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Abstract: Despite finding their usage in multiple applications ranging from mobile phones to
electric vehicles, degradation of Lithium-ion batteries and fault occurrences over a period of
time, is still inevitable. There are numerous types of degradation and faults that are possible in
a battery. Some of these faults affect individual electrodes (cathode and anode) of the battery
while some of them manifest themselves on the battery cell as a whole. Diagnostics of cell-level
faults has been explored extensively while electrode-level fault detection has received relatively
lesser attention. In this work, we attempt to detect and isolate certain type of faults occurred in
battery electrodes and distinguish if the fault has primarily occurred in the anode or the cathode.
We utilize a reduced order and reformulated electrochemical models along with feedback-based
observers to realize the proposed method. Preliminary simulation-based case studies are shown

to illustrate the proposed approach.
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1. INTRODUCTION

Addressing battery safety is essential for the wide accep-
tance of Lithium-ion battery technology. Real-time fault
diagnostics can help achieve better safety in batteries. In
this context, we propose a detection and isolation algo-
rithm for electrode-level faults in Lithium-ion batteries.
In existing literature, some works have explored cell-level
fault detection based on various types of models Dey
and Ayalew (2015); Liu et al. (2014). However, such ap-
proaches typically do not provide information on individ-
ual electrode-level faults.

Generally speaking, electrode-level estimation has received
lesser attention than cell-level estimation. The lack of
full observability of electrode states from terminal voltage
feedback is a major hindrance to electrode-level estimation
algorithms. Some works have attempted to overcome such
limitations. For example, observer and filter based ap-
proaches are presented in Dey and Ayalew (2017), Moura
et al. (2016), Allam and Onori (2018), Allam and Onori
(2020), Alavi et al. (2013), and Zhang et al. (2021), and
a neural network based approach was presented in Li
et al. (2021). However, most of these works assume model
parameters are known or ignore the effect of model inac-
curacies arising from fault occurrences or do not consider
the observability issue. In Dey et al. (2020) an approach
to simultaneously estimate the electrode-level charge and
health based on a simplified phenomenological type bat-
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tery model is presented. Sattarzadeh et al. (2020) extended
this approach by accounting for electrode-level dynamics,
solid electrolyte interface (SEI) growth and nonlinear elec-
trode resistances. Although these works consider paramet-
ric variations and estimate them in real-time - they utilize
phenomenological models which have limited capability
to capture internal physics. Furthermore, most of these
observers are designed under non-faulty conditions. Given
the fact that a model might change significantly under
occurrences of faults - the efficacy of these observers may
not be guaranteed under faulty conditions. Electrode-level
capacity and utilization window have been estimated in
Mohtat et al. (2019). However, the capacity information
may not always quickly capture the electrode-level fault
signatures. In Lee and Kim (2020), a machine learning
based approach was presented for electrode health diag-
nosis. However, requirement of meaningful and sufficient
data is essential for such data-driven techniques which may
not always be available.

In this work, we attempt to address some of these research
gaps and propose a novel idea using an observer-based
framework for electrode-level fault detection and isolation.
This work follows the cascaded observer framework de-
vised in Dey et al. (2020) and Sattarzadeh et al. (2020)
- with the following differences: (i) Dey et al. (2020) and
Sattarzadeh et al. (2020) utilized phenomenoligical battery
models that do not consider Lithium concentration distri-
bution within the electrodes while the current work uti-
lizes reduced electrochemical model that considers Lithium
concentration distribution within the electrodes; (ii) the
observers in Dey et al. (2020) and Sattarzadeh et al. (2020)
were designed for state and parameter estimation while



the observers in the current work are designed to generate
residuals for fault detection and isolation. Specifically, a
combination of closed-loop and open-loop observers are
chosen in the current work where the difference between
the state estimates are used as residual signals which
determine the existence of a battery fault. Furthermore,
the observer gains follow a rule-based adaptation strategy
where different gains are employed to enable initial error
convergence and detection of faults, respectively.

The rest of the paper is organized as follows. Section 2
describes the model being considered for the battery and
discusses the problem formulation. Fault detection and
isolation algorithm is presented in detail in section 3. The
applicability of the algorithm is validated by various case
studies in section 4 through simulations. Finally, section 5
concludes the paper.

