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Realizing increasingly complex artificial intelligence (Al) functionalities directly on
edge devices calls for unprecedented energy efficiency of edge hardware.
Compute-in-memory (CIM) based on resistive random-access memory (RRAM)"
promises to meet such demand by storing Al model weights in dense, analogue and
non-volatile RRAM devices, and by performing Al computation directly within RRAM,
thus eliminating power-hungry data movement between separate compute and
memory??. Although recent studies have demonstrated in-memory matrix-vector
multiplication on fully integrated RRAM-CIM hardware® ™7, it remains a goal for a
RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to
support diverse models and software-comparable accuracy. Although efficiency,
versatility and accuracy are all indispensable for broad adoption of the technology,
theinter-related trade-offs among them cannot be addressed by isolated
improvements on any single abstraction level of the design. Here, by co-optimizing
across all hierarchies of the design from algorithms and architecture to circuits and
devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers
versatility in reconfiguring CIM cores for diverse model architectures, energy
efficiency thatis two-times better than previous state-of-the-art RRAM-CIM chips
across various computational bit-precisions, and inference accuracy comparable to
software models quantized to four-bit weights across various Al tasks, including
accuracy 0f 99.0 percent on MNIST*® and 85.7 percent on CIFAR-10" image classification,
84.7-percent accuracy on Google speech command recognition®, and a 70-percent

reductioninimage-reconstruction error on a Bayesianimage-recovery task.

Early researchintheareaof resistive random-access memory (RRAM)
compute-in-memory (CIM) focused on demonstrating artificial intel-
ligence (Al) functionalities on fabricated RRAM devices while using
off-chip software and hardware to implement essential functionali-
ties such as analogue-to-digital conversion and neuron activations
for a complete system***2°, Although these studies proposed vari-
oustechniques to mitigate the impacts of analogue-related hardware
non-idealitiesoninferenceaccuracy, the Albenchmarkresults reported
were often obtained by performing software emulation based on char-
acterized device data>>*"?*, Such an approach often overestimates
accuracies compared with fully hardware-measured results owing to
incomplete modelling of hardware non-idealities.

More recent studies have demonstrated fully integrated RRAM
complementary metal-oxide-semiconductor (CMOS) chips capable
of performing in-memory matrix-vector multiplication (MVM)®™".
However, for a RRAM-CIM chip to be broadly adopted in practical
Al applications, it needs to simultaneously deliver high energy effi-
ciency, the flexibility to support diverse Al model architectures and
software-comparable inference accuracy. So far, there has not been

astudy aimed at simultaneously improving all these three aspects
of a design. Moreover, Al application-level benchmarks in previous
studies have limited diversity and complexity. None of the studies
have experimentally measured multiple edge Al applications with
complexity matching those in MLPerf Tiny, acommonly used bench-
mark suite for edge Al hardware?®. The challenge arises from the
inter-related trade-offs between efficiency, flexibility and accuracy.
The highly-parallel analogue computation within RRAM-CIM archi-
tecture brings superior efficiency, but makesit challenging to realize
the same level of functional flexibility and computational accuracy
asin digital circuits. Meanwhile, attaining algorithmic resiliency to
hardware non-idealities becomes more difficult for more complex Al
tasks owing to using less over-parameterized models on the edge®~°.

To address these challenges, we present NeuRRAM, a 48-core
RRAM-CIM hardware encompassing innovations across the full
stack of the design. (1) At the device level, 3 million RRAM devices
with high analogue programmability are monolithically integrated
with CMOS circuits. (2) At the circuit level, a voltage-mode neuron
circuit supports variable computation bit-precision and activation
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Fig.1|Design methodology and main contributions ofthe NeuRRAM chip.
a, Cross-layer co-optimizations across the full stack of the design enable
NeuRRAM to simultaneously deliver high versatility, computational efficiency
and software-comparableinference accuracy. b, Micrograph of the NeuRRAM
chip. ¢, Reconfigurability in various aspects of the design enables NeuRRAM to

functions while performing analogue-to-digital conversion at low
power consumption and compact-areafootprint. (3) At the archi-
tecture level, a bidirectional transposable neurosynaptic array
(TNSA) architecture enables reconfigurability in dataflow direc-
tions with minimal area and energy overheads. (4) At the system
level, 48 CIM cores can perform inference in parallel and supports
various weight-mapping strategies. (5) Finally, at the algorithm
level, various hardware-algorithm co-optimization techniques
mitigate the impact of hardware non-idealities on inference accu-
racy. We report fully hardware-measured inference results for a
range of Al tasks including image classifications using CIFAR-10"
and MNIST® datasets, Google speech command recognition?®
and MNIST image recovery, implemented with diverse Al models
including convolutional neural networks (CNNs)*, long short-term
memory (LSTM)*? and probabilistic graphical models® (Fig. 1e).
The chip is measured to achieve an energy-delay product (EDP)
lower than previous state-of-the-art RRAM-CIM chips, while it oper-
ates over a range of configurations to suit various Al benchmark
applications (Fig. 1d).

Reconfigurable RRAM-CIM architecture

ANeuRRAM chip consists of 48 CIM cores that can perform computa-
tionin parallel. A core can be selectively turned off through power gat-
ingwhennotactively used, whereas the model weights are retained by
the non-volatile RRAM devices. Central to each coreisa TNSA consisting
0f256 x 256 RRAM cells and 256 CMOS neuron circuits thatimplement
analogue-to-digital converters (ADCs) and activation functions. Addi-
tional peripheral circuits along the edge provides inference control
and manages RRAM programming.

MNIST CIFAR-10 Voice command Image
classification classification recognition recovery
(CNN) (ResNet-20) (LSTM) (RBM)

implement diverse Almodels for awide variety of applications. d, Comparison
of EDP,acommonly used energy-efficiency and performance metricamong
recent RRAM-based CIM hardware. e, Fully hardware-measured inference
accuracy on NeuRRAMis comparable to software models quantized to 4-bit
weightsacross various Albenchmarks.

The TNSA architecture is designed to offer flexible control of dataflow
directions, whichis crucial for enabling diverse model architectures with
different dataflow patterns. For instance, in CNNs that are commonly
applied to vision-related tasks, data flows in a single direction through
layerstogenerate datarepresentations at different abstractionlevels; in
LSTMsthat are used to process temporal datasuch asaudiosignals, data
travelrecurrently through the samelayer for multiple time steps; in proba-
bilisticgraphical models such as arestricted Boltzmann machine (RBM),
probabilisticsamplingis performed back and forth between layers until
the network convergesto ahigh-probability state. Besides inference, the
error back-propagation during gradient-descent training of multiple Al
modelsrequiresreversing the direction of dataflow through the network.

However, conventional RRAM-CIM architectures are limited to per-
formMVMinasingle direction by hardwiring rows and columns of the
RRAM crossbar array to dedicated circuits on the periphery to drive
inputs and measure outputs. Some studies implement reconfigurable
dataflow directions by adding extrahardware, whichincurs substantial
energy, latency and area penalties (Extended Data Fig. 2): executing
bidirectional (forwards and backwards) dataflow requires either dupli-
cating power-hungry and area-hungry ADCs at both ends of the RRAM
array'** or dedicating a large area to routing both rows and columns
of the array to shared data converters'; the recurrent connections
require writing the outputs to a buffer memory outside of the RRAM
array, and reading them back for the next time-step computation®.

The TNSA architecture realizes dynamic dataflow reconfigurability
withlittle overhead. Whereasin conventional designs, CMOS peripheral
circuits such as ADCs connect at only one end of the RRAM array, the
TNSA architecture physically interleaves the RRAM weights and the
CMOS neuron circuits, and connects them along the length of both
rows and columns. As shown in Fig. 2e, a TNSA consists of 16 x 16 of
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Fig.2|Reconfigurable architecture of the NeuRRAM chip. a, Multi-core
architecture ofthe NeuRRAM chip, and various ways, labelled (1) to (6), to map
neural-network layers onto CIM cores. b, Zoomed-in chip micrographona
single CIM core. ¢, A cross-sectional transmission electron microscopy image
showing the layer stack of the monolithically integrated RRAM and CMOS.

d, Block diagram of a CIM core. A core consists of a TNSA, drivers for BLs, WLs,
and SLs, registers that store MVM inputs and outputs, a LFSR pseudo-random
number generator (PRNG), and a controller. During the MVM input stage, the
drivers convertregisterinputs (REG) and PRNG inputs (PRN) to analogue
voltages and send them to TNSA; during the MVM outputstage, the drivers
passdigital outputs from neurons back toregisters through REG. e, The

suchinterleaved corelets that are connected by shared bit-lines (BLs)
and word-lines (WLs) along the horizontal direction and source-lines
(SLs) along the vertical direction. Each corelet encloses 16 x 16 RRAM
devices and one neuron circuit. The neuron connects to1BL and 1SL
out of the 16 BLs and the 16 SLs that pass through the corelet, and is
responsible for integrating inputs from all the 256 RRAMs connecting
tothe sameBL or SL. Sixteen of these RRAMs are within the same corelet
astheneuron;and the other 240 are within the other 15 corelets along
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architecture of a TNSA consists of 16 x 16 corelets withinterleaving RRAM
weights and CMOS neurons. Each neuronintegrates inputs from 256 RRAMs
connectingto the same horizontal BL or vertical SL. f, Each corelet contains

16 x16 RRAMs and1neuron. The neuron connectstolofthe16 BLsand1ofthe
16 SLs that pass through the corelet, and can use aBL and aSL for bothits input
and output. g, The TNSA can be dynamically configured for MVMin forwards,
backwards or recurrent directions. h, Differential input and differential output
schemesused toimplementreal-valued weights during forwards and
backwards MVMs. Weights are encoded as the differential conductance
between two RRAM cells on adjacent rows (G+and G-).

the same row or column. Specifically, Fig. 2f shows that the neuron
within corelet (i, j) connects to the (16i +j)th BL and the (16 + i)th SL.
Such a configuration ensures that each BL or SL connects uniquely to
aneuron, while doing so without duplicating neurons at both ends of
thearray, thus saving area and energy.

