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Verification of Adversarially Robust Reinforcement Learning
Mechanisms in Aerospace Systems

Taehwan Seo*, Prachi P. Sahoo,’ and Kyriakos G. Vamvoudakis*
Georgia Institute of Technology, Atlanta, Georgia, 30313

In this paper, we present a detailed framework for the verification and validation of
learning-based reinforcement learning (RL) mechanisms in aerospace control software. First,
we integrate an adversarial input mitigation and moving target defense framework and verify
its efficacy in real-time. Then, we provide a testing framework to verify the robustness of
closed-loop RL mechanisms. The reliability of the adversarially robust RL mechanism is tested
using the VerifAl toolkit and an X-plane 11 Cessna 172.
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S I. Nomenclature
5
ﬁ t € [tg, ) = Time; independent unless stated
é theR>0 = Initial time
/| ts€R>0 = Switching time
g x(1) : [tg,0) — R" = State variable; x = [x1, ..., xu] T
5 u(t) : [tg,0) —» R™ = Control input
E up(t) : [tg, 00) = R™ = Behavioral policy
g ceR" = Desired state (time invariant or time varying)
o v(?) : [tg,0) = R™ = Input deviation v := up — u
& f():R* - R" = Unknown nonlinear state function
E g(-) : R* -» R™m = Unknown nonlinear input function
! €e€cR>0 = Convergence threshold
i 1€ (-0.2,0.2) = Adversarial gain
B Yt R X [tr, 1] = RN« = Actor basis function
é Y iR X [tr,t]] — RNy = Critic basis function
£ W € RNwxm = Actor weight matrix
% WY e RM = Critic weight matrix
s F CcR” = Free space
z ® = Kronecker product
3 %) = Hadamard division
—§ vec(-) = Vectorization of a matrix
§ diag([-]) = Diagonal matrix
= = Negation
A = Conjunction

II. Introduction
rTIFICIAL Intelligence (Al), widely implemented in autonomy [1-4] is the perceiving, synthesizing, and inferring
Aintelligence demonstrated by machines, as opposed to that displayed by animals and humans. Reinforcement
learning (RL) is an area of machine learning concerned with how intelligent agents make decisions and take actions in
an environment to maximize a user-defined cumulative reward. RL does not require labeled data or the need to correct
sub-optimal actions explicitly. Instead, the focus is on finding a balance between exploration of uncharted territory and
exploitation of current knowledge. RL, in the context of nonlinear control problems, generates optimal control policies
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for known and unknown systems in the presence of several perturbations including observation noise, adversarial attacks,
and response errors. RL is one of the key methods to solve optimal control problems [5, 6], as it implements learning
methods such as Q-learning [7], off-policy learning, policy iteration, and actor-critic [6] structures. These methods may
also find applications in non-linear systems with unknown dynamical model parameters [8]. This makes RL a powerful
and critical tool for the control of Cyber-Physical Systems (CPS) and necessitates the importance of verification and
robustness checks of RL mechanisms using specific performance measures.

Specifically, the purpose of verification is to check if the performance of the system is within the desired design
and operation limits. Such performance evaluation is mandated by the black/grey-box nature of RL [9]. Since the cost
of fixing errors and solving problems to align with requirements exponentially grows with time [10], it is crucial to
perform diagnostics in the early engineering stages. Verification in RL-based control software can largely be divided
into performance and stability verification methods [11].

Performance verification [12, 13] measures the effect on performance of chosen algorithm after training with
different methods such as, neural network controllers [14, 15], optimal policy learning [16], and actor/critic structures
[17] via a series of testing protocols. Sensitivity analysis measures maximum deviation of the algorithm’s output from
desired output [18]. Falsification analysis tests the model with different environmental parameters and conditions to
verify robustness [19]. Another form of performance verification is adversarial robustness which checks the response of
the model in the presence of adversarial inputs [20].

