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1. Introduction
The phenomenon of wave reflection on spatial interfaces, separating two media, is well known
and is described in classical textbooks (see, for example, books by Kittel [1] and Lekner [2]). If the
interfaces are arranged in a finite or infinite array, then multiple reflections may lead to interesting
phenomena of dispersion connected to Floquet theory (see [1]). For finite stacks, the book [2] has
provided constructive algorithms for evaluation of transmission and reflection characteristics of
the structured stack.

The emphasis of the present paper is on interfaces of a different kind—temporal interfaces.
Interest in this area has been growing for a number of years: see, for example, the book by Lurie
[3] and the review of Caloz & Deck-Léger [4,5]. Most notable have been the works of Fink [6], and
Bacot et al. [7] on image recovery through partial time reversal at temporal interfaces. The recent
development in modelling of waves in media with temporal and spatial interfaces was stimulated
by the work of Lurie [3], Milton & Mattei [8] and Mattei & Milton [9,10], who introduced the key
ideas in this novel subject area.

With causality in place, a temporal interface still produces wave splitting so that, at a certain
time when the elastic or inertial properties of the carrier medium change instantaneously, the
wavefront will split into two fronts, propagating in different directions. Special combinations
of temporal and spatial interfaces can be analysed, where highly non-trivial wave patterns
are observed, as discussed in [8–10]. These patterns of characteristic lines are known as ‘field
patterns’.

These field patterns can arise in space-time geometries as simple as certain temporal laminates.
Here, we show that this allows a straightforward computation of their response which, in
particular, reveals the structure at the front of the wave. Hence, the term ‘frontal wave’ is
used throughout the text. Additionally, the case of chiral interfaces is explored. The idea of
non-reciprocity for dynamic materials was discussed by Lurie [3] for the case of a laminate
with oblique interfaces in space–time, and by Brun et al. [11] in the context of chiral elastic
lattices and homogenized coupled elastic systems. This was followed by a computational
experiment by Wang et al. [12] who observed a uni-directional edge wave along the boundary
of a structured elastic solid, built as a two-dimensional lattice cluster embedding gyroscopic
spinners. The work on non-reciprocal dynamic materials was further stimulated by novel
physical applications and, in particular, by the concept of ‘topological insulators’, as discussed
by Moore [13], Pendry et al. [14], Hibbins et al. [15] and Zhao et al. [16]. In the recent paper by
Nieves et al. [17], an analytical procedure was discussed to implement numerical simulations
of the non-reciprocity for the Rayleigh waves in the discrete and continuous chiral elastic
systems.

Floquet theory for transient problems in media with periodic temporal interfaces can be
successfully applied, as discussed by Nassar et al. [18], and by Lurie & Weekes [19].

Recent work on modelling of chiral waves in elastic lattices by Carta et al. [20,21] has provided
an explanation of the dynamics of discrete gyroscopic systems in the context of dispersion,
localization and dynamic degeneracies. The paper by Nieves et al. [22] provided mathematical
insight into the vibrations of chiral multi-structures and connections between the discrete non-
reciprocal systems and their continuous counterparts. The recent paper by Jones et al. [23] has
presented a comprehensive study of coupled elastic waves, dynamic localization, and dynamic
Green’s functions in a chiral elastic system. Furthermore, this work laid the foundations for the
idea of an imperfect temporal interface associated with high-gyricity material. One characteristic
feature of a gyroscopic force is that it is orthogonal to the velocity vector, and hence a rotation
transformation is involved in the description of vector chiral waves and also in the analysis of
imperfect temporal chiral interfaces.

The structure of the paper is as follows: in §2, the formal description of temporal interfaces
and temporally stratified media is introduced. For a given set of initial conditions, §3a presents
the description of the field patterns, associated with temporal laminates, and initiates the study of
frontal waves in the context of the analysis of the frontal structure of the wave formed as a result
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of multiple splittings at temporal interfaces. Special attention is given to the temporal switching
algorithm, which leads to the frontal wave blow-up. For a different physical configuration related
to temporal interfaces, the frontal waves were also observed in [19]. The case of periodic initial
conditions is considered in §4. The notion of chiral vibrations and chiral interfaces is introduced in
§5, which includes the treatment of both spatial and temporal interfaces. Finally, the derivation of
the transmission conditions for chiral interfaces, characterized by high gyricity, is presented in §6.
Furthermore, the discussion of the wave splitting and the frontal wave is also presented. In that
section, the mathematical formulation is set as a vector problem and chiral temporal interfaces
provide coupling between the longitudinal and transverse displacements of the wave field.
Illustrative examples, which include closed form solutions of the Cauchy problems in temporally
stratified media, are discussed in §7.

2. Formal settings—temporal interfaces
Let two-dimensional vector fields j and e be divergence-free and curl-free, respectively in R2.
Assume that

j(x) = σ (x)e(x), (2.1)

where
∇ · j(x) = 0 and e= −∇V, (2.2)

with the diagonal matrix σ (x) = diag(α(x), −β(x)). Here, α and β are positive functions.
Thus, the potential function V satisfies the governing equation

∂

∂x1

(
α(x)

∂

∂x1
V(x)

)
− ∂

∂x2

(
β(x)

∂

∂x2
V(x)

)
= 0. (2.3)

The initial conditions are set at the boundary of the upper half-plane

V(x1, 0) = Φ(x1) and
∂V
∂x2

(x1, 0) = Ψ (x1), as x1 ∈ (−∞, +∞), (2.4)

where Φ and Ψ are given bounded functions.
In particular, choose the independent variables x1 and x2 to be a length coordinate X and a time

variable T, respectively, and refer to the above problem (2.3) and (2.4) as the Cauchy problem for
the wave equation in a temporally and spatially inhomogeneous elastic string. In this case, V
stands for the elastic displacement, and the relations (2.4) represent the initial conditions for the
displacement and velocity at T = 0.

(a) Temporally inhomogeneous medium
Consider the special case where α and β are X-independent, but may change with T, i.e. α =
α(T), β = β(T). In the context of the physical interpretation, related to vibration of an elastic string,
which extends along the X-axis, the coefficients α and β represent the elastic stiffness and the mass
density, respectively. Firstly, consider the case when these are continuous and bounded functions
of T. The wave equation (2.3) then becomes

α(T)
∂2

∂X2 V(X,T) − ∂

∂T

(
β(T)

∂

∂T
V(X,T)

)
= 0. (2.5)

It is assumed that the materials are non-dispersive, since otherwise the governing equation (2.5)
would take a different form (e.g. [24]). Note that in (2.5) by interchanging T and X we obtain the
governing equation in a spatial laminate. This allows one to map results for spatial laminates to
temporal laminates. The difference is that one has to respect causality: an instantaneous point
source can only generate waves in the future, not the past. The response to such point sources, or
periodic arrays of them, will be the main focus of our investigations in subsequent sections.
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Figure 1. Temporal laminate.

If one has a band gap in the spatial laminate then, in the temporal laminate, one may have,
for a fixed wavevector and for a frequency in the bandgap, complex conjugate solutions, one of
which corresponds to waves growing exponentially in time.

The formal application of the Fourier transform

V̂(T, k) =
∫∞

−∞
V(X,T) eiXk dX (2.6)

leads to

α(T)k2V̂(k,T) + ∂

∂T

(
β(T)

d
dT

V̂(k,T)

)
= 0. (2.7)

In particular, if β = 1, and the normalized stiffness coefficient α is a periodic function of time, for
example α(T) = 1 − 2q cos(2T), 0 < q< 1/2, then equation (2.7) becomes

d2

dT2 V̂(k,T) + k2(1 − 2q cos(2T))V̂(k,T) = 0,

which is the well-known Mathieu differential equation. The solution can be represented in terms
of the Mathieu functions, and Floquet theory can be used accordingly (e.g. [25]).

Consider an alternative configuration, where both the stiffness coefficient α and the mass
density coefficient β are piece-wise constant functions of T, which implies a ‘temporal
stratification’ (figure 1). In this case, the interface conditions should be set at every temporal
interface, as discussed in §2b.

In the general case, equation (2.7) can be reduced to

∂

∂T

(
Ŵ
V̂

)
+

(
0 −α̃(k,T)

(β(T))−1 0

) (
Ŵ
V̂

)
= 0, (2.8)

where

α̃(ξ ,T) = k2α(T) and Ŵ(k,T) = −β(T)
∂

∂T
V̂(k,T).