Moreover, aneuronusesits BLand SL switches for bothitsinputand
output:it not only receives the analogue MVM output coming from BL
or SL through the switches but also sends the converted digital results



to peripheral registers through the same switches. By configuring
which switch touse during the input and output stages of the neuron,
we canrealize various MVM dataflow directions. Figure 2g shows the
forwards, backwards and recurrent MVMs enabled by the TNSA. To
implement forwards MVM (BL to SL), during the input stage, input
pulsesare applied to the BLs through the BL drivers, get weighted by the
RRAMs and enter the neuron through its SL switch; during the output
stage, the neuron sends the converted digital outputs to SL registers
throughits SL switch; toimplement recurrent MVM (BLto BL), the neu-
ron instead receives input through its SL switch and sends the digital
output back to the BL registers through its BL switch.

Weights of most Almodels take both positive and negative values. We
encode each weight as difference of conductance between two RRAM
cells on adjacent rows along the same column (Fig. 2h). The forwards
MVMis performed using a differentialinput scheme, where BL drivers
send input voltage pulses with opposite polarities to adjacent BLs. The
backwards MVMis performed using a differential output scheme, where
we digitally subtract outputs from neurons connecting to adjacent BLs
after neurons finish analogue-to-digital conversions.

Tomaximize throughput of Alinference on48 CIM cores, we imple-
ment a broad selection of weight-mapping strategies that allow us to
exploit both model parallelism and data parallelism (Fig. 2a) through
multi-core parallel MVMs. Using a CNN as an example, to maximize
data parallelism, we duplicate the weights of the most computation-
ally intensive layers (early convolutional layers) to multiple cores for
parallel inference on multiple data; to maximize model parallelism,
we map different convolutional layers to different cores and perform
parallelinferenceinapipelined fashion. Meanwhile, we divide the lay-
erswhose weight dimensions exceed the RRAM array size into multiple
segments and assign them to multiple cores for parallel execution.
A more detailed description of the weight-mapping strategies is pro-
videdin Methods. Theintermediate data buffers and partial-sumaccu-
mulators areimplemented by afield-programmable gate array (FPGA)
integrated on the same board as the NeuRRAM chip. Although these
digital peripheralmodules are not the focus of this study, they will even-
tually need to be integrated within the same chip in production-ready
RRAM-CIM hardware.

Efficient voltage-mode neuron circuit

Figure 1d and Extended Data Table 1 show that the NeuRRAM chip
achieves 1.6-times to 2.3-times lower EDP and 7-times to 13-times
higher computational density (measured by throughput per million
of RRAMs) at various MVM input and output bit-precisions than previ-
ous state-of-the-art RRAM-based CIM chips, despite being fabricated
atan older technology node*>¢, The reported energy and delay are
measured for performingan MVM with a 256 x 256 weight matrix. Itis
noted that these numbers and those reported in previous RRAM-CIM
work represent the peak energy efficiency achieved when the array
utilizationis 100% and does not account for energy spent on interme-
diate data transfer. Network-on-chip and program scheduling need
tobe carefully designed to achieve good end-to-end application-level
energy efficiency®-,

Key to the NeuRRAM’s EDPimprovement is anovelin-memory MVM
output-sensing scheme. The conventional approachiis to use voltage
as input, and measure the current as the results based on Ohm’s law
(Fig. 3a). Such a current-mode-sensing scheme cannot fully exploit
the high-parallelism nature of CIM. First, simultaneously turning on
multiple rows leads to a large array current. Sinking the large current
requires peripheral circuits to use large transistors, whose areaneeds to
be amortized by time-multiplexing between multiple columns, which
limits ‘column parallelism’. Second, MVM results produced by differ-
ent neural-network layers have drastically different dynamic ranges
(Fig.3c). Optimizing ADCs across suchawide dynamicrangeis difficult.
To equalize the dynamic range, designs typically activate a fraction

of input wires every cycle to compute a partial sum, and thus require
multiple cycles to complete an MVM, which limits ‘row parallelism’.

NeuRRAM improves computation parallelismand energy efficiency
by virtue of a neuron circuit implementing a voltage-mode sensing
scheme. The neuron performs analogue-to-digital conversion of the
MVM outputs by directly sensing the settled open-circuit voltage onthe
BL or SL line capacitance® (Fig. 3b): voltage inputs are driven on the BLs
whereas the SLs are kept floating, or vice versa, depending on the MVM
direction. WLs are activated to start the MVM operation. The voltage on
the outputline settles to the weighted average of the voltages driven on
theinput lines, where the weights are the RRAM conductances. Upon
deactivating the WLs, the output is sampled by transferring the charge
ontheoutputline to the neuronsampling capacitor (Cgpp in Fig. 3d).
Theneuronthenaccumulates this charge onto anintegration capacitor
(Cineeg) for subsequent analogue-to-digital conversion.

Suchvoltage-mode sensing obviates the need for power-hungry and
area-hungry peripheral circuits to sink large current while clamping
voltage, improving energy and area efficiency and eliminating output
time-multiplexing. Meanwhile, the weight normalization owing to the
conductance weighting in the voltage output (Fig. 3¢) resultsin an
automatic output dynamic range normalization for different weight
matrices. Therefore, MVMs with different weight dimensions can all
be completed withinasingle cycle, which significantly improves com-
putational throughput. To eliminate the normalization factor from
the final results, we pre-compute its value and multiply it back to the
digital outputs from the ADC.

Our voltage-mode neuron supports MVM with 1-bit to 8-bit inputs
and 1-bit to 10-bit outputs. The multi-bitinputis realized in a bit-serial
fashion where chargeis sampled and integrated onto C,,., for 2" cycles
for the nthleast significant bit (LSB) (Fig. 3e). For MVM inputs greater
than 4 bits, we break the bit sequence into two segments, compute
MVM for eachsegment separately and digitally performashift-and-add
to obtain the final results (Fig. 3f). Such a two-phase input scheme
improves energy efficiency and overcomes voltage headroom clipping
at high-input precisions.

The multi-bit output is generated through a binary search process
(Fig. 3g). Every cycle, neurons add or subtract Cgppie Vieor amount of
charge from G, Where V.., is a bias voltage shared by all neurons.
Neurons then compare the total charge on C, with afixed threshold
voltage V,cto generate al-bit output. From the most significant bit (MSB)
to the least significant bit (LSB), V.., is halved every cycle. Compared
with other ADC architectures thatimplementabinary search, our ADC
scheme eliminates the residue amplifier of an algorithmic ADC, and does
notrequire anindividual DAC for each ADC to generate reference volt-
ages like asuccessive approximationregister (SAR) ADC*. Instead, our
ADC scheme allows sharing asingle digital-to-analogue converter (DAC)
acrossall neuronstoamortize the DAC area, leading toa more compact
design. The multi-bit MVM is validated by comparing ideal and measured
results, asshowninFig.3h and Extended Data Fig. 5. More details on the
multi-bitinput and output implementation can be found in Methods.

Theneuroncanalsobereconfigured to directlyimplement Rectified
Linear Unit (ReLU)/sigmoid/tanh as activations when needed. Inaddi-
tion, it supports probabilistic sampling for stochastic activation func-
tions by injecting pseudo-random noise generated by alinear-feedback
shift register (LFSR) block into the neuron integrator. All the neuron
circuit operations are performed by dynamically configuring asingle
amplifierinthe neuronaseitheranintegrator oracomparator during
different phases of operations, as detailed in Methods. This resultsin
amore compactdesign than other work that merges ADC and neuron
activation functions within the same module'?®. Although most exist-
ing CIM designs use time-multiplexed ADCs for multiple rows and col-
umns toamortize the ADC area, the compactness of our neuron circuit
allows us to dedicate a neuron for each pair of BL and SL, and tightly
interleave the neuron with RRAM devices within the TNSA architecture,
as canbe seen in Extended Data Fig. 11d.
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Fig.3|Voltage-mode MVM with multi-bitinputs and outputs.

a, Conventional current-mode-sensing scheme needs to activate asmall
fraction of total Nrows each cycle to limit total current /s, and time-multiplex
ADCs across multiple columns toamortize ADC area, thus limitingits
computational parallelism. b, Voltage-mode sensing employed by NeuRRAM
canactivatealltherowsand all the columnsin asingle cycle, enabling

higher parallelism. c, MVM output distribution froma CNN layer and from
anLSTM layer (weights normalized to the same range). Voltage-mode
sensingintrinsically normalizes wide variationin output dynamic range.

d, Schematicof the voltage-mode neuron circuit, where BL,, SL,.;, Sample,
Integ, Reset, Latch, Decr,and WR are digital signals controlling state of the
switches. e, Sample waveforms to perform MVM and 4-bit signed inputs

