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Abstract—In this paper, we propose a model-free adaptive
learning solution for a model-following control problem. This
approach employs policy iteration, to find an optimal adaptive
control solution. It utilizes a moving finite-horizon of model-
following error measurements. In addition, the control strategy is
designed by using a projection mechanism that employs Lagrange
dynamics. It allows for real-time tuning of derived actor-critic
structures to find the optimal model-following strategy and
sustain optimized adaptation performance. Finally, the efficacy
of the proposed framework is emphasized through a comparison
with sliding mode and high-order model-free adaptive control
approaches.

I. INTRODUCTION

Model Reference Adaptive Systems (MRASs) are utilized
in many applications such as the actuation of manipulators,
guidance of unmanned vehicles, and motion planning [1]–[6].
The optimal tracking control solutions are mostly implemented
offline and require partial or complete knowledge of the
physical models as well as the desired reference trajecto-
ries [1]–[15]. For nonlinear systems with internal passivity, the
model-reference tracking problem is solved using sliding mode
surfaces along with a velocity observer [12]. Nonetheless,
the control strategy partially relied on the process dynam-
ics, where a zero-state detectability condition is considered
to guarantee asymptotic stability of the equilibrium point.
For underactuated nonlinear systems of moderate order, [13]
proposed an MRAS solution that adopted the concept of the
sum-of-squares polynomial optimization. The derived strategy
is partially reliant on the process dynamics. The same is
true for the solution presented in [16], where a robust model
predictive control approach is considered forthe reference
batch processes. MRAS solutions based on graphical games
have been developed for multi-agent systems [17]–[19]. These
solutions are designed for linear time-invariant systems and
require partial knowledge of each agent’s dynamics to derive
local strategies. As such, these approaches do not address the
nonlinearity of the agents.
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Reinforcement Learning (RL) mechanisms have not been
fully investigated to develop model-following adaptive control
strategies [20]. RL is concerned with guiding the agent towards
the best strategies after interactions with the environment
to maximize (minimize) a cumulative reward (cost) [21]–
[23]. RL solutions can be found using several techniques
including two-step mechanisms such as policy iteration (PI). PI
solution evaluates and improves a given strategy in an iterative
manner [23]–[25]. The evaluation of the policy can be done
using approaches such as least squares (LS) and recursive LS
(RLS) [25], [26]. An off-policy RL approach is considered to
solve the Algebraic Riccati Equation (ARE) in [27]. Another
PI mechanism is adopted to solvethe output-based regulation
of a cooperative control problem in [28]. On the other hand,
approximation tools such as the means of adaptive critics are
adopted to implement the RL solutions. The adaptive critic is a
device that learns to anticipate reinforcing events in a way that
makes it a useful conjunct to another component, the actor, that
adjusts behavior to maximize the frequency and/or magnitude
of reinforcing events [29]–[32]. Gradient approaches are used
to tune the actor and critic weights. The adaptation schemes
can vary depending on the desired function approximation
structure and the underlying solutions employ supporting
conditions such as in [20], where a pre-designed strategy that
requires resetting conditions is considered. In [33], the tracking
problem is solved for linear-time invariant systems, where
it employed a Q-learning method for an overall augmented
system. Another approximate model-free approach based on
adaptive critics is adopted in [34] to control a flexible wing
aircraft. Nonetheless, the feedback strategy relied on a non-
optimal guidance vector embedded within that strategy.

This discussion about the challenges associated with several
MRAS solutions that exist in the literature motivates us to
develop a model-following strategy with the following prop-
erties: 1) ease of implementation in a digital environment
such as microprocessors, 2) ability to utilize measurements
of the process without incorporating any explicit dynamical
information in the underlying strategy, 3) capability to solve
model-following problems with high-order error dynamics
using feasible adaptive strategies, and 4) enabling simultane-
ous multi-objective optimization of the model-following and
strategy adaptation performances.

Contributions: The contributions of the work are three-
fold. First it formulates a novel model-following adaptive
learning solution that requires only the real-time measurements
of the process as inputs to the control strategy. Second, the
framework is flexible with respect to the order of the model-
following error dynamics, and finally uses a novel projection
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mechanism based on Lagrange dynamics to adapt the gains of
the control strategy.

