This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3243165

An Online Model-Following Projection Mechanism
Using Reinforcement Learning

Mohammed I. Abouheaf!, Hashim A. Hashim?, Mohammad A. Mayyas', and Kyriakos G. Vamvoudakis®

Abstract—In this paper, we propose a model-free adaptive
learning solution for a model-following control problem. This
approach employs policy iteration, to find an optimal adaptive
control solution. It utilizes a moving finite-horizon of model-
following error measurements. In addition, the control strategy is
designed by using a projection mechanism that employs Lagrange
dynamics. It allows for real-time tuning of derived actor-critic
structures to find the optimal model-following strategy and
sustain optimized adaptation performance. Finally, the efficacy
of the proposed framework is emphasized through a comparison
with sliding mode and high-order model-free adaptive control
approaches.

I. INTRODUCTION

Model Reference Adaptive Systems (MRASs) are utilized
in many applications such as the actuation of manipulators,
guidance of unmanned vehicles, and motion planning [1]-[6].
The optimal tracking control solutions are mostly implemented
offline and require partial or complete knowledge of the
physical models as well as the desired reference trajecto-
ries [1]-[15]. For nonlinear systems with internal passivity, the
model-reference tracking problem is solved using sliding mode
surfaces along with a velocity observer [12]. Nonetheless,
the control strategy partially relied on the process dynam-
ics, where a zero-state detectability condition is considered
to guarantee asymptotic stability of the equilibrium point.
For underactuated nonlinear systems of moderate order, [13]
proposed an MRAS solution that adopted the concept of the
sum-of-squares polynomial optimization. The derived strategy
is partially reliant on the process dynamics. The same is
true for the solution presented in [16], where a robust model
predictive control approach is considered forthe reference
batch processes. MRAS solutions based on graphical games
have been developed for multi-agent systems [17]-[19]. These
solutions are designed for linear time-invariant systems and
require partial knowledge of each agent’s dynamics to derive
local strategies. As such, these approaches do not address the
nonlinearity of the agents.
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Reinforcement Learning (RL) mechanisms have not been
fully investigated to develop model-following adaptive control
strategies [20]. RL is concerned with guiding the agent towards
the best strategies after interactions with the environment
to maximize (minimize) a cumulative reward (cost) [21]-
[23]. RL solutions can be found using several techniques
including two-step mechanisms such as policy iteration (PI). PI
solution evaluates and improves a given strategy in an iterative
manner [23]-[25]. The evaluation of the policy can be done
using approaches such as least squares (LS) and recursive LS
(RLS) [25], [26]. An off-policy RL approach is considered to
solve the Algebraic Riccati Equation (ARE) in [27]. Another
PI mechanism is adopted to solvethe output-based regulation
of a cooperative control problem in [28]. On the other hand,
approximation tools such as the means of adaptive critics are
adopted to implement the RL solutions. The adaptive critic is a
device that learns to anticipate reinforcing events in a way that
makes it a useful conjunct to another component, the actor, that
adjusts behavior to maximize the frequency and/or magnitude
of reinforcing events [29]-[32]. Gradient approaches are used
to tune the actor and critic weights. The adaptation schemes
can vary depending on the desired function approximation
structure and the underlying solutions employ supporting
conditions such as in [20], where a pre-designed strategy that
requires resetting conditions is considered. In [33], the tracking
problem is solved for linear-time invariant systems, where
it employed a Q-learning method for an overall augmented
system. Another approximate model-free approach based on
adaptive critics is adopted in [34] to control a flexible wing
aircraft. Nonetheless, the feedback strategy relied on a non-
optimal guidance vector embedded within that strategy.

This discussion about the challenges associated with several
MRAS solutions that exist in the literature motivates us to
develop a model-following strategy with the following prop-
erties: 1) ease of implementation in a digital environment
such as microprocessors, 2) ability to utilize measurements
of the process without incorporating any explicit dynamical
information in the underlying strategy, 3) capability to solve
model-following problems with high-order error dynamics
using feasible adaptive strategies, and 4) enabling simultane-
ous multi-objective optimization of the model-following and
strategy adaptation performances.