Hardware-algorithm co-optimizations

The innovations on the chip architecture and circuit design bring
superior efficiency and reconfigurability to NeuRRAM. To complete
the story, we must ensure that Alinference accuracy can be preserved
under various circuit and device non-idealities>*'. We developed a set of
hardware-algorithm co-optimization techniques that allow NeuRRAM
todeliver software-comparable accuracy across diverse Al applications.
Importantly, all the Al benchmark results presented in this paper are
obtained entirely from hardware measurements on complete datasets.
Although most previous efforts (with a few exceptions®?) have reported
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digital-to-analogue conversion. WLs are pulsed once per magnitude-bit;
samplingandintegrationare performed 2" times for the nth LSB. f, Two-phase
MVM: for input precision greater than 4 bits, inputs are divided intoaMSB
segmentand aLSBsegment. MVMs and ADCs are performed separately for
eachsegment, followed by a shift-and-add to obtain final outputs. g, Sample
waveformsto perform 5-bit signed outputs analogue-to-digital conversion.
Thesign-bitis first generated by acomparison operation. The magnitude-bits
aregenerated through abinary search process realized by adding/subtracting
charge on ... FromMSB to LSB, added/subtracted charge is halved every bit.
h, Chip-measured 64 x 64 MVM outputs versusideal outputs under 4-bit input
and 6-bit output.

benchmark results using a mixture of hardware characterization and
software simulation, for example, emulate the array-level MVM pro-
cess in software using measured device characteristics*>>***, such an
approach often fails to model the complete set of non-idealities exist-
inginrealistichardware. Asshownin Fig. 4a, these non-idealities may
include (1) Voltage drop oninput wires (R,;..), (2) on RRAM array driv-
ers (Ryiver) and (3) on crossbar wires (e.g. BLresistance Ry, ), (4) limited
RRAM programming resolution, (5)RRAM conductance relaxation*, (6)
capacitive coupling from simultaneously switching array wires, and (7)
limited ADC resolution and dynamicrange. Our experiments show that
omitting certain non-idealities in simulation leads to over-optimistic
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prediction of inference accuracy. For example, the third and the fourth
bars in Fig. 5a show a 2.32% accuracy difference between simulation
and measurement for CIFAR-10 classification'®, whereas the simulation
accounts for only non-idealities (5) and (7), which are what previous
studies most often modelled®*.
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Our hardware-algorithm co-optimization approach includes three
main techniques: (1) model-driven chip calibration, (2) noise-resilient
neural-network training and analogue weight programming, and (3)
chip-in-the-loop progressive model fine-tuning. Model-driven chip
calibration uses the real model weights and input data to optimize
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Table 1| Summary of Al applications and models demonstrated on NeuRRAM

Application Dataset Model architecture Dataflow Activation precision Number of Number Numberof Average core
type parameters of RRAMs  coresused utilization (%)
used
Image classification CIFAR-10 ResNet-20 (CNN) Forward 3-bit unsigned, input 274,461 553,524 48 176
image 4-bit unsigned
MNIST 7-layer CNN Forwards 3-bit unsigned 23,170 46,664 16 4.5
Voice recognition Google voice 4 parallel LSTM Recurrent+  4-bit signed 281,392 570,048 36 24.2
command cells forwards
Image recovery MNIST RBM Forwards + Visible: 3-bit 96,194 200,880 8 38.3
backwards unsigned. Hidden:

binary

chip operating conditions such asinput voltage pulse amplitude, and
records any ADC offsets for subsequent cancellation duringinference.
Ideally, the MVM output voltage dynamic range should fully utilize the
ADC input swing to minimize discretization error. However, without
calibration, the MVM output dynamic range varies with network layers
even with the weight normalization effect of the voltage-mode sensing.
To calibrate MVMto the optimal dynamicrange, for each network layer,
we use asubset of training-set dataas calibrationinput to search for the
best operating conditions (Fig. 4b). Extended Data Fig. 6 shows that
different calibration input distributions lead to different output dis-
tributions. To ensure that the calibration data can closely emulate the
distribution seen at test time, it is therefore crucial to use training-set
data as opposed to randomly generated data during calibration. It is
noted that when performing MVM on multiple cores in parallel, those
shared bias voltages cannot be optimized for each core separately,
which might lead to sub-optimal operating conditions and additional
accuracy loss (detailed in Methods).

Stochastic non-idealities such asRRAM conductance relaxation and
read noises degrade the signal-to-noise ratio (SNR) of the computation,
leading to aninference accuracy drop. Some previous work obtained a
higher SNR by limiting each RRAM cell to store asingle bit,and encoding
higher-precision weights using multiple cells*'®', Such an approach
lowers the weight memory density. Accompanying that approach, the
neural network is trained with weights quantized to the corresponding
precision. In contrast, we utilize the intrinsic analogue programmability
of RRAM*to directly store high-precision weights and train the neural
networks totolerate the lower SNR. Instead of training with quantized
weights, which is equivalent to injecting uniform noise into weights,
we train the model with high-precision weights while injecting noise
with the distribution measured from RRAM devices. RRAMs on NeuR-
RAM are characterized to have a Gaussian-distributed conductance
spread, caused primarily by conductance relaxation. Therefore, we
injecta Gaussian noise into weights during training, similar to a previ-
ousstudy?. Figure 5a shows that the technique significantly improves
the model’simmunity to noise, from a CIFAR-10 classification accuracy
of25.34% without noise injection to 85.99% with noise injection. After
the training, we program the non-quantized weights to RRAM analogue
conductances using an iterative write-verify technique, described in
Methods. This technique enables NeuRRAM to achieve an inference
accuracy equivalent to models trained with 4-bit weights across vari-
ous applications, while encoding each weight using only two RRAM
cells, which is two-times denser than previous studies that require
one RRAM cell per bit.

By applying the above two techniques, we already can measure infer-
ence accuracy comparable to or better than software models with 4-bit
weights on Google speech command recognition, MNIST image recov-
ery and MNIST classification (Fig. 1e). For deeper neural networks, we
found thatthe error caused by those non-idealities that have nonlinear
effects on MVM outputs, such as voltage drops, can accumulate through
layers, and become more difficult to mitigate. In addition, multi-core
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parallelMVM leadstolarge instantaneous current, further exacerbating
non-idealities such as voltage drop on input wires ((1) in Fig. 4a). As a
result, when performing multi-core parallelinference ona deep CNN,
ResNet-20*, the measured accuracy on CIFAR-10 classification (83.67%)
isstill 3.36% lower than that of a 4-bit-weight software model (87.03%).

Tobridge thisaccuracy gap, we introduce a chip-in-the-loop progres-
sive fine-tuning technique. Chip-in-the-loop training mitigates the
impact of non-idealities by measuring training error directly on the
chip*. Previous work has shown that fine-tuning the final layers using
the back-propagated gradients calculated from hardware-measured
outputs helped improve accuracy®. We find this technique to be of
limited effectiveness in countering those nonlinear non-idealities. Such
atechniquealsorequires re-programming RRAM devices, which con-
sumes additional energy. Our chip-in-the-loop progressive fine-tuning
overcomes nonlinear model errors by exploiting the intrinsic nonlinear
universal approximation capacity of the deep neural network*, and
furthermore eliminates the need for weight re-programming. Figure 4d
illustrates the fine-tuning procedure. We progressively program the
weights one layer at a time onto the chip. After programming a layer,
we performinference using the training-set data onthe chip up to that
layer, and use the measured outputs to fine-tune the remaining layers
that are still training in software. In the next time step, we program
and measure the next layer on the chip. We repeat this process until
all the layers are programmed. During the process, the non-idealities
of the programmed layers can be progressively compensated by the
remaining layers through training. Figure 5b shows the efficacy of this
progressive fine-tuning technique. From left to right, each data point
represents anew layer programmed onto the chip. The accuracy ateach
layer is evaluated by using the chip-measured outputs from that layer
asinputsto the remaining layersin software. The cumulative CIFAR-10
test-setinference accuracy isimproved by 1.99% using this technique.
Extended DataFig. 8afurtherillustrates the extent to which fine-tuning
recovers the training-set accuracy loss at each layer, demonstrating the
effectiveness of the approach in bridging the accuracy gap between
software and hardware measurements.

Using the techniques described above, we achieve inference accu-
racy comparable to software models trained with 4-bit weights across
allthe measured Albenchmark tasks. Figure 1le shows that we achieve
a0.98% error rate on MNIST handwritten digit recognition using a
7-layer CNN, a14.34% error rate on CIFAR-10 object classification using
ResNet-20,a15.34% error rate on Google speech command recognition
using a4-cell LSTM, and a 70% reduction of L2 image-reconstruction
error compared with the original noisy images on MNIST image recov-
eryusingan RBM. Some of these numbers are not yet to the accuracies
achieved by full-precision digitalimplementations. The accuracy gap
mainly comes from low-precision (<4-bit) quantization of inputs and
activations, especially on the most sensitive input and output lay-
ers*, For instance, Extended Data Fig. 8b presents an ablation study
that shows that quantizing input images to 4-bit alone resultsin a
2.7% accuracy drop for CIFAR-10 classification. By contrast, the input



layer only accounts for 1.08% of compute and 0.16% of weights of a
ResNet-20 model. Therefore, they canbe off-loaded to higher-precision
digital compute units with little overheads. In addition, applying
more advanced quantization techniques and optimizing training
procedures such as data augmentation and regularization should
further improve the accuracy for both quantized software models
and hardware-measured results.