2. MODELING AND PROBLEM STATEMENT
2.1 Single particle electrochemical model

In this work, we have adopted the Single Particle Model
(SPM) to capture battery cell electrochemical behavior as
described in Rahn and Wang (2013). In SPM, electrodes
are modeled as spherical particles with volume-averaging
assumption. This results in two linear PDEs that describe
the diffusion of lithium ions in the two spherical electrode
particles. The resulting PDEs and their corresponding
boundary conditions are as follows:
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where the superscript £+ indicates positive and negative
electrodes, S is the Lithium concentration [mol/m?3], I is
the input current [A], where positive current represents
the current from the battery (dis-charging), as is the
specific surface area [m?/m?], F is Faraday’s constant, D
is effective diffusion coefficient in solid phase [m?/s], R is
the radius of the particle [m], A is the area of the current
collector [m?) and L is the length of the electrode [m)].
Typically, voltage is computed can be done using different
models like - Rahn and Wang (2013) and Marcicki et al.
(2013), depending upon the complexities and approxima-
tions. In the current work the former reduced-order SPM
has been adopted for the voltage output evaluation which
ignores the mass and charge dynamics in the electrolyte:
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where iy is the exchange current density of the electrode
[A/m?], U is the open circuit potential of the electrode
[V], R is the Universal Gas constant and « is the charge
transfer coefficient.

2.2 FElectrochemical model approzimation

For approximating the electrochemical model in (1)-(3),
we follow the steps given below:

Step 1 (Finite difference approximation): The PDE
system (1)-(2) is approximated to a finite dimensional
ODE system by applying finite difference method. The
resulting discretized concentration states in positive and
negative electrodes are denoted by z, = [S{, -+, S} and

zn, = [Sy,---,Sy|, respectively. Ultimately, we end up
with two coupled subsystems:
&n = Apty + Bpu, &, = Ay, + Bpu, (4)
y:fpe(mmu)_fne(xmu) _URf7 (5)

where z,-subsystem captures the positive electrode, x,-
subsystem captures the negative electrode, and w is the
current. The functions fp(.) and fn.(.) capture the first
two terms, and third and fourth terms, on the right side
of (3), respectively.

Step 2 (Dealing with unobservability): Unobservabil-
ity of individual electrode states from terminal voltage of
the battery cell still poses difficulties in the model (4)-
(5). To address this, we adopt the framework developed
in Dey et al. (2020); Sattarzadeh et al. (2020). Following
this framework, the original system is decoupled into two
sub-systems: one that accounts for the cathode’s dynamics
and the other that accounts for the anode’s dynamics. In
addition to that, for the cathode subsystem voltage equa-
tion, we treat the anode contributions as uncertainties.
The resulting cathode subsystem is written as

&p = Apxp + Bpu, y = fpe(xp,u) — 0, —uRy, (6)
where ¢, is the anode potential contribution treated as
uncertainty. Similarly, the anode subsystem is written as

&y = Anxp + Bpu, Yy = 0p — fre(@n, u) — uRy, (7)
where §,, is the cathode potential contribution treated
as uncertainty. In effect, we reformulated the original

unobservable system into two decoupled observable but
uncertain subsystems.

Step 3 (Linear approximation): In the reformulated
model, we still have nonlinear terms f,c(.) and fye(.) in the
output of (6)-(7). In order to linearize these nonlinearities,
we approximate the nonlinear functions as piece-wise lin-
ear functions. A piece-wise linear approximation example
is shown in Fig. 1. The approximations are written as

fre(@p) = Cp,xp + kp, + pip, (u), i = {1,2} (8)

fre(@n,u) & Cpn + kn, + pin, (u),i={1,2,3}  (9)
where ¢ indicates the operating region where the approx-
imation is applied. Note that the coefficients/functions
{Chp,, kp;, tip, } and {Ch,, kn,, in, } vary based on the op-
erating range of x, and z,, respectively. Ultimately, we
end up with the following two subsystems:

&y = Aprp + Bpu, y = Cp,xp + kp, + fip,(u) — 6p, (10)
where ¢ = {1,2} for (10) and ¢ = {1,2,3} for (11),
Hip; (u) = Hp; (u) —uRyg, and fin, (u) = Hn, (u) —ulty.
Step 4 (Introduction of filtered voltage state): Fol-
lowing the framework in Dey et al. (2020) and Sattarzadeh
et al. (2020), the output voltage is filtered using the filter
relation: gy = f%yf + %y where gy is the filtered output,
y is measured output voltage and 7 is the filter parameter.
The reason behind adding the filter state is that it moves
the uncertainties 6, and d,, in (10)-(11) from the output
equation to the state dynamics equation. The uncertain-
ties in the state dynamics are easier to deal with in the
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Fig. 1. Piece-wise linearization of electrodes’ open circuit

potential functions fpe(.) and fre(.)

filter design process, as compared to uncertainties in the
output equation. The augmented state-space models after
accounting the dynamics of the voltage filter, now become
the state-space form listed in (12) and (13).
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with y,, and y,,, being the filtered voltage used in cathode
and anode models, respectively.