Contributions: The contributions of the work are three-
fold. First it formulates a novel model-following adaptive
learning solution that requires only the real-time measurements
of the process as inputs to the control strategy. Second, the
framework is flexible with respect to the order of the model-
following error dynamics, and finally uses a novel projection
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mechanism based on Lagrange dynamics to adapt the gains of
the control strategy.

Mathematical notation: The following notation and defi-
nitions are adopted by the mathematical setup of the adap-
tive learning solution. R, N, and Zg refer to the sets of real
numbers, positive whole numbers, and non-negative integers,
respectively. ||.||; is the 1-norm of a vector. Vg is a gradient
of g. @ signifies a Kronecker product. Let the {,,— norm of
a sequence {g(e)};”, be given by |[¢[le = sug”g(e)”m with

ee
£ s sl < oo} and 6E gl < o).

Structure: The remainder of the paper is organized as
follows. Section II introduces the mathematical setup of the
model-following control problem. Moreover, the duality be-
tween the Hamilton-Jacobi-Bellman (HJB) and Bellman opti-
mality equations is explained. This is needed to develop a tem-
poral difference mechanism and to derive an optimal model-
following strategy. Then, a temporal difference solution based
on PI is introduced in Section III. Further, the convergence
conditions of the PI solution are discussed. Section IV presents
the actor-critic approximation mechanism of the model-free
RL solution. This is done using a projection approach that is
based on Lagrange dynamics to guarantee convergence of the
adapted actor-critic weights. The solution is validated using
nonlinear and linear systems with state and input delays in
Section V. Finally, Section VI concludes the work.

II. PROBLEM FORMULATION

This section lays out the mathematical foundation of the
adaptive solution using optimal control theory [7]. Consider
a discrete-time nonlinear system described by

Xi+1 = fi(Xi, ug) and yi = gx (Xi), k €N (D

where X; € R", u; € R’, and y; € R” represent the state
vector, control vector, and output vector, respectively. Consider
that the model-to-follow dynamics are given Vk € N by

XZ:.l = fkm(Xm9 uzl) and y]r(n = g]};n (Xk)

2)
with XZ‘ e RY, uk'" e R™ and yz1 € RP denoting the state
vector, control vector, and output vector, respectively. The
problem can be considered as an optimal regulation of the
difference between the output of the process and that of the
reference model as shown in Fig. 1, i.e., klim llexll — O,
& =Yy — Yk

The control signal is given by wiy1 = wx + ’, where
Hy s a correction control signal that is decided using a

real-time adaptive strategy w € R>(+DXP) The signal

K = w& employs a flexible-size error vector defined
by & =& &, &, ... g, 1T € RO+DXP The

number of employed error samples reflects the order of the
model-following error dynamics. Thus, the ultimate goals are
to design a framework to avoid the solutions of a set of coupled
difference equations backwards in time as well as to develop
computationally efficient strategies.

A user-defined cost functional will be used to measure
the quality of a strategy w such that Uy |Sp,uy) =

L (7 Q&+ TR i), where @ > 0 € R(HIPX+Ip)
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Fig. 1: Model-reference adaptive system.

and R > 0 € R are symmetric weighting matrices. The
cost function is quadratic and convex in the error vector &y
and control strategy ’. The overall performance of a control
strategy w is evaluated using a performance index given by

J;:) = Z(L[, (81',;1;0).
i=k

3)

The optimal strategy w® is decided by solving the HIB
equation of the model-following control problem. The struc-
ture of the convex cost function motivates the form of the
control strategy to be linear in the error vector & i.e., the
model-following error dynamics. The Hamiltonian is then
given V&g, Agi1, pix by