Stability verification monitors unstable states of a system during policy learning. Using Lyapunov stability theory
[14, 21, 22], it limits unstable learning and flags unstable states via mathematical monitoring, i.e., reachability analysis.
Reachability analysis estimates the possible sets of network outputs over some input distribution using optimality
measures derived from Hamilton-Jacobi theory [23-25].

Contributions: The main contributions of this work are twofold. First, this work presents the integration of attack
mitigation RL control with a verification toolkit for an explicit model verification process. Secondly, this work presents
a framework for the verification testbed to evaluate RL algorithm effectiveness through simulation. When used in
tandem, the model verification contributions in this work will enable an algorithm engineer to evaluate the reliability of
any given attack mitigation algorithm and assess the performance of nonlinear control algorithms over their objectives.

Outline: Section III describes the problem formulation based on an off-policy RL and an on-off adversarially robust
learning mechanism. A verification framework named “VerifAI” [26] is used to provide a test-bed for simulating the
integrated algorithm and evaluating the performance of the model in Section IV. Section V provides an experimental
setup for an X-plane 11 Cessna 172 to carry out proposed verification process in the presence of adversarial inputs.
Finally, Section VI presents conclusions and briefly discusses future work.

III. Problem Formulation

A. Preliminaries
Definition 1. A time sequence f1, %2, ... is a (infinite unless otherwise stated) sequence of time values 7; € Ry, for all
J € N, satisfying (i) #; < t;,, for all j € N and (ii) for all #' € R there exists j > 1 such that; > t'. ]

An atomic proposition is a statement over the variables or parameters of a problem that is either True (T) or False
(L). Assume now that AP is a finite set of such propositions.

Definition 2. Let AP be a finite set of atomic propositions. A timed word w over AP is an infinite sequence
w = (wi,t1)(wa, 1) ... where wi, wa, ... is an infinite word over 2A% and t1, 1o, . .. is a time sequence. O

Definition 3. A Weighted Transition System (WTS) is a tuple (I1, Iy, —, AP, L,y), where Il is a finite set of states,
IIp € II is a set of initial states, —C II X II is a transition relation, A% is a finite set of atomic propositions,
L : T — 27% is a labeling function, and y :—>— R is a map that assigns a positive weight to each transition. 0O

Definition 4. A timed run of a WTS is an infinite sequence r = (rq,t1)(r2,12) ..., such that ry € Ilp and r; € II,
(rj,rj+1) €—,forall j € N. The time stamps ¢; are inductively defined with #; = 0 and ¢4 = t; +y(rj,rj41), for all
j € N. The timed run r generates a timed word w(r) = wi(r1), wa(r2), ... = (L(r1),t1), (L(r2),12), .. . over the set
2% where L(r;) is the subset of atomic propositions AP that are true at state r; at time 7, j € N. |

The syntax of a timed temporal logic formula The timed temporal logic formula ¢ over AP is defined by a grammar
that has the form

o=ploelerAer| Orelorelore | eiUes, )]
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where ¢ € AP, and Oy, ¢(.), O(.), and U are the next, future, always, and until operators, respectively; the subscript
I is a nonempty time interval in one of the followings forms: [i{, 2], [i1,i2), (i1, 2], (i1,12), [i1, ), (i1, ®0), with i1, i3
€ Q. ¢1 and ¢, are two different timed temporal logic formulas, and p is one of atomic proposition. Several languages
are subsets of the form (1), such as Metric Temporal Logic (MTL), Metric Interval Temporal Logic (MITL), Bounded
MTL, coFlat MTL, or Time Window Temporal Logic (TWTL) [27, 28]. Here we define the generalized semantics of
(1) over discrete observations (point-wise semantics) [29]. The next definition considers the satisfaction of a formula by
a timed run.

