
Thermal Fault-Tolerance in Lithium-ion Battery Cells:
A Barrier Function based Input-To-State Safety Framework

Shashank Dhananjay Vyas, Tanushree Roy, and Satadru Dey

Abstract— Ever increasing demand and use of Lithium-ion
batteries has made it necessary to put extensive efforts in their
safety. While a lot of research is focused on safer battery
materials and mechanical designs, developing control-based
safety strategies is also a key aspect to enable safety. Most
of the existing battery control strategies focus on optimal
charging performance, leaving a gap on thermal safety control
techniques. Specifically, thermal management of battery cells
under thermal faults remains significantly under-explored. In
light of this, we propose a fault-tolerant control algorithm which
can practically ensure safety of Li-ion batteries in presence of
thermal anomalies. In this algorithm, we formulate a control
law which guarantees both the thermal safety and stability of
Li-ion batteries. Specifically, we combine lumped parameter
thermal model and Ordinary Differential Equation (ODE)-
based practical input-to-state safety technique to formulate
the thermal control problem. Subsequently, we utilize control
barrier function and linear stability criteria to design the
controller gains. Finally, we present simulation case studies to
validate the efficacy of the proposed control algorithm.

I. INTRODUCTION

In recent years, owing to a booming Li-ion battery
industry, considerable scope of improvement lies in the
area of safety of Li-ion batteries. Existing battery control
problems typically consider charging control [1], constraint
management [2], [3], charge and thermal balancing [4].
Some thermal management approaches have also been pre-
sented [5]–[8]. However, these thermal control approaches
do not consider control in the presence of battery faults.
To impact battery safety, it is essential to consider the
presence of battery faults in the design phase of the control
algorithms. Along this line, some works have been reported
that consider sensor fault-tolerant control of batteries [9].
However, fault-tolerance under internal thermal faults has
been significantly under-explored. In [10], an active fault
tolerant control scheme for internal thermal faults has been
proposed. However it has potential drawbacks which include
[11]: (i) A real-time fault detector and estimator is needed.
(ii) The effectiveness depends on accuracy of fault detector
and estimator since any inaccuracy may induce delay in fault
accommodation [11]. To avoid these drawbacks, we propose
a passive fault-tolerant control algorithm leveraging ODE-
based practical input-to-state safety technique.
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The notion of input-to-state safety for ODE systems was
introduced in [12] and was analyzed in [13]–[15] using
Barrier function based approach. In [16] and [17], the notion
of practical input-to-state safety was presented augmenting
on the original notion. In this work, we adopt the approach
presented in [16]. Specifically, the goal is to ensure that a
metric, which computes the distance of the system states
from a pre-defined unsafe region, is lower bounded by a
combination of several terms related to initial condition and
inputs [16]. In our work, we adopt this technique to design
the control algorithm such that the temperature states never
enter the unsafe region even under the presence of faults.

Keeping in mind the research gaps mentioned earlier, the
main contribution of this paper is a passive fault-tolerant
control algorithm to enable safety under thermal faults. In
this algorithm, we formulate a control law which guarantees
both the thermal safety and stability by combining lumped
parameter battery cell thermal model and ODE-based practi-
cal input-to-state safety technique. Particularly, we design
a control gain matrix such that battery temperatures get
stabilized while remaining under the safe operating limits.
In order to arrive at such design, a Barrier function based
approach is used to devise the conditions to be satisfied by
the control gain matrix such that temperatures never reach
values beyond the safe range. Then the closed loop linear
stability constraint is applied to the gains obtained from
earlier conditions to keep the temperatures stable in the safe
region.

A related work is presented in [18] where a Partial Differ-
ential Equation (PDE)-based input-to-state safety technique
is applied to a battery module under thermal anomalies.
The differences between the current work and [18] are as
follows. (i) In [18], battery modules are considered which
have large spatial temperature variation. Whereas the current
work considers battery cells which do not have significant
spatial temperature variation, so we utilize a lumped thermal
model eliminating the need for complicated PDE analyses.
(ii) Three sensors are considered in [18] for measurements,
whereas only two sensors are considered in current work,
thus achieving safety with limited sensing, and further re-
ducing the implementation cost. (iii) We consider the coolant
dynamics in our analysis which is not accounted for in [18].