H(8p Akrts i) = AL FEEro i) + Un (Eps i), ()

where f(E, px) is a constraint that is dictated by the model-
following error dynamics. Thus, the optimization problem
shall find the optimal strategy w® while satisfying the con-
straint f¥(Eg, i) = Zis1, where Zywy = | 81, 1, ]T or
equivalently Zy. = | &, &, 0" ]T,

Remark 1. This development enables a flexible strategy that
is scalable in terms of the number ofthe model-following error
measurements. Hence, the desired strategy takes the form of a
digital PID controller but with adaptable gains in real-time.
This strategy mimics to some extent a gain scheduler but with
real-time adaptation capabilities. Furthermore, this is useful
in the case of optimizing numerous coupled model-following
loops acting simultaneously. O

Assumption 1. Given the desired response of the model-to-
follow dictated by (2), assume that (1) is stabilizable around
the reference-trajectory y;',Yk € N. O

Assumption 2. There exists a strategy w such that the control
signals ur = w Ex,Vk € N stabilize the system (1) around the
reference-trajectory (2). m]

The following result explains the duality between the Hamil-
tonian and the temporal difference (TD) or Bellman equation
using the discrete-time Hamilton-Jacobi (DTHIJ) theory. This
result is necessary to develop our adaptive solution.

Theorem 1. Let the value function V(Zy) > 0 be quadratic
and convex in the regulation error vector &, with V(0) = 0.

E Xplore. Restrictions apply.
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Then,
a. The value function V(Zy) satisfies the DTHJ equation
given by
oV(Z
HE, LB iy o, ke, 5)
0Zy 11

b. The value function V(Zy) represents a Lyapunov function.

Proof.

a. The value function V(Z;) = } (Zz S Zk) is convex in the
error vector & and thus it serves as a Lyapunov candidate
where S = ST > 0 € R+Dp+(+Dp+1) and it has a matrix-
See  Seu
Sue  Suu .

The value function can be expressed in terms of the perfor-
mance index Ji such that V(Zy) = Jp = X2, U; (E;, ) or
equivalently given by

block structure defined by

V(Zy) = Zﬂi + Ay (Zir — [F (8 ) -

(6)
i=k

The Hamiltonian (4) and the value function (6) yield
o1 Zisr +V(Zi) = V(L) = HEp A1, i) = 0. (7)

Taking the gradient of (7) with respect to Z,; yields
Ot ¥ (Zk+l B 3H(8k,ﬂk+1,#k)) et — OV(Z+1) _ 0.

0Zj 41 0Ak+1 0241
ie., Agsp = %f;') Therefore, the value function satisfies

(5).

b. Since, V(Zy+1) — V(Zr) = —Ui (Ex,px) < 0, then the
candidate structure V(Zy) is a Lyapunov function. [ ]

The optimal solution is found by solving the HIB equation
H(8k9vvkn+1uu;:) = 07 (8)

where ) refers to the optimal correction control signal (i.e.,
uy = argmin H(-) = w? &), w’ is the optimal strategy, V is

Hk
the optimal value function, and VV, = 0V°(Zy11)/0Z1.
The relation between Lagrange multiplier Ax;; and the gradi-
ent VVj, yields the following Bellman equation

VO(Zi) = Uy (Eis 1) + VO (L), €))

where the optimal strategy is calculated such that up =
argmin H (Ex, VVii1, ux) = argminV(Zy). This strategy is

Hr Hi
found by applying Bellman optimality principles such that

pf = argmin V(Zy) = =S, Sue Ex, k € N. (10)

M
The simultaneous solution of (9) and (10) provides a solu-
tion for the underlying Approximate Dynamic Programming
(ADP) problem, namely the Action Dependent Heuristic Dy-
namic Programming (ADHDP). The following definition is
needed.

Definition 1. (Admissible Strategy [35], [36]) Let the set of
all measurable maps i (.) : [a,b] — U represent the space
of admissible strategies where U is a compact set. A control
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strategy w is said to be admissible on U if V(Zy) is finite (i.e.,
Jim llexll — €2). O

The next Lemma shows that, solving the HIB (8) or
the Bellman optimality equation (9) yields an asymptotically
stable equilibrium point for the model-following error.