The relations (2.4) yield the initial conditions for Ŵ and V̂

V̂
∣∣∣
T=0

= Φ̂(k) and Ŵ
∣∣∣
T=0

= β(0)Ψ̂ (k), (2.9)

where Φ̂(k), Ψ̂ (k) are the Fourier transforms of the right-hand sides in (2.4).
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Using the matrix notations

Y(T) =
(
Ŵ
V̂

)
and M(T) =

(
0 −α̃(k,T)

(β(T))−1 0

)
, (2.10)

and regarding k as a fixed parameter, we have the following initial boundary value problem:

d
dT

Y(T) = −M(T)Y(T) (2.11)

and

Y(0) =Y0 =
(
Ŵ
V̂

)∣∣∣∣∣
T=0

. (2.12)

Hence, the vector function Y(T) evaluated at T = T∗ can be written in the form

Y(T∗) = exp

(
−

∫T∗

0
M(τ ) dτ

)
Y0. (2.13)

In the case where M(τ ) is piecewise constant in τ the exponential term can be written as a product
of matrices. This corresponds to the transfer matrix approach in spatial laminates.

(b) Temporal stratification
Consider a horizontally stratified half-plane R2+ = {(X,T) : X ∈R, T > 0} = ∪∞

j=1Ωj, as shown in
figure 1, where Ωj are the horizontal non-intersecting layers. Assume that across the horizontal
interfaces separating Ωn and Ωn+1 the functions V and W are continuous.

Let us introduce the set of positive constants T1,T2 in such a way that the straight line {(X,T) :
X ∈R,T = T1} represents the interface separating the adjacent strips Ω1 and Ω2, and the straight
line {(X,T) : X ∈R,T = T1 + T2} represents the interface separating the adjacent strips Ω2 and Ω3.
The stratified structure is assumed to be periodic so that the line {(X,T) : X ∈R,T = n(T1 + T2)}
separates the strips Ω2n and Ω2n+1, and the line {(X,T) : X ∈R,T = nT1 + (n − 1)T2)} separates the
strips Ω2n−1 and Ω2n. Also assume that the functions α(T) and β(T) are piecewise constant, i.e.
α = α1 and β = β1 when (X,T) ∈ Ω2n−1, and α = α2 and β = β2 when (X,T) ∈ Ω2n for all n ∈N.

To obtain a field pattern, and simplify the analysis, we consider the case where

T1

√
α1

β1
= T2

√
α2

β2
= d. (2.14)

This implies that the wave propagating with the speed of
√

α1/β1 covers during the time T1 the
same distance d as does the wave, which propagates with the speed

√
α2/β2 during the time T2.

In this case, for a strip Ωn equation (2.13) implies

Y(T(n)
+ ) = 1

2

⎛
⎝ ei d|ξ | + e−i d|ξ | −i|ξ |√αβ(ei d|ξ | − e−i d|ξ |)

i
|ξ |√αβ

(ei d|ξ | − e−i d|ξ |) ei d|ξ | + e−i d|ξ |

⎞
⎠Y(T(n)

− ), (2.15)

where αβ should be replaced by α1β1 for odd Ωn and by α2β2 for even Ωn, respectively; the values
T(n)

− and T(n)
+ stand for the lower and upper limits of T corresponding to the boundaries of the strip

Ωn. The matrix in the right-hand side of (2.15) has unit determinant.
This gives an iterative scheme enabling the Fourier transform of the solution to be found in the

temporally stratified half-plane, with wave reflections at the temporal interfaces.

3. Field patterns and the frontal wave
Consider an example demonstrating a special feature of the wave, corresponding to the periodic
temporal pattern described above. For the sake of simplicity, assume that Ψ ≡ 0 in (2.4). In this
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case, when (X,T) ∈ Ω1 (i.e. 0 < T < T1) the field V is given by

V(X,T) = 1
2

(
Φ

(
X −

√
α1

β1
T
)

+ Φ

(
X +

√
α1

β1
T
))

, 0 < T < T1, (3.1)

(a) The frontal wave
The transmission conditions at T = T1 are continuity of the field V and ‘linear momentum’
(β(∂V/∂t)). Application of these conditions leads to the following form of the field V in Ω2, where
T1 < T < T1 + T2:

V(X,T) = 1
4

{(
1 +

√
α1β1

α2β2

)(
Φ

(
X −

√
α2

β2
τ − d

)
+ Φ

(
X +

√
α2

β2
τ + d

))

+
(

1 −
√

α1β1

α2β2

) (
Φ

(
X −

√
α2

β2
τ + d

)
+ Φ

(
X +

√
α2

β2
τ − d

))}
, (3.2)

where the quantity d is defined in (2.14) and τ = T − T1.
The straightforward observation is that at the temporal interface the wave V(X,T) splits into

the ‘frontal wave’

1
4

(
1 +

√
α1β1

α2β2

) (
Φ

(
X −

√
α2

β2
τ − d

)
+ Φ

(
X +

√
α2

β2
τ + d

))

and the ‘backward wave’

1
4

(
1 −

√
α1β1

α2β2

)(
Φ

(
X −

√
α2

β2
τ + d

)
+ Φ

(
X +

√
α2

β2
τ − d

) )
,

with the coefficient of the ‘frontal wave’ being greater than the coefficient of the ‘backward wave’
within the strip Ω2. We also note that the ‘backward wave’ is absent when the coefficients α, β
satisfy the relation α1β1 = α2β2 corresponding to ‘matched impedances’.

(b) Further splitting at the temporal interface
The temporal interface splitting is illustrated in figure 2, where ray-branching occurs at the times
when α and β switch values between α1 and α2, and β1 and β2, respectively.

The next temporal interface is at T = T1 + T2. By application of the transmission conditions
of continuity of the field and ‘linear momentum’ at the temporal interface T = T1 + T2, the field
V(X,T) in the strip Ω3, when T1 + T2 < T < 2T1 + T2, is given by

V(X,T) = 1
8

{(√
α2β2

α1β1
−

√
α1β1

α2β2

) [
Φ

(
X +

√
α1

β1
(T − T1 − T2)

)

+ Φ

(
X −

√
α1

β1
(T − T1 − T2)

)]

+
(

2 +
√

α2β2

α1β1
+

√
α1β1

α2β2

)[
Φ

(
X +

√
α1

β1
T +

(√
α2

β2
−

√
α1

β1

)
T2

)

+ Φ

(
X −

√
α1

β1
T −

(√
α2

β2
−

√
α1

β1

)
T2

)]
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3T1 + 3T2

3T1 + 2T2

2T1 + 2T2

2T1 + T2

T1 + T2

T1

0
–6d –4d –2d

x
0

frontal wave frontal wave

temporal interfaces

2d 4d 6d

t

Figure 2. Wave splitting at temporal interfaces (dashed lines) showing the emergent field pattern and the two frontal waves
(bold lines). The parameter values areα1/β1 = 1,α2/β2 = 4, T1 = 1, T2 = 1/2.

+
(

2 −
√

α2β2

α1β1
−

√
α1β1

α2β2

)[
Φ

(
X +

√
α1

β1
(T − T1 − T2)

)

+ Φ

(
X −

√
α1

β1
(T − T1 − T2)

)]

−
(√

α2β2

α1β1
−

√
α1β1

α2β2

)[
Φ

(
X −

√
α1

β1
(T − T1 − T2) + 2H

)

+ Φ

(
X +

√
α1

β1
(T − T1 − T2) − 2H

)]}
. (3.3)

We note that the ‘frontal wave’ term (in the above formula)

1
8

(
2 +

√
α2β2

α1β1
+

√
α1β1

α2β2

)[
Φ

(
X +

√
α1

β1
T +

(√
α2

β2
−

√
α1

β1

)
T2

)

+ Φ

(
X −

√
α1

β1
T −

(√
α2

β2
−

√
α1

β1

)
T2

)]

has the largest coefficient

1
8

(
2 +

√
α2β2

α1β1
+

√
α1β1

α2β2

)

compared to other coefficients in the representation resulting from the temporal interface split;
we also note that some of the coefficients in (3.3) are negative.
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Figure3. The solutionof theCauchyproblem for the caseof temporal stratification. The followingvalues of theparameterswere
used in the computations:α1 = 8,α2 = 3,β1 = 0.7,β2 = 0.5906, κ = 3.1605, T1 = 2, T2 = 3. The initial profile is given by
Φ(x)= e−x2/10. (a) The displacement V(x, t), which takes into account both the spatial and temporal dependence. (b) The
oscillatory displacement V, corresponding to the frontal wave; note the exponential blow-up as t increases: the dots show the
representative values of the displacement in the odd and even laminates, whereas the continuous curve shows the oscillatory
behaviour along the frontal wave, also shown in (a).