Mathematical notation: The following notation and defi-
nitions are adopted by the mathematical setup of the adap-
tive learning solution. R, N,and Z+

0
refer to the sets of real

numbers, positive whole numbers, and non-negative integers,
respectively. ‖.‖1 is the 1-norm of a vector. ∇g is a gradient
of g. ⊗ signifies a Kronecker product. Let the ℓ∞− norm of
a sequence {ς(e)}∞

e=0
be given by ‖ς ‖∞ = sup

e∈N

‖ς(e)‖∞ with

ℓ∞
def
= {ς : ‖ς ‖∞ < ∞} and ℓ2

def
= {ς : ‖ς ‖2 < ∞}.

Structure: The remainder of the paper is organized as
follows. Section II introduces the mathematical setup of the
model-following control problem. Moreover, the duality be-
tween the Hamilton-Jacobi-Bellman (HJB) and Bellman opti-
mality equations is explained. This is needed to develop a tem-
poral difference mechanism and to derive an optimal model-
following strategy. Then, a temporal difference solution based
on PI is introduced in Section III. Further, the convergence
conditions of the PI solution are discussed. Section IV presents
the actor-critic approximation mechanism of the model-free
RL solution. This is done using a projection approach that is
based on Lagrange dynamics to guarantee convergence of the
adapted actor-critic weights. The solution is validated using
nonlinear and linear systems with state and input delays in
Section V. Finally, Section VI concludes the work.

II. PROBLEM FORMULATION

This section lays out the mathematical foundation of the
adaptive solution using optimal control theory [7]. Consider
a discrete-time nonlinear system described by

Xk+1 = fk(Xk, uk) and yk = gk (Xk) , k ∈ N (1)

where Xk ∈ Rn, uk ∈ Rt, and yk ∈ Rp represent the state
vector, control vector, and output vector, respectively. Consider
that the model-to-follow dynamics are given ∀k ∈ N by

Xm
k+1 = f mk (X

m
k , u

m
k ) and ymk = g

m
k (Xk) (2)

with Xm
k
∈ Rv, um

k
∈ Rm, and ym

k
∈ Rp denoting the state

vector, control vector, and output vector, respectively. The
problem can be considered as an optimal regulation of the
difference between the output of the process and that of the
reference model as shown in Fig. 1, i.e., lim

k→∞
‖εk ‖ → 0,

εk := ym
k
− yk .

The control signal is given by uk+1 = uk + µ
ω
k
, where

µω
k

is a correction control signal that is decided using a
real-time adaptive strategy ω ∈ Rt×((r+1)×p). The signal
µω
k
= ω Ek employs a flexible-size error vector defined

by Ek = [ εT
k
εT
k−1

εT
k−2

. . . εT
k−r

]T ∈ R(r+1)×p . The
number of employed error samples reflects the order of the
model-following error dynamics. Thus, the ultimate goals are
to design a framework to avoid the solutions of a set of coupled
difference equations backwards in time as well as to develop
computationally efficient strategies.

A user-defined cost functional will be used to measure
the quality of a strategy ω such that Uk

(
Ek, µ

ω
k

)
=

1
2

(
ET
k
Q Ek + µ

ω
k

T R µω
k

)
, where Q � 0 ∈ R((r+1)p)×((r+1)p)

Error

+

Process

-

Control Signal

Desired Response

Fig. 1: Model-reference adaptive system.

and R ≻ 0 ∈ Rt×t are symmetric weighting matrices. The
cost function is quadratic and convex in the error vector Ek

and control strategy µω
k

. The overall performance of a control
strategy ω is evaluated using a performance index given by

Jωk =

∞∑

i=k

Ui

(
Ei, µ

ω
i

)
. (3)

The optimal strategy ωo is decided by solving the HJB
equation of the model-following control problem. The struc-
ture of the convex cost function motivates the form of the
control strategy to be linear in the error vector Ek i.e., the
model-following error dynamics. The Hamiltonian is then
given ∀Ek, λk+1, µk by

H(Ek, λk+1, µk) = λ
T
k+1 f εk (Ek, µk) +Uk (Ek, µk) , (4)

where f ε
k
(Ek, µk) is a constraint that is dictated by the model-

following error dynamics. Thus, the optimization problem
shall find the optimal strategy ωo while satisfying the con-
straint f ε

k
(Ek, µk) = Zk+1, where Zk+1 =

[
ET
k+1

µT
k+1

]T
or

equivalently Zk+1 =
[
ET
k+1

ET
k+1
ωT

]T
.

Remark 1. This development enables a flexible strategy that

is scalable in terms of the number ofthe model-following error

measurements. Hence, the desired strategy takes the form of a

digital PID controller but with adaptable gains in real-time.