Lemma 1. Let the value function V(Zo) and y;',Vk € N be
bounded by 6 and p, respectively. Then, the equilibrium point
of the model-following error system is asymptotically stable.

Proof. The value function V(-) is upper-bounded i.e., V(Zy) <
0. Hence, the inequality 0 < -+ < V(Zyy1) < V(Zy) < 6
holds for any admissible control strategy w and thus for the
optimal strategy w?® as well. Hence, V(Zy) — V(Zi+1) € Lo
ie., &,Vk € {x and S € {. Furthermore, the HIB equation
(8) results in (6Vk+1/6Zk+1)T Zi+1 € {» and consequently
Ek+1 € lw. Adopting an admissible strategy w or the op-
timal one yields a Bellman equation denoted by V(Zi) =
%8,{ (Q + wTRw) Ex + V(Zi+1). Therefore, the inequality
78, (Q+w"Rw) & < V(Z;) holds. This implies that,
&r € 0 and similarly (6/lk+1/6Zk+1)TZk+1 € {¢,. Hence,
&r — 0 as k — oo and the resulting model-following error
system has an asymptotically stable equilibrium point. [

III. PI SOLUTION

This section introduces a PI solution to solve the model-
following control problem. The mechanism solves the Bell-
man optimality equation (9) using the optimal strategy (10).
Further,the PI algorithm requires an initial admissible strategy
before solving for better stabilizing strategies, as detailed in
Algorithm 1.

Algorithm 1 Model-Following PI Solution

1: Start with an admissible solution S° and initialize the
vector X (then calculate the error signal €y and vector
Zy).

2: Calculate the admissible control strategy .

3: Evaluate the control strategy (i.e., obtain S/*!) by solving

VIUZ) - VI, ) = U (Ed). (D)
where j refers to a calculation step index.
4: Improve the control strategy using
P =[S Suel ! Ex (12)

s: Terminate upon convergence of ||S/*! — §/||.

During the initial phase of the PI solution, vector Xg
stores initial measurements of the dynamic system or process.
Further, it requires an initial admissible strategy that can be
chosen arbitrarily such that S° = S°" > 0 which is standard
for PI [22].

Theorem 2. Let the model-following solution be given by
Algorithm 1, where the value function and the associated
optimal strategy are given by V (Zy) and (10), respectively.
Then,

a. The strategies (12) are stabilizing.

E Xplore. Restrictions apply.
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b. The PI process yields a non-increasing positive definite

solution sequence that follows 0 < --- <V (.)? < -+ <
ce < V(D) < V()Y with VO () being the optimal value
function.

Proof. The proof follows from [17] and [37] and is omitted
due to space limitations. [ |

This result affirms that, the simultaneous solution of (11)
and (12) will lead to a sequence of stabilizing strategies, pro-
vided that an admissible strategy is adopted at the initialization
phase of the RL solution. Further, the kernel solution matrix
S will be non-increasing and bounded below.

Remark 2. Lemma 1 and Theorem I reveal that, if an initial
admissible strategy is followed, and the model-following error
system is stabilizable around the desired reference trajectory,
then, Theorem 2 ensures a continuous strategy improvement
along that desired trajectory. O

IV. ACTOR-CRITIC IMPLEMENTATION

We shall now derive tuning laws for the actor and critic
approximators to solve Algorithm 1 in an online fashion. The
actor and critic structures approximate the strategy (12) and
value function in (11), respectively. Then, Lagrange optimiza-
tion principles are adopted to tune the weights in real-time.

The critic approximates the value function V(Zj) in (11)
such that )

V(Zi) = 52, Ok L, (13)
where the matrix @ = @] > 0 € R(+DP+x(r+1p+0) containg
the critic weights.

