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Abstract—In this work, we consider an actuator redundant
system, i.e., a system with more actuators than the number of
effective control inputs, and bring together connections between
control allocation, actuator selection, and learning. In this kind
of systems, the actuator commands can be chosen to meet
a given control objective while still having leftover degrees
of freedom to use towards minimizing the overall actuation
energy. We show that this energy can be further minimized
by optimally selecting the actuators themselves, which we
perform in two different scenarios; first, in the case where
the control objective is not known beforehand; and second,
in the case where the control objective is defined to be a
stabilizing state feedback controller. To relax the requirement
for knowledge of the system’s plant matrix, we compose a novel
learning mechanism based on policy iteration, which computes
the anti-stabilizing solution to an associated algebraic Riccati
equation using trajectory data. Simulations are performed that
demonstrate our approach.

I. INTRODUCTION

A system is defined to be actuator redundant when the
number of actuators installed on it is greater than the number
of high-level control inputs available for design [1], [2].
In these redundant systems, there exist an infinite number
of realizations for the actuator commands that can yield
a desired control policy or objective, hence leaving the
designer with leftover degrees of freedom that can be utilized
to optimize other, unrelated specifications. The problem of
optimally allocating the additional degrees of freedom is
commonly known as the control allocation (CA) problem,
and comprehensive surveys regarding it are given in [3]-[5].

A popular CA specification in actuator redundant systems
is the minimization of the closed-loop actuation energy. The
solution to this problem yields an analytic expression that
involves the generalized inverse of the actuation matrix [6],
though one may need to resort to numerical methods in
constrained cases that consider saturation limits [7]. The
aforementioned results make clear that the actuation matrix
of the system directly affects the minimum energy that
is attainable in CA. Consequently, in this work, we are
motivated to study the problem of actuator selection for
optimal CA, where also the dynamics of the system’s plant
matrix could be unknown.

Much attention has been given lately to the actuator
selection problem, in which one is tasked with picking the
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actuators of the system so that a metric of controllability or
resilience is optimized. Examples of metrics used include
Gramians-related functions [8]—[11], which are associated
with the minimum energy required to drive a linear system
to a given state; functions that account for security-aware
actuator selection [12]-[14]; and metrics that quantify linear-
quadratic optimality [15]-[17]. The aforementioned works,
though effective in their purpose, did not consider a system
with model uncertainty nor focused on the CA problem.

Learning and estimation are often used as tools to deal
with unknown dynamics in control systems, and they were
recently used in the context of actuator selection with con-
vergence guarantees. Particularly, by using learning meth-
ods, a Gramian-based metric of controllability was provably
optimized online in [18] without knowledge of the system
dynamics. However, the problem of learning-based actuator
selection for optimal control allocation, as well as the con-
sideration of redundant systems, was not considered in [18].

Contributions of this paper: Unlike the aforementioned
works, here we focus on the actuator selection problem in
the context of CA as well as learning. Since the minimum
energy solution of the CA problem is directly dependent
on the actuators of the system, we define novel actuator
selection metrics quantifying this energy and consider two
different scenarios; first, we assume an agnostic setup where
the desired control policy in CA is unknown; and second, we
suppose that the desired control policy in CA has a known,
linear in the state structure. In the latter case, the actuator
selection metric directly depends on the system’s plant matrix
through a dual LE defined over the transposition of the plant.
Nevertheless, we relax this requirement of system knowledge
by expressing the solution to this LE as the anti-stabilizing
solution to an algebraic Riccati equation (ARE). This ARE
is subsequently solved using a modified version of learning-
based policy iteration (PI), which conventionally can only
find stabilizing solutions to AREs instead.