This strategy mimics to some extent a gain scheduler but with

real-time adaptation capabilities. Furthermore, this is useful

in the case of optimizing numerous coupled model-following

loops acting simultaneously. �

Assumption 1. Given the desired response of the model-to-

follow dictated by (2), assume that (1) is stabilizable around

the reference-trajectory ym
k
,∀k ∈ N. �

Assumption 2. There exists a strategy ω such that the control

signals µk = ω Ek,∀k ∈ N stabilize the system (1) around the

reference-trajectory (2). �

The following result explains the duality between the Hamil-
tonian and the temporal difference (TD) or Bellman equation
using the discrete-time Hamilton-Jacobi (DTHJ) theory. This
result is necessary to develop our adaptive solution.

Theorem 1. Let the value function V(Zk) > 0 be quadratic

and convex in the regulation error vector Ek with V(0) = 0.
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Then,

a. The value function V(Zk) satisfies the DTHJ equation

given by

H(Ek,
∂V(Zk+1)

∂Zk+1

, µk) = 0, k ∈ N. (5)

b. The value function V(Zk) represents a Lyapunov function.

Proof.

a. The value function V(Zk) =
1
2

(
ZT
k

S Zk

)
is convex in the

error vector Ek and thus it serves as a Lyapunov candidate
where S = ST ≻ 0 ∈ R((r+1)p+t)((r+1)p+t) and it has a matrix-

block structure defined by
[

SEE SEµ

SµE Sµµ

]
.

The value function can be expressed in terms of the perfor-
mance index Jk such that V(Zk) , Jk =

∑∞
i=k Ui (Ei, µi) or

equivalently given by

V(Zk) =

∞∑

i=k

Ui + λ
T
i+1

(
Zi+1 − f εi (Ei, µi)

)
. (6)

The Hamiltonian (4) and the value function (6) yield

λT
k+1Zk+1 + V(Zk) − V(Zk+1) − H(Ek, λk+1, µk) = 0. (7)

Taking the gradient of (7) with respect to Zk+1 yields

∂λk+1

∂Zk+1

T (
Zk+1 −

∂H(Ek, λk+1, µk)

∂λk+1

)
+ λk+1 −

∂V(Zk+1)

∂Zk+1

= 0,

i.e., λk+1 =
∂V (Zk+1)
∂Zk+1

. Therefore, the value function satisfies
(5).

b. Since, V(Zk+1) − V(Zk) = −Uk (Ek, µk) ≤ 0, then the
candidate structure V(Zk) is a Lyapunov function. �

The optimal solution is found by solving the HJB equation

H(Ek,∇Vo
k+1, µ

o
k ) = 0, (8)

where µo
k

refers to the optimal correction control signal (i.e.,
µo
k
= arg min

µk

H(·) = ωo Ek), ωo is the optimal strategy, Vo is

the optimal value function, and ∇Vo
k+1 = ∂V

o(Zk+1)/∂Zk+1.
The relation between Lagrange multiplier λk+1 and the gradi-
ent ∇Vk+1 yields the following Bellman equation

Vo(Zk) = Uk

(
Ek, µ

o
k

)
+ Vo(Zk+1), (9)

where the optimal strategy is calculated such that µo
k
=

arg min
µk

H (Ek,∇Vk+1, µk) = arg min
µk

V(Zk). This strategy is

found by applying Bellman optimality principles such that

µok = arg min
µk

V(Zk) = −S−1
µµSµE Ek, k ∈ N. (10)

The simultaneous solution of (9) and (10) provides a solu-
tion for the underlying Approximate Dynamic Programming
(ADP) problem, namely the Action Dependent Heuristic Dy-
namic Programming (ADHDP). The following definition is
needed.

Definition 1. (Admissible Strategy [35], [36]) Let the set of

all measurable maps uk(.) : [a, b] → U represent the space

of admissible strategies where U is a compact set. A control

strategy ω is said to be admissible on U if V(Z0) is finite (i.e.,

lim
k→∞

‖εk ‖ → ℓ2). �

The next Lemma shows that, solving the HJB (8) or
the Bellman optimality equation (9) yields an asymptotically
stable equilibrium point for the model-following error.

Lemma 1. Let the value function V(Z0) and ym
k
,∀k ∈ N be

bounded by δ̄ and ρ̄, respectively. Then, the equilibrium point

of the model-following error system is asymptotically stable.