This value function can be reshaped such that V(Z;) =

Oy Zs. with Z = {(z§®zg),g= Lo+ Dp+1), ¢ =

&, .. .,((r+1)p+t)}, Zi €RY,q = ((r+D)p+0)(r+1)p+1+1)/2,

and @z € R? is a vector of the entries obtained from the
matrix %G)k that are associated with those of Zi. This form
is more convenient to use in the policy improvement step of
Algorithm 1.

The optimal strategy (10) is then approximated using an
actor adaptive structure such that

(&) = Qi Ex, Y&k, (14)

where Q; € R +DP) are the actor weights of the strategy.

This actor-critic structure can be easily employed by the
temporal difference form (11) leading to a variety of RL solu-
tions. Herein, the adaptation schemes of the actor-critic struc-
tures are inspired by Kaczmarz’s projection approach [38].

Let V(Zk) = (:)k with Zk, Zk = (Zk - Zk+1) and V4 (Zy) =
Uy (E, fix). Tt is required to choose the weights @y to
minimize ||@; — @_;|| subject to the constraint V(Z;) =
V4(Zy). This is done using a Lagrange optimization process
to minimize the function

W, = (O = O_1) (O — (:)k—l)T +ay (V(Zk) - Vd(Zk)) ,
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where ay is a Lagrange multiplier. Applying the optimization
principles (i.e., 9Vy, /00O = 0 and dVy, /day = 0) yields

(ék - (:)kf])T + ay Zk =0 and (:)k Zk - Vd (Zk) =0.
Hence, (@p —O_1) Zx + av Zz Zr =
_ (Vd (Zk) - (:)k_lzk). Therefore, (:)k = @k—l - ay ZT

0 and ay =

77 k
and O, = Op_; — 77, (®k—1Zk -V (Zk)). To manage

the update steps of the adapted critic weights, a factor dy is
considered in addition to a constant ny to avoid the singularity
issue when updating the critic weights to write

7T
Sy ZT

O =0, - o
ny + ZZZk

(@k—lzk - Vd(Zk)) : (15)
The weights @ can be reconstructed from the solution Q. In
a similar fashion, the actor weights are selected to minimize
the approximation error ||, —Q_1|| subject to the constraint
AEr) = a4 (Ex) where f4(Ex) = -0, 0,5 E. Hence, the
adaptation error of the actor weights, representing the optimal
strategy, can be minimized using the following function

Vi = (@ = Qo) (= ) + (260 - 2(E0))

where a,, is a Lagrange multiplier. Applying the optimality
conditions (i.e., 0V}, /0 = 0 and 0V}, /0ay, = 0) yields

(Q — 1)+, E =0 and O & — 49 (&E) = 0.

Hence, (Q—Q-1) & + a,&l& = 0 and a, =

(ﬁd(é’k) - Qk,ISk) . The actor tuning law is given by

&l &k
&y J -
Q= Qi — (Qk_lak iy (ak)) . Similarly, a refined
k
actor adaptationklaw is given by
6uEL
Q= — ——— (Y1 E - Y E)), 16
k= Q- nu+828k(klk ,U(k)) (16)

where ¢, and 77,, are constants to control the update steps of the
adapted actor weights and to avoid singularity when & = 0,
respectively.

The next result shows how to get approximate bounds on
oy and 0, to ensure convergence of the adapted weights.

Lemma 2. Let O° and Q° be the optimal weights representing
the solution of the Bellman equation (9) and the optimal
control gains (10), respectively. Then, choosing 0 < oy < 2
and 0 < 6, < 2 yields bounded deviations of the critic and
actor weights from the optimal weights.

Proof. According to (15), the temporal difference errors in
the updated critic weights are given by @} = O_, —
ov (05, %) 2}

" where ®° = 0° - @, and @° , =
nv + 2 L k k k k-1
® 7 7 — O Zk ZT _
Ow_1Z — V4 (Zy). Then O7 = I_V—~T’~< T
nv + 24, L

R+Dp+)x((r+D)p+1)

where I € is an identity matrix.