Definition 5. [29, 30] Given a sequence R = (7, #9)(71,¢1) . .. and a timed formula ¢, we define (R, i) E ¢, i € Ny
(R satisfies ¢ at i) as follows:
(R,i) Fp & p € L(m), (R.0) E-p o (Ri) o,
(R.i) Ep1 A g2 & (R,i) g1 and (R,i)  ¢2,
(Ri)ECr¢ e (Ri+l) Egandi —1; €1,
(R,i) Ee1Urps & Tk > i such that (R, k) | ¢2,
ty —ti € land (R,m) = ¢;,Vm € {i,..., k}.

Also, 070 = TU;p and O;¢ = =0~ . Finally, R satisfies ¢, denoted by R [ ¢, if and only if (R, 0) | ¢. O
B. Off-Policy RL
Consider a system with the following nonlinear dynamics,
x(1) = f(x(1)) + g(x(0)u(t), x(to) =x0, 120 2
é(t) = F(e(1)) + G(e(D)u(r) := f(e(t) +c(1)) + g(e(r) + c(1))u(r) 3)

where e(f) := x(¢) — c(t) € R" is the error between the state x € R" and the state of interest ¢ € R". xo is the initial
state of the system and u € R™ is the control input. Let the time window [z, #;], k,l € N define a duration of T
seconds. Finally f : R" — R”", g : R" — R™" are unknown, locally Lipschitz functions that define the plant and
the input functions for the dynamical system in (2) and (3). F : R" — R" and G : R" — R™™™ are state and input
function modified from f and g with the changed in states e(z) from x(z). Consider K € N points of interest in the
state space, denoted by ¢, € R”, for k € K = {1,...,K}. Each point ¢, k € K, corresponds to certain properties of
interest, which are expressed as Boolean variables via the finite set of atomic propositions AP.

The background in transitions IT and timed formula ¢ that are from [31] are preliminaries for safe transition execution
between different states of interest and corresponding phases of control in learning-based control mechanisms. In this
learning-based control framework, the development of control strategies with optimality-based transitions I1, and the
timed-behavior, given in the definition below, is defined with the eventual satisfaction of timed formula ¢.

Definition 6. Consider an agent trajectory x : [tp,0) — R” of (2). Then, a timed behavior of x is the infinite
sequence b(zg) = (x(to), 00, t0)(x(t1),01,11) ..., where tg,t,... is a time sequence according to Definition 1,
x(t;) e mj,, ji € Kforalli € No, and 0y = L(7;) C 277 i.e., the subset of atomic propositions that are true when
x(t;) € mj,, fori € Ny. The timed behavior b satisfies a timed formula ¢ safely if b (¢0) := (00, %0)(01,t1) ... E ¢ and
x(t) € ¥, for all t > 1. It eventually satisfies ¢ safely if there exists j € N such that suff(b (¢9), j) = suff(as (o), j),
(suff(s, j) = 541 ...) for some a, (1)) |= ¢ and x(1) € F, forall 1 > ¢;. o

The performance criteria for all i € K is given by:
Iy
Hesttohtoutga) = [ r(ex(o).utene). ) @)
4]

where to > 0, ty > to. The r(e,u) := Q(e) + S(u) is metric of performance with S(u) := uTRu,R > 0 and
0 : R" — R being positive-semi-definite function. This gives rise to the timed behavior cost of a timed behavior b.

In the time window (g, ¢;) the state of the system x(¢) will transition from region of interest 7 to region of interest
717 in an optimal manner using the finite weighted transition system,

T = 1,1y, —, AP, L, y). 5)

Such a state transition process is interpreted within the context of optimal timed transition 7 — m; with the following
assumptions:
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1) x(tx) € ng and x(¢) € ny for all t € (tx, t;)

2) x(t) € F\ Upmex tm for all ¢ € [t, 1]

3) u(x(1),t) = argJ’, where J* =minye 7 (1)) (€1(tx), tk, 11, @)
where A is set of all functions R" X [t4,t,] — R™, (tp, > t, = 0), F is free space R". Append the existing cost
functional to include the above constraints, we obtain

