1.1 1.2

2 4
Ideal output

Input voltage (V)

−4

−2

0

2

4

ADC 1

ADC 2

0.3 0.5 0.7 0.9 1.1 1.3 1.5

0
0 10 20

Conductance (μG)

Conductance (μG)

30 40

0 10 20 30 40

500

1,000

1,500

2,000

0

500

1,000

1,500

2,000

0 10 20 30 40
0

10

20

30

40

a

b c d

During programming

Model-driven chip calibration

Inject noises with

characterized

distribution

Weights already

programmed

on chip

Use the measured

outputs from layer n to

�ne-tune the weights

of the rest of the layers

(not on chip yet)

Program the weights of

layer n, and run inference

Noise-resilient neural-network training and

analogue weight programming

Chip-in-the-loop progressive model �ne-tuning

Step n Step n + 1

Layer 1 Layer 1

Layer n – 1 Layer n – 1

Layer n + 1

Layer n + 2

Layer n

Layer n + 1

Layer n + 2

Layer n

Layer N Layer N

Quantize

W
1

W
2

W
3

Quantize

Quantize

Initialize chip

operating conditions

Yes

No

Perform MVM using

training-set data

Record operating

conditions and

offsets to be used

during inference

Output fully utilizing

and not saturating ADC

input swing?

Adjust operating

conditions

Initial MVM output

distribution

Program analogue

conductance into

RRAMs
After calibration and

offset compensation

Core N

Core 1

(1) R
wire

(2) R
driver (3) R

BL

(4) Limited programming

resolution

(6) ADC output offsets owing to

capacitive coupling from WLs

(7) ADC discretization

and limited input swing

A
c
tu

a
l
o

u
tp

u
t

(5) RRAM

conductance

relaxation

Pad

IN

ADC
OUT

IN

ADC
OUT

Output voltage (μ) M
e
a
s
u
re

d
 c

o
n
d

u
c
ta

n
c
e
 (
μ

S
)

Target conductance (μS)ADC input voltage swing

30 min after programming

Fig. 5 | Measured results showing the efficacy of the hardware-algorithm

co-optimization techniques. a, Simulated (blue) and measured (red)

CIFAR-10 test-set classification accuracies. b, CIFAR-10 classification accuracy

at various time steps of chip-in-the-loop fine-tuning. From left to right, each

data point represents a new layer (Conv0 to Dense) programmed onto the chip.

The accuracy at a layer is evaluated by using the hardware-measured outputs

from that layer as inputs to the remaining layers that are simulated in software.

Two curves compare the test-set inference accuracy with and without applying

fine-tuning during training. c, RBM-based image recovery on noisy images

(top) and partially occluded images measured on NeuRRAM (bottom).

CIFAR-10 classi�cation using ResNet-20

Chip-in-the-loop �ne-tuning layer

RBM

on chip

Simulation

Measurement

83.5

84.0

84.5

85.0

85.5

86.0

86.5

N
o

n
e

C
o

n
v
0

C
o

n
v
1

C
o

n
v
2

C
o

n
v
3

C
o

n
v
4

C
o

n
v
5

C
o

n
v
6

C
o

n
v
7

C
o

n
v
8

C
o

n
v
9

C
o

n
v
1
0

C
o

n
v
1
1

C
o

n
v
1
2

C
o

n
v
1
3

C
o

n
v
1
4

C
o

n
v
1
5

C
o

n
v
1
6

C
o

n
v
1
7

C
o

n
v
1
8

C
o

n
v
1
9

C
o

n
v
2
0

D
e
n
s
e

C
la

s
s
i	

c
a
ti
o

n
 a

c
c
u
ra

c
y
 (
%

)

Off-line trained

and programmed

87.81

Ideal software

(64-bit weights,

3-bit inputs)

85.99

83.67

85.66

24

26

80

82

84

86

88

90

C
la

s
s
i	

c
a
ti
o

n
 a

c
c
u
ra

c
y
 (
%

)

25.34

a b

In situ 	ne-tuned

1.99

85.99

85.66

83.67

c

Simulate

with non-

idealities

(iv)–(vii)

+ Noise-

resilient

training

(simulation)

Chip

measurement

+ Chip-in-

the-loop

	ne-tuning

(measurement)

510 | Nature | Vol 608 | 18 August 2022

Article

chip operating conditions such as input voltage pulse amplitude, and

records any ADC offsets for subsequent cancellation during inference.

Ideally, the MVM output voltage dynamic range should fully utilize the

ADC input swing to minimize discretization error. However, without

calibration, the MVM output dynamic range varies with network layers

even with the weight normalization effect of the voltage-mode sensing.

To calibrate MVM to the optimal dynamic range, for each network layer,

we use a subset of training-set data as calibration input to search for the

best operating conditions (Fig. 4b). Extended Data Fig. 6 shows that

different calibration input distributions lead to different output dis-

tributions. To ensure that the calibration data can closely emulate the

distribution seen at test time, it is therefore crucial to use training-set

data as opposed to randomly generated data during calibration. It is

noted that when performing MVM on multiple cores in parallel, those

shared bias voltages cannot be optimized for each core separately,

which might lead to sub-optimal operating conditions and additional

accuracy loss (detailed in Methods).

Stochastic non-idealities such as RRAM conductance relaxation and

read noises degrade the signal-to-noise ratio (SNR) of the computation,

leading to an inference accuracy drop. Some previous work obtained a

higher SNR by limiting each RRAM cell to store a single bit, and encoding

higher-precision weights using multiple cells9,10,16. Such an approach

lowers the weight memory density. Accompanying that approach, the

neural network is trained with weights quantized to the corresponding

precision. In contrast, we utilize the intrinsic analogue programmability

of RRAM42 to directly store high-precision weights and train the neural

networks to tolerate the lower SNR. Instead of training with quantized

weights, which is equivalent to injecting uniform noise into weights,

we train the model with high-precision weights while injecting noise

with the distribution measured from RRAM devices. RRAMs on NeuR-

RAM are characterized to have a Gaussian-distributed conductance

spread, caused primarily by conductance relaxation. Therefore, we

inject a Gaussian noise into weights during training, similar to a previ-

ous study21. Figure 5a shows that the technique significantly improves

the model’s immunity to noise, from a CIFAR-10 classification accuracy

of 25.34% without noise injection to 85.99% with noise injection. After

the training, we program the non-quantized weights to RRAM analogue

conductances using an iterative write–verify technique, described in

Methods. This technique enables NeuRRAM to achieve an inference

accuracy equivalent to models trained with 4-bit weights across vari-

ous applications, while encoding each weight using only two RRAM

cells, which is two-times denser than previous studies that require

one RRAM cell per bit.

By applying the above two techniques, we already can measure infer-

ence accuracy comparable to or better than software models with 4-bit

weights on Google speech command recognition, MNIST image recov-

ery and MNIST classification (Fig. 1e). For deeper neural networks, we

found that the error caused by those non-idealities that have nonlinear

effects on MVM outputs, such as voltage drops, can accumulate through

layers, and become more difficult to mitigate. In addition, multi-core

parallel MVM leads to large instantaneous current, further exacerbating

non-idealities such as voltage drop on input wires ((1) in Fig. 4a). As a

result, when performing multi-core parallel inference on a deep CNN,

ResNet-2043, the measured accuracy on CIFAR-10 classification (83.67%)

is still 3.36% lower than that of a 4-bit-weight software model (87.03%).

To bridge this accuracy gap, we introduce a chip-in-the-loop progres-

sive fine-tuning technique. Chip-in-the-loop training mitigates the

impact of non-idealities by measuring training error directly on the

chip44. Previous work has shown that fine-tuning the final layers using

the back-propagated gradients calculated from hardware-measured

outputs helped improve accuracy5. We find this technique to be of

limited effectiveness in countering those nonlinear non-idealities. Such

a technique also requires re-programming RRAM devices, which con-

sumes additional energy. Our chip-in-the-loop progressive fine-tuning

overcomes nonlinear model errors by exploiting the intrinsic nonlinear

universal approximation capacity of the deep neural network45, and

furthermore eliminates the need for weight re-programming. Figure 4d

illustrates the fine-tuning procedure. We progressively program the

weights one layer at a time onto the chip. After programming a layer,

we perform inference using the training-set data on the chip up to that

layer, and use the measured outputs to fine-tune the remaining layers

that are still training in software. In the next time step, we program

and measure the next layer on the chip. We repeat this process until

all the layers are programmed. During the process, the non-idealities

of the programmed layers can be progressively compensated by the

remaining layers through training. Figure 5b shows the efficacy of this

progressive fine-tuning technique. From left to right, each data point

represents a new layer programmed onto the chip. The accuracy at each

layer is evaluated by using the chip-measured outputs from that layer

as inputs to the remaining layers in software. The cumulative CIFAR-10

test-set inference accuracy is improved by 1.99% using this technique.

Extended Data Fig. 8a further illustrates the extent to which fine-tuning

recovers the training-set accuracy loss at each layer, demonstrating the

effectiveness of the approach in bridging the accuracy gap between

software and hardware measurements.