Proof. The value function V(·) is upper-bounded i.e., V(Zk) ≤

δ̄. Hence, the inequality 0 ≤ · · · ≤ V(Zk+1) ≤ V(Zk) ≤ δ̄

holds for any admissible control strategy ω and thus for the
optimal strategy ωo as well. Hence, V(Zk) − V(Zk+1) ∈ ℓ∞
i.e., εk,∀k ∈ ℓ∞ and S ∈ ℓ∞. Furthermore, the HJB equation
(8) results in (∂Vk+1/∂Zk+1)

T Zk+1 ∈ ℓ∞ and consequently
Ek+1 ∈ ℓ∞. Adopting an admissible strategy ω or the op-
timal one yields a Bellman equation denoted by V(Zk) =
1
2
ET
k

(
Q + ωT R ω

)
Ek + V(Zk+1). Therefore, the inequality

1
2
ET
k

(
Q + ωT R ω

)
Ek ≤ V(Zk) holds. This implies that,

εk ∈ ℓ2 and similarly (∂λk+1/∂Zk+1)
T Zk+1 ∈ ℓ2. Hence,

εk → 0 as k → ∞ and the resulting model-following error
system has an asymptotically stable equilibrium point. �

III. PI SOLUTION

This section introduces a PI solution to solve the model-
following control problem. The mechanism solves the Bell-
man optimality equation (9) using the optimal strategy (10).
Further,the PI algorithm requires an initial admissible strategy
before solving for better stabilizing strategies, as detailed in
Algorithm 1.

Algorithm 1 Model-Following PI Solution

1: Start with an admissible solution S0 and initialize the
vector X0 (then calculate the error signal ε0 and vector
Z0).

2: Calculate the admissible control strategy ω0.
3: Evaluate the control strategy (i.e., obtain Sj+1) by solving

V j+1(Z
j

k
) − V j+1(Z

j

k+1
) = Uk

(
Ek, µ

j

k

)
, (11)

where j refers to a calculation step index.
4: Improve the control strategy using

µ
j+1

k
= − [S−1

µµSµE]
j+1 Ek . (12)

5: Terminate upon convergence of ‖Sj+1 − Sj ‖.

During the initial phase of the PI solution, vector X0

stores initial measurements of the dynamic system or process.
Further, it requires an initial admissible strategy that can be
chosen arbitrarily such that S0

= S0T
≻ 0 which is standard

for PI [22].

Theorem 2. Let the model-following solution be given by

Algorithm 1, where the value function and the associated

optimal strategy are given by V (Zk) and (10), respectively.

Then,

a. The strategies (12) are stabilizing.
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b. The PI process yields a non-increasing positive definite

solution sequence that follows 0 ≤ · · · ≤ V (..)o ≤ · · · ≤

· · · ≤ V (..)1 ≤ V (..)0 with Vo (..) being the optimal value

function.

Proof. The proof follows from [17] and [37] and is omitted
due to space limitations. �

This result affirms that, the simultaneous solution of (11)
and (12) will lead to a sequence of stabilizing strategies, pro-
vided that an admissible strategy is adopted at the initialization
phase of the RL solution. Further, the kernel solution matrix
S will be non-increasing and bounded below.

Remark 2. Lemma 1 and Theorem 1 reveal that, if an initial

admissible strategy is followed, and the model-following error

system is stabilizable around the desired reference trajectory,

then, Theorem 2 ensures a continuous strategy improvement

along that desired trajectory. �

IV. ACTOR-CRITIC IMPLEMENTATION

We shall now derive tuning laws for the actor and critic
approximators to solve Algorithm 1 in an online fashion. The
actor and critic structures approximate the strategy (12) and
value function in (11), respectively. Then, Lagrange optimiza-
tion principles are adopted to tune the weights in real-time.

The critic approximates the value function V(Zk) in (11)
such that

V̂(Zk) =
1

2
ZT
k Θk Zk, (13)

where the matrix Θk = ΘT
k
≻ 0 ∈ R((r+1)p+t)×((r+1)p+t) contains

the critic weights.
This value function can be reshaped such that V̂(Zk) =

Θ̄k Z̄k , with Z̄k =

{ (
Z
ξ

k

⊗
Z
ζ

k

)
, ξ = 1, . . . , ((r + 1)p + t), ζ =

ξ, . . . , ((r+1)p+t)

}
, Z̄k ∈ R

q,q = ((r+1)p+t)((r+1)p+t+1)/2,

and Θ̄T
k
∈ Rq is a vector of the entries obtained from the

matrix 1
2
Θk that are associated with those of Z̄k . This form

is more convenient to use in the policy improvement step of
Algorithm 1.