U]

Ji(er(te). tr, 11, u) 2=/ (yr(ei(s),u(e;(s), s)) + Li i (e;(s)))ds + ¢(er(11)). (6)

Iy

In this research of performance verification for learning-based control in the presence of adversarial attacks, the multiple
states of interest are considered as isolated missions for the verification analysis. We quantify the algorithm performance
of each missions with a proposed verification toolkit that is introduced in Section III.D. Each of the separate missions
have K = 1, ¢ = 0{1} with consideration of a single state of interest. Ly ;(-) > 0 is the penalty for the unsafe zones,
and y > 0 is the trade-off factor between L ;(-) and r(-,-). r := Q(e) + S(u) is the performance measure, with
Q(e) :=e'Qme, O =0, S(u) == u"Ru, R > 0, and ¢ : R” — R > 0 is a positive definite term that penalizes the
deviation of the terminal state at #; from the point or trajectory of interest c.

The optimal value function associated with (3), a continuously differentiable system-dynamics, is given by
V*(e,t) = min, J(e, t,u). The corresponding minimizing control policy u* can be written as,

1
u*(e, 1) = —2—R_IG(e)TVeV*(e,t),Ve, >0 (7
Y

and the solution for the optimal value function V* can be found by solving the following partial differential equation
Ve, t >0,

V. V*(e,t) + V. V*(e,0)T(F(e) + G(e)u*) + yr(e,u*) + L(e) =0, 3
Vi€ [ti,ty), V¥ (e (1), 11) = ¢ (e (1))

It is generally hard to solve (8) directly. Thus, we will approximate the value function V* using a critic approximator and
the optimal control «* using an actor approximator. Given iterations i € N, we denote the value function approximation
as V¥ and the control input as #;41, where lim;_, Vi = V* and lim;_e #; = u*. The current critic and actor
approximators are given Ve, t > 0 as follows,

Vi (e,t) = (W) Ty (e,1) + ¢(e) )
i1 (e,t) = (WHTy" (e, 1). (10)

By combining (7), (8) with (9) and (10) the update equation for the combined actor and critic weight matrices, Wist, is
expressed as,

-1
! 1

Wie ==|>.07.0;:] | > 0] (11)
=0 7=0

where ©;; = [@;J@g’i]. The relationship for ©!, ; is given by ©Y , = (" (e(Tjs1), Tj41) — ¥" (e(7)), Tj))T and for ©' ,

is given by O ; = /T_jﬂ 2y ((Di(e,7)TR) ® y(e,7)T) dr. Moreover, the actor-critic combined weights are given by,
’ J

W; = [(W))Tvec(W)™]T (12)

and P, the cost to go over a small duration of time 7; to 7;, is given by ¥ = V¥ (e(1;11), Tjs1) — V¥ (e(7:), ) +
L7 (v@(e) + Lie) + yS(ai(e, 7)) dr.

T
Note that 7; =t and 7j41 = ¢+ T, where j € {0,..., N} and t; =79 < 71 < ... < Ty = {; are the time stamps when
(11) updates the actor-critic weights until they converge with respect to € > 0. The Algorithm 1 summarises off-policy

RL.
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Algorithm 1: Off-Policy RL
Data: Learning parameters, Behavioral policy
Result: Simulation data
begin
fort=0:t; do
Employ arbitrary behavioral policy up.
Collect input/state/switch data from system (3).

fork=1: Kdo

Selecte > 0,1=0.

while ||W;,; — Wi|| > € do
Solve for W;,; from equation (11).
Extract WiVH and Wi’il from W;,; by (12).
Update index i by i =i + 1.

= W

optimal, k i+1°

Wu
fort=1,:trdo

Simulate the dynamical system with learned policy with Wg‘p imarx With (10) by different c.

| Collect input-state data from system (3).