Using the techniques described above, we achieve inference accu-

racy comparable to software models trained with 4-bit weights across

all the measured AI benchmark tasks. Figure 1e shows that we achieve

a 0.98% error rate on MNIST handwritten digit recognition using a

7-layer CNN, a 14.34% error rate on CIFAR-10 object classification using

ResNet-20, a 15.34% error rate on Google speech command recognition

using a 4-cell LSTM, and a 70% reduction of L2 image-reconstruction

error compared with the original noisy images on MNIST image recov-

ery using an RBM. Some of these numbers are not yet to the accuracies

achieved by full-precision digital implementations. The accuracy gap

mainly comes from low-precision (≤4-bit) quantization of inputs and

activations, especially on the most sensitive input and output lay-

ers46. For instance, Extended Data Fig. 8b presents an ablation study

that shows that quantizing input images to 4-bit alone results in a

2.7% accuracy drop for CIFAR-10 classification. By contrast, the input

Table 1 | Summary of AI applications and models demonstrated on NeuRRAM

Application Dataset Model architecture Dataflow

type

Activation precision Number of

parameters

Number

of RRAMs

used

 Number of

cores used

Average core

utilization (%)

Image classification CIFAR-10 ResNet-20 (CNN) Forward 3-bit unsigned, input

image 4-bit unsigned

274,461 553,524 48 17.6

MNIST 7-layer CNN Forwards 3-bit unsigned 23,170 46,664 16 4.5

Voice recognition Google voice

command

4 parallel LSTM

cells

Recurrent +

forwards

4-bit signed 281,392 570,048 36 24.2

Image recovery MNIST RBM Forwards +

backwards

Visible: 3-bit

unsigned. Hidden:

binary

96,194 200,880 8 38.3

Nature | Vol 608 | 18 August 2022 | 511

layer only accounts for 1.08% of compute and 0.16% of weights of a

ResNet-20 model. Therefore, they can be off-loaded to higher-precision

digital compute units with little overheads. In addition, applying

more advanced quantization techniques and optimizing training

procedures such as data augmentation and regularization should

further improve the accuracy for both quantized software models

and hardware-measured results.

Table 1 summarizes the key features of each demonstrated model.

Most of the essential neural-network layers and operations are imple-

mented on the chip, including all the convolutional, fully connected

and recurrent layers, neuron activation functions, batch normaliza-

tion and the stochastic sampling process. Other operations such as

average pooling and element-wise multiplications are implemented

on an FPGA integrated on the same board as NeuRRAM (Extended

Data Fig. 11a). Each of the models is implemented by allocating the

weights to multiple cores on a single NeuRRAM chip. We developed

a software toolchain to allow easy deployment of AI models on the

chip47. The implementation details are described in Methods. Funda-

mentally, each of the selected benchmarks represents a general class

of common edge AI tasks: visual recognition, speech processing and

image de-noising. These results demonstrate the versatility of the TNSA

architecture and the wide applicability of the hardware-algorithm

co-optimization techniques.

The NeuRRAM chip simultaneously improves efficiency, flexibility

and accuracy over existing RRAM-CIM hardware by innovating across

the entire hierarchy of the design, from a TNSA architecture enabling

reconfigurable dataflow direction, to an energy- and area-efficient

voltage-mode neuron circuit, and to a series of algorithm-hardware

co-optimization techniques. These techniques can be more generally

applied to other non-volatile resistive memory technologies such

as phase-change memory8,17,21,23,24, magnetoresistive RAM48 and fer-

roelectric field-effect transistors49. Going forwards, we expect Neu-

RRAM’s peak energy efficiency (EDP) to improve by another two to

three orders of magnitude while supporting bigger AI models when

scaling from 130-nm to 7-nm CMOS and RRAM technologies (detailed

in Methods). Multi-core architecture design with network-on-chip

that realizes efficient and versatile data transfers and inter-array

pipelining is likely to be the next major challenge for RRAM-CIM37,38,

which needs to be addressed by further cross-layer co-optimization.

As resistive memory continues to scale towards offering tera-bits of

on-chip memory50, such a co-optimization approach will equip CIM

hardware on the edge with sufficient performance, efficiency and

versatility to perform complex AI tasks that can only be done on the

cloud today.

Online content

Any methods, additional references, Nature Research reporting sum-

maries, source data, extended data, supplementary information,

acknowledgements, peer review information; details of author contri-

butions and competing interests; and statements of data and code avail-

ability are available at https://doi.org/10.1038/s41586-022-04992-8.

1. Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

2. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based

on metal-oxide memristors. Nature 521, 61–64 (2015).

3. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature 558, 60–67 (2018).

4. Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat.

Electron. 1, 333–343 (2018).

5. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network.

Nature 577, 641–646 (2020).

6. Mochida, R. et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W

neural-network processor with cell current controlled writing and flexible network

architecture. In Symposium on VLSI Technology, Digest of Technical Papers 175–176 (IEEE,

2018).

7. Chen, W. H. et al. CMOS-integrated memristive non-volatile computing-in-memory for AI

edge processors. Nat. Electron. 2, 420–428 (2019).

8. Khaddam-Aljameh, R. et al. HERMES core-A 14nm CMOS and PCM-based in-memory

compute core using an array of 300ps/LSB linearized CCO-based ADCs and local digital

processing. In IEEE Symposium on VLSI Circuits, Digest of Technical Papers JFS2-5 (IEEE,

2021).

9. Hung, J. M. et al. A four-megabit compute-in-memory macro with eight-bit precision

based on CMOS and resistive random-access memory for AI edge devices. Nat. Electron.

4, 921–930 (2021).

10. Xue, C. X. et al. A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel

MAC computing time for CNN based AI edge processors. In IEEE International Solid-State

Circuits Conference (ISSCC), Digest of Technical Papers 388–390 (IEEE, 2019).

11. Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient

multiply–accumulate operations. Nat. Electron. 2, 290–299 (2019).

12. Ishii, M. et al. On-chip trainable 1.4M 6T2R PCM synaptic array with 1.6K stochastic LIF

neurons for spiking RBM. In International Electron Devices Meeting (IEDM), Technical

Digest 14.2.1–14.2.4 (IEEE, 2019).

13. Yan, B. et al. RRAM-based spiking nonvolatile computing-in-memory processing engine

with precision-configurable in situ nonlinear activation. In Symposium on VLSI

Technology, Digest of Technical Papers T86–T87 (IEEE, 2019).

14. Wan, W. et al. A 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically

reconfigurable dataflow and in-situ transposable weights for probabilistic graphical

models. In IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical

Papers 498–500 (IEEE, 2020).

15. Liu, Q. et al. A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory

chip with fully parallel MAC computing. In IEEE International Solid-State Circuits

Conference (ISSCC), Digest of Technical Papers 500–502 (IEEE, 2020).

16. Xue, C. X. et al. A CMOS-integrated compute-in-memory macro based on resistive

random-access memory for AI edge devices. Nat. Electron. 4, 81–90 (2021).

17. Narayanan, P. et al. Fully on-chip MAC at 14 nm enabled by accurate row-wise

programming of PCM-based weights and parallel vector-transport in duration-format.

IEEE Trans. Electron Devices 68, 6629–6636 (2021).

18. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to

document recognition. Proc. IEEE 86, 2278–2323 (1998).

19. Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features from Tiny Images (2009);

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

20. Warden, P. Speech commands: a dataset for limited-vocabulary speech recognition.

Preprint at https://arxiv.org/abs/1804.03209 (2018).

21. Joshi, V. et al. Accurate deep neural network inference using computational

phase-change memory. Nat. Commun. 11, 2473 (2020).

22. Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by memristive crossbar

circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).

23. Eryilmaz, S. B. et al. Experimental demonstration of array-level learning with phase

change synaptic devices. In International Electron Devices Meeting (IEDM), Technical

Digest 25.5.1–25.5.4 (IEEE, 2013).

24. Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural

network (165 000 synapses) using phase-change memory as the synaptic weight

element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

25. Eryilmaz, S. B. et al. Training a probabilistic graphical model with resistive switching

electronic synapses. IEEE Trans. Electron Devices 63, 5004–5011 (2016).

26. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12,

784–789 (2017).

27. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199

(2017).

28. Banbury, C. et al. MLPerf tiny benchmark. In Conference on Neural Information Processing

Systems (NeurIPS) Track on Datasets and Benchmarks (2021).

29. Roy, S., Sridharan, S., Jain, S. & Raghunathan, A. TxSim: modeling training of deep neural

networks on resistive crossbar systems. IEEE Trans. Very Large Scale Integr. Syst. 29,

730–738 (2021).

30. Yang, T. J. & Sze, V. Design considerations for efficient deep neural networks on

processing-in-memory accelerators. In International Electron Devices Meeting (IEDM),

Technical Digest 22.1.1–22.1.4 (IEEE, 2019).

31. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

32. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780

(1997).

33. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques

(Adaptive Computation and Machine Learning series) (MIT Press, 2009).

34. Su, J. W. et al. A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM

compute-in-memory macro for AI edge chips. In IEEE International Solid-State Circuits

Conference (ISSCC), Digest of Technical Papers 240–242 (IEEE, 2020).

35. Guo, R. et al. A 5.1pJ/neuron 127.3us/inference RNN-based speech recognition processor

using 16 computing-in-memory SRAM macros in 65nm CMOS. In IEEE Symposium on

VLSI Circuits, Digest of Technical Papers 120–121 (IEEE, 2019).