The optimal strategy (10) is then approximated using an
actor adaptive structure such that

µ̂(Ek) = Ωk Ek, ∀Ek, (14)

where Ωk ∈ R
t×((r+1)p) are the actor weights of the strategy.

This actor-critic structure can be easily employed by the
temporal difference form (11) leading to a variety of RL solu-
tions. Herein, the adaptation schemes of the actor-critic struc-
tures are inspired by Kaczmarz’s projection approach [38].

Let Ṽ(Zk) = Θ̄k with Z̃k, Z̃k =
(
Z̄k − Z̄k+1

)
and Ṽd (Zk) =

Uk (Ek, µ̂k). It is required to choose the weights Θ̄k to
minimize ‖Θ̄k − Θ̄k−1‖ subject to the constraint Ṽ(Zk) =

Ṽd(Zk). This is done using a Lagrange optimization process
to minimize the function

VVk
=

(
Θ̄k − Θ̄k−1

) (
Θ̄k − Θ̄k−1

)T
+ αV

(
Ṽ(Zk) − Ṽd(Zk)

)
,

where αV is a Lagrange multiplier. Applying the optimization
principles (i.e., ∂VVk

/∂Θ̄k = 0 and ∂VVk
/∂αV = 0) yields

(
Θ̄k − Θ̄k−1

)T
+ αV Z̃k = 0 and Θ̄k Z̃k − Ṽd (Zk) = 0.

Hence,
(
Θ̄k − Θ̄k−1

)
Z̃k + αV Z̃T

k
Z̃k = 0 and αV =

−1

Z̃T
k

Z̃k

(
Ṽd (Zk) − Θ̄k−1Z̃k

)
. Therefore, Θ̄k = Θ̄k−1 − αV Z̃T

k

and Θ̄k = Θ̄k−1 −
Z̃T
k

Z̃T
k

Z̃k

(
Θ̄k−1Z̃k − Ṽd (Zk)

)
. To manage

the update steps of the adapted critic weights, a factor δV is
considered in addition to a constant ηV to avoid the singularity
issue when updating the critic weights to write

Θ̄k = Θ̄k−1 −
δV Z̃T

k

ηV + Z̃T
k
Z̃k

(
Θ̄k−1Z̃k − Ṽd(Zk)

)
. (15)

The weights Θk can be reconstructed from the solution Θ̄k . In
a similar fashion, the actor weights are selected to minimize
the approximation error ‖Ωk −Ωk−1‖ subject to the constraint
µ̂(Ek) = µ̂

d(Ek) where µ̂d(Ek) = −Θ−1
µµΘµE Ek . Hence, the

adaptation error of the actor weights, representing the optimal
strategy, can be minimized using the following function

Vµk
= (Ωk −Ωk−1) (Ωk −Ωk−1)

T
+ αµ

(
µ̂(Ek) − µ̂

d(Ek)
)
,

where αµ is a Lagrange multiplier. Applying the optimality
conditions (i.e., ∂Vµk

/∂Ωk = 0 and ∂Vµk
/∂αµ = 0) yields

(Ωk −Ωk−1)
T
+ αµ Ek = 0 and Ωk Ek − µ̂

d(Ek) = 0.

Hence, (Ωk −Ωk−1) Ek + αµ E
T
k
Ek = 0 and αµ =

−1

ET
k
Ek

(
µ̂d(Ek) −Ωk−1Ek

)
. The actor tuning law is given by

Ωk = Ωk−1 −
ET
k

ET
k
Ek

(
Ωk−1Ek − µ̂

d(Ek)
)
. Similarly, a refined

actor adaptation law is given by

Ωk = Ωk−1 −
δµ E

T
k

ηµ + E
T
k
Ek

(
Ωk−1Ek − µ̂

d(Ek)
)
, (16)

where δµ and ηµ are constants to control the update steps of the
adapted actor weights and to avoid singularity when Ek = 0,
respectively.

The next result shows how to get approximate bounds on
δV and δµ to ensure convergence of the adapted weights.

Lemma 2. Let Θo and Ωo be the optimal weights representing

the solution of the Bellman equation (9) and the optimal

control gains (10), respectively. Then, choosing 0 < δV < 2

and 0 < δµ < 2 yields bounded deviations of the critic and

actor weights from the optimal weights.