(c) The frontal wave blow-up
The process may be applied to further layers to give a more detailed solution of the Cauchy
problem at any given time. The results are shown in figure 3a, where the ‘frontal wave’ is clearly
visible. Although the magnitude of the ‘frontal wave’ is not monotonic in time, it may be seen that

after passing n macro-cells Ω
(j)
1 ∩ Ω

(j)
2 , j= 1, . . . , n, we have the following amplitude coefficients:

C(1)
n = 1

2

(
1 + 1

4

(√
α1β1

α2β2
+

√
α2β2

α1β1
− 2

) )n

in Ω
(n+1)
1 (3.4)

and

C(2)
n = 1

2

(
1 +

√
α1β1

α2β2

)
C(1)
n in Ω

(n+1)
2 , (3.5)

which both grow exponentially, as n→ ∞ for all cases where the positive coefficients α and β are
chosen in such a way that α1β1 �= α2β2. The formulae (3.4) and (3.5), characterizing the exponential
growth of the frontal wave amplitude in time, are illustrated in figure 3b.

4. Field patterns for periodic initial conditions
Another example involving periodic initial conditions, leading to possible growth of the solution
due to wave splitting at temporal interfaces, is considered below.

Consider initial conditions (2.4), with Φ = 0, while

Ψ (X) =
∞∑

k=−∞
(−1)kδ(X − kD),

with D being a positive parameter, which represents half a period of the field pattern along the
X-axis. Here δ(X) is the Dirac delta function.
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(a) ‘Reflection’ at temporal interfaces
For the time interval (0,T1), it is assumed that α = α1, β = β1 are constant. Thus, when 0 < T < T1
the field V takes the form

V(X,T) = 1
2

√
β1

α1

∞∑
k=−∞

(−1)k
{
H

(
X − kD +

√
α1

β1
T
)

− H
(
X − kD −

√
α1

β1
T
)}

. (4.1)

The derivation is similar to the one discussed in §3. When T1 < T < T1 + T2 we assume that
α = α2, β = β2 take new constant values, so that

T2

√
α2

β2
= T1

√
α1

β1
.

Let τ = T − T1 and consider the field V(X,T) in Ω2, where T1 < T < T1 + T2 in the form

V(X,T) =WI

(
X −

√
α2

β2
τ

)
+ WII

(
X +

√
α2

β2
τ

)
, (4.2)

where the functions WI and WII represent the waves propagating in the positive and
negative direction of the X-axis. The transmission conditions, representing the continuity of the
‘displacement’ V and of the ‘linear momentum’, are set at the temporal interface T = T1 (τ = 0):

WI(X) + WII(X) = 1
2

√
β1

α1

∞∑
k=−∞

(−1)k
{
H

(
X − kD +

√
α1

β1
T1

)
− H

(
X − kD −

√
α1

β1
T1

)}
(4.3)

and

√
α2β2(W′

II(X) − W′
I(X)) = β1

2

∞∑
k=−∞

(−1)k
{

δ

(
X − kD +

√
α1

β1
T1

)
+ δ

(
X − kD −

√
α1

β1
T1

) }
.

(4.4)

When T1 < T < T1 + T2 and |X| <D/2, direct integration leads to the following representation of
the solution:

V(X,T) =WI

(
X −

√
α2

β2
τ

)
+ WII

(
X −

√
α2

β2
τ

)

= 1
4

√
β1

α1

{ ∞∑
k=−∞

(−1)k
[
H

(
X −

√
α2

β2
τ − kD +

√
α1

β1
T1

)

− H
(
X −

√
α2

β2
τ − kD −

√
α1

β1
T1

)
+ H

(
X +

√
α2

β2
τ − kD +

√
α1

β1
T1

)

− H
(
X +

√
α2

β2
τ − kD −

√
α1

β1
T1

) ]

+
√

α1β1

α2β2

∞∑
k=−∞

(−1)k
∫X+√

α2/β2τ

X−√
α2/β2τ

(
δ

(
ξ − kD +

√
α1

β1
T1

)

+ δ

(
ξ − kD −

√
α1

β1
T1

) )
dξ

}
. (4.5)

(b) The timing of the ‘temporal switch’ versus the spatial periodicity
We choose T1 and T2 so that √

α1

β1
T1 = D

2
=

√
α2

β2
T2, (4.6)

i.e. the first wave reaches the boundary of the elementary cell when the temporal switch occurs.
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Following the derivation, which is similar to that in §4a, we deduce that when T > T1 + T2, the
field V(X,T) takes the form

V(X,T) = 1
2

√
β1

α1

√
α2β2

α1β1

∞∑
k=−∞

(−1)k
(
H

(
X − kD −

√
α1

β1
(T − T2 − T1)

)

− H
(
X − kD −

√
α1

β1
(T − T2 − T1)

))
. (4.7)

The above equation is similar to (4.1) subject to the replacement of the argument T in (4.1) by
T − T2 − T1 in (4.7) and an additional factor

√
α2β2/α1β1 in (4.7). In particular, when X= 0 and

T > T1 + T2

V(0,T) = −1
2

√
β1

α1

√
α2β2

α1β1

∞∑
k=−∞

(−1)k
{
H

(
−kD −

√
α1

β1
(T − T2 − T1)

)

− H
(
kD −

√
α1

β1
(T − T2 − T1)

) }
= −

√
β1

α1

√
α2β2

α1β1
. (4.8)

By considering a periodic semi-infinite temporal stratification with the elementary cell of the
width T1 + T2, after n iterations, we obtain

V(0,T) = (−1)n
√

β1

α1

(
α2β2

α1β1

)n/2

, (4.9)

when n(T1 + T2) < T < (n + 1)T1 + nT2.
The above formula (4.8) shows that when α2β2/α1β1 > 1, the modulus of the displacement at

the origin |V(0,T)| increases exponentially as n→ ∞.

5. Chiral interfaces
The scalar problem of vibration of an elastic string considered above will here be extended to a
vector case. Both transverse and longitudinal displacement are included in the formulation, while
the coupling process is governed by a chiral term, present in the equation or interface transmission
conditions.

Firstly, the model of a chiral continuum will be summarized since this continuum will be used
as a chiral temporal interface. Secondly, energy considerations will be discussed followed by the
analysis of a transient configuration of a spatial chiral interface.

(a) The chiral medium
A model for a chiral medium has been introduced in stages. Firstly, gyroscopic resonators
connected to elastic beams were introduced in [22] where a gyroscopic resonator was replaced by
suitable displacement boundary conditions replacing the resonator and describing the gyroscopic
action. The linearized framework of the gyroscopic motion was used and a small angle of nutation
was assumed. The governing equations for a one-dimensional discrete chain of such resonators
with hinged bases and connected by massless springs was discussed in [23] and the resonators
were again replaced by appropriate time-dependent displacement boundary conditions. The
system of coupled governing equations in the longitudinal and transverse displacements was
homogenized in [26] leading to a model with governing equations, written for a chiral medium,
in the vector form

− ∂2

∂t2
U + D

∂2

∂x2 U + αR
∂

∂t
U= 0, (5.1)
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where U= (u(x, t), v(x, t))T is a real-valued vector function, representing the longitudinal, u(x, t),
and transverse, v(x, t), displacements,

D= diag{c2
1, c2

2} and R=
(

0 1
−1 0

)
, (5.2)

where c1 and c2 are the wave speeds for the longitudinal and transverse waves respectively, and α

is the (re-defined) gyricity parameter. The third term in (5.1) is the coupling term, and it represents
the gyroscopic force, which is orthogonal to the velocity vector.

Although, in the linearized setting, the gyroscopic force appears to be non-conservative, it is
orthogonal to the velocity vector, and for a finite chiral elastic rod the classical energy conservation
holds, as demonstrated in the illustrative example below.

(b) Energy consideration
Here, an elementary demonstration is given, based on two examples which include vibration of
a chiral finite rod and time-harmonic vibration of a single chiral inertial resonator.