Table1summarizes the key features of each demonstrated model.
Most of the essential neural-network layers and operations are imple-
mented on the chip, including all the convolutional, fully connected
and recurrent layers, neuron activation functions, batch normaliza-
tion and the stochastic sampling process. Other operations such as
average pooling and element-wise multiplications are implemented
on an FPGA integrated on the same board as NeuRRAM (Extended
DataFig. 11a). Each of the models is implemented by allocating the
weights to multiple cores on a single NeuRRAM chip. We developed
a software toolchain to allow easy deployment of Al models on the
chip¥. Theimplementation details are described in Methods. Funda-
mentally, each of the selected benchmarks represents a general class
of common edge Al tasks: visual recognition, speech processing and
image de-noising. Theseresults demonstrate the versatility of the TNSA
architecture and the wide applicability of the hardware-algorithm
co-optimization techniques.

The NeuRRAM chip simultaneously improves efficiency, flexibility
and accuracy over existing RRAM-CIM hardware by innovating across
the entire hierarchy of the design, froma TNSA architecture enabling
reconfigurable dataflow direction, to an energy- and area-efficient
voltage-mode neuron circuit, and to a series of algorithm-hardware
co-optimization techniques. These techniques can be more generally
applied to other non-volatile resistive memory technologies such
as phase-change memory®7?"*?* magnetoresistive RAM*® and fer-
roelectric field-effect transistors*, Going forwards, we expect Neu-
RRAM'’s peak energy efficiency (EDP) to improve by another two to
three orders of magnitude while supporting bigger Al models when
scaling from130-nm to 7-nm CMOS and RRAM technologies (detailed
in Methods). Multi-core architecture design with network-on-chip
that realizes efficient and versatile data transfers and inter-array
pipelining s likely to be the next major challenge for RRAM-CIM?*"38,
whichneedstobe addressed by further cross-layer co-optimization.
Asresistive memory continues to scale towards offering tera-bits of
on-chip memory*°, such a co-optimization approach will equip CIM
hardware on the edge with sufficient performance, efficiency and
versatility to perform complex Al tasks that can only be done on the
cloud today.
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Methods

Coreblock diagram and operating modes

Figure 2d and Extended Data Fig. 1 show the block diagram of a single
CIM core. To support versatile MVM directions, most of the design is
symmetricalin the row (BLs and WLs) and column (SLs) directions. The
rowand columnregister files store the inputs and outputs of MVMs, and
canbe written externally by either an Serial Peripheral Interface (SPI) or
arandom-access interface that uses an 8-bit address decoder to select
oneregister entry, or internally by the neurons. The SL peripheral circuits
containan LFSRblock used to generate pseudo-random sequences used
for probabilistic sampling. Itisimplemented by two LFSR chains propa-
gatinginopposite directions. The registers of the two chains are XORed to
generate spatially uncorrelated random numbers™. The controller block
receives commands and generates control waveforms to the BL/WL/SL
peripherallogic and to the neurons. It contains a delay-line-based pulse
generator with tunable pulse widthfrom1nsto10 ns.Italsoimplements
clock-gating and power-gating logic used to turn offthe coreinidle mode.
EachWL, BLandSL of the TNSAis driven by adriver consisting of multiple
passgates that supply different voltages. On the basis of the values stored
in the register files and the control signals issued by the controller, the
WL/BL/SL logic decides the state of each pass gate.

The core has three main operating modes: a weight-programming
mode, aneuron-testing mode and an MVM mode (Extended DataFig.1).
Inthe weight-programming mode, individual RRAM cells are selected
forread and write. Toselect asingle cell, theregisters at the correspond-
ingrow and columnare programmed to ‘I’ through randomaccess with
the help of the row and column decoder, whereas the other registers
arereset to‘0’. The WL/BL/SL logic turns on the corresponding driver
pass gates to apply a set/reset/read voltage on the selected cell. In the
neuron-testing mode, the WLs are kept at ground voltage (GND). Neu-
rons receive inputs directly from BL or SL drivers through their BL or
SLswitch, bypassing RRAM devices. This allows us to characterize the
neuronsindependently from the RRAM array. Inthe MVM mode, each
input BL and SL is driven to Ve = Vieads Vier + Vieaa OF Vs depending on
theregisters’ value at that row or column. Ifthe MVMisin the BL-to-SL
direction, we activate the WLs that are within the input vector length
while keeping the rest at GND; if the MVM is in the SL-to-BL direction,
we activate all the WLs. After neurons finish analogue-to-digital con-
version, the pass gates from BLs and SLs to the registers are turned on
to allow neuron-state readout.

Device fabrication
RRAM arrays in NeuRRAM are in a one-transistor-one-resistor (IT1R)
configuration, where each RRAM device is stacked on top of and con-
nects in series with a selector NMOS transistor that cuts off the sneak
path and provides current compliance during RRAM programming
andreading. The selector n-type metal-oxide-semiconductor (NMOS),
CMOS peripheral circuits and the bottom four back-end-of-lineintercon-
nect metal layers are fabricated in astandard 130-nm foundry process.
Owingtothe higher voltage required for RRAM forming and program-
ming, the selector NMOS and the peripheral circuits that directly inter-
face with RRAM arrays use thick-oxide input/output (I/0) transistors
rated for 5-V operation. All the other CMOS circuits in neurons, digital
logic, registers and so on use core transistors rated for 1.8-V operations.
TheRRAMdeviceis sandwiched between metal-4 and metal-5layers
showninFig. 2c. After the foundry completes the fabrication of CMOS
and the bottom four metal layers, we use alaboratory process to finish
the fabrication of the RRAM devices and the metal-5interconnect, and
the top metal pad and passivation layers. The RRAM device stack con-
sistsof atitanium nitride (TiN) bottom-electrode layer, a hafnium oxide
(HfO,) switchinglayer, atantalum oxide (TaO,) thermal-enhancement
layer*?and a TiN top-electrode layer. They are deposited sequentially,
followed by alithography step to pattern the lateral structure of the
device array.

RRAM write-verify programming and conductance relaxation
Each neural-network weight is encoded by the differential conductance
between two RRAM cells on adjacent rows along the same column. The
first RRAM cell encodes positive weight, and is programmed to a low
conductance state (g.;,) if the weight is negative; the second
cell encodes negative weight, and is programmed to g,.,;, if the weight
is positive. Mathematically, the conductances of the two cells are
max maXm,gmin) and max( —gmaxwlax,gmin) respectively, where
Zmax and g, are the maximum and minimum conductance of
the RRAMs, w,,,, is the maximum absolute value of weights, and Wis
the unquantized high-precision weight.

To program an RRAM cell to its target conductance, we use an
incremental-pulse write-verify technique*. Extended Data Fig. 3a,b
illustrates the procedure. We start by measuring the initial conduct-
ance of thecell. If the value is below the target conductance, we apply a
weak set pulse aiming toslightly increase the cell conductance. Thenwe
read the cell again. If the valueis still below the target, we apply another
set pulse with amplitude incremented by a small amount. We repeat
suchset-read cycles until the cell conductanceiswithinanacceptance
range to the target value or overshoots to the other side of the target.
In the latter case, we reverse the pulse polarity to reset, and repeat
the same procedure as with set. During the set/reset pulse train, the
cell conductanceis likely to bounce up and down multiple times until
eventually it enters the acceptance range or reaches a time-out limit.

There are afew trade-offsinselecting programming conditions. (1) A
smalleracceptancerange and a higher time-out limit improve program-
ming precision, but require a longer time. (2) A higher g,,...improves
the SNR during inference, but leads to higher energy consumption
and more programming failures for cells that cannot reach high con-
ductance. In our experiments, we set the initial set pulse voltage to
bel.2 Vandthereset pulse voltage tobe 1.5V, both with anincrement
of 0.1V and pulse width of 1 ps. ARRAM read takes 1-10 ps, depend-
ing onits conductance. The acceptance range is +1 puS to the target
conductance. The time-out limit is 30 set-reset polarity reversals.
We used g,.;, =1 uS for all the models, and g,,,,, = 40 pS for CNNs and
Zmax =30 puS for LSTMs and RBMs. With such settings, 99% of the RRAM
cellscanbe programmed to the acceptance range within the time-out
limit. Onaverage each cellrequires 8.52 set/reset pulses. Inthe current
implementation, the speed of such a write-verify process is limited
by external control of DAC and ADC. If integrating everything into a
single chip, suchwrite-verify will take on average 56 s per cell. Having
multiple copies of DAC and ADC to perform write-verify on multiple
cellsin parallel will furtherimprove RRAM programming throughput,
at the cost of more chip area.

Besides the longer programming time, another reason to not use
an overly small write-verify acceptance range is RRAM conductance
relaxation. RRAM conductance changes over time after programming.
Most of the change happens within ashort time window (less than1s)
immediately following the programming, after which the change
becomes much slower, as shown in Extended Data Fig. 3d. The abrupt
initial change is called ‘conductance relaxation’ in the literature®. Its
statistics follow a Gaussian distribution at all conductance states except
when the conductance is close to g,.,... Extended Data Fig. 3c,d shows
the conductance relaxation measured across the whole g,,,;,t0-Znax
conductance range. We found that the loss of programming precision
owing to conductance relaxation is much higher than that caused by
the write-verify acceptance range. The average standard deviation
across all levels of initial conductance is about 2.8 puS. The maximum
standard deviationis about 4 pS, whichis close to 10% of g,.,,,.