The organization of the rest of the paper is as follows:
Section II describes the thermal model of the battery con-
sidered and discusses the problem statement. Section III
explains the practical input-to-state safety based thermal
control algorithm. Section IV shows the results from the
simulation case studies. Section V concludes the paper.



II. PROBLEM STATEMENT: THERMAL FAULT-TOLERANCE
IN LI-ION BATTERY CELLS

For our purpose, we adopt a lumped parameter nominal
thermal model for cylindrical battery cells from [19], [20],
and subsequently model the faults as unknown additive terms
acting on the core and surface of the battery cell [21]. The
resulting equations are:

Ṫ1(t) = −
T1(t)− T2(t)

R1C1
+

Q̇(t)

C1
+

f1(t)

C1
, (1)

Ṫ2(t) = −
T2(t)− T1(t)

R1C2
− T2(t)− T∞(t)

R2C2
+

f2(t)

C2
, (2)

where T1 and T2 are the battery core and surface temper-
atures, respectively; T∞ is the ambient temperature which
is the temperature of cooling system here; R1 and R2 are
the thermal resistances of the battery between its core and
surface, and surface and ambient, respectively; C1 and C2

are the heat capacities of the battery material at core and
at surface, respectively; f1(t) and f2(t) are the thermal
faults which may occur due to unwanted chemical reactions,
abnormal heat generation inside the battery or mechanical
disruptions [22]–[24]; and Q̇ is the internal heat generation
given by [25]:

Q̇(t) = I(t)

(
Vocv(SOC)− Vt(t)− T1(t)

d(OCV )

dT

)
,

(3)
where I is current through the battery; Vocv is the open
circuit voltage of the battery which is a function of state
of charge (SOC) of the battery cell, dOCV

dT is the entropic
heat coefficient; and Vt is the terminal voltage of the battery.
Rearranging the terms of (3), we write:

Q̇(t) = Rsu
2
1(t)− αI(t)T1(t), (4)

where Rsu
2
1(t) is the approximation of the term

I(t)(Vocv(SOC) − Vt(t)) with u1(t) = I(t); and
α = d(OCV )

dT . Next, the cooling system dynamics is
considered as [21]:

Ṫ∞(t) = −T∞(t)− T2(t)

R2C∞
− Q̇c(t)

C∞
, (5)

where C∞ is the heat capacity of the cooling system and Q̇c

is the cooling system power. This model is based on liquid
cooling where we control Q̇c by changing the flow rate of
the coolant.

Next, we construct the state-space model of the battery
temperature dynamics (1)-(5) which is as follows:

Ṫ (t) = (A0 +A1(I))T (t)

+B1Rsu
2
1(t) +B2u2(t) + F∆(t), (6)

where A0 =

− 1
C1R1

1
C1R1

0
1

C2R1
− 1

C2
( 1
R1

+ 1
R2

) 1
C2R2

0 1
C∞R2

− 1
C∞R2

 , (7a)

A1(I) =

−αI
C1

0 0

0 0 0
0 0 0

 , B1 =

 1
C1

0
0

 , (7b)

B2 =

 0
0
− 1

C∞

 , F =

 1
C1

0

0 1
C2

0 0

 , (7c)

and T (t) =
[
T1(t) T2(t) T∞(t)

]′
is the state vector;

u2 = Q̇c is the control input; and ∆(t) =
[
f1(t) f2(t)

]′
is the fault vector. A schematic of the battery thermal model
along with cooling system is shown in Fig. 1.

Remark 1. In this work, we assume that the surface temper-
ature (T2) and the coolant temperature (T∞) are measured
in real-time. Accordingly, the output equation corresponding
to the state-space model is

y =

[
T2

T∞

]
= CT, where C =

[
0 1 0
0 0 1

]
. (8)

Remark 2. We consider only cooling power (Q̇c) as the
control input and not the current (I). Although the battery
current is typically measured and hence, a known variable to
the controller, oftentimes the current is determined to satisfy
the power demand from the battery. For example, in vehicles,
current drawn depends on the action of the driver. Under
such scenarios, the current is not manipulated by the thermal
control unit and cooling power remains the only control
variable.

To this end, the control objective is to ensure thermal
safety of the battery under faults. In order to achieve the
same, we establish two control objectives for the battery
under the fault:

• To ensure the temperatures do not reach any value in a
pre-defined unsafe operating range during its operation,
even in the presence of faults.