(i) The finite elastic chiral rod

Let U= (u(x, t), v(x, t))T be a real-valued vector function, representing the displacements, which
satisfy the equations of motion (5.1) for the homogenized chiral elastic rod, x ∈ (0, 1) with the
boundary conditions

U(0, t) =U(1, t) = 0 for any admissible t. (5.3)

Multiplying equation (5.1) by ∂UT/∂t and integrating with respect to x over the interval (0, 1)
gives

0 =
∫ 1

0

{
∂u
∂t

∂2u
∂t2

+ ∂v

∂t
∂2v

∂t2
− c2

1
∂u
∂t

∂2u
∂x2 − c2

2
∂v

∂t
∂2v

∂x2

}
dx. (5.4)

Note that (∂U/∂t)TR(∂U/∂t) = 0. By integrating (5.4) by parts, and using the boundary conditions
(5.3), we obtain

d
dt

(K + P) = 0, (5.5)

where K and P represent the kinetic and potential energies, respectively,

K = 1
2

∫ 1

0

( (
∂u
∂t

)2
+

(
∂v

∂t

)2
)

dx and P= 1
2

∫ 1

0

(
c2

1

(
∂u
∂x

)2
+ c2

2

(
∂v

∂x

)2
)

dx. (5.6)

Hence, the standard conservation law holds, and the total energy K + P is time-independent.

(ii) Time-harmonic regime

In the time-harmonic regime, with radian frequency ω, the energy consideration for a finite elastic
rod leads to the evaluation of the first eigenvalue. Assuming that U(x, t) = Û(x) exp(−iωt), then

ω2Û(x) + DÛ
′′
(x) − iωαRÛ(x) = 0, x ∈ (0, 1) (5.7)

and

Û(0) = Û(1) = 0. (5.8)

In the above equations, Û(x) = (û(x), v̂(x))T is a complex valued vector function. When the gyricity
parameter α is zero, the problem (5.7) and (5.8) splits into two uncoupled standard eigenvalue
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problems for two harmonic oscillators. Additionally, in the case when α = 0, the following identity
holds:

ω =
(∫1

0
(
c2

1|û′(x)|2 + c2
2|v̂′(x)|2) dx∫1

0
(|û(x)|2 + |v̂(x)|2) dx

)1/2

, (5.9)

where the energy integral is in the numerator of (5.9). Using the normalization
∫ 1

0

(
|û(x)|2 + |v̂(x)|2

)
dx= 1, (5.10)

and adopting the notation H0(0, 1) for the space of vector functions, which satisfy (5.8), (5.10) and
have the finite energy integral in (5.9), we have that the first eigenvalue as

ω1 = inf
Û∈H0(0,1)

(∫ 1

0

(
c2

1|û′(x)|2 + c2
2|v̂′(x)|2

)
dx

)1/2

. (5.11)

When α �= 0 and the normalization (5.10) is in place, for positive ω the identity (5.9) is replaced by

ω =
∫1

0
(
c2

1|û′(x)|2 + c2
2|v̂′(x)|2) dx

α
∫1

0 Im( ¯̂uv̂) dx +
√

α2
(∫1

0 Im( ¯̂uv̂) dx
)2 + ∫1

0
(
c2

1|û′(x)|2 + c2
2|v̂′(x)|2) dx

. (5.12)

(c) Transient scattering on an active chiral spatial interface
Consider two one-dimensional semi-infinite elastic rods joined by a one-dimensional chiral
segment. The uncoupled longitudinal and transverse displacements in the rods are governed by
(5.1) with α = 0. The coupled displacements in the chiral segment are governed by (5.1) with the
chirality parameter α being non-zero.

For simplicity, the limiting case when the chiral segment height tends to zero will be
considered, with α approaching infinity in such a way that the limit is an imperfect interface.

(i) Imperfect spatial chiral interface

Assume that the chiral interface extends over the small interval 0 < x< d, d
 1, and the following
equations and interface transmission conditions hold

∂2

∂t2
U(x, t) − αR

∂

∂t
U(x, t) − D

∂2

∂x2 U= 0, when 0 < x< d (5.13)

and
∂2

∂t2
U(x, t) − D

∂2

∂x2 U= 0, outside the segment [0, d], (5.14)

and the continuity transmission conditions are set at x= 0 and x= d[
U

]x=+0

x=−0

= 0 and

[
∂

∂x
U

]x=+0

x=−0

= 0, (5.15)

and [
U

]x=d+0

x=d−0

= 0 and

[
∂

∂x
U

]x=d+0

x=d−0

= 0. (5.16)

Assuming that the gyricity parameter α is large, so that the product β := αd remains constant, and
introducing the scaled variable ξ = x/d, we can re-write equation (5.13) in the form

D
∂2

∂ξ2 U + dβR
∂

∂t
U − d2 ∂2

∂t2
U= 0, 0 < ξ < 1. (5.17)

Consider the asymptotic approximations of the form

U=U(0)(ξ , t) + dU(1)(ξ , t) + O(d2), when 0 < ξ < 1 (5.18)
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and

U=V(0)(x, t) + O(d), when x< 0 or x> d. (5.19)

Substitution of (5.18) into (5.13), and use of the transmission conditions (5.15) and (5.16) leads to
a sequence of problems for U(0) and U(1). Namely, we deduce

∂2

∂ξ2 U
(0) = 0, 0 < ξ < 1 (5.20)

and
∂

∂ξ
U(0) = 0 when ξ = +0 and ξ = 1 − 0. (5.21)

Hence, U(0) is ξ -independent, and

U(0)(t) =V(0)(0, t) =V(0)(d, t). (5.22)

Next, the vector function U(1) satisfies the equation

D
∂2

∂ξ2 U
(1)(ξ , t) + βR

∂

∂t
U(0)(t) = 0 (5.23)

and
∂

∂ξ
U(1)(0, t) = ∂

∂x
V(0)(0, t) and

∂

∂ξ
U(1)(1, t) = ∂

∂x
V(0)(d, t). (5.24)

When d is infinitesimally small, (5.21)–(5.24) lead to the following transmission conditions for the
leading-order term V(0) in (5.19), across the chiral interface

[
V(0)(x, t)

]x=+0

x=−0

= 0 and D

[
∂

∂x
V(0)(x, t)

]x=+0

x=−0

= −βR
∂

∂t
V(0)(0, t). (5.25)

Taking into account the above asymptotic approximation, in the limit, as d→ +0, one can consider
the transmission problem for an imperfect spatial chiral interface, where tractions become
discontinuous, and a coupling is observed between the longitudinal and transverse displacements

D
∂2

∂x2 U − ∂2

∂t2
U(x, t) = 0, when x �= 0 (5.26)

and [
U(x, t)

]x=+0

x=−0
= 0 and D

[ ∂

∂x
U(x, t)

]x=+0

x=−0
= −βR

∂

∂t
U(0, t). (5.27)

We also note that equivalently, instead of (5.26) and (5.27), we can write the equation with a
delta-function term as follows:

D
∂2

∂x2 U − ∂2

∂t2
U(x, t) + βR

∂

∂t
U(0, t)δ(x) = 0. (5.28)

(ii) A model scattering problem

Assume that a step-like front of the longitudinal wave is propagating in the positive direction of
the x-axis

Uinc =
⎛
⎝1 − H(x − x0 − c1(t − t0))

0

⎞
⎠ , (5.29)

and at time t= t0 > 0 this front meets a chiral interface, positioned at the point x= x0, and
characterized by gyricity β, as discussed in §5ci.
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The total field includes two terms

U(x, t) =Uinc + Usc, (5.30)

where the incident field has only the first non-zero component uinc, which satisfies the
homogeneous wave equation

∂2

∂t2
uinc − c2

1
∂2

∂x2 uinc = 0, (5.31)

whereas the scattered field has only the second non-zero component vsc, corresponding to the
transverse vibration, and it is triggered by an instantaneous point force, whose magnitude is
proportional to the velocity of the longitudinal vibration but the orientation of the force is
orthogonal to the longitudinal velocity. Taking into account (5.28), we observe that the scattered
field is the transverse transient wave, which satisfies the following initial value problem:

c2
2

∂2

∂x2 vsc − ∂2

∂t2
vsc − β

∂uinc

∂t
(x0, t)δ(x − x0) = 0, (5.32)

subject to the initial conditions

vsc(x, 0) = 0 and
∂

∂t
vsc(x, 0) = 0, (5.33)

with α being the chirality parameter characterizing the chiral point scatterer. Taking into account
(5.28) and (5.29), equation (5.32) can be re-written in the form

c2
2

∂2

∂x2 vsc − ∂2

∂t2
vsc − βδ(t − t0)δ(x − x0) = 0. (5.34)