Notation: The operators ® and @ will denote the Kro-
necker product and sum, respectively. Given a matrix Z €
]Rnxm, VGC(Z) = [Zl,l 21’2 . Zl,m Zg’l ZQ)Q N Znﬁm]T
will denote the vectorized form of a matrix, whereas
vec™! will perform the inverse of this operation. Ad-
ditionally, if Z is square and symmetric, we define as
V6Ch(Z) = [Z171 Z172 Zl,n Z272 2273 . Zn,n]T
the half vectorized form of Z, and as vecs(Z) =
[Zl,l 22172 221777, 22’2 222’3 Zn’n]T the scaled
half vectorized form of Z.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a continuous-time linear system of the form
z(t) = Az(t) + Go(t), z(0) = xo, t =0, (1)
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where x(t) € R™ denotes the state with initial condition
o € R™, v(t) € R™ is the control policy, and A € R™*",
G € R™™ are the system’s state and input matrices,
respectively. It is assumed that v is a control policy that
is predetermined. For example, v could be a state feedback
control law designed for appropriate pole placement of the
closed-loop system or a linear quadratic regulator.

A. Actuator Redundancy

In the problem of control allocation, it is assumed that
there exist multiple actuator commands that can effectively
yield the closed-loop behavior prescribed by the policy v.
More specifically, let the control policy v satisfy the follow-
ing mapping from actuator commands to control inputs:

v(t) = Bu(t), Vt =0, ()

where B € R™** is a matrix whose columns comprise the
actuators of the system, and u(t) € R¥ is a vector containing
each actuator’s commands. Then, if k¥ > m and B has full
row rank, the equation (2) has an infinite number of solutions
with respect to u(t). Any systems with these properties are
called actuator redundant [1], [2], because they have more
actuators than the minimum needed to construct the policy
v from the actuator commands wu.

Definition 1. [2] The system (1) is called actuator redundant
if its mapping (2) from actuator commands to control inputs
satisfies k > m and rank(B) = m. ]

B. Optimal Control Allocation

Given that the system is actuator redundant, one can
choose u so that (2) holds, while still having leftover degrees
of freedom over further modifying u. For example, consider
the control input u(t) = Biv(t) + By z(t), t = 0, where
BY = BT(BBT)~! is the Moore—Penrose inverse of B,
B, = I — B'B is the null-space projection matrix of B,
and z(t) € R™ is an arbitrary signal. Then, no matter how
z(t) is chosen, it always holds that v(t) = Bu(t) (see [2]
for the proof). As such, it is natural to search for an actuator
command vector w(¢) that not only achieves the control
policy requirement (2), but also has some form of minimum
energy. These two objectives are not mutually exclusive,
owing exactly to the actuator redundancy described above.

Let W = W(B) € Rk** be a positive definite, diagonal
matrix that assigns a weight to each actuator, i.e., to each
column of B. Then, the problem can be described pointwise
in time ¢ > 0 by the constrained optimization [1]:

min  L(u(t)) = u’ (t)Wu(t)
s.t.  w(t) = Bu(t).
Following [1], the solution to this problem is given by
w(t) = W 'BT(BW™'B") " u(t). 4)

Note that per Definition 1, the inverse here always exists
for actuator redundant systems. Hence, plugging the optimal
actuator command (4) in (3) yields the constrained minimum
value of the weighted energy:

Ly (1) == L(u* (b)) = 0" () (BW BN Lu(t).  (5)

C. Actuator Placement and Learning for Allocation

The purpose of this paper is to bring connections be-
tween control allocation, actuator selection, and learning.
Specifically, notice that the minimum allocation energy (5)
directly depends on the actuator matrix B. Hence, if one can
choose the actuators that will be used by the system, then
the minimum energy (5) can be further optimized, but this
time with respect to B.

Towards this end, let B be decomposed as B = [By Bs],
where B; € R™*k1 B, € R™*F2 and ky; + ky = k. In
this decomposition, B; represents the part of B that is fixed,
and B, represents the part of B that is free to be selected.