• To keep the closed-loop temperature dynamics stable.
We assume that the cooling power is sufficient to achieve
the control objectives. A schematic of the battery cell and
the control system is shown in Fig. 1.

Fig. 1. Schematic of battery cell and control system.

To attain the above control objectives, we aim to design a
feedback control law of the following form:

u2 = −KC(T − Tref ), (9)

where K =
[
K2 K3

]
is the control gain matrix. We take

Tref =
[
T1,ref T2,ref T∞,ref

]′
as the reference steady

state temperature vector such that T → Tref as t → ∞.



Next, we apply a change of variables given by ξ = T −Tref

in (6), and subsequently use (9) to obtain:

ξ̇(t) = (P +A1(I))ξ(t) +B1Rsu
2
1(t)

+ (A0 +A1(I))Tref + F∆(t), (10)

where P = A0−B2KC. In the next section, we discuss the
details of the control gain design.

III. PRACTICAL INPUT-TO-STATE SAFETY BASED
THERMAL CONTROL ALGORITHM

Our goal is to design the control gain K such that
the two aforementioned control objectives are satisfied. To
this end, we formulate the first control objective following
the notion of practical input-to-state safety. Subsequently,
the second control objective will be satisfied by ensuring
that eigenvalues of the closed-loop temperature system have
negative real parts. Next, we discuss the notion of practical
input-to-state safety in detail.

A. Practical Input-To-State Safety

The notion of input-to-state safety essentially formulates
inequality type conditions to ensure the system states are
within safe operating region [16]. Adopting the definition
presented in [16], the system (10) is considered to be prac-
tically input-to-state safe if the following condition holds:
(|ξ|D) ≥ α1(|ξ(0)|D) − α2(∥δ∥) − α3, ∀t where |ξ|D is the
safety distance between the system state ξ and a pre-defined
unsafe set; δ captures the effects of inputs u1 and ∆; α1, α2

are class KK functions [16], and α3 is a positive constant.
Such practical input-to-state safety can be equivalently

characterized using Barrier functions [16]. Under this char-
acterization, our objective is to find a Barrier function
B : R3 → R, with respect to the system (10), which satisfies
the following inequalities [16], [18]:

− c1|ξ|2D − κ1 ⩽ B(ξ) ⩽ −c2|ξ|2D, (11)

Ḃ(ξ) ⩽ −c3|ξ|2D + c4 |u1|2 + c5 ∥∆∥2 + κ2, (12)

where ci > 0, i = 1, 2, 3, 4, 5; κi ⩾ 0, i = 1, 2, ∥.∥
indicates the 2-norm. These conditions (11)-(12) implies that
the system is practically input-to-state safe with respect to
the unsafe set D. The parameters κ1 and κ2 capture the effect
of practical considerations in the design.

Remark 3. Note that since the conditions on control gains
are dependent on Barrier function, as is evident in the next
subsection, the form of Barrier function chosen naturally
affects the design. To allow a quadratic form of Barrier
function for design, κ1 ensures that B(ξ) can be lower
bounded on the boundary of unsafe region since |ξ|D = 0
on the boundary [16]. Moreover, the effect of other system
and design parameters such as the reference state values
and the maximum allowable state values are captured in the
parameter κ2.

Remark 4. Note that the conditions (11)-(12) are adopted
from [16] but slightly modified to suit our problem statement.
In the formulation given in [16], only κ1 is used to charac-
terize the uncertainties in the model. In [18], the parameter

κ2 is included in addition to κ1 to further capture these
aforementioned practical aspects of uncertainties. Inclusion
of κ2 provides us additional design freedom. Here, we follow
the conditions formulated in [18].

B. Control Design Process
In order to apply the practical input-to-state safety tech-

nique, we first focus on defining an unsafe set. Note that
the control goal is to be away from the unsafe set while not
to deviate too far from the reference temperature Tref =
[T1,ref T2,ref T∞,ref ]

′. We define upper bounds of the
temperature states as T 1, T 2, and T 3 where T1,ref < T 1,
T2,ref < T 2, and T∞,ref < T 3. If the temperatures rise
beyond these bounds, it will be considered unsafe condition.
Based on these bounds, we define the following unsafe set:

D = {a = [a1 a2 a3]
′
: (a21 + a22 + a23) >M2}, (13)

where M := min(T 1 − T1,ref , T 2 − T2,ref , T∞ − T3,ref ).
Next, we define a metric for the distance of the states ξ

with respect to the unsafe set D as follows:

|ξ|D = inf
a∈D
∥ξ − a∥ , (14)

where D is given by (13). Qualitatively, |ξ|D, which is the
2-norm of (ξ−a), ∀a ∈ D, represents the minimum distance
of the state ξ from the unsafe set D. This essentially implies

|ξ|D = ∥ξ − ξm∥ , ∀ξ ∈ S = DC , (15)

where S is the safe set, that is, the complement of the unsafe
set D, and ξm = [ξ1m ξ2m ξ3m]

′
represents any point on the

boundary of S i.e. ∥ξm∥ = M. A visual representation of
the safe and unsafe regions are shown in Fig. 2.

Fig. 2. Visual representation of safe and unsafe regions.

Next, we choose the following Barrier function candidate:

B(ξ) = ∥ξ∥2 −M2, (16)

where M is defined after (13).
In order to obtain the left-hand side inequality of (11),

we note from the definition (13) that ∀ξ ∈ S, ∥ξ∥ ⩽ M.
Now applying triangle inequality to (15) for safe state ξ, we
obtain,

|ξ|D ⩽ ∥ξ∥+ ∥ξm∥ = ∥ξ∥+M ⩽ 2M, (17)

which further implies − 1
4 |ξ|

2
D ⩾ −M2. In other words, we

can find a κ1 > 0 such that − 1
4 |ξ|

2
D − κ1 = −M2. Also,

from (16), we can obtain −M2 ⩽ B(ξ) which yields,

−c1|ξ|2D − κ1 ⩽ B(ξ), (18)



where c1 = 1
4 . This provides us with the left-hand side

inequality of (11).
Next to obtain the right-hand side inequality of (11), we

rearrange the terms in (16) to obtain, B(ξ) = −(M−∥ξ∥)2−
2 ∥ξ∥ (M−∥ξ∥). Since ∥ξ∥ <M, it can be seen that B(ξ) ⩽
−(M−∥ξ∥)2. From Fig. 2, it is evident that |ξ|D = (M−
∥ξ∥). This implies that,

B(ξ) ⩽ −c2|ξ|2D, (19)

where c2 = 1. This provides us with the right-hand side
inequality of (11).

Next, we find the condition for which (12) is satisfied.
Noting ∥ξ∥2 = ξ

′
ξ, we rewrite (16) as B(ξ) = ξ

′
ξ −M2.

Differentiation of which yields Ḃ(ξ) = 2ξ
′
ξ̇ which can be

written as Ḃ(ξ) = 2(ξ− ξm + ξm)
′
ξ̇ and further substituting

ξ̇ from (10), we obtain,

Ḃ = V0 + V1 + V2 + V3 + V4 + V5, (20)

where

V0 = (ξ − ξm)
′
P (ξ − ξm) + (ξ − ξm)

′
(2Pξm + PTref ),

(21)

V1 = −α(ξ1 − ξ1m)2u1

C1
+

Rs(ξ1 − ξ1m)u2
1

C1

−
2α(ξ1m +

T1,ref

2 )(ξ1 − ξ1m)u1

C1
, (22)

V2 = −αξ1m(ξ1m + T1,ref )u1

C1
+

Rsξ1mu2
1

C1
, (23)

V3 =
(ξ1 − ξ1m)f1

C1
+

(ξ2 − ξ2m)f2
C2

, (24)

V4 =
ξ1mf1
C1

+
ξ2mf2
C2

, (25)

V5 = ξ
′

mPξm + ξ
′

mPTref . (26)

Next, we make use of the Holder’s and then Young’s in-
equality of the form

xy ⩽ ∥x∥ ∥y∥ ⩽ γ̄

2
∥x∥2 + 1

2γ̄
∥y∥2 , γ̄ > 0, (27)

on (21) through (26). Furthermore, denoting (ξ − ξm) by ξ̂;
(ξ1− ξ1m) by ξ̂1; (ξ2− ξ2m) by ξ̂2, we obtain the following
upper bounds from (21)-(26):

V0 ⩽ ξ̂
′
P ξ̂ + γ1

∥∥∥ξ̂∥∥∥2 + ∥2Pξm + PTref∥2

4γ1
, (28)