Taking the Fourier transform v̂sc(k, t) = ∫∞
−∞ vsc(x, t) exp(ikx) dx, we deduce

k2c2
2v̂sc(k, t) + ∂2

∂t2
v̂sc(k, t) + βδ(t − t0) eikx0 = 0 (5.35)

and

v̂sc(k, 0) = 0 and
∂

∂t
v̂sc(k, 0) = 0, (5.36)

and hence

v̂sc(k, t) = −β
sin(kc2(t − t0))

kc2
H(t − t0) eikx0 . (5.37)

Using the identity ∫∞

0

sin(kq)
k

dk= π

2
sign(q), (5.38)

together with the inverse Fourier transform, we obtain

vsc(x, t) = 1
2π

∫∞

−∞
v̂sc(k, t) e−ikx dk

= − β

2πc2
H(t − t0)

∫∞

−∞
sin(kc2(t − t0))

k
eik(x0−x) dk

= − β

4c2
H(t − t0)

(
sign(c2(t − t0) + x − x0) + sign(c2(t − t0) + x0 − x)

)

= − β

2c2
H(c2(t − t0) − |x − x0|)

= − β

2c2

(
H(x − x0 + c2(t − t0)) − H(x − x0 − c2(t − t0))

)
(5.39)

The resulting scattered field represents the transverse wave, as follows

Usc(x, t) =
(

0
β

2c2

(
H(x − x0 − c2(t − t0)) − H(x − x0 + c2(t − t0))

))
. (5.40)
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We note that the above scattered field is independent of c1. This is not a general result, but a
special feature of the model problem considered here, where the incident field is defined via a step
function and the homogeneity properties H(λx) =H(x), δ(λx) = λ−1δ(x), λ > 0, have been used.

In the general case of an incident wave, the scattered field may depend on both c1 and c2.
Such a chiral interface can be viewed as an active interface, as it initiates a force, orthogonal to

the orientation of the velocity of the incident field, and the magnitude of this force depends on the
gyricity parameter β. In this case, the term ‘active interface’ is used to emphasize that additional
energy may enter the system as a result of the interaction of the incident wave with the chiral
scatterer.

For x< x0, the resulting reflected field Urefl has a different polarization compared to the
incident field, and it propagates with speed c2 compared to the speed c1 of the incident wave

Urefl(x, t) =Usc(x, t) =
(

0
− β

2c2
H(x − x0 + c2(t − t0))

)
, x< x0. (5.41)

On the other hand, for x> x0, the transmitted wave has both components, representing
longitudinal and transverse waves, as follows

Utransm(x, t) =Uinc(x, t) + Usc(x, t)

=
(

1 − H(x − x0 − c1(t − t0))
β

2c2
(H(x − x0 − c2(t − t0)) − 1)

)
, x> x0. (5.42)

We note that the coupling between the longitudinal and transverse vibrations is an essential
feature of the chiral scatterer. In the above example, for large values of β the chiral transient
scatterer can be interpreted as a ‘switch’, which initiates a transverse wave, with amplitude
controlled by gyricity, that may be significantly larger than that of the incident longitudinal wave.

6. Scattering on a temporal chiral interface
In this section, the reflection of a wave on a temporal chiral interface is considered.

One can re-write the equations of motion (5.1) in the form

∂

∂t

(
M(αt)

∂

∂t
U(x, t)

)
− M(αt)D

∂2

∂x2 U(x, t) = 0, (6.1)

where the matrix function M(αt) is the rotation matrix defined by

M(αt) =
(

cos(αt) − sin(αt)
sin(αt) cos(αt)

)
. (6.2)

By considering a transient process, we assume that the gyricity parameter α may change
instantaneously across a temporal interface t= T∗, while the displacement and the momentum
remain continuous [

U

]t=T∗+0

t=T∗−0

= 0 and

[
M ∂

∂t
U

]t=T∗+0

t=T∗−0

= 0. (6.3)

(a) Transient solutions for small and large values of the gyricity parameterα
Here, illustrations will be presented for solutions of the Cauchy problems on the infinite axis x ∈R
and t> 0, corresponding to different chiral regimes.

The role of the chirality is in the rotational coupling between the longitudinal and transverse
displacements and this leads to wave dispersion. In particular, if α = 0, then the problem
is reduced to a system of uncoupled Cauchy problems, governed by standard D’Alembert’s
solutions, which describe non-dispersive waves propagating with the speeds c1 and c2 for the
longitudinal and transverse vibrations, respectively.
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On the other hand, when α � 1, the solution becomes highly oscillatory in time t, compared
to the spatial variation in x. It can be observed that for a finite time interval the x-dependence
appears to be ‘frozen’. On a given cross-section, the variable x can be considered as a fixed
parameter.

For the purposes of numerical illustration, it is convenient to express the governing equations
(5.1) in dimensionless form. Firstly, the following initial conditions will be assumed:

u(x, 0) = Lf1
( x
L

)
, v(x, 0) = Lf2

( x
L

)
∂u
∂t

(x, 0) = c1g1

( x
L

)
,

∂v

∂t
(x, 0) = c1g2

( x
L

)
.

⎫⎪⎪⎬
⎪⎪⎭ (6.4)

Here, L is defined as a characteristic length introduced in the initial conditions. The functions
fi and gi are dimensionless.

Introduce the dimensionless variables

x̃= x
L

, t̃= c1

L
t, ũ= u

L
, ṽ = v

L
, λ = c2

c1
and γ = αL

c1
. (6.5)

The governing equations then become (dropping the tildes ˜)
∂2u
∂t2

− ∂2u
∂x2 − γ

∂v

∂t
= 0

and
∂2v

∂t2
− λ2 ∂2v

∂x2 + γ
∂u
∂t

= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.6)

with initial conditions

u(x, 0) = f1(x), v(x, 0) = f2(x),
∂u
∂t

(x, 0) = g1(x) and
∂v

∂t
(x, 0) = g2(x). (6.7)

It is noted that the system (6.6) can be written in the matrix form, similar to (6.1)

∂

∂t

(
M(γ t)

∂

∂t
U(x, t)

)
− M(γ t)Dλ

∂2

∂x2 U(x, t) = 0, (6.8)

where the matrix function M is defined by (6.2), and Dλ = diag(1, λ2). In this case, it is assumed
that 0 < λ < 1.

As discussed in [23], for large values of the gyricity, this problem is a singularly perturbed one
and an alternative normalization is used in [26], which highlights the highly oscillatory behaviour
of the solutions in time.

The ‘stationary limit’ of very large chirality is illustrated by the results shown in figure 4.
Equations (6.6) have been solved numerically and the dimensionless initial conditions are set as

u(x, 0) = v(x, 0) = e−x2
,

∂u
∂t

(x, 0) = 1 and
∂v

∂t
(x, 0) = 1, (6.9)

with γ = 100 and λ = 0.5. A dimensionless time frame up to t= 5 is chosen and an x domain
is chosen to be sufficiently large to minimize reflections. The dimensionless longitudinal and
transverse displacements are shown in figure 4a,b, respectively. At this relatively large value of
γ , it may be seen that the waves remain approximately stationary in the spatial coordinate while
they vary harmonically in time. The analytical solution for an infinitely large value of α is given
in [26] and discussed later in this paper.

An example of the case of very small chirality is shown in figure 5. The initial conditions for
the displacements are given in (6.9) but the initial velocities are set to zero. The relative chirality
parameter is given as γ = 0.5 and again λ = 0.5. The longitudinal and transverse displacements
are shown in figure 5a,b, respectively, as functions of x and t. It is apparent that the initial wave
profile moves to the left and right with increasing time but the shape of that initial profile changes
due to the dispersive nature of the waves.