2.8 Problem statement

In the current work, we focus on the detection of internal
faults, which are typically difficult to be detected, and then
we isolate the faults to the electrode level to distinguish if
the fault is from the anode or the cathode.

X, = Ay, X, + BpUy, + Bpsdp + Fp, Y, = CX,,  (14)
X, = A, X, + ByU,, + Bpson + Fn, Y, = CX,,, (15)

In the above two equations, F}, and F;, are the cathode and
anode faults, respectively that can arise due to numerous
types of battery degradation. Rahimian et al. (2012)
describes a very detailed modeling of such faults. Here,
the fault behavior is mimicked by changing the model
parameters.

3. FAULT DETECTION AND ISOLATION
ALGORITHM

A schematic of the framework is illustrated in Fig 2. It
consists of two residual generators - Anode and Cathode
Residual Generator. Both of them use terminal voltage
feedback. In addition, the Anode Residual Generator also
receives cathode potential estimate from the Cathode
Residual Generator.
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Fig. 2. Schematic of the fault detection and isolation
algorithm.

Structure of Cathode Residual Generator: The
residual is generated by subtracting the state predictions
of the closed-loop observer and the open-loop observer.
The open-loop observer is given by a copy of the nominal
model (without the uncertainty and the fault):

Xp-or = Ap, Xp-or + ByUp,, (16)
where X,_or is the estimated state by the open-loop

observer. The closed-loop observer is given by a copy of
the nominal model and a feedback term.

Xp—cr = Ap, Xp—crL + BpUp, + Lp(Yp = Yp—cr), (17)
where X,_c is the estimated state by the closed-loop
observer, Y, is the measured output, Y,_cr = CX,_cr
is the estimated output, and L, is the observer gain to
be designed. Note that the operating region dependent
matrix A,, and input U, are calculated using the estimate
Xp—cr. Ultimately, the Cathode Residual is defined as:
rp = K(prCL — proL) where K = [0]\[,1,170] with
On_1 is a N—1 dimensional row vector of zeros. Effectively,
the vector K selects the surface concentration state from
the estimated state vector.

Structure of Anode Residual Generator: The resid-
ual is generated by subtracting the state predictions of
the closed-loop observer and the open-loop observer. The
open-loop observer is given by a copy of the nominal model
(with an estimated uncertainty and without the fault):

Xn—OL = Anan—OL + BnUn, + Bnésna (18)
where X,,_or, is the estimated state by the open-loop

observer. The term 6, = fpe(Xp—cr) is the estimate of
the uncertainty based on the cathode closed-loop observer
estimates. The closed-loop observer is given by:

anCL = AnanfCL + BnUnl
+ Buson + Ln(Yn = Yu-cr),  (19)
where X,,_¢p is the estimated state by the closed-loop

observer, Y,, is the measured output, Y,_cr = CX,_cr
is the estimated output, and L, is the observer gain to



be designed. Note that the operating region dependent
matrix A,, and input U,,, are calculated using the estimate
Xn—cr. Ultimately, the Anode Residual is defined as:
Tn = K(anCL - anOL>-

3.1 Working principle of the residual generators

In the beginning of the cell operation, only the closed-loop
observers were deployed with incorrect initial conditions.
Due to the use of output error feedback, the closed-loop
observer starts converging. Note that due to the presence
of uncertainty terms 6, and J, the steady-state is within
an acceptable non-zero bound. This convergence process
is fast enough due to the choice of observer gains (e.g.
within the first cycle) and we assume that during this
process faults do not occur. Based on offline simulations,
we can estimate an upper bound of this convergence time
teonw for the closed-loop observers. Once t.on, is reached,
we deploy the open-loop observers and initialize them
with the estimate from closed-loop observers, and we also
start computing the residuals r, and r,. Note that at the
moment we turn on the open-loop observer, the difference
between open-loop and closed-loop estimates are zero since
we are initializing the open-loop observer with closed-loop
estimates. Accordingly, we have r, =7, =0 at t = tcone-
However, since there is no output feedback, the open-
loop observers’ performance degrades slightly due to the
presence of uncertainty terms J, and d,. At the same
time, the closed-loop observers keep estimating the true
states with reasonable accuracy. Accordingly, due to the
differences between open and closed-loop observers, the
residuals reach a non-zero steady-state after some time.