V1 ⩽ αξ̂21 + γ2u
2
1 +

1

4γ2C2
1

+ γ3ξ̂
2
1 +

1

4γ3
+

Rs

C1
u2
1

+ γ4ξ̂
2
1 +

α2(2ξ1m + T1,ref )
2

4γ4C2
1

u2
1, (29)

V2 ⩽ γ5u
2
1 +

α2ξ21m(ξ1m + T1,ref )
2

4γ5C2
1

+
Rsξ1m
C1

u2
1, (30)

V3 ⩽ γ6ξ̂
2
1 +

1

4γ6C2
1

f2
1 + γ7ξ̂

2
2 +

1

4γ7C2
2

f2
2 , (31)

V4 ⩽ γ8f
2
1 +

ξ21m
4γ8C2

1

+ γ9f
2
2 +

ξ22m
4γ9C2

2

, (32)

where γi > 0, i = 1, 2, ..., 9. Next, using the fact that ξ̂21 ⩽∥∥∥ξ̂∥∥∥2, f2
1 ⩽ ∥∆∥2 and f2

2 ⩽ ∥∆∥2 in (29), (31), (32), and
then using (26)-(32) in (20), we obtain,

Ḃ ⩽ ξ̂
′
P ξ̂ + γ

∥∥∥ξ̂∥∥∥2 + c4u
2
1 + c5 ∥∆∥2 + κ2, (33)

where γ = γ1 + α+ γ3 + γ4 + γ6 + γ7, and

c4 = γ2 +
Rs

C1
+

α2(2ξ1m + T1,ref )
2

4γ4C2
1

+ γ5 +
Rsξ1m
C1

,

(34)

c5 =
1

4γ6C2
1

+
1

4γ7C2
2

+ γ8 + γ9, (35)

κ2 =
∥2Pξm + PTref∥2

4γ1
+

1

4γ2C2
1

+
1

4γ3

+
α2ξ21m(ξ1m + T1,ref )

2

4γ5C2
1

+
ξ21m

4γ8C2
1

+
ξ22m

4γ9C2
2

+ ξ
′

mPξm + ξ
′

mPTref . (36)

Noting
∥∥∥ξ̂∥∥∥2 = ξ̂

′
ξ̂, we rewrite (33) as,

Ḃ ⩽ −ξ̂
′
Rξ̂ + c4u

2
1 + c5 ∥∆∥2 + κ2, (37)

where R = −(P + γI) should be designed to be a positive
definite matrix with I being the 3x3 identity matrix.

Given R > 0, we can write

λmin(R)
∥∥∥ξ̂∥∥∥2 ⩽ ξ̂

′
Rξ̂ ⩽ λmax(R)

∥∥∥ξ̂∥∥∥2 , (38)

where λmin(R) and λmax(R) be the minimum and maxi-
mum eigenvalues of R respectively. Furthermore, since ξ̂ =
(ξ − ξm) as defined after (27), further using (15) we can
write (37) as,

Ḃ ⩽ −c3|ξ|2D + c4u
2
1 + c5 ∥∆∥2 + κ2, (39)

where c3 = λmin(R).

Remark 5. From the design viewpoint, our goal is to ensure
that R = −(P+γI) as defined after (37), should be a positive
definite matrix. As P = A0 − B2KC, we find the control
gain matrix K such that this condition is satisfied. Since
γi > 0, i ∈ {1, 2, . . . , 9}, it can be seen that c4 > 0 and
c5 > 0 as defined in (34) and (35). To ensure that c3 defined
after (39) is positive, it is sufficient to ensure that R > 0.
Further ensuring κ2 > 0 provides us with the inequality
condition (12). Satisfying these conditions essentially makes
the system practically input-to-state stable in the sense of
(11)-(12).