This situation of small chirality is much closer to that of two decoupled wave equations. For
the latter case, two Gaussian profiles move to the left and right for both the longitudinal and
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Figure 4. Displacements for the case of very large chirality (γ = 100) near the ‘stationary limit’ between t = 0 and t = 10.
The wave speed parameter is given by λ = 0.5. (a) The longitudinal displacement u(x, t). (b) The transverse displacement
v(x, t).
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Figure 5. Longitudinal and transverse displacements between t = 0 and t = 10. The relativewave speed parameterλ = 0.5,
and the chirality parameterγ = 0.5. The non-chiral characteristics are shown in dashed and dotted lines. (a) The longitudinal
displacement u(x, t) and (b) the transverse displacement v(x, t).

transverse displacements without dispersion. The respective wave speeds in this non-dispersive,
non-chiral case are unity and λ (see (6.6) with γ = 0). In the chiral case, where the gyroscopic
coupling leads to dispersion, the displacement components are displayed in figure 5a,b, and the
profiles associated with non-chiral wavefronts are also shown. The characteristic lines showing
these wavefronts, x ± t= const and x ± λt= const, are marked on both figures 5a,b with dashed
and dotted lines respectively. Note that all the wave motion for both components is bounded by
the characteristic corresponding to the higher wave speed.

(b) A temporal chiral interface of high gyricity
We assume that at time t= 0, the gyricity switches from 0 to α � 1. At time t= d> 0, the gyricity
switched back to zero. In this case, we consider the temporal interface 0 < t< d. In particular, we
are interested in the values of α and d such that α � 1, while the product αd remains finite.

It has been demonstrated above that for high values of α, the vibrations of the chiral system,
discussed here, can be considered on a cross-section, with fixed x, and we use a vector function
Y(α, t), where the x-dependence is omitted.
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Consider the following initial value problem:

∂

∂t

(
M(αt)

∂

∂t
Y(α, t)

)
= 0 (6.10)

and

Y(α, 0) = f=
(
f1
f2

)
and M(0)

∂

∂t
Y(α, 0) = ∂

∂t
Y(α, 0) = g=

(
g1
g2

)
, (6.11)

with f, g being the vectors representing the initial displacements and initial velocities at t= 0.
The solution of (6.10) and (6.11) has the form

Y(α, t) = α−1R(I − MT(αt))g + f, (6.12)

where I is the 2 × 2 identity matrix. We also note that

∂

∂t
Y(α, t) =MT(αt)g, (6.13)

and hence the momentum remains constant for all positive t

M(αt)
∂

∂t
Y(α, t) = g=M(0)

∂

∂t
Y(α, 0). (6.14)

It also follows from (6.12) that

Y(α, d) − Y(α, 0) = α−1R(I − MT(αd))
∂

∂t
Y(α, 0), (6.15)

which shows that the displacement Y has a discontinuity of a small amplitude across the chiral
interface.

Such an interface also provides the rotational coupling between the longitudinal and
transverse vibrations.

In particular, if α and d are chosen in such a way that αd= (2n − 1)π , where n is positive integer,
then (6.15) becomes

[Y(α, t)]t=d
t=0 = 2α−1Rg, (6.16)

whereas for the case of αd= 2nπ we have the ideal temporal interface, across which both the
displacement and the momentum are continuous

[Y]t=d
t=0 = 0 and

[
M ∂

∂t
Y
]t=d

t=0
= 0. (6.17)

We also note that, with the choice of αd= ±(π/2) + 2πn, where n is positive integer, equation
(6.15) yields

[Y(α, t)]t=d
t=0 = α−1(R ± I)g. (6.18)

(c) An imperfect temporal interface
Assume that outside the time-interval t ∈ (T∗,T∗ + d) the gyricity parameter α is zero, and
hence equation (6.1) has the solution U(x, t), which describes two uncoupled waves propagating
with constant speeds c1 (longitudinal) and c2 (transverse), respectively, which are classical
D’Alembert’s travelling waves. We note that M(0) = I.

However, it is assumed that within the interval (T∗,T∗ + d) the gyricity parameter α takes a
large value, and within that time-interval, on a cross-section with fixed x, the solution is described
in §6b. The continuity of the displacement and of the momentum (see (6.3)) are set at t= T∗ and
t= T∗ + d.

For small d and large α, we assume that αd= (2n − 1)π , where n is a positive integer. Then
it follows from (6.14) to (6.16) that across the thin temporal chiral interface the field U is
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discontinuous and the following interface conditions hold:[
∂

∂t
U(x, t)

]t=T∗+d

t=T∗

= 0 and [U(x, t)]t=T∗+d
t=T∗ = 2α−1R

∂

∂t
U(x,T∗). (6.19)

The above interface conditions represent the imperfect temporal interface, across which the
displacement vector has the discontinuity. For large α and a finite magnitude of the velocity
vector, the right-hand side in the second interface condition (6.19) is small. On the other hand,
when the incident wave approaches the interface with the instantaneous velocity, which is
large, then the small coefficient α−1 may counterbalance it, and hence a finite magnitude in the
displacement jump may be observed across the imperfect temporal interface.

7. Examples
Here, we consider three examples for a system of temporal chiral interfaces at t= T, 2T, . . . , nT, . . .,
with integer n, combined with the Cauchy problems for two wave equations (5.1), where 0 < c2 <

c1 = 1, and the chirality parameter is large, i.e. α � 1. In this case, the duration d for each temporal
interface is infinitesimally small.

The initial velocities, at time t= 0, for both longitudinal and transverse orientations, are
assumed to be zero

∂

∂t
u(x, 0) = 0 and

∂

∂t
v(x, 0) = 0, (7.1)

while the initial values of the functions u, v may be defined as required.
Here, we consider three cases:

1. In the first case, we assume that, in addition to (7.1), the initial conditions for (5.1) are
chosen in such a way that

u(x, 0) = 0 and v(x, 0) = Φ(x), (7.2)

where Φ(x) is a smooth even function, exponentially vanishing at infinity. In this case, in
the time interval 0 < t< T only the transverse component v of the displacement is non-
zero, whereas u≡ 0.

2. In the second case, in addition to (7.1), we choose the initial conditions for (5.1) in such a
way that

u(x, 0) = Ψ (x) and v(x, 0) = 0, (7.3)

where Ψ (x) is a smooth even function, exponentially vanishing at infinity. Here, in the
time interval 0 < t< T only the longitudinal component u of the displacement is non-zero,
whereas v ≡ 0.

3. In the third case, both u and v are non-zero i.e.

u(x, 0) = Ψ (x) and v(x, 0) = Φ(x). (7.4)

At every temporal interface t= Tn, there is a coupling governed by the transmission conditions
(6.19). This gives an additional feature in the dynamic response of the elastic system, which
incorporates a chiral temporal interface, that couples longitudinal and transverse displacements.

(a) The case of the dominant transverse displacement
For the case when the initial conditions are chosen to have the form (7.1) and (7.2), and |α| is a large
parameter, it can be shown that the transverse displacement v becomes dominant. The coupling,
which occurs at chiral temporal interfaces, yields the solution, which includes a new pattern that
incorporates a split of the wavefront and the longitudinal displacement, as demonstrated in the
closed-form analytical representation below.
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Figure 6. Wave split at temporal chiral interfaces. Two families of characteristics are shown, corresponding to wave speeds
c1 = 1 (solid lines) and c2 = 1/3 (dashed lines). The frontal wave is shown and also the ‘transition layer’ where an incomplete
number (less than four) of characteristics meet an interface from below.