36. Wang, Z. et al. Fully memristive neural networks for pattern classification with

unsupervised learning. Nat. Electron. 1, 137–145 (2018).

37. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog

arithmetic in crossbars. In Proc. 2016 43rd International Symposium on Computer

Architecture (ISCA) 14-26 (IEEE/ACM, 2016).

38. Ankit, A. et al. PUMA: a programmable ultra-efficient memristor-based accelerator for

machine learning inference. In International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS) 715–731 (ACM, 2019).

39. Wan, W. et al. A voltage-mode sensing scheme with differential-row weight mapping for

energy-efficient RRAM-based in-memory computing. In Symposium on VLSI Technology,

Digest of Technical Papers (IEEE, 2020).

40. Murmann, B. Digitally assisted data converter design. In European Conference on

Solid-State Circuits (ESSCIRC) 24–31 (IEEE, 2013).

41. Zhao, M. et al. Investigation of statistical retention of filamentary analog RRAM for

neuromophic computing. In International Electron Devices Meeting (IEDM), Technical

Digest 39.4.1–39.4.4 (IEEE, 2018).

512 | Nature | Vol 608 | 18 August 2022

Article

42. Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of state for

memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23,

762–775 (2012).

43. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)

770–778 (IEEE, 2016).

44. Cauwenberghs, G. & Bayoumi, M. A. Learning on Silicon—Adaptive VLSI Neural Systems

(Kluwer Academic, 1999).

45. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal

approximators. Neural Netw. 2, 359–366 (1989).

46. Choi, J. et al. PACT: parameterized clipping activation for quantized neural networks.

Preprint at https://arxiv.org/abs/1805.06085 (2018).

47. Wan, W. weierwan/Neurram_48core: Initial Release (Version 1.0) [Computer software].

Zenodo https://doi.org/10.5281/zenodo.6558399 (2022).

48. Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory

computing. Nature 601, 211–216 (2022).

49. Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network

training. In International Electron Devices Meeting (IEDM), Technical Digest 6.2.1–6.2.4

(IEEE, 2018).

50. Jiang, Z. et al. Next-generation ultrahigh-density 3-D vertical resistive switching memory

(VRSM)–Part II: design guidelines for device, array, and architecture. IEEE Trans. Electron

Devices 66, 5147–5154 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made. The images or other third party material in this article are

included in the article’s Creative Commons license, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons license and your

intended use is not permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a copy of this license,

visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Methods

Core block diagram and operating modes

Figure 2d and Extended Data Fig. 1 show the block diagram of a single

CIM core. To support versatile MVM directions, most of the design is

symmetrical in the row (BLs and WLs) and column (SLs) directions. The

row and column register files store the inputs and outputs of MVMs, and

can be written externally by either an Serial Peripheral Interface (SPI) or

a random-access interface that uses an 8-bit address decoder to select

one register entry, or internally by the neurons. The SL peripheral circuits

contain an LFSR block used to generate pseudo-random sequences used

for probabilistic sampling. It is implemented by two LFSR chains propa-

gating in opposite directions. The registers of the two chains are XORed to

generate spatially uncorrelated random numbers51. The controller block

receives commands and generates control waveforms to the BL/WL/SL

peripheral logic and to the neurons. It contains a delay-line-based pulse

generator with tunable pulse width from 1 ns to 10 ns. It also implements

clock-gating and power-gating logic used to turn off the core in idle mode.

Each WL, BL and SL of the TNSA is driven by a driver consisting of multiple

pass gates that supply different voltages. On the basis of the values stored

in the register files and the control signals issued by the controller, the

WL/BL/SL logic decides the state of each pass gate.

The core has three main operating modes: a weight-programming

mode, a neuron-testing mode and an MVM mode (Extended Data Fig. 1).

In the weight-programming mode, individual RRAM cells are selected

for read and write. To select a single cell, the registers at the correspond-

ing row and column are programmed to ‘1’ through random access with

the help of the row and column decoder, whereas the other registers

are reset to ‘0’. The WL/BL/SL logic turns on the corresponding driver

pass gates to apply a set/reset/read voltage on the selected cell. In the

neuron-testing mode, the WLs are kept at ground voltage (GND). Neu-

rons receive inputs directly from BL or SL drivers through their BL or

SL switch, bypassing RRAM devices. This allows us to characterize the

neurons independently from the RRAM array. In the MVM mode, each

input BL and SL is driven to Vref − Vread, Vref + Vread or Vref depending on

the registers’ value at that row or column. If the MVM is in the BL-to-SL

direction, we activate the WLs that are within the input vector length

while keeping the rest at GND; if the MVM is in the SL-to-BL direction,

we activate all the WLs. After neurons finish analogue-to-digital con-

version, the pass gates from BLs and SLs to the registers are turned on

to allow neuron-state readout.

Device fabrication

RRAM arrays in NeuRRAM are in a one-transistor–one-resistor (1T1R)

configuration, where each RRAM device is stacked on top of and con-

nects in series with a selector NMOS transistor that cuts off the sneak

path and provides current compliance during RRAM programming

and reading. The selector n-type metal-oxide-semiconductor (NMOS),

CMOS peripheral circuits and the bottom four back-end-of-line intercon-

nect metal layers are fabricated in a standard 130-nm foundry process.

Owing to the higher voltage required for RRAM forming and program-

ming, the selector NMOS and the peripheral circuits that directly inter-

face with RRAM arrays use thick-oxide input/output (I/O) transistors

rated for 5-V operation. All the other CMOS circuits in neurons, digital

logic, registers and so on use core transistors rated for 1.8-V operations.

The RRAM device is sandwiched between metal-4 and metal-5 layers

shown in Fig. 2c. After the foundry completes the fabrication of CMOS

and the bottom four metal layers, we use a laboratory process to finish

the fabrication of the RRAM devices and the metal-5 interconnect, and

the top metal pad and passivation layers. The RRAM device stack con-

sists of a titanium nitride (TiN) bottom-electrode layer, a hafnium oxide

(HfOx) switching layer, a tantalum oxide (TaOx) thermal-enhancement

layer52 and a TiN top-electrode layer. They are deposited sequentially,

followed by a lithography step to pattern the lateral structure of the

device array.

RRAM write–verify programming and conductance relaxation

Each neural-network weight is encoded by the differential conductance

between two RRAM cells on adjacent rows along the same column. The

first RRAM cell encodes positive weight, and is programmed to a low

conductance state (gmin) if the weight is negative; the second

cell encodes negative weight, and is programmed to gmin if the weight

is positive. Mathematically, the conductances of the two cells are

g gmax(,)
W

wmax minmax
 and g gmax(− ,)

W

wmax minmax
 respectively, where

gmax and gmin are the maximum and minimum conductance of

the RRAMs, wmax is the maximum absolute value of weights, and W is

the unquantized high-precision weight.

To program an RRAM cell to its target conductance, we use an

incremental-pulse write–verify technique42. Extended Data Fig. 3a,b

illustrates the procedure. We start by measuring the initial conduct-

ance of the cell. If the value is below the target conductance, we apply a

weak set pulse aiming to slightly increase the cell conductance. Then we

read the cell again. If the value is still below the target, we apply another

set pulse with amplitude incremented by a small amount. We repeat

such set–read cycles until the cell conductance is within an acceptance

range to the target value or overshoots to the other side of the target.

In the latter case, we reverse the pulse polarity to reset, and repeat

the same procedure as with set. During the set/reset pulse train, the

cell conductance is likely to bounce up and down multiple times until

eventually it enters the acceptance range or reaches a time-out limit.

There are a few trade-offs in selecting programming conditions. (1) A

smaller acceptance range and a higher time-out limit improve program-

ming precision, but require a longer time. (2) A higher gmax improves

the SNR during inference, but leads to higher energy consumption

and more programming failures for cells that cannot reach high con-

ductance. In our experiments, we set the initial set pulse voltage to

be 1.2 V and the reset pulse voltage to be 1.5 V, both with an increment

of 0.1 V and pulse width of 1 μs. A RRAM read takes 1–10 μs, depend-

ing on its conductance. The acceptance range is ±1 μS to the target

conductance. The time-out limit is 30 set–reset polarity reversals.

We used gmin = 1 μS for all the models, and gmax = 40 μS for CNNs and

gmax = 30 μS for LSTMs and RBMs. With such settings, 99% of the RRAM

cells can be programmed to the acceptance range within the time-out

limit. On average each cell requires 8.52 set/reset pulses. In the current

implementation, the speed of such a write–verify process is limited

by external control of DAC and ADC. If integrating everything into a

single chip, such write–verify will take on average 56 μs per cell. Having

multiple copies of DAC and ADC to perform write–verify on multiple

cells in parallel will further improve RRAM programming throughput,

at the cost of more chip area.

Besides the longer programming time, another reason to not use

an overly small write–verify acceptance range is RRAM conductance

relaxation. RRAM conductance changes over time after programming.

Most of the change happens within a short time window (less than 1 s)

immediately following the programming, after which the change

becomes much slower, as shown in Extended Data Fig. 3d. The abrupt

initial change is called ‘conductance relaxation’ in the literature41. Its

statistics follow a Gaussian distribution at all conductance states except

when the conductance is close to gmin. Extended Data Fig. 3c,d shows

the conductance relaxation measured across the whole gmin-to-gmax

conductance range. We found that the loss of programming precision

owing to conductance relaxation is much higher than that caused by

the write–verify acceptance range. The average standard deviation

across all levels of initial conductance is about 2.8 μS. The maximum

standard deviation is about 4 μS, which is close to 10% of gmax.