Proof. According to (15), the temporal difference errors in
the updated critic weights are given by Θ̄e

k = Θ̄e
k−1 −

δV

(
Θ̄e

k−1
Z̃k

)
Z̃T
k

ηV + Z̃T
k

Z̃k

, where Θ̄e
k
= Θ̄o

k
− Θ̄k and Θ̄e

k−1
=

Θ̄k−1Z̃k − Ṽd (Zk). Then Θ̄eT
k =

(

I −
δV Z̃k Z̃T

k

ηV + Z̃T
k

Z̃k

)

Θ̄eT
k−1,

where I ∈ R
((r+1)p+t)×((r+1)p+t) is an identity matrix.
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This dynamical expression has an eigenvalue ΛV =(
ηV + (1 − δV ) Z̃

T
k
Z̃k

ηV + Z̃T
k
Z̃k

)

that is less than 1 if 0 < δV < 2

while the remaining eigenvalues are equal to 1. Similarly
according to (16), the temporal difference errors in the updated

actor weights are given by ΩeT
k =

(

I −
δµ EkE

T
k

ηµ + E
T
k
Ek

)

ΩeT
k−1,

where Ωe
k
= Ωo

k
− Ωk and I ∈ R((r+1)p)×((r+1)p) is an identity

matrix. Accordingly, one eigenvalue associated with this form

Λµ =

(
ηµ + (1 − δµ) E

T
k
Ek

ηµ + E
T
k
Ek

)

is less than 1 when 0 < δµ < 2.

These results are true for ηV > 0 and ηµ > 0. �

Algorithm 2 Implementation of the Actor-Critic Solution

Input:

Number of calculation steps NT .
Constants δV , δµ, ηV , and ηµ.
Initial actor Ω0 and critic Θ0 weights.
Performance index weighting matrices Q and R.
Convergence threshold Tr observed within a finite-horizon
of N calculation steps.

Output:

Converged actor-critic weights Ωo and Θo.

1: Initialize X0, E0, and Θ0 ⊲ Use admissible strategy Ω0.
2: Introduce the reference signal ym

0
.

3: k ← 0

4: Convergence-of-Actor-Critic-Weights ← False
5: while Convergence-of-Actor-Critic-Weights = False and

k ≤ NT do

6: Calculate Ṽd(Zk) = Uk (Ek, µ̂k).
7: Apply µ̂k to the process (i.e., (1)) and get yk+1 .
8: Obtain the error vector Ek+1 and then find an estimate

for the control signal µ̂k+1 using (14).
9: Find V̂(Zk) and V̂(Zk+1) in order to get Ṽ(Zk).

10: Adapt the critic weights Θ0 following (15).
11: Adapt the actor weights Ω0 following (16).
12: if ‖Θk −Θk−1‖ and ‖Ωk −Ωk−1‖ converge then

13: Θ
(o) ← Θ(k+1) and Ω(o) ← Ω(k+1)

14: Convergence-of-Actor-Critic-Weights ← True
15: end if

16: k ← k + 1

17: end while

return adapted weights Θk and Ωk , for k = 0,1, . . . ,NT

Remark 3. Herein, the structure of the actor is chosen to be

linear to enable the adopted optimal control setup and the

associated temporal difference solution. This is convenient to

many RL computational setups. It may not capture ultimately

the behavior of highly nonlinear complicated systems, where

other nonlinear forms of neural networks may be convenient.

The steps of the online actor-critic solution are shown in

Algorithm 2 where probing noise is used for appropriate state

exploration (persistence of excitation). The initial phase of the

RL solution aims to select arbitrarily the critic weights (i.e.,

Θ0 = Θ0
T ≻ 0) to obtain an admissible strategy Ω0, as empha-

sized in Theorem 2. Further, the constants δV and δµ must be

decided according to the conditions designated by Lemma 2

(i.e., 0 < δV < 2 and 0 < δµ < 2). Finally, the values of Q and

R are selected to achieve the intended optimization objectives,

namely the paces at which the tracking error dynamics Ek and

the correction control signal µω
k

are regulated. The adaptive

solution developed herein relies on solving two optimization

problems. The first one provides a PI solution to a Bellman’s

optimality equation (9) following an optimal strategy (10).
This solution generates a sequence of non-increasing value

functions 0 < V (..)o ≤ · · · ≤ V (..)1 ≤ V (..)0. The second

problem optimizes the performance of the actor and critic

adaption schemes by projecting the vectors Ωk and Θ̄k−1 on

the vectors Ek and Z̃k , respectively. �

V. SIMULATION RESULTS

The efficacy of the model-free adaptive learning solution is
tested using: (i) a linear system with state and input delays
and (ii) a nonlinear system. Further, two model-following
approaches based on sliding mode and high-order model-
free adaptive control schemes are considered for comparison
purposes [10], [20].