Using D’Alembert’s representation for the solution of the Cauchy problem on each of the
temporal intervals (n − 1)T < t< nT, for positive integer n, we deduce

u(x, t) ≡ 0 and v(x, t) = 1
2

(Φ(x + c2t) + Φ(x − c2t)) when 0 < t< T, (7.5)

u(x, t) = c2

2α
(Φ ′(x + c1t − T(c1 − c2)) + Φ ′(x − c1t + T(c1 + c2))

− Φ ′(x + c1t − T(c1 + c2)) − Φ ′(x − c1t + T(c1 − c2))),

v(x, t) = 1
2

(Φ(x + c2t) + Φ(x − c2t)) when T < t< 2T, (7.6)

u(x, t) = c2

2α
(Φ ′(x + c1t − T(c1 − c2)) + Φ ′(x − c1t + T(c1 + c2))

− Φ ′(x + c1t − T(c1 + c2)) − Φ ′(x − c1t + T(c1 − c2))

+ Φ ′(x + c1t − 2T(c1 − c2)) + Φ ′(x − c1t + 2T(c1 + c2))

− Φ ′(x + c1t − 2T(c1 + c2)) − Φ ′(x − c1t + 2T(c1 − c2))),

v(x, t) = 1
2

(Φ(x + c2t) + Φ(x − c2t))

− c1c2

2α2 (Φ ′′(x + c2t + T(c1 − c2)) + Φ ′′(x − c2t + T(c1 + 3c2))

− Φ ′′(x + c2t − T(c1 + c2)) − Φ ′′(x − c2t − T(c1 − 3c2))

− Φ ′′(x + c2t + T(c1 − 3c2)) − Φ ′′(x − c2t + T(c1 + c2))

+ Φ ′′(x + c2t − T(c1 + 3c2)) + Φ ′′(x − c2t − T(c1 − c2))) when 2T < t< 3T, (7.7)
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Figure 7. The solution of the Cauchy problem for the case 1 (dominant transverse displacement). The following values of
the parameters were used in the computations: c1 = 1, c2 = 1/3,α = 10, A= 10. (a) u(x, t), (b) v(x, t), (c) two surfaces,
corresponding to u(x, t) andv(x, t), are plotted on the same diagram. (d) The same surfaces, u(x, t) andv(x, t), as in (c)—view
from above.

which can be continued further, using the standard D’Alembert representation on each of the
temporal interfaces, to show that the transverse displacement v(x, t) = 1

2 (Φ(x + c2t) + Φ(x − c2t))
remains dominant at all times, with the magnitude of waves associated with the longitudinal
displacement u(x, t) being of order O(|α|−1).

Numerical computations are presented here for the case when T = 1, c1 = 1, c2 = 1/3. Also, the
right-hand side in the initial condition (7.2) is given as Φ(x) = exp(−Ax2), with A being a positive
constant. The diagram of characteristics is shown in figure 6 (compare with figure 2).

In this case, the wave propagates with the speed c2 during the time interval 0 < t< T, and the
equation of the characteristics is t= |x|/c2.

At time t= T, the coupling, induced by the chiral interface, will lead to the formation of two
families of waves, propagating with speeds c1 = 1 and c2 = 1/3. Taking into account the wave split
at the temporal interface, we can write the equations of characteristics at the interval T < t< 2T as

t= | 1
c2

|x| − T| + T and t= 1
c1

|x ± Tc2| + T. (7.8)

This process can be repeated further and the resulting diagram of characteristics is shown in
figure 6. We note that this diagram does not show the magnitude of the wave. In particular,
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Figure 8. The case when the longitudinal displacement is dominant. Two families of characteristics are shown, corresponding
to wave speeds c1 = 1 (solid lines) and c2 = 1/3 (dashed lines). The frontal wave is shown and also the ‘transition layer’ where
an incomplete number (less than four) of characteristics meet an interface from below.

along some characteristics the wave magnitude may be zero. This is illustrated in the analytical
representation of the solution (7.5)–(7.6), as well as in the surface plot of the solution shown
in figure 7.

(b) The case of the dominant longitudinal displacement
Here, we show the example related to the choice of (7.1) and (7.3) as the initial conditions. The
right-hand side in the first initial condition (7.3) is given as Ψ (x) = exp(−Ax2), with A being a
positive constant. As in the previous section, we also choose T = 1, c1 = 1, c2 = 1/3. The diagram
of characteristics for this case is shown in figure 8, and the surface plot representing the solution of
the Cauchy problem is shown in figure 9. We note that the longitudinal displacement is dominant
and the coupling, which occurs at chiral temporal interfaces, yields small wave ripples associated
with the transverse displacement.

(c) The combined case where both longitudinal and transverse displacements
are present at the initial time

Here, the example where both displacements are non-zero at the initial time is illustrated, i.e.
we choose (7.1) and (7.4) as the initial conditions. The right-hand sides in the initial conditions
(7.4) are chosen to be Φ(x) = Ψ (x) = exp(−Ax2), with A being a positive constant. We also choose
T = 1, c1 = 1, c2 = 1/3. The diagram of characteristics for this case is shown in figure 10, and
the surface plot representing the solution of the Cauchy problem is shown in figure 11. Both
displacements u and v are present at all times in this case. However, due to the presence of the
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Figure 9. The solution of the Cauchy problem for case 2 (dominant longitudinal displacement). The following values of
the parameters were used in the computations: c1 = 1, c2 = 1/3,α = 10, A= 10. (a) u(x, t), (b) v(x, t), (c) two surfaces,
corresponding to u(x, t) and v(x, t), are plotted on the same diagram and (d) the same surfaces, u(x, t) and v(x, t), as in
(c)—view from above.

chiral temporal interfaces, the wave pattern emerges, which is consistent with the diagram of
characteristics of figure 10. This wave pattern also includes the ‘transition layer’, adjacent to the
frontal wave, which will both be discussed in the next section.

(d) The frontal wave and the transition layer
Using the notion of the frontal wave introduced in §3a, it can be seen from the diagrams of
characteristics, shown in figures 6, 8, 10, that the frontal wave in all three cases propagates with
the wave speed c1. For suffiiciently large α, the magnitude of the frontal wave in the first case,
where the transverse wave is dominant, is of order O(|α|−1), whereas in the remaining two cases
the magnitude of the frontal wave is of order O(1), as illustrated in figures 7, 9, 11.

With the reference to figures 6, 8, 10, we also identify a region adjacent to the frontal wave
boundary as the ‘transition layer’. In this region, at every temporal interface an incomplete set
of characteristics (less than four) intersects the interface from below. The width of the transition
layer depends on the ratio of the wave speeds c1/c2.
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Figure 10. The combined case when both the longitudinal and transverse displacements are present in the initial conditions.
Two families of characteristics are shown, corresponding to wave speeds c1 = 1 (solid lines) and c2 = 1/3 (dashed lines). The
frontal wave is shown and also the ‘transition layer’ where an incomplete number (less than four) of characteristics meet an
interface from below.

We also note that if the chirality parameter α and the interface thickness are chosen in such
a way that αd= 2πn, with n being a positive integer, then the ideal contact conditions (6.17)
hold across the interface. In this case, the standard D’Alembert solution will be observed and
no coupling will occur at temporal interfaces.

8. Concluding remarks
As shown in §2a and 2b, periodic time-variation in the mass density may lead to interesting
features of solutions of wave problems. More importantly, the model of a temporally stratified
medium can be considered as a result of the discretization of the wave equations with time-
dependent mass density and stiffness coefficients, as in (2.5).

The advantage of the discretized formulation in the temporally stratified medium is that in
every temporal layer, where the coefficients of the governing equations are time-independent, the
problem can be solved and a transmission matrix, as in §2b, can be identified. Furthermore, the
process can be carried out in iterations to obtain the solution of the Cauchy problem at any given
time. Although the diagrams of characteristics, as in figures 2, 6, 8, 10, do not provide information
about the wave magnitude, they readily show possible wave patterns corresponding to selected
initial conditions as well as the parameters of temporal stratification.

Sections 2–4 describe a scalar problem of vibrations of an elastic string with time-dependent
elastic and inertial properties, with the emphasis on the resonance blow-up as T → +∞. The
second part of the paper is focused on a vector problem, where the longitudinal and transverse
displacements of the vibrating string are dynamically coupled.
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Figure 11. The solution of the Cauchy problem for case 3 (both longitudinal and transverse displacements are present at all
times). The following values of the parameters were used in the computations: c1 = 1, c2 = 1/3,α = 10, A= 10. (a) u(x, t),
(b) v(x, t), (c) two surfaces, corresponding to u(x, t) and v(x, t), are plotted on the same diagram and (d) the same surfaces,
u(x, t) and v(x, t), as in (c)—view from above.

Sections 5 and 6 introduce coupled governing equations through chirality, together with the
notion of imperfect chiral interfaces. Three examples of Cauchy problems in temporally stratified
chiral elastic systems are discussed in detail in §7, and they show the wave patterns, as well
the coupling process between the longitudinal and transverse vibrations within the string. A
particularly interesting feature, displayed in figures 6, 8, 10, is the presence of the transition layer
adjacent to the frontal wave in all three cases. Such transition layers also appear in other field
pattern geometries: see, for example, fig. 16 in [9].

Data accessibility. This article has no additional data.
Authors’ contributions. A.B.M.: conceptualization, formal analysis, investigation, writing—original draft,
writing—review and editing; N.V.M.: conceptualization, formal analysis, investigation, writing—original
draft, writing—review and editing; I.S.J.: conceptualization, formal analysis, investigation, visualization,
writing—original draft, writing—review and editing; G.W.M.: conceptualization, methodology, writing—
review and editing; H.-M.N.: formal analysis, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare that we have no competing interests.