E Xplore. Restrictions apply.
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This dynamical expression has an eigenvalue Ay =
nv +(1—6v) L[ Z
ny + Zzik
while the remaining eigenvalues are equal to 1. Similarly
according to (16), the temporal difference errors in the updated
6. E1E
ym + 8;58](
where Qf = QP —Qy and I € RE+DpX((r+1p) s an identity
matrix. Accordingly, one eigenvalue associated with this form
(e + (1= 6) EEx
Ly =

that is less than 1 if 0 < oy < 2

eT

actor weights are given by QZT = - o1

T is less than 1 when 0 < ¢, < 2.
Nu + 8k Sk
These results are true for 7y > 0 and 7, > 0. [ |

Algorithm 2 Implementation of the Actor-Critic Solution

Input:
Number of calculation steps N7.
Constants oy, 6y, 1v, and 1.
Initial actor Qg and critic @y weights.
Performance index weighting matrices Q and R.
Convergence threshold 7, observed within a finite-horizon
of N calculation steps.
Qutput:
Converged actor-critic weights Q¢ and ©°.

Initialize Xo, o, and @9 > Use admissible strategy Q.
Introduce the reference signal y;'.
k<0
Convergence-of-Actor-Critic-Weights « False
while Convergence-of-Actor-Critic-Weights = False and
k< Nr do
Calculate Vd(Zk) = U, (Sk,ﬁk).
Apply [ to the process (i.e., (1)) and get yr4 .
Obtain the error vector &, and then find an estimate
for the control signal fix.; using (14).
9:  Find V(Z;) and V(Z,,) in order to get V(Zy).
10: Adapt the critic weights ®¢ following (15).
11: Adapt the actor weights € following (16).
12: if ||O; — O_1|| and ||Q; — Q1| converge then

A

13: @(0) — ®(k+1) and Q(O> — Q(k+1)
14: Convergence-of-Actor-Critic-Weights « True
15: end if

16: k—k+1
17: end while
return adapted weights @ and Qy, for k =0,1,..., Ny

Remark 3. Herein, the structure of the actor is chosen to be
linear to enable the adopted optimal control setup and the
associated temporal difference solution. This is convenient to
many RL computational setups. It may not capture ultimately
the behavior of highly nonlinear complicated systems, where
other nonlinear forms of neural networks may be convenient.
The steps of the online actor-critic solution are shown in
Algorithm 2 where probing noise is used for appropriate state
exploration (persistence of excitation). The initial phase of the
RL solution aims to select arbitrarily the critic weights (i.e.,
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@y = 0" > 0) t0 obtain an admissible strategy o, as empha-
sized in Theorem 2. Further, the constants oy and 6, must be
decided according to the conditions designated by Lemma 2
(i.e., 0 <6y <2and0 < 6, <2). Finally, the values of Q and
R are selected to achieve the intended optimization objectives,
namely the paces at which the tracking error dynamics &y and
the correction control signal p’ are regulated. The adaptive
solution developed herein relies on solving two optimization
problems. The first one provides a PI solution to a Bellman’s
optimality equation (9) following an optimal strategy (10).
This solution generates a sequence of non-increasing value
functions 0 < V(.)° < - < V() < V(). The second
problem optimizes the performance of the actor and critic
adaption schemes by projecting the vectors Q. and O _; on
the vectors &y and Zy, respectively. O

V. SIMULATION RESULTS

The efficacy of the model-free adaptive learning solution is
tested using: (i) a linear system with state and input delays
and (ii) a nonlinear system. Further, two model-following
approaches based on sliding mode and high-order model-
free adaptive control schemes are considered for comparison
purposes [10], [20].