In the presence of faults, the closed-loop observers are still
able to suppress the effect of the fault to a certain extent
due to the presence of output error feedback. However,
since there is no output feedback in the open-loop observer,
the open-loop estimates starts deviating further from the
true values. In effect, the residuals start diverging from
its previous converged steady-state values. When such
divergence is large enough, the fault is detected.

Case-1 Anode Fault: The cathode states are non-faulty
which means both the cathode closed-loop and open-loop
estimates are close to the true states. This means the
cathode residual will not be affected by anode faults.
However, the anode open-loop estimates are incorrect
while the anode closed-loop estimates are close to the true
states. This means that anode residual will be affected and
will start diverging. In summary, only anode residual will
show the effect under anode faults.

Case-2 Cathode Fault: The cathode open-loop esti-
mates are incorrect while the cathode closed-loop esti-
mates are close to the true states. This means that cathode
residual will be affected and will start diverging. On the
other hand, the anode open-loop and closed-loop estimates
utilize 6, = fpe(Xp—cr) as shown in (19) and (18). Hence,
the effect of cathode fault might also show up significantly
in anode residual. In summary, both anode and cathode
residuals can potentially show the effect under cathode
faults.

During the process of closed-loop observer design and
testing, we have found that one set of observer gains do not

provide optimal performance for initial error convergence
and detection of faults. Hence, two sets of gains are used.
The first set of gains are used initially until ..., is reached,
and then the observer gains are updated to the second set
of gains suitable for fault detection. Such gain adaptation
will provide better performance as compared to just using
one set of gains.

Observer Gain Design: As mentioned before, we design
two sets of observer gains. (Gain Set # 1) for conver-
gence against initial condition error. (Gain Set # 2)
for fault detection and isolation. For (Gain Set # 1),
we check the following: (a) For anode closed-loop observer
the gain L,, should be chosen such that the matrix (4,,, —
L, C) is Hurwitz stable Vi = {1,2,3}, and the estimation
error convergence rate is within acceptable limit. (b) For
cathode closed-loop observer the gain L, should be cho-
sen such that the matrix (A,, — L,C) is Hurwitz stable
Vi = {1,2}, and the estimation error convergence rate is
within acceptable limit. For (Gain Set # 2), we check
the following: (a) For anode closed-loop observer the gain
L, should be chosen such that the matrix (4,, — L,C)
is Hurwitz stable Vi = {1,2,3}, and the residual r, is
sensitive to the fault occurrences. (b) For cathode closed-
loop observer the gain L, should be chosen such that
the matrix (A4,, — L,C) is Hurwitz stable Vi = {1,2},
and the residual 7, is sensitive to the fault occurrences.
Qualitatively speaking, (Gain Set # 1) consist of higher
values while (Gain Set # 2) consists of lower values.
This is because we needed more feedback amplification to
counter the initial condition error while lesser feedback
amplification is needed for residual sensitivity.

Algorithm 1 Detection algorithm workflow.

(1) Initialization:

(a) Initialize closed-loop observers of each electrode
with incorrect initial conditions.

(b) Use (Gain Set # 1) for initial error conver-
gence.

(2) Initial run:
Run the closed-loop observers until ¢ = t.ony-
(3) Update observers:

(a) Deploy open-loop observers with initial condi-
tions as the state estimates from closed-loop ob-
servers at t = teony-

(b) Update the closed-loop observer gains to (Gain
Set # 2).

(4) Detection and isolation of the faults:

(a) Faults are detected and isolated using the criteria

listed in Table 1.

Table 1. Fault detection logic

Residual (rp) | Residual (r) | Fault Detection
High High/Low Cathode Fault
Low High Anode Fault
Low Low No Fault

Threshold selection: In reality such modeling uncertain-
ties, disturbances, and measurement noises exist which
prohibits the system’s natural behavior of zero steady-
state residual even in the absence of a fault. To deal with
this issue, we followed an approach in Dey et al. (2017) to
set threshold limits determined from the non-faulty cases.

A residual is HIGH if 0,,,,, < rp/n < ép/n; a residual is



LOW when 0,,,,, > 7, and/or 1y, > 6,/ Here, 6 and

6 are the upper and lower limits, respectively.