To mitigate the relaxation, we use an iterative programming tech-

nique. We iterate over the RRAM array for multiple times. In each itera-

tion, we measure all the cells and re-program those whose conductance

has drifted outside the acceptance range. Extended Data Fig. 3e shows

that the standard deviation becomes smaller with more programming

Article

iterations. After 3 iterations, the standard deviation becomes about

2 μS, a 29% decrease compared with the initial value. We use 3 iterations

in all our neural-network demonstrations and perform inference at

least 30 min after the programming such that the measured inference

accuracy would account for such conductance relaxation effects.

By combining the iterative programming with our hardware-aware

model training approach, the impact of relaxation can be largely

mitigated.

Implementation of MVM with multi-bit inputs and outputs

The neuron and the peripheral circuits support MVM at configurable

input and output bit-precisions. An MVM operation consists of an ini-

tialization phase, an input phase and an output phase. Extended Data

Fig. 4 illustrates the neuron circuit operation. During the initialization

phase (Extended Data Fig. 4a), all BLs and SLs are precharged to Vref.

The sampling capacitors Csample of the neurons are also precharged to

Vref, whereas the integration capacitors Cinteg are discharged.

During the input phase, each input wire (either BL or SL depending

on MVM direction) is driven to one of three voltage levels, Vref − Vread,

Vref and Vref + Vread, through three pass gates, as shown in Fig. 3b. Dur-

ing forwards MVM, under differential-row weight mapping, each

input is applied to a pair of adjacent BLs. The two BLs are driven to the

opposite voltage with respect to Vref. That is, when the input is 0, both

wires are driven to Vref; when the input is +1, the two wires are driven

to Vref + Vread and Vref − Vread; and when the input is −1, to Vref − Vread and

Vref + Vread. During backwards MVM, each input is applied to a single SL.

The difference operation is performed digitally after neurons finish

analogue-to-digital conversions.
After biasing the input wires, we then pulse those WLs that have

inputs for 10 ns, while keeping output wires floating. As voltages of the

output wires settle to V =j
V G

G

∑

∑

i i ij

i ij
, where Gij represents conductance of

RRAM at the i-th row and the j-th column, we turn off the WLs to stop
all current flow. We then sample the charge remaining on the output

wire parasitic capacitance to Csample located within neurons, followed

by integrating the charge onto Cinteg, as shown in Extended Data Fig. 4b.

The sampling pulse is 10 ns (limited by the 100-MHz external clock

from the FPGA); the integration pulse is 240 ns, limited by large integra-

tion capacitor (104 fF), which was chosen conservatively to ensure

function correctness and testing different neuron operating condi-

tions.
The multi-bit input digital-to-analogue conversion is performed

in a bit-serial fashion. For the nth LSB, we apply a single pulse to the

input wires, followed by sampling and integrating charge from output

wires onto Cinteg for 2n−1 cycles. At the end of multi-bit input phase,

the complete analogue MVM output is stored as charge on Cinteg. For

example, as shown in Fig. 3e, when the input vectors are 4-bit signed

integers with 1 sign-bit and 3 magnitude-bits, we first send pulses

corresponding to the first (least significant) magnitude-bit to input

wires, followed by sampling and integrating for one cycle. For the

second and the third magnitude-bits, we again apply one pulse to

input wires for each bit, followed by sampling and integrating for

two cycles and four cycles, respectively. In general, for n-bit signed

integer inputs, we need a total of n − 1 input pulses and 2n−1 − 1 sampling

and integration cycles.

Such a multi-bit input scheme becomes inefficient for high-input

bit-precision owing to the exponentially increasing sampling and

integration cycles. Moreover, headroom clipping becomes an issue

as charge integrated at Cinteg saturates with more integration cycles. The

headroom clipping can be overcome by using lower Vread, but at the cost

of a lower SNR, so the overall MVM accuracy might not improve when

using higher-precision inputs. For instance, Extended Data Fig. 5a,c

shows the measured root-mean-square error (r.m.s.e.) of the MVM

results. Quantizing inputs to 6-bit (r.m.s.e. = 0.581) does not improve

the MVM accuracy compared with 4-bit (r.m.s.e. = 0.582), owing to

the lower SNR.

To solve both the issues, we use a 2-phase input scheme for input

greater than 4-bits. Figure 3f illustrates the process. To perform MVM

with 6-bit inputs and 8-bit outputs, we divide inputs into two segments,

the first containing the three MSBs and the second containing the three

LSBs. We then perform MVM including the output analogue-to-digital

conversion for each segment separately. For the MSBs, neurons (ADCs)

are configured to output 8-bits; for the LSBs, neurons output 5-bits. The

final results are obtained by shifting and adding the two outputs in digi-

tal domain. Extended Data Fig. 5d shows that the scheme lowers MVM

r.m.s.e. from 0.581 to 0.519. Extended Data Fig. 12c–e further shows that

such a two-phase scheme both extends the input bit-precision range

and improves the energy efficiency.

Finally, during the output phase, the analogue-to-digital conver-

sion is again performed in a bit-serial fashion through a binary search

process. First, to generate the sign-bit of outputs, we disconnect the

feedback loop of the amplifier to turn the integrator into a compara-

tor (Extended Data Fig. 4c). We drive the right side of Cinteg to Vref. If the

integrated charge is positive, the comparator output will be GND, and

supply voltage VDD otherwise. The comparator output is then inverted,

latched and readout to the BL or SL via the neuron BL or SL switch before

being written into the peripheral BL or SL registers.

To generate k magnitude-bits, we add or subtract charge from Cinteg

(Extended Data Fig. 4d), followed by comparison and readout for k

cycles. From MSB to LSB, the amount of charge added or subtracted

is halved every cycle. Whether to add or to subtract is automatically

determined by the comparison result stored in the latch from the pre-

vious cycle. Figure 3g illustrates such a process. A sign-bit of ‘1’ is first

generated and latched in the first cycle, representing a positive out-

put. To generate the most significant magnitude-bit, the latch turns

on the path from Vdecr− = Vref − Vdecr to Csample. The charge sampled by

Csample is then integrated on Cinteg by turning on the negative feedback

loop of the amplifier, resulting in CsampleVdecr amount of charge being

subtracted from Cinteg. In this example, CsampleVdecr is greater than the

original amount of charge on Cinteg, so the total charge becomes nega-

tive, and the comparator generates a ‘0’ output. To generate the second

magnitude-bit, Vdecr is reduced by half. This time, the latch turns on the

path from Vdecr+ = Vref + 1/2Vdecr to Csample. As the total charge on Cinteg after

integration is still negative, the comparator outputs a ‘0’ again in this

cycle. We repeat this process until the least significant magnitude-bit

is generated. It is noted that if the initial sign-bit is ‘0’, all subsequent

magnitude-bits are inverted before readout.

Such an output conversion scheme is similar to an algorithmic ADC

or a SAR ADC in the sense that a binary search is performed for n cycles

for a n-bit output. The difference is that an algorithmic ADC uses a resi-

due amplifier, and a SAR ADC requires a multi-bit DAC for each ADC,

whereas our scheme does not need a residue amplifier, and uses a single

DAC that outputs 2 × (n − 1) different Vdecr+ and Vdecr− levels, shared by all

neurons (ADCs). As a result, our scheme enables a more compact design

by time-multiplexing an amplifier for integration and comparison,

eliminating the residual amplifier, and amortizing the DAC area across

all neurons in a CIM core. For CIM designs that use a dense memory

array, such a compact design allows each ADC to be time-multiplexed

by a fewer number of rows and columns, thus improving throughput.

To summarize, both the configurable MVM input and output

bit-precisions and various neuron activation functions are imple-

mented using different combinations of the four basic operations:

sampling, integration, comparison and charge decrement. Importantly,

all the four operations are realized by a single amplifier configured in

different feedback modes. As a result, the design realizes versatility

and compactness at the same time.

Multi-core parallel MVM

NeuRRAM supports performing MVMs in parallel on multiple CIM

cores. Multi-core MVM brings additional challenges to computational

accuracy, because certain hardware non-idealities that do not manifest

in single-core MVM become more severe with more cores. They include

voltage drop on input wires, core-to-core variation and supply voltage

instability. voltage drop on input wires (non-ideality (1) in Fig. 4a) is

caused by large current drawn from a shared voltage source simul-

taneously by multiple cores. It makes equivalent weights stored in

each core vary with applied inputs, and therefore have a nonlinear

input-dependent effect on MVM outputs. Moreover, as different cores

have a different distance from the shared voltage source, they expe-

rience a different amounts of voltage drops. Therefore, we cannot

optimize read-voltage amplitude separately for each core to make

its MVM output occupy exactly the full neuron input dynamic range.

These non-idealities together degrade the multi-core MVM accuracy.

Extended Data Fig. 5e,f shows that when performing convolution in

parallel on the 3 cores, outputs of convolutional layer 15 are measured

to have a higher r.m.s.e. of 0.383 compared with 0.318 obtained by

performing convolution sequentially on the 3 cores. In our ResNet-20

experiment, we performed 2-core parallel MVMs for convolutions

within block 1 (Extended Data Fig. 9a), and 3-core parallel MVMs for

convolutions within blocks 2 and 3.