To mitigate the relaxation, we use an iterative programming tech-
nique. Weiterate over the RRAM array for multiple times. Ineachitera-
tion, we measure all the cellsand re-program those whose conductance
has drifted outside the acceptance range. Extended Data Fig. 3e shows
that the standard deviation becomes smaller with more programming
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iterations. After 3 iterations, the standard deviation becomes about
2 uS,a29% decrease compared with the initial value. We use 3iterations
in all our neural-network demonstrations and perform inference at
least 30 min after the programming such that the measured inference
accuracy would account for such conductance relaxation effects.
By combining the iterative programming with our hardware-aware
model training approach, the impact of relaxation can be largely
mitigated.

Implementation of MVM with multi-bit inputs and outputs

The neuron and the peripheral circuits support MVM at configurable
inputand output bit-precisions. An MVM operation consists of anini-
tialization phase, an input phase and an output phase. Extended Data
Fig. 4 illustrates the neuron circuit operation. During the initialization
phase (Extended Data Fig. 4a), all BLs and SLs are precharged to V..
The sampling capacitors C,,. Of the neurons are also precharged to
V. Whereas the integration capacitors G, are discharged.

During the input phase, each input wire (either BL or SL depending
on MVM direction) is driven to one of three voltage levels, V¢~ Vicaqas
Vieeand Vi + V.4, through three pass gates, as shown in Fig. 3b. Dur-
ing forwards MVM, under differential-row weight mapping, each
inputis applied toa pair of adjacent BLs. The two BLs are driven to the
opposite voltage with respect to V... Thatis, when the inputis O, both
wires are driven to V,; when the input is +1, the two wires are driven
€0 Viep + Vieag and Viee = Vieags and when the input is =1, t0 Ve = Vieag and
Viet+ Vieaq- During backwards MVM, each inputis applied to asingle SL.
The difference operation is performed digitally after neurons finish
analogue-to-digital conversions.

After biasing the input wires, we then pulse those WLs that have
inputs for 10 ns, while keeping output wires floating. As voltages of the

output wires settletoV; = ZI,’G,IU ,where G, represents conductance of
RRAM at the i-th row and the j-th column, we turn off the WLs to stop
all current flow. We then sample the charge remaining on the output
wire parasitic capacitance to Cg,,. located within neurons, followed
by integrating the charge onto G, asshownin Extended DataFig. 4b.
The sampling pulse is 10 ns (limited by the 100-MHz external clock
fromthe FPGA); theintegration pulse is 240 ns, limited by large integra-
tion capacitor (104 fF), which was chosen conservatively to ensure
function correctness and testing different neuron operating condi-
tions.

The multi-bit input digital-to-analogue conversion is performed
in a bit-serial fashion. For the nth LSB, we apply a single pulse to the
input wires, followed by sampling and integrating charge from output
wires onto G, for 2" cycles. At the end of multi-bit input phase,
the complete analogue MVM output is stored as charge on C.. For
example, asshowninFig.3e, when the input vectors are 4-bit signed
integers with 1 sign-bit and 3 magnitude-bits, we first send pulses
corresponding to the first (least significant) magnitude-bit to input
wires, followed by sampling and integrating for one cycle. For the
second and the third magnitude-bits, we again apply one pulse to
input wires for each bit, followed by sampling and integrating for
two cycles and four cycles, respectively. In general, for n-bit signed
integer inputs, we need a total of n — linput pulses and 2" - 1sampling
and integration cycles.

Such a multi-bit input scheme becomes inefficient for high-input
bit-precision owing to the exponentially increasing sampling and
integration cycles. Moreover, headroom clipping becomes an issue
aschargeintegrated at G, Saturates withmore integration cycles. The
headroom clipping can be overcome by using lower V4, but at the cost
of alower SNR, so the overall MVM accuracy might not improve when
using higher-precision inputs. For instance, Extended Data Fig. 5a,c
shows the measured root-mean-square error (r.m.s.e.) of the MVM
results. Quantizing inputs to 6-bit (r.m.s.e. = 0.581) does not improve
the MVM accuracy compared with 4-bit (r.m.s.e. = 0.582), owing to
the lower SNR.

To solve both the issues, we use a 2-phase input scheme for input
greater than 4-bits. Figure 3fillustrates the process. To perform MVM
with 6-bit inputs and 8-bit outputs, we divide inputs into two segments,
thefirst containing the three MSBs and the second containing the three
LSBs. We then perform MVM including the output analogue-to-digital
conversion for each segment separately. For the MSBs, neurons (ADCs)
are configured to output 8-bits; for the LSBs, neurons output 5-bits. The
final results are obtained by shifting and adding the two outputs in digi-
tal domain. Extended DataFig. 5d shows that the scheme lowers MVM
r.m.s.e.from 0.581t0 0.519. Extended Data Fig.12c-e further shows that
such a two-phase scheme both extends the input bit-precision range
and improves the energy efficiency.

Finally, during the output phase, the analogue-to-digital conver-
sionis again performed in a bit-serial fashion through abinary search
process. First, to generate the sign-bit of outputs, we disconnect the
feedback loop of the amplifier to turn the integrator into a compara-
tor (Extended Data Fig. 4c). We drive the right side of G, t0 V. If the
integrated chargeis positive, the comparator output willbe GND, and
supply voltage VDD otherwise. The comparator outputistheninverted,
latched and readout to the BL or SL via the neuron BL or SL switch before
being written into the peripheral BL or SL registers.

To generate k magnitude-bits, we add or subtract charge from G,
(Extended Data Fig. 4d), followed by comparison and readout for k
cycles. From MSB to LSB, the amount of charge added or subtracted
is halved every cycle. Whether to add or to subtract is automatically
determined by the comparisonresultstoredinthelatchfromthe pre-
vious cycle. Figure 3gillustrates such a process. A sign-bit of ‘1" is first
generated and latched in the first cycle, representing a positive out-
put. To generate the most significant magnitude-bit, the latch turns
on the path from V.- = Vit = Vigeer t0 Coympie- The charge sampled by
Caample IS then integrated on G, by turning on the negative feedback
loop of the amplifier, resulting in Cy,ppieVaeer amount of charge being
subtracted from G, In this example, Cy,npie Vaecr is greater than the
originalamount of charge on C,,, so the total charge becomes nega-
tive, and the comparator generates a‘0’ output. To generate the second
magnitude-bit, V... isreduced by half. This time, the latch turns on the
pathfrom Vye .. = Vies + 1/2Vjeer t0 Cigmpie- As the total charge on G, after
integration is still negative, the comparator outputs a ‘0’ again in this
cycle. We repeat this process until the least significant magnitude-bit
is generated. It is noted that if the initial sign-bit is ‘0", all subsequent
magnitude-bits are inverted before readout.

Suchanoutput conversionschemeis similar to analgorithmic ADC
oraSARADCinthesensethatabinarysearchis performedforncycles
foran-bitoutput. The difference is that an algorithmic ADCuses aresi-
due amplifier, and a SAR ADC requires a multi-bit DAC for each ADC,
whereas our scheme does not need aresidue amplifier, and uses asingle
DAC thatoutputs2 x (n - 1) different V. and V., levels, shared by all
neurons (ADCs). As aresult, our scheme enables amore compact design
by time-multiplexing an amplifier for integration and comparison,
eliminating the residual amplifier, and amortizing the DAC area across
all neurons in a CIM core. For CIM designs that use a dense memory
array, suchacompact design allows each ADC to be time-multiplexed
by afewer number of rows and columns, thus improving throughput.

To summarize, both the configurable MVM input and output
bit-precisions and various neuron activation functions are imple-
mented using different combinations of the four basic operations:
sampling, integration, comparisonand charge decrement. Importantly,
all the four operations are realized by a single amplifier configured in
different feedback modes. As a result, the design realizes versatility
and compactness at the same time.

Multi-core parallel MVM

NeuRRAM supports performing MVMs in parallel on multiple CIM
cores. Multi-core MVM brings additional challenges to computational
accuracy, because certain hardware non-idealities that do not manifest



insingle-core MVM become more severe with more cores. They include
voltage drop oninput wires, core-to-core variation and supply voltage
instability. voltage drop on input wires (non-ideality (1) in Fig. 4a) is
caused by large current drawn from a shared voltage source simul-
taneously by multiple cores. It makes equivalent weights stored in
each core vary with applied inputs, and therefore have a nonlinear
input-dependent effect on MVM outputs. Moreover, as different cores
have a different distance from the shared voltage source, they expe-
rience a different amounts of voltage drops. Therefore, we cannot
optimize read-voltage amplitude separately for each core to make
its MVM output occupy exactly the full neuron input dynamic range.

These non-idealities together degrade the multi-core MVM accuracy.
Extended Data Fig. 5e,f shows that when performing convolution in
parallelonthe 3 cores, outputs of convolutional layer 15 are measured
to have a higher r.m.s.e. of 0.383 compared with 0.318 obtained by
performing convolution sequentially onthe 3 cores. Inour ResNet-20
experiment, we performed 2-core parallel MVMs for convolutions
within block 1 (Extended Data Fig. 9a), and 3-core parallel MVMs for
convolutions within blocks 2 and 3.

The voltage-drop issue can be partially alleviated by making the
wires that carry large instantaneous current as low resistance as pos-
sible, and by employing a power delivery network with more optimized
topology. But the issue will persist and become worse as more cores
are used. Therefore, our experiments aim to study the efficacy of
algorithm-hardware co-optimization techniques in mitigating the
issue. Also, it is noted that for a full-chip implementation, additional
modulessuch asintermediate result buffers, partial-sum accumulators
and network-on-chip will need to be integrated to manage inter-core
datatransfers. Program scheduling should also be carefully optimized
to minimize buffer size and energy spent at intermediate data move-
ment. Although there are studies on such full-chip architecture and
scheduling®?®%, they are outside the scope of this study.