Note that the system (10) should also be closed-loop
stable, according to the second control objective. Hence, the
control gain matrix K should further ensure that the closed
loop temperature dynamics is stable, i.e., all the eigenvalues
of (P +A1(I)) should have negative real part for the range
of possible currents Imin ⩽ I ⩽ Imax where Imin and
Imax are the minimum and maximum values of allowable
currents, respectively. Let λi, i ∈ {1, 2, 3} be the eigenvalues
of (P +A1(I)), then the stability condition is as follows,

real(λi) < 0, i ∈ {1, 2, 3}, ∀ I ∈ [Imin, Imax]. (40)



C. Final Design Conditions

In summary, the control design that ensures the practi-
cal input-to-state safety inequalities and stability condition,
should satisfy the following:

−(P + γI) > 0, (41)
κ2 > 0, (42)

real(λi) < 0, i ∈ {1, 2, 3}, ∀I ∈ [Imin, Imax], (43)

where P , γ and I are defined after (10), (33) and (37),
respectively; κ2 is given by (36); and λi, i = 1, 2, 3 are
the eigenvalues of (P + A1(I)). An algorithmic guideline
for the control design is given in Algorithm 1.

Algorithm 1: Control Design Guidelines.
Input: Parameters and system matrices defined in

(1)-(8), unsafe set D given in (13), reference
temperature Tref .

Output: Control gain matrix K.
1 Define current input range [Imin, Imax].
2 Construct a set Ks of the control gain matrices where

each element satisfies (41) and (42).
3 Choose a gain matrix K from the set Ks.
4 for i← Imin to Imax do
5 Evaluate the eigenvalues λi of (P +A1(I)).
6 if real(λi) ≥ 0 then
7 Discard the gain matrix K. Go to step 3 and

choose another gain matrix from the set Ks.
8 else
9 Return K.

10 end
11 end

IV. CASE STUDIES

In this section we present the simulation results. We have
considered a cylindrical battery cell. The thermal parameters
are taken from [26], [27]. The value of internal electrical
resistance Rs and entropic heat coefficient α are taken to be
0.05Ω and 10−4V K−1, respectively. The simulation studies
are performed in MATLAB 2021a. We have added white
Gaussian noise in the measurement signals to mimic real
applications. To benchmark the proposed approach, an open-
loop control with a constant cooling rate of 0.05W is consid-
ered for comparison. The simulation studies are performed
under a dynamic current profile generated based on the
repeated Urban Dynamometer Driving Schedule (UDDS)
[10], as shown in Fig. 3. Following the steps shown in
Algorithm 1, we have obtained the control gains as K2 =
1.6887WK−1, K3 = −3.9391WK−1 where the values of
κ1 and κ2 are as, κ1 = 1875K2, κ2 = 1255.4K2s−1. Here,
Tref is chosen as 25oC for all three temperature states and
the unsafe region is considered to be beyond 50oC.

When simulated, the temperatures stay below 40oC with
both, open-loop and proposed control, under no fault till
t = 1000s. Next, we inject an internal fault f1 at t = 1000s
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Fig. 3. Applied dynamic current profile based on UDDS velocity profile.

which settles asymptotically to 1.8W . This type of fault
represents the anomalous event of abnormal heat generation
due to partial (soft) internal short circuit. The heat genera-
tion, battery and coolant temperature responses, and cooling
power with both, open-loop proposed control, are shown in
Fig. 4 under this faulty scenario. From Fig. 4, it can be seen
that there is substantial increase in the heat generation Q̇
due to the fault. Owing to this increase in heat generation,
the temperatures T1, T2 initially start increasing as seen in
Fig. 4. With the open-loop control, the cooling power was
not sufficient to remove the heat, hence, the temperatures
T1, T2 rise rapidly after the initial increase and eventually
enter the unsafe region beyond 50oC. On the other hand,
as seen from the bottom plot in Fig. 4, the control power
Q̇c with the proposed control strategy significantly changes
to mitigate the effect of the fault. As seen from the T1, T2

plots in Fig. 4, this change in action of the control signal
compensates for the increased heat generation and causes
the temperatures to stabilize and reach steady state below
the unsafe value of 50oC, thus preventing steep rise. For a
better visual understanding, a phase-plane plot in the T1−T2

space is shown in Fig. 5. It can be seen that with open-
loop control the temperatures enter the unsafe zone, but the
proposed control law keeps them in the safe region.

V. CONCLUSIONS

In this paper, we have proposed a thermal fault-tolerant
control algorithm for Lithium-ion batteries. Particularly, the
control objective is to maintain the battery temperatures
stable in the safe operating range under thermal faults.
Specifically, we have used the input-to-state safety approach
with the closed loop stability constraint to design the control
law. The applicability of the proposed framework is validated
through simulation case studies presented in Section IV. It is
found that the control gains designed through the algorithm
are indeed able to stabilize the temperatures in the safe limits.
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