The voltage-drop issue can be partially alleviated by making the

wires that carry large instantaneous current as low resistance as pos-

sible, and by employing a power delivery network with more optimized

topology. But the issue will persist and become worse as more cores

are used. Therefore, our experiments aim to study the efficacy of

algorithm-hardware co-optimization techniques in mitigating the

issue. Also, it is noted that for a full-chip implementation, additional

modules such as intermediate result buffers, partial-sum accumulators

and network-on-chip will need to be integrated to manage inter-core

data transfers. Program scheduling should also be carefully optimized

to minimize buffer size and energy spent at intermediate data move-

ment. Although there are studies on such full-chip architecture and

scheduling37,38,53, they are outside the scope of this study.

Noise-resilient neural-network training

During noise-resilient neural-network training, we inject noise into

weights of all fully connected and convolutional layers during the

forwards pass of neural-network training to emulate the effects of

RRAM conductance relaxation and read noises. The distribution of

the injected noise is obtained by RRAM characterization. We used the

iterative write–verify technique to program RRAM cells into different

initial conductance states and measure their conductance relaxation

after 30 min. Extended Data Fig. 3d shows that measured conductance

relaxation has an absolute value of mean <1 μS (gmin) at all conductance

states. The highest standard deviation is 3.87 μS, about 10% of the gmax

40 μS, found at about 12 μS initial conductance state. Therefore, to

simulate such conductance relaxation behaviour during inference,

we inject a Gaussian noise with a zero mean and a standard deviation

equal to 10% of the maximum weights of a layer.

We train models with different levels of noise injection from 0% to

40%, and select the model that achieves the highest inference accu-

racy at 10% noise level for on-chip deployment. We find that injecting

a higher noise during training than testing improves models’ noise

resiliency. Extended Data Fig. 7a–c shows that the best test-time

accuracy in the presence of 10% weight noise is obtained with 20%

training-time noise injection for CIFAR-10 image classification, 15%

for Google voice command classification and 35% for RBM-based

image reconstruction.

For CIFAR-10, the better initial accuracy obtained by the model

trained with 5% noise is most likely due to the regularization effect

of noise injection. A similar phenomenon has been reported in

neural-network quantization literature where a model trained with

quantization occasionally outperforms a full-precision model54,55. In

our experiments, we did not apply additional regularization on top of

noise injection for models trained without noise, which might result

in sub-optimal accuracy.

For RBM, Extended Data Fig. 7d further shows how reconstruction

errors reduce with the number of Gibbs sampling steps for models

trained with different noises. In general, models trained with higher

noises converge faster during inference. The model trained with 20%

noise reaches the lowest error at the end of 100 Gibbs sampling steps.

Extended Data Fig. 7e shows the effect of noise injection on weight

distribution. Without noise injection, the weights have a Gaussian dis-

tribution. The neural-network outputs heavily depend on a small frac-

tion of large weights, and thus become vulnerable to noise injection.

With noise injection, the weights distribute more uniformly, making

the model more noise resilient.

To efficiently implement the models on NeuRRAM, inputs to all con-

volutional and fully connected layers are quantized to 4-bit or below.

The input bit-precisions of all the models are summarized in Table 1.

We perform the quantized training using the parameterized clipping

activation technique46. The accuracies of some of our quantized models

are lower than that of the state-of-the-art quantized model because

we apply <4-bit quantization to the most sensitive input and output

layers of the neural networks, which have been reported to cause large

accuracy degradation and are thus often excluded from low-precision

quantization46,54. To obtain better accuracy for quantized models, one

can use higher precision for sensitive input and output layers, apply

more advanced quantization techniques, and use more optimized data

preprocessing, data augmentation and regularization techniques dur-

ing training. However, the focus of this work is to achieve comparable

inference accuracy on hardware and on software while keeping all these

variables the same, rather than to obtain state-of-the-art inference

accuracy on all the tasks. The aforementioned quantization and training

techniques will be equally beneficial for both our software baselines

and hardware measurements.

Chip-in-the-loop progressive fine-tuning

During the progressive chip-in-the-loop fine-tuning, we use the

chip-measured intermediate outputs from a layer to fine-tune the

weights of the remaining layers. Importantly, to fairly evaluate the effi-

cacy of the technique, we do not use the test-set data (for either training

or selecting checkpoint) during the entire process of fine-tuning. To

avoid over-fitting to a small fraction of data, measurements should be

performed on the entire training-set data. We reduce the learning rate

to 1/100 of the initial learning rate used for training the baseline model,

and fine-tune for 30 epochs, although we observed that the accuracy

generally plateaus within the first 10 epochs. The same weight noise

injection and input quantization are applied during the fine-tuning.

Implementations of CNNs, LSTMs and RBMs

We use CNN models for the CIFAR-10 and MNIST image classification

tasks. The CIFAR-10 dataset consists of 50,000 training images and

10,000 testing images belonging to 10 object classes. We perform image

classification using the ResNet-2043, which contains 21 convolutional

layers and 1 fully connected layer (Extended Data Fig. 9a), with batch

normalizations and ReLU activations between the layers. The model

is trained using the Keras framework. We quantize the input of all con-

volutional and fully connected layers to a 3-bit unsigned fixed-point

format except for the first convolutional layer, where we quantize the

input image to 4-bit because the inference accuracy is more sensitive

to the input quantization. For the MNIST handwritten digits classifica-

tion, we use a seven-layer CNN consisting of six convolutional layers

and one fully connected layer, and use max-pooling between layers to

down-sample feature map sizes. The inputs to all the layers, including

the input image, are quantized to a 3-bit unsigned fixed-point format.

All the parameters of the CNNs are implemented on a single NeuR-

RAM chip including those of the convolutional layers, the fully con-

nected layers and the batch normalization. Other operations such as

partial-sum accumulation and average pooling are implemented on an

FPGA integrated on the same board as the NeuRRAM. These operations

Article

amount to only a small fraction of the total computation and integrating

their implementation in digital CMOS would incur negligible overhead;

the FPGA implementation was chosen to provide greater flexibility

during test and development.

Extended Data Fig. 9a–c illustrates the process to map a convolutional

layer on a chip. To implement the weights of a four-dimensional convo-

lutional layer with dimension H (height), W (width), I (number of input

channels), O (number of output channels) on two-dimensional RRAM

arrays, we flatten the first three dimensions into a one-dimensional

vector, and append the bias term of each output channel to each vec-

tor. If the range of the bias values is B times of the weight range, we

evenly divide the bias values and implement them using B rows. Fur-

thermore, we merge the batch normalization parameters into convo-

lutional weights and biases after training (Extended Data Fig. 9b), and

program the merged Wʹ and bʹ onto RRAM arrays such that no explicit

batch normalization needs to be performed during inference.

Under the differential-row weight-mapping scheme, the parameters

of a convolutional layer are converted into a conductance matrix of

size (2(HWI + B), O). If the conductance matrix fits into a single core,

an input vector is applied to 2(HWI + B) rows and broadcast to O col-

umns in a single cycle. HWIO multiply–accumulate (MAC) operations

are performed in parallel. Most ResNet-20 convolutional layers have a

conductance matrix height of 2(HWI + B) that is greater than the RRAM

array length of 256. We therefore split them vertically into multiple

segments, and map the segments either onto different cores that are

accessed in parallel, or onto different columns within a core that are

accessed sequentially. The details of the weight-mapping strategies

are described in the next section.

The Google speech command dataset consists of 65,000 1-s-long audio

recordings of voice commands, such as ‘yes’, ‘up’, ‘on’, ‘stop’ and so on,

spoken by thousands of different people. The commands are categorized

into 12 classes. Extended Data Fig. 9d illustrates the model architecture.

We use the Mel-frequency cepstral coefficient encoding approach to

encode every 40-ms piece of audio into a length-40 vector. With a hop

length of 20 ms, we have a time series of 50 steps for each 1-s recording.

We build a model that contains four parallel LSTM cells. Each cell has

a hidden state of length 112. The final classification is based on summa-

tion of outputs from the four cells. Compared with a single-cell model,

the 4-cell model reduces the classification error (of an unquantized

model) from 10.13% to 9.28% by leveraging additional cores on the

NeuRRAM chip. Within a cell, in each time step, we compute the values

of four LSTM gates (input, activation, forget and output) based on the

inputs from the current step and hidden states from the previous step.

We then perform element-wise operations between the four gates to

compute the new hidden-state value. The final logit outputs are calcu-

lated based on the hidden states of the final time step.

Each LSTM cell has 3 weight matrices that are implemented on the

chip: an input-to-hidden-state matrix with size 40 × 448, a hidden-

state-to-hidden-state matrix with size 112 × 448 and a hidden-state-

to-logits matrix with size 112 × 12. The element-wise operations are

implemented on the FPGA. The model is trained using the PyTorch

framework. The inputs to all the MVMs are quantized to 4-bit signed

fixed-point formats. All the remaining operations are quantized to 8-bit.

An RBM is a type of generative probabilistic graphical model. Instead

of being trained to perform discriminative tasks such as classification,

it learns the statistical structure of the data itself. Extended Data Fig. 9e

shows the architecture of our image-recovery RBM. The model consists

of 794 fully connected visible neurons, corresponding to 784 image

pixels plus 10 one-hot encoded class labels and 120 hidden neurons.