Noise-resilient neural-network training

During noise-resilient neural-network training, we inject noise into
weights of all fully connected and convolutional layers during the
forwards pass of neural-network training to emulate the effects of
RRAM conductance relaxation and read noises. The distribution of
theinjected noise is obtained by RRAM characterization. We used the
iterative write-verify technique to program RRAM cells into different
initial conductance states and measure their conductance relaxation
after 30 min. Extended Data Fig. 3d shows that measured conductance
relaxation hasanabsolute value of mean <1 pS (g,,,») at allconductance
states. The higheststandard deviation is 3.87 puS, about 10% of the g,
40 pS, found at about 12 pS initial conductance state. Therefore, to
simulate such conductance relaxation behaviour during inference,
we inject a Gaussian noise with a zero mean and a standard deviation
equal to 10% of the maximum weights of a layer.

We train models with different levels of noise injection from 0% to
40%, and select the model that achieves the highest inference accu-
racy at10% noise level for on-chip deployment. We find that injecting
a higher noise during training than testing improves models’ noise
resiliency. Extended Data Fig. 7a-c shows that the best test-time
accuracy in the presence of 10% weight noise is obtained with 20%
training-time noise injection for CIFAR-10 image classification, 15%
for Google voice command classification and 35% for RBM-based
image reconstruction.

For CIFAR-10, the better initial accuracy obtained by the model
trained with 5% noise is most likely due to the regularization effect
of noise injection. A similar phenomenon has been reported in
neural-network quantization literature where a model trained with
quantization occasionally outperforms a full-precision model’**. In
our experiments, we did not apply additional regularization on top of
noise injection for models trained without noise, which might result
insub-optimal accuracy.

For RBM, Extended Data Fig. 7d further shows how reconstruction
errors reduce with the number of Gibbs sampling steps for models
trained with different noises. In general, models trained with higher
noises converge faster during inference. The model trained with 20%
noise reaches the lowest error at the end of 100 Gibbs sampling steps.

Extended Data Fig. 7e shows the effect of noise injection on weight
distribution. Without noise injection, the weights have a Gaussian dis-
tribution. The neural-network outputs heavily depend ona smallfrac-
tion of large weights, and thus become vulnerable to noise injection.
With noise injection, the weights distribute more uniformly, making
the model more noise resilient.

To efficientlyimplement the models on NeuRRAM, inputs to all con-
volutional and fully connected layers are quantized to 4-bit or below.
The input bit-precisions of all the models are summarized in Table 1.
We perform the quantized training using the parameterized clipping
activation technique*. The accuracies of some of our quantized models
are lower than that of the state-of-the-art quantized model because
we apply <4-bit quantization to the most sensitive input and output
layers of the neural networks, which have been reported to cause large
accuracy degradation and are thus often excluded from low-precision
quantization*®>*, To obtain better accuracy for quantized models, one
can use higher precision for sensitive input and output layers, apply
more advanced quantization techniques, and use more optimized data
preprocessing, dataaugmentation and regularization techniques dur-
ing training. However, the focus of this work is to achieve comparable
inference accuracy on hardware and on software while keepingall these
variables the same, rather than to obtain state-of-the-art inference
accuracy onallthetasks. The aforementioned quantizationand training
techniques will be equally beneficial for both our software baselines
and hardware measurements.

Chip-in-the-loop progressive fine-tuning

During the progressive chip-in-the-loop fine-tuning, we use the
chip-measured intermediate outputs from a layer to fine-tune the
weights of the remaining layers. Importantly, to fairly evaluate the effi-
cacy of the technique, we do not use the test-set data (for either training
or selecting checkpoint) during the entire process of fine-tuning. To
avoid over-fitting to asmall fraction of data, measurements should be
performed on the entire training-set data. We reduce the learning rate
t01/100 of theinitial learning rate used for training the baseline model,
and fine-tune for 30 epochs, although we observed that the accuracy
generally plateaus within the first 10 epochs. The same weight noise
injection and input quantization are applied during the fine-tuning.

Implementations of CNNs, LSTMs and RBMs
We use CNN models for the CIFAR-10 and MNIST image classification
tasks. The CIFAR-10 dataset consists of 50,000 training images and
10,000 testingimages belonging to10 object classes. We performimage
classification using the ResNet-20*, which contains 21 convolutional
layers and 1 fully connected layer (Extended Data Fig. 9a), with batch
normalizations and ReLU activations between the layers. The model
istrained using the Keras framework. We quantize the input of all con-
volutional and fully connected layers to a 3-bit unsigned fixed-point
format except for the first convolutional layer, where we quantize the
input image to 4-bit because the inference accuracy is more sensitive
totheinput quantization. For the MNIST handwritten digits classifica-
tion, we use a seven-layer CNN consisting of six convolutional layers
and one fully connected layer, and use max-pooling between layers to
down-sample feature map sizes. Theinputs to all the layers, including
theinputimage, are quantized to a 3-bit unsigned fixed-point format.
All the parameters of the CNNs are implemented on a single NeuR-
RAM chip including those of the convolutional layers, the fully con-
nected layers and the batch normalization. Other operations such as
partial-sum accumulation and average pooling areimplemented onan
FPGA integrated on the same board asthe NeuRRAM. These operations
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amount toonlyasmallfraction of the total computation and integrating
theirimplementationin digital CMOS would incur negligible overhead;
the FPGA implementation was chosen to provide greater flexibility
during test and development.

Extended DataFig.9a-cillustrates the process to map aconvolutional
layer on a chip. Toimplement the weights of a four-dimensional convo-
lutionallayer with dimension H (height), W (width), / (number of input
channels), O (number of output channels) on two-dimensional RRAM
arrays, we flatten the first three dimensions into a one-dimensional
vector, and append the bias term of each output channel to each vec-
tor. If the range of the bias values is B times of the weight range, we
evenly divide the bias values and implement them using B rows. Fur-
thermore, we merge the batch normalization parameters into convo-
lutional weights and biases after training (Extended Data Fig. 9b), and
program the merged W’and b’onto RRAM arrays such that no explicit
batch normalization needs to be performed during inference.

Under the differential-row weight-mapping scheme, the parameters
of a convolutional layer are converted into a conductance matrix of
size (2(HWI + B), 0). If the conductance matrix fits into a single core,
aninputvector is applied to 2(HW/ + B) rows and broadcast to O col-
umnsinasingle cycle. HWIO multiply-accumulate (MAC) operations
areperformedinparallel. Most ResNet-20 convolutional layers have a
conductance matrix height of 2(HW/ + B) that is greater than the RRAM
array length of 256. We therefore split them vertically into multiple
segments, and map the segments either onto different cores that are
accessed in parallel, or onto different columns within a core that are
accessed sequentially. The details of the weight-mapping strategies
aredescribed in the next section.

The Google speech command dataset consists of 65,000 1-s-long audio
recordings of voice commands, such as ‘yes’, ‘up’, ‘on’, ‘stop’ and so on,
spokenby thousands of different people. The commands are categorized
into12 classes. Extended DataFig. 9dillustrates the model architecture.
We use the Mel-frequency cepstral coefficient encoding approach to
encode every 40-ms piece of audio into alength-40 vector. With a hop
lengthof20 ms, we have atime series of 50 steps for each 1-s recording.

We build amodel that contains four parallel LSTM cells. Each cell has
ahiddenstate oflength112. The final classification is based on summa-
tion of outputs from the four cells. Compared with a single-cell model,
the 4-cell model reduces the classification error (of an unquantized
model) from 10.13% to 9.28% by leveraging additional cores on the
NeuRRAM chip. Withinacell, in each time step, we compute the values
of four LSTM gates (input, activation, forget and output) based on the
inputs fromthe current step and hidden states from the previous step.
We then perform element-wise operations between the four gates to
compute the new hidden-state value. The final logit outputs are calcu-
lated based on the hidden states of the final time step.

Each LSTM cell has 3 weight matrices that are implemented on the
chip: aninput-to-hidden-state matrix with size 40 x 448, a hidden-
state-to-hidden-state matrix with size 112 x 448 and a hidden-state-
to-logits matrix with size 112 x 12. The element-wise operations are
implemented on the FPGA. The model is trained using the PyTorch
framework. The inputs to all the MVMs are quantized to 4-bit signed
fixed-point formats. All the remaining operations are quantized to 8-bit.

AnRBMisatype of generative probabilistic graphical model. Instead
of beingtrained to perform discriminative tasks such as classification,
itlearnsthestatistical structure of the dataitself. Extended DataFig. 9e
showsthe architecture of ourimage-recovery RBM. The model consists
of 794 fully connected visible neurons, corresponding to 784 image
pixels plus 10 one-hot encoded class labels and 120 hidden neurons.
We trainthe RBM using the contrastive divergence learning procedure
insoftware.

During inference, we send 3-bit images with partially corrupted or
blocked pixels to the model running on a NeuRRAM chip. The model
then performs back-and-forth MVMs and Gibbs sampling between
visible and hidden neurons for ten cycles. In each cycle, neurons

sample binary states h# and v from the MVM outputs based on the
probability distributions: p(h; =1|v) = o(b; + zi viwy) and p(h;=1|v)=
a(b; + Zi vwy), where gis the sigmoid function, a;is a bias for hidden
neurons (h) and b; is a bias for visible neurons (v). After sampling, we
reset the uncorrupted pixels (visible neurons) to the original pixel
values. Thefinalinference performance is evaluated by computing the
average L2-reconstruction error between the original image and the
recovered image. Extended Data Fig. 10 shows some examples of the
measured image recovery.