Particularly, we define B; = [81 32 B, | and By =
[b1 bo ka], where 3; € R™, j = 1,...,k;, are
fixed actuator columns, and b; € R™, ¢ = 1,..., ko, are

columns each of which corresponds to an actuator to be
selected. Let now S = {s1, ..., sy} be the set of available
actuator columns s; € R™, where N > ks. Then, the
problem to be solved in this work is to choose the columns
of the free matrix By by solving the optimization:

min  f(B),
st.  card(B) = ko, (6)
B = {b1,ba, ..., bk},

where f : 25 — R is a function quantifying the optimality
of BB with respect to (5), and is to be defined in the following
sections based on the characteristics of v(t), ¥t > 0. Since
such functions inherently require knowledge of the system’s
plant matrix A, a subsequent purpose of this work is to
construct learning algorithms to evaluate those in a data-
based manner.

Before proceeding, we require the following assumption,
which ensures that system (1)-(2) is indeed actuator redun-
dant per Definition 1.

Assumption 1. The matrix B; € R™*¥1 has full row rank,
k1>mandk2>0. O

III. ACTUATOR SELECTION WITHOUT PRIOR
INFORMATION ON THE POLICY v

We will initially consider a general setup in which we want
to select the system’s actuators to reduce the energy in (5),
but where the nominal control input v is neither fixed nor
known beforehand. It can be seen that a direct optimization
of L% with respect to B is not possible in this scenario,
because L} depends on the undetermined value v(t), Vt >
0. Nevertheless, an “average” optimization approach can be
applied instead, where the actuators are chosen to minimize
(5) evenly across all possible directions of v(¢) [9], [10].
Particularly, one can choose f to be equal to

fe(B) =t (BW'BT)™). @)
Albeit elegant, the choice (7) entails a computational hurdle;
the matrix (BW ~'BT)~! can be shown to be equivalent to

an inverse of a weighted Gramian, and the trace of such
matrices is notorious for being hard to optimize [19].
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Proposition 1. Letr E € R™*"™ be the null matrix. Then,
BW'BT is a weighted controllability Gramian of the
control pair (E, B).

Proof. One possible weighted controllability Gramian for the
control pair (E, B) is given by

1 1
f ePTBW 1B e Tdr =J BW~'B"dr = BW~'BT,
0 0
where we used the fact that e = I for any 7 > 0. [ ]

Relaxations are usually considered to tackle this issue of
computational complexity. For example, let &/ € R™*"™ be
a positive definite matrix. Then, motivated by the inequality

tr(E~!
m tr(E)
a relaxation to the problem of minimizing tr(E~1) is to max-
imize tr(E) instead [20], [21]. Accordingly, this relaxation
in our setup is equivalent to choosing f in (6) as:

far(B) = —tr(BW'BT). 9)

Indeed, such a relaxation is sufficient to reduce the
computational complexity to polynomial levels. Partic-
ularly, let us denote W = W(B) as W =
diag [wg, wp,, Wy, ... Wy, |, where we note

again that W is a function of B (or B) which assigns a
positive weight to each actuator. Then:
k1

ko
1 1
w(BWBT) = (Z LY wbbm?)
=1 i

j=1 J

= 2, — Bl + 2 —bll™
j=1 WB; i=1 Wi

As it is evident from the equation above, optimizing
tr(BW—1BT) is equivalent to sorting the values w; ! ||s]|
for all s € S, and choosing B so that it contains the
ko elements of & with the largest such values. Hence,
the complexity of solving (6) with f chosen as in (9) is
O(NlogN). It should be noted here that the first summation
term in (10) is constant, since 3;, j = 1,..., k1, are fixed.

(10)

IV. ACTUATOR SELECTION WITH PRIOR INFORMATION
ON THE POLICY v

In this section, we consider a more specific setup, where
the control input v is assumed to have a known structure.
Particularly, we assume that:

v(t) = Kx(t), (11)
where K € R”™*" is a known constant gain such that the
closed-loop matrix A + GK is Hurwitz. Such a feedback
gain could be designed either using knowledge of the system
matrices A, G, or by exploiting data and employing model-
free learning methods [22], [23]. Additionally, we assume
that the initial state xy € R™ has known variance, given by:

E[zozs] =V > 0. (12)

In the aforementioned setup, the constrained minimum
value of the weighted energy (5) will be given by:

Ly () =w*T () Wu* (t)=2T() KT (BWBY) ' Ka(t). (13)

Notice that the optimal weighted energy (13) now has a much
more informative structure than (5), where the unknown
evaluation of the function v was involved. Because of this,
not only can one choose actuators to optimize (13) “on
average”, but we can actually minimize (13) directly over
an infinite horizon on ¢ > 0. Specifically, we can choose:

fo(B) = IEI[ L - L*B(t)dt] = IEHOOO u*T(t)Wu*(t)dt]
= 1EUOOO xT(t)KT(BW‘lBT)_lK:c(t)dt]. (14)

A. Model-Based Computation of the Cost

While (14) involves trajectories of the state and an expec-
tation, it can still be written statically as a function of the
model matrices A, G, as stated in the following theorem.

Theorem 1. Consider the system (1) under the control policy
(11), and with initial state variance given by (12). Then

IE[ f wa:T(t)KT(BW‘lBT)‘le(t)dt =tr(QR)=tr(PV)
0

where R = KT(BW™'BT)"'K, and P, Q € R"™" are
symmetric matrices, with P > 0, QQ > 0, satisfying the LEs:

(A+GK)™P+P(A+GK)+ R=0, (15)
(A+GK)Q +QA+GK)T + vV =o0. (16)
Proof. The proof is omitted due to space limitations. ]

According to Theorem 1, optimizing the cost (14) has
once again an increased computational complexity, due to the
appearance of the matrix inverse (BW ~!BT)~! through R.
Fortunately, however, Theorem 1 also states that the solution
of just one LE is required to evaluate f at all points in 25.
Specifically, if f is chosen as in (14), then its realization is

fp(B) = u(QR) A7)
where we can see from (16) that () is completely independent
of B. Therefore, although a brute-force algorithm to solve (6)
may require a large number of iterations, the per iteration
complexity will remain at relatively low levels as it will not
involve the iterative solution of the LE (16).

For the same reason, it would be in one’s interest to
avoid using the alternate form f(B) = tr(PV') provided by
Theorem 1, because P is the solution of an LE that depends
directly on B. Hence, a brute force algorithm that would
evaluate f(B) = tr(PV) across all possible points in 25
would have to solve the LE (15) at each iteration, which
would then lead to increased per-iteration complexity.

B. Model-Based Computation of the Cost with Relaxation

Consider now the scenario where m = n, so that G and
K are square matrices. Additionally, let us assume, since K
is square, that it is also invertible. Then we are once again
able to use the inequality (8) to motivate the same relaxation
employed in the previous section; in lieu of minimizing
tr(QR) = tr(RY2QR"/?), we can instead minimize:

for(B) = —tr((RV2QRY?)™!) = —(R7'Q™").  (18)

4676

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 10,2023 at 14:44:50 UTC from IEEE Xplore. Restrictions apply.



The inverse of () here exists owing to Theorem 1, while
the inverse of R exists due to Assumption 1 and the non-
singularity of K. Further analysis of (18) yields:

r(R'Q™ Y =uw(K'BW 'BTKTQ™1)
=tu(W'B"KTQ'K~'B)

B k2 g
=Y —BKTTQK B+ Y — b K TTQT K.
j=1 WB; i=1 Wi
Hence, we can now notice that the employed relaxation
once again brings the complexity down to polynomial lev-
els; to optimize fp., one only needs to sort the values
isTK*TQ’lK*s for all s € S, and choose B to contain
the ko elements of S with the largest such values. Therefore,
the complexity of solving (6) with f as in (18) is O(NlogN),
and only one LE of the form (16) needs to be solved.

V. PARTIALLY MODEL-FREE COST COMPUTATION

A. Cost Expression Through the Anti-Stabilizing Solution to
an ARE

In this section, we proceed to derive a learning algorithm
that will allow for the evaluation of the costs (17)-(18) with-
out knowledge of the system’s drift matrix A. To this end,
note that these costs depend on A only through the matrices
Q and Q. Therefore, if we manage to learn/estimate Q) or
Q! using measured data, our purpose for partially model-
free evaluation of the costs (17)-(18) will have been fulfilled.