We train the RBM using the contrastive divergence learning procedure

in software.

During inference, we send 3-bit images with partially corrupted or

blocked pixels to the model running on a NeuRRAM chip. The model

then performs back-and-forth MVMs and Gibbs sampling between

visible and hidden neurons for ten cycles. In each cycle, neurons

sample binary states h and v from the MVM outputs based on the

probability distributions: v∣ ∑p h σ b vw(= 1) = (+)j j i i ij and p h(= 1)=j v∣

∑σ b vw(+)j i i ij , where σ is the sigmoid function, ai is a bias for hidden

neurons (h) and bj is a bias for visible neurons (v). After sampling, we

reset the uncorrupted pixels (visible neurons) to the original pixel

values. The final inference performance is evaluated by computing the

average L2-reconstruction error between the original image and the

recovered image. Extended Data Fig. 10 shows some examples of the

measured image recovery.

When mapping the 794 × 120 weight matrix to multiple cores of the

chip, we try to make the MVM output dynamic range of each core rela-

tively consistent such that the recovery performance will not overly

rely on the computational accuracy of any single core. To achieve this,

we assign adjacent pixels (visible neurons) to different cores such that

every core sees a down-sampled version of the whole image, as shown

in Extended Data Fig. 9f). Utilizing the bidirectional MVM functionality

of the TNSA, the visible-to-hidden neuron MVM is performed from the

SL-to-BL direction in each core; the hidden-to-visible neuron MVM is

performed from the BL-to-SL direction.

Weight-mapping strategy onto multiple CIM cores

To implement an AI model on a NeuRRAM chip, we convert the weights,

biases and other relevant parameters (for example, batch normaliza-

tion) of each model layer into a single two-dimensional conductance

matrix as described in the previous section. If the height or the width

of a matrix exceed the RRAM array size of a single CIM core (256 × 256),

we split the matrix into multiple smaller conductance matrices, each

with maximum height and width of 256.

We consider three factors when mapping these conductance

matrices onto the 48 cores: resource utilization, computational load

balancing and voltage drop. The top priority is to ensure that all con-

ductance matrices of a model are mapped onto a single chip such that

no re-programming is needed during inference. If the total number of

conductance matrices does not exceed 48, we can map each matrix

onto a single core (case (1) in Fig. 2a) or multiple cores. There are two

scenarios when we map a single matrix onto multiple cores. (1) When a

model has different computational intensities, defined as the amount

of computation per weights, for different layers, for example, CNNs

often have higher computational intensity for earlier layers owing to

larger feature map dimensions, we duplicate the more computation-

ally intensive matrices to multiple cores and operate them in parallel

to increase throughput and balance the computational loads across

the layers (case (2) in Fig. 2a). (2) Some models have ‘wide’ conduct-

ance matrices (output dimension >128), such as our image-recovery

RBM. If mapping the entire matrix onto a single core, each input driver

needs to supply large current for its connecting RRAMs, resulting in a

significant voltage drop on the driver, deteriorating inference accuracy.

Therefore, when there are spare cores, we can split the matrix vertically

into multiple segments and map them onto different cores to mitigate

the voltage drop (case (6) in Fig. 2a).

By contrast, if a model has more than 48 conductance matrices, we

need to merge some matrices so that they can fit onto a single chip.

The smaller matrices are merged diagonally such that they can be

accessed in parallel (case (3) in Fig. 2a). The bigger matrices are merged

horizontally and accessed by time-multiplexing input rows (case (4) in

Fig. 2a). When selecting the matrices to merge, we want to avoid the

matrices that belong to the same two categories described in the previ-

ous paragraph: (1) those that have high computational intensity (for

example, early layers of ResNet-20) to minimize impact on throughput;

and (2) those with ‘wide’ output dimension (for example, late layers

of ResNet-20 have large number of output channels) to avoid a large

voltage drop. For instance, in our ResNet-20 implementation, among

a total of 61 conductance matrices (Extended Data Fig. 9a: 1 from input

layer, 12 from block 1, 17 from block 2, 28 from block 3, 2 from shortcut

layers and 1 from final dense layer), we map each of the conductance

matrices in blocks 1 and 3 onto a single core, and merge the remaining

matrices to occupy the 8 remaining cores.

Table 1 summarizes core usage for all the models. It is noted that

for partially occupied cores, unused RRAM cells are either unformed

or programmed to high resistance state; WLs of unused rows are not

activated during inference. Therefore, they do not consume additional

energy during inference.

Test-system implementation

Extended Data Fig. 11a shows the hardware test system for the NeuR-

RAM chip. The NeuRRAM chip is configured by, receives inputs from

and sends outputs to a Xilinx Spartan-6 FPGA that sits on an Opal Kelly

integrated FPGA board. The FPGA communicates with the PC via a

USB 3.0 module. The test board also houses voltage DACs that provide

various bias voltages required by RRAM programming and MVM, and

ADCs to measure RRAM conductance during the write–verify program-

ming. The power of the entire board is supplied by a standard ‘cannon

style’ d.c. power connector and integrated switching regulators on

the Opal Kelly board such that no external lab equipment is needed

for the chip operation.

To enable fast implementation of various machine-learning applica-

tions on the NeuRRAM chip, we developed a software toolchain that

provides Python-based application programming interfaces (APIs)

at various levels. The low-level APIs provide access to basic opera-

tions of each chip module such as RRAM read and write and neuron

analogue-to-digital conversion; the middle-level APIs include essen-

tial operations required for implementing neural-network layers such

as the multi-core parallel MVMs with configurable bit-precision and

RRAM write–verify programming; the high-level APIs integrate vari-

ous middle-level modules to provide complete implementations of

neural-network layers, such as weight mapping and batch inference of

convolutional and fully connected layers. The software toolchain aims to

allow software developers who are not familiar with the NeuRRAM chip

design to deploy their machine-learning models on the NeuRRAM chip.

Power and throughput measurements

To characterize MVM energy efficiency at various input and output

bit-precisions, we measure the power consumption and latency of the

MVM input and output stages separately. The total energy consump-

tion and the total time are the sum of input and output stages because

the two stages are performed independently as described in the above

sections. As a result, we can easily obtain the energy efficiency of any

combinations of input and output bit-precisions.

To measure the input-stage energy efficiency, we generate a 256 × 256

random weight matrix with Gaussian distribution, split it into 2 seg-

ments, each with dimension 128 × 256, and program the two segments

to two cores using the differential-row weight mapping. We measure

the power consumption and latency for performing 10 million MVMs,

or equivalently 655 billion MAC operations. The comparison with pre-

vious work shown in Fig. 1d uses the same workload as benchmark.

Extended Data Fig. 12a shows the energy per operation consumed

during the input and the output stages of MVMs under various

bit-precisions. The inputs are in the signed integer format, where the

first bit represents the sign, and the other bits represent the magnitude.

One-bit (binary) and two-bit (ternary) show similar energy because each

input wire is driven to one of three voltage levels. Binary input is there-

fore just a special case for ternary input. It is noted that the curve shown

in Extended Data Fig. 12a is obtained without the two-phase operation.

As a result, we see a super-linear increase of energy as input bit-precision

increases. Similar to the inputs, the outputs are also represented in the

signed integer format. The output-stage energy consumption grows

linearly with output bit-precision because one additional binary search

cycle is needed for every additional bit. The output stage consumes less

energy than the input stage because it does not involve toggling highly

capacitive WLs that are driven at a higher voltage, as we discuss b el ow.

For the MVM measurements shown in Extended Data Fig. 12b–e,

the MVM output stage is assumed to use 2-bit-higher precision

than inputs to account for the additional bit-precision required for

partial-sum accumulations. The required partial-sum bit-precision

for the voltage-mode sensing implemented by NeuRRAM is much

lower than that required by the conventional current-mode sens-

ing. As explained before, conventional current-sensing designs can

only activate a fraction of rows each cycle, and therefore need many

partial-sum accumulation steps to complete an MVM. In contrast, the

proposed voltage-sensing scheme can activate all the 256 input wires

in a single cycle, and therefore requires less partial-sum accumulation

steps and lower partial-sum precisions.

Extended Data Fig. 12b shows the energy consumption breakdown.

A large fraction of energy is spent in switching on and off the WLs that

connect to gates of select transistors of RRAM devices. These transistors

use thick-oxide I/O transistors to withstand high-voltage during RRAM

forming and programming. They are sized large enough (width 1 μm

and length 500 nm) to provide sufficient current for RRAM program-

ming. As a result, they require high operating voltages and add large

capacitance to the WLs, both contributing to high power consumption

(P = fCV2, where f is the frequency at which the capacitance is charged

and discharged). Simulation shows that each of the 256 access transis-

tors contributes about 1.5 fF to a WL; WL drivers combined contribute

about 48 fF to each WL; additional WL capacitance is mostly from the

inter-wire capacitance from neighbouring BLs and WLs. The WL energy

is expected to decrease significantly if RRAMs can be written by a lower

voltage and have a lower conductance state, and if a smaller transistor

with better drivability can be used.