When mapping the 794 x 120 weight matrix to multiple cores of the
chip, we try to make the MVM output dynamic range of each corerela-
tively consistent such that the recovery performance will not overly
rely onthe computational accuracy of any single core. To achieve this,
we assign adjacent pixels (visible neurons) to different cores such that
every core sees adown-sampled version of the whole image, as shown
in Extended Data Fig. 9f). Utilizing the bidirectional MVM functionality
ofthe TNSA, the visible-to-hidden neuron MVM s performed from the
SL-to-BL direction in each core; the hidden-to-visible neuron MVM is
performed from the BL-to-SL direction.

Weight-mapping strategy onto multiple CIM cores

Toimplement an Almodel onaNeuRRAM chip, we convert the weights,
biases and other relevant parameters (for example, batch normaliza-
tion) of each model layer into a single two-dimensional conductance
matrix as described in the previous section. If the height or the width
ofamatrix exceed the RRAM array size of asingle CIM core (256 x 256),
we split the matrix into multiple smaller conductance matrices, each
with maximum height and width of 256.

We consider three factors when mapping these conductance
matrices onto the 48 cores: resource utilization, computational load
balancing and voltage drop. The top priority is to ensure that all con-
ductance matrices of amodel are mapped onto asingle chip such that
nore-programming is needed duringinference. If the total number of
conductance matrices does not exceed 48, we can map each matrix
onto a single core (case (1) in Fig. 2a) or multiple cores. There are two
scenarios when we map asingle matrix onto multiple cores. (1) Whena
model has different computational intensities, defined as the amount
of computation per weights, for different layers, for example, CNNs
often have higher computational intensity for earlier layers owing to
larger feature map dimensions, we duplicate the more computation-
ally intensive matrices to multiple cores and operate them in parallel
to increase throughput and balance the computational loads across
the layers (case (2) in Fig. 2a). (2) Some models have ‘wide’ conduct-
ance matrices (output dimension >128), such as our image-recovery
RBM. If mapping the entire matrix onto asingle core, eachinput driver
needs to supply large current for its connecting RRAMs, resultingina
significant voltage drop onthedriver, deteriorating inference accuracy.
Therefore, when there are spare cores, we can split the matrix vertically
into multiple segments and map them onto different cores to mitigate
the voltage drop (case (6) in Fig. 2a).

By contrast, ifamodel has more than 48 conductance matrices, we
need to merge some matrices so that they can fit onto a single chip.
The smaller matrices are merged diagonally such that they can be
accessed in parallel (case (3) in Fig. 2a). The bigger matrices are merged
horizontally and accessed by time-multiplexing input rows (case (4) in
Fig. 2a). When selecting the matrices to merge, we want to avoid the
matrices thatbelongto the same two categories described in the previ-
ous paragraph: (1) those that have high computational intensity (for
example, early layers of ResNet-20) to minimize impact on throughput;
and (2) those with ‘wide’ output dimension (for example, late layers
of ResNet-20 have large number of output channels) to avoid a large
voltage drop. For instance, in our ResNet-20 implementation, among
atotal of 61 conductance matrices (Extended Data Fig. 9a:1frominput
layer,12 fromblock 1,17 from block 2, 28 from block 3, 2 from shortcut
layers and 1 from final dense layer), we map each of the conductance



matricesinblocksland 3 ontoasingle core,and merge the remaining
matrices to occupy the 8 remaining cores.

Table 1 summarizes core usage for all the models. It is noted that
for partially occupied cores, unused RRAM cells are either unformed
or programmed to high resistance state; WLs of unused rows are not
activated duringinference. Therefore, they do not consume additional
energy during inference.

Test-system implementation

Extended Data Fig. 11a shows the hardware test system for the NeuR-
RAM chip. The NeuRRAM chip is configured by, receives inputs from
and sends outputs to a Xilinx Spartan-6 FPGA that sits on an Opal Kelly
integrated FPGA board. The FPGA communicates with the PCviaa
USB 3.0 module. The test board also houses voltage DACs that provide
various bias voltages required by RRAM programming and MVM, and
ADCs tomeasure RRAM conductance during the write-verify program-
ming. The power of the entire board is supplied by astandard ‘cannon
style’ d.c. power connector and integrated switching regulators on
the Opal Kelly board such that no external lab equipment is needed
for the chip operation.

Toenable fastimplementation of various machine-learning applica-
tions on the NeuRRAM chip, we developed a software toolchain that
provides Python-based application programming interfaces (APIs)
at various levels. The low-level APIs provide access to basic opera-
tions of each chip module such as RRAM read and write and neuron
analogue-to-digital conversion; the middle-level APIs include essen-
tial operations required forimplementing neural-network layers such
as the multi-core parallel MVMs with configurable bit-precision and
RRAM write-verify programming; the high-level APIs integrate vari-
ous middle-level modules to provide complete implementations of
neural-network layers, such as weight mapping and batch inference of
convolutional and fully connected layers. The software toolchain aims to
allow software developers who are not familiar with the NeuRRAM chip
designto deploy their machine-learning models on the NeuRRAM chip.

Power and throughput measurements

To characterize MVM energy efficiency at various input and output
bit-precisions, we measure the power consumption and latency of the
MVM input and output stages separately. The total energy consump-
tionand the total time are the sum of input and output stages because
the two stages are performed independently as described in the above
sections. As aresult, we can easily obtain the energy efficiency of any
combinations of input and output bit-precisions.

Tomeasure theinput-stage energy efficiency, we generate a256 x 256
random weight matrix with Gaussian distribution, splititinto 2 seg-
ments, each with dimension128 x 256, and program the two segments
to two cores using the differential-row weight mapping. We measure
the power consumption and latency for performing 10 million MVMs,
or equivalently 655 billion MAC operations. The comparison with pre-
vious work shown in Fig. 1d uses the same workload as benchmark.

Extended Data Fig. 12a shows the energy per operation consumed
during the input and the output stages of MVMs under various
bit-precisions. The inputs are in the signed integer format, where the
first bit represents the sign, and the other bits represent the magnitude.
One-bit (binary) and two-bit (ternary) show similar energy because each
input wireis drivento one of three voltage levels. Binary input is there-
forejust aspecial case for ternary input. Itis noted that the curve shown
inExtended Data Fig.12ais obtained without the two-phase operation.
Asaresult, we see asuper-linearincrease of energy as input bit-precision
increases. Similar to the inputs, the outputs are alsorepresentedin the
signed integer format. The output-stage energy consumption grows
linearly with output bit-precision because one additional binary search
cycleisneeded for every additional bit. The output stage consumesless
energy than theinputstage because it does notinvolve toggling highly
capacitive WLs that are driven at a higher voltage, as we discuss below.

For the MVM measurements shown in Extended Data Fig. 12b-e,
the MVM output stage is assumed to use 2-bit-higher precision
than inputs to account for the additional bit-precision required for
partial-sum accumulations. The required partial-sum bit-precision
for the voltage-mode sensing implemented by NeuRRAM is much
lower than that required by the conventional current-mode sens-
ing. As explained before, conventional current-sensing designs can
only activate a fraction of rows each cycle, and therefore need many
partial-sum accumulation steps tocomplete an MVM. In contrast, the
proposed voltage-sensing scheme can activate all the 256 input wires
inasingle cycle, and therefore requires less partial-sumaccumulation
steps and lower partial-sum precisions.

Extended Data Fig.12b shows the energy consumption breakdown.
Alarge fraction of energy is spent in switching on and off the WLs that
connecttogates of select transistors of RRAM devices. These transistors
use thick-oxidel/O transistors to withstand high-voltage during RRAM
forming and programming. They are sized large enough (width 1 um
and length 500 nm) to provide sufficient current for RRAM program-
ming. As aresult, they require high operating voltages and add large
capacitance to the WLs, both contributing to high power consumption
(P=fCV2, where fis the frequency at which the capacitance is charged
and discharged). Simulation shows that each of the 256 access transis-
tors contributes about 1.5 fF toa WL; WL drivers combined contribute
about 48 fF to each WL; additional WL capacitance is mostly from the
inter-wire capacitance from neighbouring BLs and WLs. The WL energy
is expected to decrease significantly if RRAMs can be written by alower
voltage and have alower conductance state, and if asmaller transistor
with better drivability can be used.

For applications that require probabilistic sampling, the two
counter-propagating LFSR chains generate random Bernoulli noises
andinject the noises as voltage pulses into neurons. We measure each
noise-injection step to consume on average 121 f] per neuron, or 0.95f]
perweight, whichis small compared with other sources of energy con-
sumption shown in Extended Data Fig. 12b.

Extended DataFig.12c-e shows the measured latency, peak through-
put and throughput-power efficiency for performing the 256 x 256
MVMs. It is noted that we used EDP as a figure of merit for comparing
designs rather than throughput-power efficiency as tera-operations
per second per watt (TOPS W7, reciprocal of energy per operation),
because it captures the time-to-solution aspect in addition to energy
consumption. Similar to previous work in this field, the reported
throughput and energy efficiency represent their peak values when
the CIMarray utilizationis100%, and does notinclude time and energy
spent at buffering and moving intermediate data. Future work that
integrates intermediate data buffers, partial-sum accumulators and
soonwithinasingle complete CIM chip should show energy efficiency
measured on end-to-end Al applications.