C. On-Off Adversarially Robust RL

To minimize the effect of adversarial signals and increase the unpredictability of our RL policy, we will use a moving
target defense (MTD) mechanism by incorporating an on-off switching mechanism in the controller gain matrix [32].
Specifically, the initial behavioral policy is designed to incorporate switching. This gain switching is performed as
follows,

K, = {k, (i= sw%tch) (13)
1, (i # switch)

wp= K an (M) (14)
i=0 bi

U= [ul,ug,...,um]T (15)

up = tanh (u @ D) (16)

Where control input elements u;,Vj € {1,2,3, ..., m} are formed with sum of each state feedback that is multiplied with
scalar gain K;, Vi € {1,2,3,...,n}. These elements K; are either k € R > 1 or 1 if i = switch or i # switch respectively,
as shown in (13). The switch is randomly selected from {1, 2, 3, ..., n} over different time blocks. D € R™ is the input
constraint, and b; € R is the state constraint. Also, /.y (x(.)) is an arbitrary function that aids exploration and includes
an observation noise and preliminary control input for initial data collection of the system.

To apply of switching actuators, the gain K; is multiplied with the corresponding arbitrary state function, 4;(x;), for
each of the actuator switch modes. Adversarial noise is applied to the behavioral policy as follows,

Ugttack = AUp
U, attacked = (1 + /l)ub (17)

where A € (—0.2,0.2) is user-defined. The behavioral policy u; is modulated with multiplier ratio A that is chosen
either randomly within the pre-defined range or specifically worst-case choices in the range. In contrast, the behavioral
policy that is calculated over the vanilla RL for optimality is not modulated. When exposed to adversarial noise, there is
a discrepancy between up_qsrackea applied to the system and uy, that is used for policy iteration, and this will hinder the
effective learning of the optimal policy. The procedure for adversarial noise addition is summarized in Algorithm 2.
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Algorithm 2: On-Off Switching Arbitrary Behavioral Policy u,

Output :Behavioral policy uj,
1 begin
2 for every tg seconds do
3 L Randomize switch from [1,2,3,4, ...,n] € N.

Get K; from (13) with arbitrary gain k.
Compute u; Vj € {1,2,3,...m} as per (14).
Compute u;, as given by (16).

Add adversarial noise 440k to up by (17).

N S A

A filtered update of weight matrix is applied to off-policy learning. Since the off-policy learning updates the actor
weight W* by (11), the gradient of the actor weight is calculated as AW;‘ = Wl?frl - Wl“ then pruned as,

Tu : Tru
Aiu = AW € 3s ste.epest gradients among AW; (18)
& 0, otherwise.
Where s is number of states, which is same as n. This Wﬁgra 4 is added to the current weight matrix Wi“ to get the updated
value, W This process is summarized in Algorithm 3.

i+1,prune’

Algorithm 3: Tuning with Switching
Input :(W* W

. 2. u . . .
Output : W; 1, prune which is a pruned version

1 begin

if i > 2 then
Calculate AW[" from Wlfil - Wl"
Sort AW/ and find 3s steepest gradient index named igeep-
Apply (18) to compute W¥_ with igeep-

i,grad
6 Get updated W* as W* =W + Wi

u
i+1,prune i,grad

N A W N

After combining the off-policy RL with the on-off switching and tuning actor weights with pruning, we obtain the
main RL algorithmic result shown in Algorithm 4.
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Algorithm 4: Off-Policy RL with On-Off Switching
Input :Learning parameters, Behavioral policy
Output :Simulation data