A. Case 1: Linear System with State and Input Delays

An  Autonomous Underwater Vehicle (AUV) is
adopted to wvalidate the online model-free projection
solution [10], [11]. A linear system with state and input
delays is given by Xzy1 = AXg + Bug + Ay Xpyg +

0.9817 -0.0119 0
B,ug_p,yr = CXg, where A := 0.0099 0.9999 0 |,
0 -0.01 1
0.0099 0.005 0.005 -0.0131
Ay = 0 -0.001  -0.0005 |,B := -0.0001 |,
-0.001  -0.0005 0.001 0
0.001 -0.2956
B, = 0.0001 |,Xj = -0.7210 |, C =
0.0001 -1.7932
[ -0.8784 -2.3961 0.6464 |,d := 10, and h := 20. The
AUV follows a dynamic trajectory given by X", = A" X}"
and yl’(" = C’"XZ’, where A" = [_01.01 0'101 ] and
C™ :=[1 0] These dynamic forms are used to observe

the model-following errors. However, neither the dynamics
of the AUV nor those of the model-to-follow are employed
explicitly to find the online solution. The discrete-time AUV
dynamic system is sampled from a continuous-time dynamic
model with a sampling time of 75 = 0.01 second [10], [11]. It
is noted that, using three error samples (i.e., r = 2) is found
to be sufficient to pick the model-following error dynamics.
The remaining simulation parameters are listed in Table I.

The PI mechanism employs a probing noise during the first
2.5 seconds to satisfy the persistence of excitation condition.
This propping noise is useful to better explore the dynamic
environment without completely exploiting the strategies. The
RL solution is compared with a robust model-following ap-
proach that is based on Sliding Mode Control (SMC) [10].
This approach relies on knowing the full dynamical informa-
tion of the AUV and the model-to-follow as well. The steps
of the MPC solution can be summarized as follows [10].
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l)FindGandHtosatisfy[é g][G]:[GA“‘].

H cm
-0.1785  0.0292
According to ( [39]), G = | -0.3275 -0.0152 |,H =
0.0905  —-0.0326

[ 0.9999 -0.0100 ].

2) Tk = Xk - GXZQ

3) Ek = Ek,] +Sf (A + BK)qu +Sf Adifll +Sf Bth—Zh
Eyp = 0, where Sy = [ 1 1.85 -0.825 | and K =
[ 145.9573 270.1303 -120.8601 |.

4) O = Sf Tk — Sf exp(—O.l k)T() - Ek.

5) R = Ri—1 + 0 — 0.505—1.

6) The control signal is calculated using a form given
by ux = HX]" + [ 1459573 270.1303  -120.8601 | 7% +
[ -75.6846 —140.0165 62.4398 ]exp(—0.1(k + 1))1p +
75.6846 Ry — 75.6846 Ej, — 37.8423 0.

Fig. 2 presents the simulation results of the online RL and
SMC solutions. The tuned actor-critic weights are demon-
strated to converge after some exploration phase, as illustrated
by Fig. 2(a) and 2(b). The resulting control signal follows the
form depicted by Fig. 2(c). The RL solution shows appropriate
model-following after 4 seconds, while the SMC will exhibit
a small model-following error offset of 0.1 as highlighted
by Fig. 2(d) and 2(e). Unlike the SMC solution, the RL
solution approach does not employ any explicit knowledge of
the model-to-follow and the AUV dynamics to calculate the
model-following control strategy. The actor weights converge
during the first 7 seconds and the resulting strategy has gains
given by Q = [ 4.0168 -0.2670 -2.7488 |.

B. Case 2: Nonlinear System

In this case, our RL solution will be compared to an
improved high-order Model Free Adaptive Control (MFAC)
approach [20]. This is simulated using a nonlinear dynamical
process described by
li;i +ui, for k < Nt /2
Yk Yk—1Yk—2 Wk—1 (Yx—2 — 1) + round(2 k /N )uy

2 2 ’
L+Yi + i
for Np/2 <k < Nt

Yi+1

where round(-) returns the value of a number rounded to
the nearest integer. The desired response follows a dynamic
behavior given by