A. Case 1: Linear System with State and Input Delays

An Autonomous Underwater Vehicle (AUV) is
adopted to validate the online model-free projection
solution [10], [11]. A linear system with state and input
delays is given by Xk+1 = A Xk + B uk + Ad Xk−d +

Bh uk−h,yk = C Xk, where A :=

[
0.9817 −0.0119 0

0.0099 0.9999 0

0 −0.01 1

]

,

Ad :=

[
0.0099 0.005 0.005

0 −0.001 −0.0005

−0.001 −0.0005 0.001

]

,B :=

[
−0.0131

−0.0001

0

]

,

Bh :=

[
0.001

0.0001

0.0001

]

,X0 =

[
−0.2956

−0.7210

−1.7932

]

, C :=

[ −0.8784 −2.3961 0.6464 ] , d := 10, and h := 20. The
AUV follows a dynamic trajectory given by Xm

k+1
= Am Xm

k

and ym
k
= Cm Xm

k
, where Am :=

[
1 0.01

−0.01 1

]
and

Cm := [ 1 0 ]. These dynamic forms are used to observe
the model-following errors. However, neither the dynamics
of the AUV nor those of the model-to-follow are employed
explicitly to find the online solution. The discrete-time AUV
dynamic system is sampled from a continuous-time dynamic
model with a sampling time of Ts = 0.01 second [10], [11]. It
is noted that, using three error samples (i.e., r = 2) is found
to be sufficient to pick the model-following error dynamics.
The remaining simulation parameters are listed in Table I.

The PI mechanism employs a probing noise during the first
2.5 seconds to satisfy the persistence of excitation condition.
This propping noise is useful to better explore the dynamic
environment without completely exploiting the strategies. The
RL solution is compared with a robust model-following ap-
proach that is based on Sliding Mode Control (SMC) [10].
This approach relies on knowing the full dynamical informa-
tion of the AUV and the model-to-follow as well. The steps
of the MPC solution can be summarized as follows [10].
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1) Find G and H to satisfy
[

A B

C 0

] [
G

H

]
=

[
G Am

Cm

]
.

According to ( [39]), G =

[
−0.1785 0.0292

−0.3275 −0.0152

0.0905 −0.0326

]

,H =

[ 0.9999 −0.0100 ].
2) τk = Xk −GXm

k
.

3) Ek = Ek−1+S f (A + B K)τk−1+S f Adτk−11+S f Bhτk−21,
E0 = 0, where Sf =

[
1 1.85 −0.825

]
and K =[

145.9573 270.1303 −120.8601
]
.

4) σk = S f τk − S f exp(−0.1 k)τ0 − Ek .
5) Rk = Rk−1 + σk − 0.5 δk−1.
6) The control signal is calculated using a form given

by uk = H Xm
k
+ [ 145.9573 270.1303 −120.8601 ] τk +

[ −75.6846 −140.0165 62.4398 ] exp(−0.1(k + 1))τ0 +

75.6846 Rk − 75.6846 Ek − 37.8423σk .

Fig. 2 presents the simulation results of the online RL and
SMC solutions. The tuned actor-critic weights are demon-
strated to converge after some exploration phase, as illustrated
by Fig. 2(a) and 2(b). The resulting control signal follows the
form depicted by Fig. 2(c). The RL solution shows appropriate
model-following after 4 seconds, while the SMC will exhibit
a small model-following error offset of 0.1 as highlighted
by Fig. 2(d) and 2(e). Unlike the SMC solution, the RL
solution approach does not employ any explicit knowledge of
the model-to-follow and the AUV dynamics to calculate the
model-following control strategy. The actor weights converge
during the first 7 seconds and the resulting strategy has gains
given by Ω =

[
4.0168 −0.2670 −2.7488

]
.