1 begin

2 Load global variable parameters.

3 fort=0:t;, do

4 Randomize switch.

5 Get up, from Algorithm 2; Simulate the dynamical system with uy,.
6 Collect input/state/switch data from system (3).

7

8 Selecte > 0,1=0.

9 while [|W;,1 — W;|| > € do

10 Recall switch information for uy,.

11 Solve for W;, from equation (11).

12 Extract Wl‘; , and W:i | from Wi by (12).

13 Get updated W4,  from Algorithm 3 (W, W)

14 Replace WY, with W 1, prune”

15 | Update index iby i =i+ 1.
16 ngtimal = Wilj—l'
17
18 fort=1,:trdo

19 Simulate the dynamical system with learned policy with Wg - with (10).

ptimal
20 Collect input-state data from system (3).
D. VerifAl

VerifAl [26] software toolkit is a simulation-based Al verification toolkit that verifies Al-based models to guide
model-based design improvements. VerifAl proposes a sampling method and analysis table to solve the verification
challenges [13]. The verification process can be summarized in the following five steps: (1) environment generation and
modeling, (2) falsification, (3) analysis of counterexamples, (4) re-training or finding high-performance parameters,
and (5) re-validation of the improved model. First, from the given range of environmental parameters or given set
of environments, VerifAl samples combinations of environment parameters from the abstract feature space to test
the model via simulation. The abstract feature space, which is a set of test environments in which the model will be
tested, dictates what combinations of test environment parameters will be chosen for verification based on probabilistic
parameter selection. The selection and sampling is done by SCENIC [33], which samples the parameters and applies
selected information to the simulation. This information includes range, available options, and the probability model
of each parameter. These are provided by the verification designer based on the objective of the verification. Next,
from the set of simulations, VerifAl finds faulty conditions or environments, and diagnoses faulty cases using analysis
with error tables and property monitors. Error tables provide fault cases with sampled parameter information that is
applied to the simulation environment, while the property monitor prints out quantitative data of the simulation. From
the iterative simulation with sampled parameters, the scores of each performance with arbitrary measure of the system
are also recorded in the table. Each iteration of the simulation follows the processes above, providing performance score
and parameter selection data for analysis to diagnose weakest part of the model. Finally, the analysis information of the
model provides methods to improve and re-train the model to enhance its performance in the weak environments.

IV. Verification Framework Test-bed Design

A. Process Design
We built the entire Al framework and process from the ground up as summarized in Figure 1. This includes all
components that are addressed above, with a nonlinear cart-pole simulation in OpenAl Gym [34] and X-plane 11 [35]
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VerifAl

Abstract feature space

Analysis

Algorithm

OpenAl Gym . Off policy .
Reinforcement learning

On-Off adversarially

X-plane 11
robust mechanism

= —o @D
-o— o
—o \_> a»

Control Panel

Fig. 1 Diagram description of the test framework.

as a test-bed. The implementation of the proposed structure consists of three parts: (1) algorithmic, (2) simulation, and
(3) incorporation into the VerifAl toolkit. The algorithm includes an off-policy learning with an adversarial robustness
mechanism incorporating MTD. This is summarized in (16) and Algorithm 2. From its generated abstract space, which
are sampled verification parameters including state measures, VerifAl runs each epoch with a different set of sampled
parameters. From running VerifAl, it communicates with the algorithm and simulation results to conduct analysis for
verification. The entire process can be tuned with a control panel script that has all sets of parameters and switches for
effective control of the verification process.

Upon connecting VerifAl to the working model, the framework samples the adversarial perturbation. From the
simulation of sampled data, fault cases are tabulated with simulated parameters and performance scores for analysis.
The performance score is calculated from the state traces of the system by summing up L;-norm errors that were
captured over the last 7 seconds window of simulation. This is given by

Ty

Score = Z [lc = x(@)]]2. (19)

i=Ty-T

The process design is summarized in Algorithm 5, including complete connection of algorithms and verification systems.
The N represents the total number of test simulations.
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Algorithm 5: Verification Process

Data: Control parameters, Simulation environment
Result: Error table of Falsification
1 begin
Load global variable parameters and import VerifAl.
Set parameter to change from environment.

for I:N do
Generate the Sample environment.
Simulation data = Algorithm 4(sample environment).
Extract x from simulation data.
Calculate (Score) as per (19).
if (Score) > criterion then
‘ Save environment information with score to error table.
else
L Save environment information with score to safe table.