For applications that require probabilistic sampling, the two

counter-propagating LFSR chains generate random Bernoulli noises

and inject the noises as voltage pulses into neurons. We measure each

noise-injection step to consume on average 121 fJ per neuron, or 0.95 fJ

per weight, which is small compared with other sources of energy con-

sumption shown in Extended Data Fig. 12b.

Extended Data Fig. 12c–e shows the measured latency, peak through-

put and throughput-power efficiency for performing the 256 × 256

MVMs. It is noted that we used EDP as a figure of merit for comparing

designs rather than throughput-power efficiency as tera-operations

per second per watt (TOPS W−1, reciprocal of energy per operation),

because it captures the time-to-solution aspect in addition to energy

consumption. Similar to previous work in this field, the reported

throughput and energy efficiency represent their peak values when

the CIM array utilization is 100%, and does not include time and energy

spent at buffering and moving intermediate data. Future work that

integrates intermediate data buffers, partial-sum accumulators and

so on within a single complete CIM chip should show energy efficiency

measured on end-to-end AI applications.

Projection of NeuRRAM energy efficiency with technology

scaling

The current NeuRRAM chip is fabricated using a 130-nm CMOS technol-

ogy. We expect the energy efficiency to improve with the technology

scaling. Importantly, isolated scaling of CMOS transistors and intercon-

nects is not sufficient for the overall energy-efficiency improvement.

RRAM device characteristics must be optimized jointly with CMOS. The

current RRAM array density under a 1T1R configuration is limited not

by the fabrication process but by the RRAM write current and voltage.

The current NeuRRAM chip uses large thick-oxide I/O transistors as

the ‘T’ to withstand >4-V RRAM forming voltage and provide enough

write current. Only if we lower both the forming voltage and the write

current can we obtain higher density and therefore lower parasitic

capacitance for improved energy efficiency.

Assuming that RRAM devices at a newer technology node can be

programmed at a logic-compatible voltage level, and the required write

current can be reduced such that the size of the connecting transistor

Article

keeps shrinking, the EDP improvements will come from (1) lower oper-

ating voltage and (2) smaller wire and transistor capacitance, that is,

Energy ∝ CV2 and Delay ∝ CV/I. At 7 nm, for instance, we expect the

WL switching energy (Extended Data Fig. 12b) to reduce by about 22.4

times, including 2.6 times from WL voltage scaling (1.3 V → 0.8 V), and

8.5 times from capacitance scaling (capacitance from select transistors,

WL drivers and wires are all assumed to scale with minimum metal pitch

340 nm → 40 nm). Peripheral circuit energy (dominated by the neuron

readout process) is projected to reduce by 42 times, including 5 times

from VDD scaling (1.8 V → 0.8 V) and 8.5 times from smaller parasitic

capacitance. The energy consumed by the MVM pulses and charge

transfer process is independent of the range of RRAM conductance, as

power consumption and settling time of the RRAM array scale with the

same conductance factor that cancels in their product. Specifically the

energy per RRAM MAC is EMAC = Cpar var(Vin), limited only by the parasitic

capacitance per unit RRAM cell Cpar, and the variance in the driven input

voltage var(Vin). Therefore, the MVM energy consumption will reduce

by approximately 34 times, including 4 times from read-voltage scal-

ing (0.5 V → 0.25 V), and 8.5 times from smaller parasitic capacitance.

Overall, we expect an energy consumption reduction of about 34 times

when scaling the design from 130 nm to 7 nm.

In terms of the latency, the current design is limited by the long

integration time of neuron, caused primarily by the relatively large

integration capacitor size (104 fF), which was chosen conservatively

to ensure function correctness and testing different neuron operat-

ing conditions. At more advanced technology nodes, one could use a

much smaller capacitor size to achieve a higher speed. The main con-

cern for scaling-down capacitor size is that the fabrication-induced

capacitor size mismatch will take up a higher fraction of total capaci-

tance, resulting in a lower SNR. However, previous ADC designs have

used a unit capacitor size as small as 50 aF (ref. 56; 340 times smaller

than our Csample). For a more conservative design, a study has shown

that in a 32-nm process, a 0.45-fF unit capacitor has only 1.2% average

standard deviation57. Besides, the integration time also depends on the

drive current of the transistors. Assuming that the transistor current

density (μA μm−1) stays relatively unchanged after VDD scaling, and

that the transistor width in the neuron scales with the contact gate

pitch (310 nm → 57 nm), the total transistor drive current will reduce

by 5.4 times. As a result, when scaling Csample from 17 fF to 0.2 fF and

Cinteg proportionally from 104 fF to 1.22 fF, the latency will improve

by 15.7 times. Therefore, conservatively, we expect the overall EDP to

improve by at least 535 times when scaling the design from 130-nm to

7-nm technology. Extended Data Table 2 shows that such scaling will

enable NeuRRAM to deliver higher energy and area efficiency than

today’s state-of-the-art edge inference accelerators58–61.

Data availability

The datasets used for benchmarks are publicly available18–20. Other

data that support the findings of this study are available in a public

repository47.

Code availability

The software toolchain used to test and deploy AI tasks on the NeuR-

RAM chip, and the codes used to perform noise-resilient model training

and chip-in-the-loop progressive model fine-tuning are available in a

public repository47.

51. Cauwenberghs, G. An analog VLSI recurrent neural network learning a continuous-time

trajectory. IEEE Trans. Neural Netw. 7, 346–361 (1996).

52. Wu, W. et al. A methodology to improve linearity of analog RRAM for neuromorphic

computing. In Symposium on VLSI Technology, Digest of Technical Papers 103–104

(IEEE, 2018).

53. Ji, Y. et al. FPSA: a full system stack solution for reconfigurable ReRAM-based NN

accelerator architecture. In International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS) 733–747 (ACM,

2019).

54. Esser, S. K., Mckinstry, J. L., Bablani, D., Appuswamy, R. & Modha, D. S. Learned step size

quantization. In International Conference on Learning Representations (ICLR)

(2020).

55. Jung, S. et al. Learning to quantize deep networks by optimizing quantization intervals

with task loss. In IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) 4345–4354 (IEEE/CVF, 2019).

56. Stepanovic, D. & Nikolic, B. A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB

SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid

State Circuits 48, 971–982 (2013).

57. Tripathi, V. & Murmann, B. Mismatch characterization of small metal fringe capacitors.

IEEE Trans. Circuits Syst. I Regul. Pap. 61, 2236–2242 (2014).

58. Chen, Y. H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: an energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE J. Solid State Circuits 52,

127–138 (2017).

59. Zimmer, B. et al. A 0.32-128 TOPS, scalable multi-chip-module-based deep neural

network inference accelerator with ground-referenced signaling in 16 nm. IEEE J. Solid

State Circuits 55, 920–932 (2020).

60. Lee, J. et al. UNPU: an energy-efficient deep neural network accelerator with fully variable

weight bit precision. IEEE J. Solid State Circuits 54, 173–185 (2019).

61. Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture.

Nature 572, 106–111 (2019).

62. Murmann, B. ADC Performance Survey 1997–2021 (2021); https://web.stanford.

edu/~murmann/adcsurvey.html

Acknowledgements This work is supported in part by NSF Expeditions in Computing (Penn

State, award number 1317470), the Office of Naval Research (Science of AI program), the SRC

JUMP ASCENT Center, Stanford SystemX Alliance, Stanford NMTRI, Beijing Innovation Center

for Future Chips, National Natural Science Foundation of China (61851404), and Western

Digital Corporation.

Author contributions W.W., R.K., S.B.E., S.J., H.-S.P.W. and G.C. designed the NeuRRAM chip

architecture and circuits. W.W., S.B.E., W.Z. and D.W. implemented physical layout of the chip.

W.Z., H.Q., B.G. and H.W. contributed to the RRAM device fabrication and integration with

CMOS. W.W., R.K., S.D. and G.C. developed the test system. W.W. developed the software

toolchain, implemented the AI models on the chip and conducted all chip measurements.

W.W., C.S. and S.J. worked on the development of AI models. W.W., R.K., C.S., P.R., S.J., H.-S.P.W.

and G.C. contributed to the experiment design and analysis and interpretation of the

measurements. B.G., S.J., H.W., H.-S.P.W. and G.C. supervised the project. All authors

contributed to the writing and editing of the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Weier Wan, Bin Gao,

Siddharth Joshi, Huaqiang Wu, H.-S. Philip Wong or Gert Cauwenberghs.

Peer review information Nature thanks Matthew Marinella and the other, anonymous,

reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at http://www.nature.com/reprints.

Extended Data Fig. 1 | Peripheral driver circuits for TNSA and chip operating

modes. a, driver circuits’ configuration under the weight-programming mode.

b, under the neuron-testing mode. c, under the MVM mode. d, circuit diagram of

the two counter-propagating LFSR chains XORed to generate pseudo-random

sequences for probabilistic sampling.

Article

Extended Data Fig. 2 | Various MVM dataflow directions and their CIM

implementations. Left, various MVM dataflow directions commonly seen in

different AI models. Middle, conventional CIM implementation of various

dataflow directions. Conventional designs typically locate all peripheral

circuits such as ADCs outside of RRAM array. The resulting implementations of

bidirectional and recurrent MVMs incur overheads in area, latency, and energy.

Right, the Transposable Neurosynaptic Array (TNSA) interleaves RRAM

weights and CMOS neurons across the array and supports diverse MVM

directions with minimal overhead.