B. Case 2: Nonlinear System

In this case, our RL solution will be compared to an
improved high-order Model Free Adaptive Control (MFAC)
approach [20]. This is simulated using a nonlinear dynamical
process described by

yk+1 =




yk
1+y2

k

+ u3
k
, for k ≤ NT /2

yk yk−1 yk−2 uk−1 (yk−2 − 1) + round(2 k/NT )uk

1 + y2
k−1
+ y2

k−2

,

for NT /2 < k ≤ NT

where round(·) returns the value of a number rounded to
the nearest integer. The desired response follows a dynamic
behavior given by

ymk+1 =




0.5 sin (k π/100) + 0.3 cos (k π/50) , for k ≤ NT /5

0.5 (−1)round(2 k/NT ), for NT /5 < k ≤ 2NT /5

0.5 sin (k π/100) + 0.3 cos (k π/50) , for 2NT /5 < k ≤ 4NT /5

−0.4 (−1)round(2 k/NT ), for 4NT /5 < k ≤ NT .

The improved high-order MFAC approach is implemented
using a set of dynamic recursive equations as follows [20];
First, an estimation law is calculated such that

φk =

6∑

i=1

β(i)φk−i +
0.8(uk−1 − uk−2)

0.01 + (uk−1 − uk−2)2
((yk − yk−1)−

(uk−1 − uk−2)

6∑

i=1

β(i)φk−i

)

, φ0 = 0.5.

Then, the control law is computed as follows

uk =

φ2
k

0.1 + φ2
k

uk−1 +
0.1

0.1 + φ2
k

4∑

i=1

β̄(i)uk−i +

0.8 φk

(
ym
k
− yk

)

0.1 + φ2
k

,

where β =
[

1/2 1/4 1/8 1/16 1/32 1/32
]

and β̄ =[
1/2 1/4 1/8 1/8

]
.

The simulation results are shown in Fig. 3. The actor-
critic weights are shown to converge after some initial learn-
ing phase as demonstrated by Fig. 3(a) and 3(b). The RL
solution is shown to outperform the improved high-order
MFAC as depicted from the analysis ofthe model-following
and error performances (see Fig. 3(d) and 3(e)). Further,the
RL solution can capture the abrupt changes in the dynamics
of the reference model. Fig. 3(c) shows the control signal,
where the gains of the control strategy converge to Ω =[

0.9786 −0.1755 0.2834
]
. Therefore, applying probing

noise, considering nonlinear and linear systems with delays,
and employing drastic nonlinear model-reference forms chal-
lenged the robustness of the RL solution.

C. Discussion

The simulation outcomes consolidated the theoretical setup
in terms of the stability and convergence aspects. First, As-
sumptions 1 and 2 leading to Theorem 1 and Lemma 1,
revealed the asymptotic stability characteristics of the RL so-
lution. The tracking error dynamics are shown to be stabilized
asymptotically when simulated for dynamic model-following
scenarios and using systems of nonlinear and linear types
with delays, as demonstrated by Fig. 2(e) and 3(e). Second,
Theorem 2 guarantees an improved sequence of stabilizing
policies which is revealed by Fig. 2(a) and 3(a). Furthermore,
the convergence of the adapted actor and critic weights is
supported by Lemma 2.

This work presents an adaptive strategy Ω which can be
easily i) adopted in a digital setup without using complex
function approximators (i.e., employing (11), (12), (15), and
(16)), ii) implemented in a model-free and data-driven fashion
(i.e., using (12) and (16)), iii) configurable to a desired order
of error dynamics (see Ek and Fig. 1), and iv) adapted to
reflect the attainment of simultaneous optimization goals (see
Theorem 1 and Lemmas 1 and 2).

VI. CONCLUSION

The work combines an RL approach with a projection-based
adaptation mechanism to solve a model-reference adaptive
control problem. This solution uses a moving finite-horizon
of model-following error measurements. Further,the structure
of the proposed model-following error vector reflects the
order of the error dynamics. The adaptive strategy does not
employ any explicit dynamic information of the process or
the reference model. A PI technique is considered to solve
the underlying Bellman equation. Finally, actor-critic approx-
imation structures are designed to implement the PI solution,
where the adaptation rules follow a Lagrange-based projection
mechanism. Future research will extend the adaptive learning
solution to a multi-agent setting.
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TABLE I: Simulation and Learning Parameters

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

Q 0.05 I3 R 0.01 I3 NT 4000 N 30 r 2

Tr 0.0005 δV 0.5 ηV 1.5 δµ 0.5 ηµ 1.5
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(a) The evolution of the actor weights Ωk .
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(b) The evolution of the critic weights Θ̄k .
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(c) The evolution of the control signal uk .
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(d) The evolution of the trajectory-tracking per-
formance.
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(e) The evolution of the error signal εk .

Fig. 2: Simulation results of Case 1.
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