(-IEN-CIEEN B N 2

—
W N = D

B. Aerospace Test-Bed

Simulation tool Supporting languages Complex state performance
X-plane 11 C, Java, Python, MATLAB High

Gazebo C++, ROS High

Webots C, C++, Python, Java, MAT- | High

LAB or ROS

Mujoco XML Low

PyBullet Python Medium

OpenAl Gym Python Low

Table 1 Comparison of test framework simulation tools.

The simulation component described in Figure 1 in the verification framework can be replaced with different
configurations. Examples for such simulation software are Gazebo, Webots, Pybullet, and Mujoco [36, 37]. The Table 1
shows possible simulation tools with the information on supporting languages and performances. These options are
suggested testbeds for the proposed verification framework. Since the verification toolkit, VERIFAI is provided with
Python, the simulations need to be compatible with Python to use current setup of the verification. In the options in
Table 1, ROS has python client rospy and Mujoco supports python bindings. Therefore, all of the options in the table
are available to connect VerifAl for verification. In [38], the authors used VerifAl over the “X-Plane” flight simulator
software to verify the neural-net based taxiing system, “TaxiNet.” By replacing the existing simulator with a flight
simulator, multiple aeronautical vehicles can easily be tested in their use of the on-off adversarially robust algorithm
successfully. VerifAl is equipped with the ability to generate an abstract feature space with a set of test conditions in the
simulator regardless of simulation tool selection.

V. Experiments
To conduct simulation studies, this work considered a Cessna 172 in X-plane 11 aircraft model [35]. The presented
analysis of verification data will show the algorithm’s performance with respect to changing adversarial gains.

A. Control Problem
The attitude control problem for the Cessna 172 X-plane 11, shown in Figure 2, will be addressed in this section.
The algorithm aims to stabilize the roll and pitch angles of the aircraft with three different control surfaces: aileron,
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elevator, and rudder. The states of the system are expressed as [6, ¢, 0, ¢]T, which are pitch angle, roll angle, pitch
angular rate, and roll angular rate respectively. The input u is defined as [ug, ue, u,-], which are yoke inputs of the
aileron, elevator, and rudder. Each of the input values is limited in a range between [—1, 1], where the 0 value represents
an idle control input. The throttle of the aircraft, u, is fixed to 82% of full throttle. The aircraft is placed in the air at an
altitude of 1200 meters above the ground. The reference position of the ground is set as the start line of runway 04 in
Grant County International Airport ICAO: KMHW), facing 4 degrees east from the north, which coincides with the
runway heading. The initial speed of the plane in the air is set to 50 m/s, and no initial angular rate is applied.

Fig.2 X-plane 11 Cessna 172 model.

B. Parameters & Discussion

The cost matrices that define the optimization objective are Q = diag([1,0.3,0.1,0.1]) and R = diag([1, 1, 1]), that
prioritize roll then pitch attitudes to be stabilized. The profile of Cessna 172 is simulated with default parameters as
described in the operating manual [39]. The X-plane 11 uses blade element coefficient information for the implementation
of the aerodynamic calculation. Each of the elements such as the two main wings, fuselage, and the tail wings contain
their own dynamical profile with coefficient information, thus simulating the whole body of the aircraft based on rigid
body dynamics with attitude and airspeed information of the aircraft. The simulation time step is determined based
on the looping time of call iteration of communication. Normally, the simulation step time for algorithm application
is 0.1 seconds, however, there exist minor deviations due to communication latency between Python and the X-plane
simulation. From the parameter script, the environment parameters such as turbulence, clouds, and weather are selected
based on a uniform distribution probabilistic model. Based on the assigned parameter values, the simulation result
is converted to a quantitative score given by (19). VerifAl records X-plane simulation for every set of environmental
parameters and provides visualizations of each verification test.