26

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210385

...............................................................

Funding. G.W.M. thanks the NSF for support from the US National Science Foundation through grant nos.
DMS-1211359 and DMS-2107926. A.B.M., H.-M.N. and N.V.M. also gratefully acknowledge support from
the NSF through grant no. DMS-1211359 and the hospitality of the University of Utah where this work was
initiated.

References
1. Kittel C. 1995 Introduction to solid state physics, 7th edn. New York, NY: John Wiley &

Sons.
2. Lekner J. 1987 Theory of reflection of electromagnetic and particle waves. New York, NY:

Springer.
3. Lurie KA. 2017 An introduction to mathematical theory of dynamic materials. New York, NY:

Springer.
4. Calos C, Deck-Léger Z-L. 2020 Space-time metamaterials, Part I: general concepts. IEEE Trans.

Antennas Propag. 68, 1569–1582. (doi:10.1109/TAP.2019.2944225)
5. Calos C, Deck-Léger Z-L. 2020 Space-time metamaterials, Part II: theory and applications.

IEEE Trans. Antennas Propag. 68, 1583–1598. (doi:10.1109/TAP.2019.2944216)
6. Fink M. 1993 Time-reversal mirrors. J. Phys. D: Appl. Phys. 26, 1333–1350. (doi:10.1088/

0022-3727/26/9/001)
7. Bacot V, Labousse M, Eddi A, Fink M, Fort E. 2016 Time reversal and holography with space-

time transformations. Nat. Phys. 12, 972–977. (doi:10.1038/nphys3810)
8. Milton GW, Mattei O. 2017 Field patterns: a new mathematical object. Proc. R. Soc. A 473,

20160819. (doi:10.1098/rspa.2016.0819)
9. Mattei O, Milton GW. 2017 Field patterns without blow up. New J. Phys. 19, 093022.

(doi:10.1088/1367-2630/aa847d)
10. Mattei O, Milton GW. 2017 Field patterns: a new type of wave with infinitely degenerate band

structure. Europhys. Lett. 120, 54003. (doi:10.1209/0295-5075/120/54003)
11. Brun M, Jones IS, Movchan AB. 2012 Vortex-type elastic structured media and dynamic

shielding. Proc. R. Soc. A 468, 3027–3046. (doi:10.1098/rspa.2012.0165)
12. Wang P, Lu L, Bertoldi K. 2015 Topological phononic crystals with one-way elastic edge

waves. Phys. Rev. Lett. 115, 104302. (doi:10.1103/PhysRevLett.115.104302)
13. Moore JE. 2010 The birth of topological insulators. Nature 464, 194–198. (doi:10.1038/

nature08916)
14. Pendry JB, Martin-Cano D, Garcia-Vidal FJ. 2004 Mimicking surface plamons with structured

surfaces. Science 305, 847–848. (doi:10.1126/science.1098999)
15. Hibbins AP, Evans BR, Sambles JR. 2005 Experimental verification of designer surface

plasmons. Science 308, 670–672. (doi:10.1126/science.1109043)
16. Zhao Y, Zhou X, Huang G. 2020 Non-reciprocal Rayleigh waves in elastic gyroscopic medium.

J. Mech. Phys. Solids 143, 104065. (doi:10.1016/j.jmps.2020.104065)
17. Nieves MJ, Carta G, Pagneux V, Brun M. 2020 Rayleigh waves in micro-structured elastic

systems: non-reciprocity and energy symmetry breaking. Int. J. Eng. Sci. 156, 103365.
(doi:10.1016/j.ijengsci.2020.103365)

18. Nassar H, Chen H, Norris AN, Huang GL. 2018 Quantization of band tilting in modulated
phononic crystals. Phys. Rev. B 97, 014305. (doi:10.1103/PhysRevB.97.014305)

19. Lurie KA, Weekes SL. 2006 Wave propagation and energy exchange in a spatio-temporal
material composite with rectangular microstructure. J. Math. Anal. Appl. 314, 286–310.
(doi:10.1016/j.jmaa.2005.03.093)

20. Carta G, Jones IS, Movchan NV, Movchan AB. 2019 Wave polarization and dynamic
degeneracy in a chiral elastic lattice. Proc. R. Soc. A 475, 20190313. (doi:10.1098/rspa.
2019.0313)

21. Carta G, Jones IS, Movchan NV, Movchan AB. 2019 Wave characterisation in a dynamic
elastic lattice: lattice flux and circulation. Phys. Mesomech. 22, 152–163. (doi:10.1134/
S102995991902005X)

22. Nieves MJ, Carta G, Jones IS, Movchan AB, Movchan AB, Movchan NV. 2018 Vibrations
and elastic waves in chiral multi-structures. J. Mech. Phys. Solids 121, 387–408. (doi:10.1016/
j.jmps.2018.07.020)

http://dx.doi.org/10.1109/TAP.2019.2944225
http://dx.doi.org/10.1109/TAP.2019.2944216
http://dx.doi.org/10.1088/0022-3727/26/9/001
http://dx.doi.org/10.1088/0022-3727/26/9/001
http://dx.doi.org/10.1038/nphys3810
http://dx.doi.org/10.1098/rspa.2016.0819
http://dx.doi.org/10.1088/1367-2630/aa847d
http://dx.doi.org/10.1209/0295-5075/120/54003
http://dx.doi.org/10.1098/rspa.2012.0165
http://dx.doi.org/10.1103/PhysRevLett.115.104302
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1126/science.1098999
http://dx.doi.org/10.1126/science.1109043
http://dx.doi.org/10.1016/j.jmps.2020.104065
http://dx.doi.org/10.1016/j.ijengsci.2020.103365
http://dx.doi.org/10.1103/PhysRevB.97.014305
http://dx.doi.org/10.1016/j.jmaa.2005.03.093
http://dx.doi.org/10.1098/rspa.2019.0313
http://dx.doi.org/10.1098/rspa.2019.0313
http://dx.doi.org/10.1134/S102995991902005X
http://dx.doi.org/10.1134/S102995991902005X
http://dx.doi.org/10.1016/j.jmps.2018.07.020
http://dx.doi.org/10.1016/j.jmps.2018.07.020


27

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210385

...............................................................

23. Jones IS, Movchan NV, Movchan AB. 2020 Two-dimensional waves in a chiral elastic chain:
dynamic Green’s matrices and localised defect modes. Q. J. Mech. Appl. Math. 73, 305–328.
(doi:10.1093/qjmam/hbaa014)

24. Solis DM, Kastner R, Engheta N. 2021 Time-varying materials in presence of dispersion: plane-
wave propagation in a lorentzian medium with temporal discontinuity. (https://arxiv.org/
abs/2103.06142)

25. McLachlan NW. 1951 Theory and application of Mathieu functions. Oxford, UK: Oxford
University Press.

26. Jones IS, Movchan NV, Movchan AB. 2022 Chiral waves in structured elastic systems:
dynamics of a meta-waveguide. Q. J. Mech. Appl. Math. 75, 63–89. (doi:10.1093/
qjmam/hbab015)

http://dx.doi.org/10.1093/qjmam/hbaa014
https://arxiv.org/abs/2103.06142
https://arxiv.org/abs/2103.06142
https://doi.org/10.1093/qjmam/hbab015
https://doi.org/10.1093/qjmam/hbab015

	Introduction
	Formal settings---temporal interfaces
	Temporally inhomogeneous medium
	Temporal stratification

	Field patterns and the frontal wave
	The frontal wave
	Further splitting at the temporal interface
	The frontal wave blow-up

	Field patterns for periodic initial conditions
	`Reflection' at temporal interfaces
	The timing of the `temporal switch' versus the spatial periodicity

	Chiral interfaces
	The chiral medium
	Energy consideration
	Transient scattering on an active chiral spatial interface

	Scattering on a temporal chiral interface
	Transient solutions for small and large values of the gyricity parameter 
	A temporal chiral interface of high gyricity
	An imperfect temporal interface

	Examples
	The case of the dominant transverse displacement
	The case of the dominant longitudinal displacement
	The combined case where both longitudinal and transverse displacementsare present at the initial time
	The frontal wave and the transition layer

	Concluding remarks
	References