Unlike P, which satisfies the nominal LE (15) for the plant
A + GK, the matrix @ is a solution to the dual LE (16)
instead; that is, the order of the transpose operator in (16)
is switched when compared to (15). Consequently, to learn
@ using measured data and describe (16) in a model-free
manner, trajectories from the transpose plant AT are needed.
To bypass this issue, and since () is positive definite and thus
invertible, we pre- and post-multiply the LE (16) by Q! and
turn it into the following ARE for the plant A + GK:

(A+GK)'X + X(A+GK) + XVX =0,

where X, = Q! is a solution to (19).

Various methods for solving AREs model-free exist in
the literature [22], [24], which are essentially a learning-
based formulation of procedures known as policy iteration
(PD) or Kleinman’s algorithm [25], [26]. Accordingly, it is
tempting to use these methods to solve (19) in a learning-
based manner and compute Q! without knowledge of A.
However, there is a pitfall in the ARE (19) that would cause
the implementations of [22], [24] to fail to find Q~!; these
methods can only find the stabilizing solution to an ARE.

19)

Definition 2. Consider the general form of an ARE:
ATX + XA+Q-XEX =0
where A, X,Q,% e R™", and X,Q,¥ are symmetric.
1) A solution X, € R"*" to the ARE (20) is called
stabilizing with respect to A if A — XX is Hurwitz.
2) A solution X, € R"*" to tlze ARE (20) is called aPti—
stabilizing with respect to A if all eigenvalues of A —
> X, have strictly positive real parts. O

(20)

Algorithm 1 PI to compute Q~*

1: Let i = 0, e > 0. Start with a matrix Yy € R™*™ such
that —(A + GK) — Y} is Hurwitz.

2: repeat

3:  Compute X; by solving the LE:

—(A+GK +Y)™X; - X;(A+ GK +Y;)
+Y'vly; =0 (22)

4:  Compute Y;;1 as Y;41 = VX, and set i =17 + 1.
st until ||Y; - Y| <e

As stated next, the matrix Q' is not the stabilizing
solution to (19), hence the learning-based PI methods of
[22], [24] would fail to compute it; in fact, Q7! is the anti-
stabilizing solution of (19).

Lemma 1. Consider the ARE (19), where X € R™*™ is the
variable to be solved for. Then:
1) X = 0 is a stabilizing solution to (19) with respect to
A+ GK.
2) X, = Q' is an anti-stabilizing solution to (19) with
respect to A + GK.

Proof. The proof is omitted due to space limitations. [

B. PI for the ARE’s Anti-Stabilizing Solution

Although Q~1! is not the stabilizing solution of (19) with
respect to A + GK, it can prove handful that it has been
characterized as the anti-stabilizing one. Particularly, due to
this property, the matrix Q! can be shown to be a stabilizing
solution to an alternate ARE instead.

Lemma 2. X, = Q! is the stabilizing solution of
—(A+GK)"X —X(A+GK) - XVX =0.
with respect to —(A + GK).

2y

Proof. Q™' is a solution to (21) due to the fact that (21) is
just the negation of (19). In addition, —(A + GK) — VQ~*
is Hurwitz owing to Lemma 1, hence Q! is stabilizing with
respect to —(A + GK). ]

The matrix Q! has now been characterized as a stabiliz-
ing solution of (21) with respect to —(A + GK). Therefore,
can now use the PI procedure to compute it in an iterative
fashion, which we could not have done directly on (19) with
respect to A + GK. Although the PI algorithm is inherently
model-based as seen from Algorithm 1, it is the first step
towards computing Q! in a data-based fashion [22], [24].

Notice now that the constant term in the ARE (21) is
zero, hence the observability assumptions imposed in [22],
[24], [26] for the constant term do not hold. However, the
convergence of Algorithm 1 is still guaranteed.