0.5 sin(k £/100) + 0.3 cos (k 7/50), for k < Nt /5

0.5 (=1)roumd@k/NT) for Ny /5 < k < 2N7/5

0.5 sin (k 7r/100) + 0.3 cos (k 71 /50) , for 2N /5 < k < 4Nt /5
—0.4 (~1)rund@K/NT) for ANT 5 < k < Nr.

m o _
yk+1 -

The improved high-order MFAC approach is implemented
using a set of dynamic recursive equations as follows [20];
First, an estimation law is calculated such that

0.8(ug—1 — ug_2)
0.01 + (llk_l - llk_z)2

6
b = Y Bk + (Ve = yi1)-
i=1

6
(mg—1 —ug_2) Zﬁ(i)@m .o =0.5.
i1

Then, the control law is computed as follows

% W + 0.1 iﬁ(i)u +
— W+ ——— k—i
0.1+ ¢ 0.1+ ¢, =

where g = [ 12 1/4 1/8 1/16 1/32 1/32 | and § =
[ 12 14 18 1/8].

The simulation results are shown in Fig. 3. The actor-
critic weights are shown to converge after some initial learn-
ing phase as demonstrated by Fig. 3(a) and 3(b). The RL
solution is shown to outperform the improved high-order
MFAC as depicted from the analysis ofthe model-following
and error performances (see Fig. 3(d) and 3(e)). Further,the
RL solution can capture the abrupt changes in the dynamics
of the reference model. Fig. 3(c) shows the control signal,
where the gains of the control strategy converge to Q =
[ 0.9786 —-0.1755 0.2834 ] Therefore, applying probing
noise, considering nonlinear and linear systems with delays,
and employing drastic nonlinear model-reference forms chal-
lenged the robustness of the RL solution.

u =
‘ 0.1+ ¢7

C. Discussion

The simulation outcomes consolidated the theoretical setup
in terms of the stability and convergence aspects. First, As-
sumptions 1 and 2 leading to Theorem | and Lemma 1,
revealed the asymptotic stability characteristics of the RL so-
lution. The tracking error dynamics are shown to be stabilized
asymptotically when simulated for dynamic model-following
scenarios and using systems of nonlinear and linear types
with delays, as demonstrated by Fig. 2(e) and 3(e). Second,
Theorem 2 guarantees an improved sequence of stabilizing
policies which is revealed by Fig. 2(a) and 3(a). Furthermore,
the convergence of the adapted actor and critic weights is
supported by Lemma 2.

This work presents an adaptive strategy € which can be
easily i) adopted in a digital setup without using complex
function approximators (i.e., employing (11), (12), (15), and
(16)), ii) implemented in a model-free and data-driven fashion
(i.e., using (12) and (16)), iii) configurable to a desired order
of error dynamics (see & and Fig. 1), and iv) adapted to
reflect the attainment of simultaneous optimization goals (see
Theorem 1 and Lemmas 1 and 2).

VI. CONCLUSION

The work combines an RL approach with a projection-based
adaptation mechanism to solve a model-reference adaptive
control problem. This solution uses a moving finite-horizon
of model-following error measurements. Further,the structure
of the proposed model-following error vector reflects the
order of the error dynamics. The adaptive strategy does not
employ any explicit dynamic information of the process or
the reference model. A PI technique is considered to solve
the underlying Bellman equation. Finally, actor-critic approx-
imation structures are designed to implement the PI solution,
where the adaptation rules follow a Lagrange-based projection
mechanism. Future research will extend the adaptive learning
solution to a multi-agent setting.

0.8 ¢« (Y}? - Yk)

s
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TABLE I: Simulation and Learning Parameters

Parameter Value Parameter  Value Parameter  Value Parameter  Value Parameter  Value
Q 0.05 15 R 0011 Nr 4000 N 30 r 2
T, 0.0005 oy 0.5 ny 1.5 O 0.5 My 1.5
5 T T T T T T T 6 T T 5
4+ & u;
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Fig. 2: Simulation results of Case 1.
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