Extended Data Fig. 3 | Iterative write–verify RRAM programming.

a, Flowchart of the incremental-pulse write–verify technique to program

RRAMs into target analogue conductance range. b, An example sequence of

the write–verify programming. c, RRAM conductance distribution measured

during and after the write–verify programming. Each blue dot represents one

RRAM cell measured during write–verify. The grey shades show that the RRAM

conductance relaxation cause the distribution to spread out from the target

values. The darker shade shows that the iterative programming helps narrow

the distribution. d, Standard deviation of conductance change measured at

different initial conductance states and different time duration after the initial

programming. The initial conductance relaxation happens at a faster rate than

longer term retention degradation. e, Standard deviation of conductance

relaxation decreases with increasing iterative programming cycles.

f, Distribution of the number of SET/RESET pulses needed to reach

conductance acceptance range.

Article

Extended Data Fig. 4 | 4 basic neuron operations that enable MVM with

multi-bit inputs and outputs. a, Initialization, precharge sampling capacitor

Csample and output wires (SLs), and discharge integration capacitor Cinteg.

b, Sampling and integration, sample SL voltage onto Csample, followed by

integrating the charge onto Cinteg. c, Comparison and readout. The amplifier is

turned into comparator mode to determine the polarity of the integrated

voltage. Comparator outputs are written out of the neuron through the outer

feedback loop. d, Charge decrement, charge is added or subtracted on Cinteg

through the outer feedback loop, depending on value stored in the latch.

Extended Data Fig. 5 | Scatter plots of measured MVMs vs. ideal MVMs.

Results in a-d are generated using the same 64×64 normally distributed

random matrix and 1000 uniformed distributed floating-point vectors ϵ [-1, 1].

a, Forward MVM using differential input scheme with inputs quantized to 4-bit

and outputs 6-bit. b, Backward MVM using differential output scheme. The

higher RMSE is caused by more voltage drop on each SL driver that needs to

drive 128 RRAM cells, compared to 64 cells driven by each BL driver during

forward MVM. c, MVM root-mean-square error (RMSE) does not reduce when

increasing input from 4-bit (a) to 6-bit. This is caused by using a lower input

voltage that leads to worse signal-to-noise-ratio. d, 2-phase operation reduces

MVM RMSE with 6-bit input by breaking inputs into 2 segments and performing

MVMs separately, such that input voltage does not need to be reduced. e–f,

Outputs from conv15 layer of ResNet-20. Weights of conv15 are divided to 3 CIM

cores. Layer outputs show a higher RMSE when performing MVM in parallel on

the 3 cores (f) than sequentially on the 3 cores (e).

Article

Extended Data Fig. 6 | Data distribution with and without model-driven

chip calibration. Left, Distribution of inputs to the final fully connected layer

of ResNet-20 when the inputs are generated from (top-to-bottom) CIFAR-10

test-set data, training-set data, and random uniform data. Right, Distribution

of outputs from the final fully connected layer of ResNet-20. The test-set and

training-set have similar distributions while random uniform data produces a

markedly different output distribution. To ensure that the MVM output voltage

dynamic range during testing is calibrated to occupy the full ADC input swing,

the calibration data should come from training-set data that closely resembles

the test-set data.

Extended Data Fig. 7 | Noise-resilient training of CNNs, LSTMs and RBMs.

a, Change in CIFAR-10 test-set classification accuracy under different weight

noise levels during inference. Noise is represented as fraction of the maximum

absolute value of weights. Different curves represent models trained at

different levels of noise injection. b, Change in voice command recognition

accuracy with weight noise levels. c, Change in MNIST image-reconstruction

error with weight noise levels. d, Decreasing of image-reconstruction error

with Gibbs sampling steps during RBM inference. e, Differences in weight

distributions when trained without and with noise injection.

Article

Extended Data Fig. 8 | Measured chip inference performance. a, CIFAR-10

training-set accuracy loss due to hardware non-idealities, and accuracy

recovery at each step of the chip-in-the-loop progressive fine-tuning. From left

to right, each data point represents a new layer programmed onto the chip.

The blue solid lines represent the accuracy loss measured when performing

inference of that layer on-chip. The red dotted lines represent the measured

recovery in accuracy by fine-tuning subsequent layers. b, Ablation study

showing the impacts of input, activation, and weight quantizations, and weight

noise injection on inference errors.

Extended Data Fig. 9 | Implementation of various AI models. a, Architecture

of ResNet-20 for CIFAR-10 classification. b, The batch normalization

parameters are merged into convolutional weights and biases before mapping

on-chip. c, Illustration of the process to map 4-dimensional weights of a

convolutional layer to NeuRRAM CIM cores. d, Architecture of the LSTM model

used for Google speech command recognition. The model contains 4 parallel

LSTM cells and makes predictions based on the sum of outputs from the 4 cells.

e, Architecture of the RBM model used for MNIST image recovery. During

inference, MVMs and Gibbs sampling are performed back and-forth between

visible and hidden neurons. f, Process to map RBM on NeuRRAM CIM cores.

Adjacent pixels are assigned to different cores to equalize the MVM output

dynamic range at different cores.

Article

Extended Data Fig. 10 | Chip-measured image recovery using RBM. Top: Recovery of MNIST test-set images with randomly selected 20% of pixels flipped to

complementary intensity. Bottom: Recovery of MNIST test-set images with bottom 1/3 of pixels occluded.

Extended Data Fig. 11 | NeuRRAM test system and chip micrographs at

various scales. a, A NeuRRAM chip wire-bonded to a package. b, Measurement

board that connects a packaged NeuRRAM chip (left) to a field-programmable

gate array (FPGA, right). The board houses all the components necessary to

power, operate and measure the chip. No external lab equipment is needed for

the chip operations. c, Micrograph of a 48-core NeuRRAM chip. d, Zoomed-in

micrograph of a single CIM core. e, Zoomed-in micrograph of 2×2 corelets

within the TNSA. One neuron circuit occupies 1270 μm2, which is >100× smaller

than most ADC designs in 130-nm summarized in an ADC survey62. f, Chip area

breakdown.

Article

Extended Data Fig. 12 | Energy consumption, latency, and throughput

measurement results. a, Measured energy consumption per operation during

the MVM input stage (without 2-phase operation) and output stage, where one

multiply–accumulate (MAC) counts as two operations. b, Energy consumption

breakdown at various MVM input and output bit-precisions. Outputs are 2-bit

higher than inputs during a MVM to account for additional precision requirements

from partial-sum accumulation. c, Latency for performing one MVM with 256×256

weight matrix. d, Peak computational throughput (in giga-operations per second).

e, Throughput-power efficiency (in tera-operations per watt).

Extended Data Table 1 | Comparison of fully integrated RRAM-based CIM hardware

Notes:

1. The table does not include studies that do not report detailed performance metrics.

2. All the reported metrics are measured for performing 256×256 matrix-vector multiplications.

3. All reported numbers represent peak throughput/efficiency when array utilization is 100%.

Article

Extended Data Table 2 | Comparison with digital CMOS AI inference accelerators

Notes:

1. The method to project NeuRRAM efficiency to 7 nm is explained in Methods.

2. The energy-efficiency projection of digital accelerators is based on CV2 scaling, where C scales with minimum metal pitch and V is adjusted to nominal VDD of 7 nm.

3. The area-efficiency projection of digital accelerators is based on minimum metal pitch scaling along both horizontal and vertical directions.

	A compute-in-memory chip based on resistive random-access memory

	Reconfigurable RRAM-CIM architecture

	Efficient voltage-mode neuron circuit

	Hardware-algorithm co-optimizations

	Online content

	Fig. 1 Design methodology and main contributions of the NeuRRAM chip.
	Fig. 2 Reconfigurable architecture of the NeuRRAM chip.
	Fig. 3 Voltage-mode MVM with multi-bit inputs and outputs.
	Fig. 4 Hardware-algorithm co-optimization techniques to improve NeuRRAM inference accuracy.
	Fig. 5 Measured results showing the efficacy of the hardware-algorithm co-optimization techniques.
	Extended Data Fig. 1 Peripheral driver circuits for TNSA and chip operating modes.
	Extended Data Fig. 2 Various MVM dataflow directions and their CIM implementations.
	Extended Data Fig. 3 Iterative write–verify RRAM programming.
	Extended Data Fig. 4 4 basic neuron operations that enable MVM with multi-bit inputs and outputs.
	Extended Data Fig. 5 Scatter plots of measured MVMs vs.
	Extended Data Fig. 6 Data distribution with and without model-driven chip calibration.
	Extended Data Fig. 7 Noise-resilient training of CNNs, LSTMs and RBMs.
	Extended Data Fig. 8 Measured chip inference performance.
	Extended Data Fig. 9 Implementation of various AI models.
	Extended Data Fig. 10 Chip-measured image recovery using RBM.
	Extended Data Fig. 11 NeuRRAM test system and chip micrographs at various scales.
	Extended Data Fig. 12 Energy consumption, latency, and throughput measurement results.
	Table 1 Summary of AI applications and models demonstrated on NeuRRAM.
	Extended Data Table 1 Comparison of fully integrated RRAM-based CIM hardware.
	Extended Data Table 2 Comparison with digital CMOS AI inference accelerators.