Theorem 2. Consider the sequence of matrices {X,}ien,
{Yi}ien generated by Algorithm 1. Then, for all i € N :

1) —(A+ GK +Y;) is Hurwitz,

2) QM= Xip1 <X,

3) lim; o X; = Qil.

Proof. The proof is omitted due to space limitations. ]
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Like all PI-based algorithms, Algorithm 1 requires that the
initial matrix Yj is stabilizing, i.e., that —(A 4+ GK) —Yj is
Hurwitz. However, in the present framework, such a stabi-
lizing matrix can be constructed by just the mere knowledge
of a lower bound to the minimum eigenvalue of A.

Theorem 3. Let Yo = —GK — al, where a < o =
mineqq,.. nyRe(Ni(A)). Then, —(A+ GK) —Yy is Hurwitz.

yeeny

Proof. The proof is omitted due to space limitations. [

C. Learning-Based PI for the ARE’s Anti-Stabilizing Solu-
tion

The analysis of the previous section allowed us to succes-
sively approximate the anti-stabilizing solution Q! of (19)
using PIL. In view of this result, we now proceed to derive
a data-based formulation for Algorithm 1 which does not
require knowledge of the system’s matrix A. Notice that if
we pre- and post-multiply (22) by z(t), then:

— 2T ()(ATX; + X;A)z(t) — 2" () (GK + V)" X, (t)
— 2" ()X, (GK + Yy)x(t) + 2" ()Y V= Yz(t) = 0,

or equivalently:

=4 T X)) + 2"

dt
T X(GK + Yi)(t)

(O)XiGo(t) + (Gu(t) Xix(t)
(GK + Y)z(t)" (1) Xx(t)
e ()Y VY (t) = 0.
Note that here, v could be any signal generating the trajectory

data of x, and not necessarily given by (11). If we let 7' > 0
and integrate over [t, t + T'] then:

t+T
xT(t)Xix(t)—g:T(t-i-T)Xix(t—i—T)-i-L (2" (1) X;Go(7)

+ (Gu(T)" X2 (1) =" (1) Xi (GK +Y;)x(T) (23)
— ((GK-FE)Q?(T))TXﬂ?(T)+Z‘T(T)YiTV_1Y;'l‘(T))dT:O.
Using Kronecker algebra, equation (23) can be written as:
OF (t)vee(X;) = i(t) (24)
where
0;(1)=0xx(t)+(G ® I,) Jyx (t)+ (I, ® G) Iy (t)
—(GK+Y;) © (GK+Y5)) Ju (1),

D(t) = =S (t)vee(V; VY,
b)) =2(t)@a(t) — 2t +T)@x(t + T),
t+T t+T
Jux(t)= t (1) ® z(7)dT, Jxv(t)=£ (1) ® v(r)dr,

t+T
() = f 2(7) ® x(r)dr

The redundant parameters in (24), which are owed to the
symmetry of X, can be eliminated by rewriting (24) as:

O7 (t)vees(X;) = @4(t) (25)

where ©(t) = vech(vec™10;(t)). Note that the matrix A
is not involved in (25). Hence, by gathering data along the
trajectories of (1) in the form of matrices Jyx(tx), Jxv(tk)s
Jux (tr), 0xx(tr), where ¢ > 0 is a sampling instant for k €

Algorithm 2 Learning-Based PI to Compute Q!

1: Let i = 0, e > 0. Start with a matrix Yy € R™*™ such
that —(A + GK) — Y} is Hurwitz.

2: repeat

3 Compute X; from (27).

4:  Compute Y;11 as Y;.1 =V X; and set ¢ =4 + 1.

ssuntil |Y; Y g <e

{0,...,K}, K € N, we can write the following using (25):

Z@tk Ze)tk tk

Wthh can be solved for X; given that the corresponding data
matrices are sufficiently rich, which we assume next.

tk vecs (26)

Assumptlon 2. There exists Ky € N, such that if K > K
then Y5, ©:(t)OT(t1,) is non-singular, for all i € N.  []

Given Assumption (2), the solution to (26) is given by:
-1
K

vecs <2@ tk (tk)> Z@ ty)®

This gives rise to the learning—based PI Algorithm 2 for

computing the anti-stabilizing solution Q! to (19). Con-

sequently, we can now solve the actuator selection problem

(6) with cost functions (17)-(18) in a data-based manner.
We summarize the convergence of Algorithm 2 next.