Projection of NeuRRAM energy efficiency with technology
scaling
The current NeuRRAM chipis fabricated using a130-nm CMOS technol-
ogy. We expect the energy efficiency to improve with the technology
scaling. Importantly, isolated scaling of CMOS transistors and intercon-
nects is not sufficient for the overall energy-efficiency improvement.
RRAM device characteristics must be optimized jointly with CMOS. The
current RRAM array density under a1TIR configurationis limited not
by the fabrication process but by the RRAM write current and voltage.
The current NeuRRAM chip uses large thick-oxide I/O transistors as
the ‘T’ to withstand >4-V RRAM forming voltage and provide enough
write current. Only if we lower both the forming voltage and the write
current can we obtain higher density and therefore lower parasitic
capacitance for improved energy efficiency.

Assuming that RRAM devices at a newer technology node can be
programmed at alogic-compatible voltage level, and the required write
current canbe reduced such that the size of the connecting transistor
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keeps shrinking, the EDPimprovements will come from (1) lower oper-
ating voltage and (2) smaller wire and transistor capacitance, that s,
Energy < CV2?and Delay «< CV/I. At 7 nm, for instance, we expect the
WL switching energy (Extended Data Fig.12b) toreduce by about 22.4
times, including 2.6 times from WL voltage scaling (1.3 V > 0.8 V), and
8.5 times from capacitance scaling (capacitance from select transistors,
WL drivers and wires are all assumed to scale with minimum metal pitch
340 nm > 40 nm). Peripheral circuit energy (dominated by the neuron
readout process) is projected to reduce by 42 times, including S times
from VDD scaling (1.8 V> 0.8 V) and 8.5 times from smaller parasitic
capacitance. The energy consumed by the MVM pulses and charge
transfer processisindependent of the range of RRAM conductance, as
power consumption and settling time of the RRAM array scale with the
same conductance factor that cancels in their product. Specifically the
energy per RRAMMAC is Eyc = Cy,, Var(V,,), limited only by the parasitic
capacitance per unitRRAMcell C,,,,and the variancein the driveninput
voltage var(V,,). Therefore,the MVM energy consumptionwill reduce
by approximately 34 times, including 4 times from read-voltage scal-
ing (0.5V~> 0.25V), and 8.5 times from smaller parasitic capacitance.
Overall, we expect an energy consumptionreduction of about 34 times
when scaling the design from 130 nmto 7 nm.

In terms of the latency, the current design is limited by the long
integration time of neuron, caused primarily by the relatively large
integration capacitor size (104 fF), which was chosen conservatively
to ensure function correctness and testing different neuron operat-
ing conditions. At more advanced technology nodes, one could use a
much smaller capacitor size to achieve a higher speed. The main con-
cern for scaling-down capacitor size is that the fabrication-induced
capacitor size mismatch will take up a higher fraction of total capaci-
tance, resulting in alower SNR. However, previous ADC designs have
used a unit capacitor size as small as 50 aF (ref.>%; 340 times smaller
than our C, ). FOr a more conservative design, a study has shown
thatin a 32-nm process, a 0.45-fF unit capacitor has only 1.2% average
standard deviation®. Besides, the integration time also depends on the
drive current of the transistors. Assuming that the transistor current
density (uA pm™) stays relatively unchanged after VDD scaling, and
that the transistor width in the neuron scales with the contact gate
pitch (310 nm > 57 nm), the total transistor drive current will reduce
by 5.4 times. As a result, when scaling C, i from 17 fF to 0.2 fF and
Cinteg Proportionally from 104 fF to 1.22 fF, the latency will improve
by15.7 times. Therefore, conservatively, we expect the overall EDP to
improve by at least 535 times when scaling the design from130-nmto
7-nm technology. Extended Data Table 2 shows that such scaling will
enable NeuRRAM to deliver higher energy and area efficiency than

today’s state-of-the-art edge inference accelerators® ™,

Data availability

The datasets used for benchmarks are publicly available'® . Other
data that support the findings of this study are available in a public
repository”.

Code availability

The software toolchain used to test and deploy Al tasks on the NeuR-
RAM chip, and the codes used to perform noise-resilient model training
and chip-in-the-loop progressive model fine-tuning are available in a
public repository®.
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Extended DataFig.10|Chip-measured imagerecovery using RBM. Top: Recovery of MNIST test-set images with randomly selected 20% of pixels flipped to

complementary intensity. Bottom: Recovery of MNIST test-setimages with bottom1/3 of pixels occluded.
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the chip operations. ¢, Micrograph of a48-core NeuRRAM chip.d, Zoomed-in
micrograph of asingle CIM core. e, Zoomed-in micrograph of 2x2 corelets
within the TNSA. One neuron circuit occupies 1270 um?, which is >100x smaller
than most ADC designsin130-nm summarized inan ADC survey®. f, Chip area

Extended DataFig.11|NeuRRAM test system and chip micrographsat
variousscales.a, ANeuRRAM chip wire-bonded to a package. b, Measurement
boardthat connects a packaged NeuRRAM chip (left) to afield-programmable
gatearray (FPGA, right). The board houses all the components necessary to
power, operate and measure the chip. No external lab equipment is needed for breakdown.
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Extended DataFig.12|Energy consumption, latency, and throughput
measurementresults.a, Measured energy consumption peroperationduring
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multiply-accumulate (MAC) counts as two operations. b, Energy consumption
breakdownat various MVMinput and outputbit-precisions. Outputs are 2-bit
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higher thaninputs duringaMVMto account for additional precisionrequirements
from partial-sum accumulation. ¢, Latency for performing one MVM with 256x256
weight matrix.d, Peak computational throughput (ingiga-operations per second).
e, Throughput-power efficiency (in tera-operations per watt).



Extended Data Table 1| Comparison of fully integrated RRAM-based CIM hardware

This work Nat. El. 21’ [9] Nat. El. 21’ [16] ISSCC 19’ Nat. EIl. 19’ VLSI 18’
[10] [7] (3]
Technology 130 nm 22 nm 22 nm 55 nm 65 nm 180 nm
# Devices 3M 4aM 2M M 1M 2M
RRAM cell size 1.69 um? 0.0256 um? N/A 0.2025 um? | 0.25um? | N/A
Total Area 159 mm? 6 mm? 6 mm? 7.5 mm? N/A 12.6 mm?
Sub-array size 256256 1024x512 512x512 256x512 512x256 N/A
# bits / device Analog 1 1 1 1 Analog
Supported MVM directions Forward, backward, recurrent | Forward Forward Forward Forward Forward
Sensing Mode Voltage Current Current Current Current Current
Activated rows per cycle 256 4 1 9 9 N/A
Activated columns per cycle 256 64 64 64 64 N/A
Input bits 1 2 4 8 1 2 4 8 1 2 4 1 2 1 1
Weight bits 4 4 4 4 2 4 4 8 2 4 4 3 3 2 analog
Output bits 3 5 6 10 4 8 10 14 6 10 11 4 4 3 1
Peak Throughput (GOPS) 2135 | 1804 | 754 274 394 | 186 |97 34 29 20 14 12 10 10 330
TOPS/W 43 40 16 7 194 |74 61 16 146 |58 37 53 22 17 21
GOPS/mm? 134 |113 (4.7 1.7 65.7 [ 31.0 | 16.2 | 5.7 48 |33 2.3 7.1 |29 N/A 26
GOPS/Mb 712 601 251 91 99 47 24 9 14 10 7 12 10 17 165
Latency of a 256x256 MVM (us) | 1.4 1.6 3.9 10.7 |9.9 |10.5 [20.2 [58.0 |67.6 |50.0 |69.8 |[39.8|49.5 100.4 5.9
Energy-delay-product (J-s:10°%%) | 4.2 5.3 32.0 |2159 (6.7 |185 (435 |(487.2 |60.6 |113.9 |249.9 [98.2 |296.4 |776.1 37.5
Notes:

1. The table does not include studies that do not report detailed performance metrics.
2. All the reported metrics are measured for performing 256x256 matrix-vector multiplications.
3. All reported numbers represent peak throughput/efficiency when array utilization is 100%.
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Extended Data Table 2 | Comparison with digital CMOS Al inference accelerators

This work Eyeriss (Chen, (Zimmer, UNPU (Lee, JSSC 19’) Tianjic (Pei,
JSSC 17°) [59]  JSSC 20’) [60] [61] Nature 19’) [62]
Technology 130 nm 65 nm 16 nm 65 nm 28 nm
Area (mm?) 159 16 6 16 14.44
Supply Voltage (V) 1.8 0.8-1.2 0.41-1.2 0.63-1.1 N/A
Bit Precision 2 4 8 16 8 1 4 16 8
Energy Efficiency (TOPS/W) | 40 16 7 0.166 0.96 50.6 |11.6 |[3.08 |1.278
Area Efficiency (TOPS/mm?2) | 0.0113 | 0.0047 | 0.0017 | 0.0026 1.29 0.46 |0.086 | 0.022 | 0.084
Projected Energy Efficiency | 1360 | 544 238 1.68 5.53 228 52 14 4.49
at 7 nm (TOPS/W)
Projected Area Efficiency at | 12.8 5.3 1.9 0.05 3.3 9.3 1.7 0.44 |0.43
7 nm (TOPS/mm?)

Notes:

1. The method to project NeuRRAM efficiency to 7 nm is explained in Methods.

2. The energy-efficiency projection of digital accelerators is based on CV? scaling, where C scales with minimum metal pitch and V is adjusted to nominal VDD of 7nm.
3. The area-efficiency projection of digital accelerators is based on minimum metal pitch scaling along both horizontal and vertical directions.
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