C. Algorithm Verification

Figure 3 shows the average penalty scores over the changing adversarial gains with the specific adversarial inputs. The
verification is performed with 100 test cases for each sampled value of A running over 1200 seconds with the behavioral
policy and 20 seconds of testing. The score corresponds to the final 20 seconds of the test’s output performance
calculated using (19). Instances when the algorithm failed to converge were assigned the highest penalty score of 185.
Each point on the red and blue curves in the figure represents the average penalty score for each of the 9 chosen values
of A between [-0.2,0.2].

For comparative studies, the same testing setup was run with the switching mechanism incorporated into the
behavioral policy to verify the efficacy of the defense mechanism. The algorithm did not significantly improve
performance over the adversary in the presence of negative adversarial gains, but in the presence of positive adversarial
gains, the switching mechanism demonstrated significantly improved performance over the RL behavioral policy.

Figure 4 provides sample roll and pitch performance with two different penalty scores, one safe and one unsafe
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Fig. 4 Performances of X-plane Cessna 172 samples.

performance of the X-plane Cessna 172. Figure 4(a) shows the evolution of the pitch and roll performance with a
relatively lower penalty score value of 3.97. The evolution of the pitch and roll angles shown in Figure 4(b) approaches
zero average values with high frequency oscillations and stabilization, thus generating a bigger penalty score of 21.04.

D. RL Model Verification

For closed-loop RL model verification with varying environmental conditions on the X-plane, simulation studies are
performed with the policy that recorded lowest penalty score of 3.97 from the algorithm verification step.

In this test, as described in Table 2, wind turbulence, cloud level, and rain probability were chosen as changing
environment parameters for the verification process. A cumulative number of 500 tests were performed with varying
parameter combinations. The resulting correlation coefficients are tabulated in Table 3 and the resulting penalty scores
for each combination of environmental parameters are shown in Figure 5.

From Table 3, one can conclude that turbulence is most highly correlated to the penalty score. Rain probability has
the least amount of correlation to the performance score, while cloud level strikes halfway between turbulence and rain
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Parameters Sampling range
Cloud level 0-5

Rain percentage 0-1
Turbulence 0-6

Table 2 X-plane RL model verification parameter information.

Parameters Correlation coefficient
Cloud level 0.552

Rain probability 0.065
Turbulence 0.924

Table 3 X-plane correlation coefficient with performance penalty score.
probability. Since rain can only occur when cloud levels are 4 or higher, the correlation between cloud level to the
model performance score may be higher.

Average score over rain probability Average score over turbulence level

30

.
=}

w
o
T

25+ 4 o

%]

=
T
N

20 1 <

[
o
]

Penalty Score
&

Penalty Score
» 8
L

-

=]
T

3

o
T

0O 01 02 03 04 05 06 07 08 09 1 0 1 2 3 4 5 6
Rain probability Turbulence

(a) Penalty score with rain probability. (b) Penalty score with turbulence.

Fig. 5 Score comparison with different environment parameters.

The Figure 5 compares the average penalty scores over rain probability and turbulence level since these features
are most and least correlated with the penalty score respectively. Turbulence plot in Figure 5(b) showcases a linear
relationship with the penalty score, while rain probability plot in Figure 5(a) presents a flat relationship with the penalty
score in the 15 and 20 range. These plots demonstrate how the suggested verification approach aids environmental
parameter identification in the context of its impact on model performance and verification of control algorithm of
choice.

VI. Conclusion and Future Work
We propose a verification process for attack mitigating control rooted in RL. This work integrates an RL algorithm
to solve optimal control problems, an adversarial attack mitigation mechanism, and a VerifAl toolkit. The verification
test-bed framework is applied to an X-plane 11 Cessna 172 to successfully evaluate and verify the reliability of off-policy
RL. Future work will include working with more complex dynamic systems such as multi-agent networked systems,
improvement of the control Al by verification-based re-training, and more nuanced scoring mechanism used for
verification.
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