- (27)

Theorem 4. Let Assumption 2 hold. Consider the sequence
of matrices {X;}ien, {Yi}ien generated by Algorithm 2.
Then, for all 1 € N :

1) —(A+ GK +Y;) is Hurwitz,

2) QM X <X,

3) hml_)oo Xi = Q_l.

Proof. Given Assumption 2, equation (26) has a unique
solution that is given by (27). Additionally, any matrix X;
satisfying (22) also satisfies (26), for all 7 € N. Hence, the
proof follows directly from Theorem 2. ]

VI. SIMULATIONS

We consider the linearized model of an electric vertical
take-off and landing (eVTOL) aircraft [27], with n = 9 states
and m = 5 high-level control inputs. Its input matrix is given
by G = {e4,e5,¢6,¢€7,e9}, where e; € R? is a unit vector
with i-th entry equal to unity. The set S = {s1, s2,..., 814}
of available actuators is shown at the top of next page, while
a full description of the plant matrix A can be found in [27].

The initial set of actuators is By = [s1 S2 S3 S13 S14]»
and we want to augment it with k2 = 6 additional actuators
from S. To do this, we solve (6), where the cost function f is
given by (17), the matrix K is a stabilizing gain, the variance
matrix is V' = 0.1y, and the weight for each actuator is
ws = 1, for all s € S. To learn the matrix () of the cost (17)
without knowing A, Algorithm 2 is applied after gathering
data from the system for a period of 9 seconds using the
control input v(t) = Kx(t)+[11111]70.01 3;%) sin(w;t),
where w; are frequencies imposing exploratlon and are
randomly chosen over [—50, 50] for all j € {1,...,100}.

4678

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 10,2023 at 14:44:50 UTC from IEEE Xplore. Restrictions apply.



0.6825 \ (107* 0 —0.6825\ (—107* 0 1.2330 0 0 0 —1.2330 0 0 0
0.8888 ||107%|[107*|| 0.8888 1074 | [107*| [ —0.2469 0 0 0 —0.2469 0 0 0
S =1{|-0.1503|,| o || ©O 0.1503 |,| o || 0 |[-0.0419[|107*|[107%|| O 0.0419 |,|—107*||=10"*|| ©
—0.3510 | | 10=%| [10*| | —0.3510| | 10~ | |10=%||—0.0332| [10=%||10=4| |107*| | —0.0332]| | 104 1074 | |10
—0.6197 0 0 —0.6197 0 0 —0.4254 0 0 0 —0.4254 0 0 0
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] Conference on Control and Automation, pp. 1-6, IEEE, 2006.
[6] L. Zaccarian, “Dynamic allocation for input redundant control sys-
tems,” Automatica, vol. 45, no. 6, pp. 1431-1438, 2009.
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Fig. 2. Evolution of the error norm ||XZ - Q’l| o 1EN
The evolution of the norm of the trajectories during the [15]
data-gathering phase is shown in Figure 1, while Figure 2
shows the distance of the sequence {X;};cn from the matrix ~ [16]
Q’l. It can be seen that after 15 iterations, this distance
practically vanishes, and X5 ~ @Q'. Subsequently, the [17]
matrix X5 is used as a substitute of () and the actuator
placement optimization problem (6) is solved. The optimal (18]
solution is found to be B* = {sa, s3, 84, S¢, S7, $11}-
VII. CONCLUSION [19]
We considered an actuator redundant system and per-
formed actuator selection for optimal control allocation.  [20]
To render this procedure model-free, we designed a data- .
based algorithm to compute the costs of the corresponding (211
optimization problems without knowledge of the system’s
plant matrix. Future work will include an extension to a  [22]
completely adaptive system, where both learning, actuator
selection, and control allocation take place in real-time. [23]
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