4. CASE STUDIES

The reduced order electrochemical battery model and its
corresponding observers for each electrode are constructed
and simulated in MATLAB/Simulink. It is observed that
the cathode closed-loop observer gives an error of around
0.54% while the anode closed-loop observer shows an
error less than 5%. Next, we show some case studies to
illustrate the proposed approach. The case studies are
performed under a dynamic current profile derived from
Urban Dynamometer Driving Schedule (UDDS) cycle.
Figure 3 shows the convergence of the closed-loop observer
estimates to the original values, starting from incorrect
initial conditions. As seen from the from Fig. 3, the
convergence time t .o, is 2000 s. Accordingly to Algorithm
1, this is the time when we update the closed-loop observer
gains and start deploying the open-loop observer. Next, we
illustrate three different possibilities: no fault case, anode
fault case, and cathode fault case.
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Fig. 3. Initial convergence of the closed-loop observers
under no-fault scenarios.

4.1 Case 1: No fault scenario

Figure 4 depicts the behavior of the residual under a no-
fault condition. Just after the convergence (t = teconw),
the residual is zero since both the closed-loop and open-
loop observers have the same estimates. However, since
there is no output feedback, the open-loop observers’
performance degrades slightly after ¢ = t.on, due to
the presence of uncertainty terms J, and 6, while the
closed-loop observers keep estimating the true states with
reasonable accuracy. Accordingly, due to the differences
between open- and closed-loop observers, the residuals
reach a non-zero steady-state after some time. That non-
zero steady-state is -100 mol/m? for the cathode residual
rp and -500 mol/m? for the anode residual r,. Since the
thresholds were to chosen based on non-faulty data, these
steady-state values are well within threshold limits.
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Fig. 4. Residual behavior under no fault scenario.
4.2 Case 2: Anode fault

Figure 5 depicts the behavior of the residuals in the
presence of an anode fault. The anode fault is modeled
at t = 2000 s by reducing the value of active surface
area in negative electrode a; by 30%. This reduces the
nominal available volume of the solid part of anode due to
the loss of active material, thereby reducing the process
of intercalation. As shown in Table 1, the anode residual
responded to the fault by eventually crossing the threshold
while the cathode residual stayed within the thresholds.
This difference makes the anode’s closed-loop observer to
get closer to the actual value using the feedback. The
anode residual finally settled around -800 mol/m3. Note
that the cathode residual is also seen to have a slight surge
of around -20 mol /m3. This is because of the fact that both
the closed-loop observers require the voltage measurement
in calculating the error for feedback. And since the fault is
reflected in the voltage measurement, the cathode residual
is also slightly influenced. However, the anode fault can
easily isolated seeing a sharp surge in the anode residual
value.
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Fig. 5. Residual behavior under anode fault.

4.8 Case 3: Cathode Fault

Figure 6 depicts the behavior of the residuals in the
presence of a cathode fault. The cathode fault is modeled
at t = 2000 s by reducing the value of active surface area
in positive electrode a by 50%. This reduces the nominal
available volume of the solid part of cathode due to the
loss of active material, thereby reducing the process of
intercalation. As shown in Table 1, both the cathode and
anode residuals are affected by the fault. This resulted
in a ramp-like surge in the cathode residual to around
800 mol/m3. In addition to that, the anode residual is
also seen to have a substantial steep change to around
-2000 mol/m?3. This is because of two reasons. The closed-
loop observer for both the electrodes require the voltage



measurement in calculating the error for feedback, which
influences the anode residual slightly. However, the main
contribution for this steep change is from the fact that the
observers are designed in a cascaded manner. Since the
state estimates from the cathode observer itself are not
accurate, this further influences the anode observer to give
wrong estimates as cathode observer estimates are given
as inputs to the anode observer. So, whenever such a type
of sharp surge is seen both anode and cathode residuals,
it can be attributed to cathode fault.
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Fig. 6. Residual behavior under cathode fault.

5. CONCLUSIONS AND FUTURE WORK

This paper discusses the initial development of an observer
based residual generator that can potentially be used
to detect and isolate faults at the electrode level. The
proposed approach is illustrated by a few simulation case
studies. There are still a few challenges in the current
approach that are yet to be addressed. One such challenge
is the inability to isolate faults that affect both electrodes
and faults that affect just the cathode. Fault estimation
will also be addressed in the future work. A sensitivity
study of the proposed approach with respect to the noise
in the measurements and uncertainties in the model is also
aimed to be performed in the future works.
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