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Abstract

Molecular dynamics simulations of microscopic phenomena are limited by the short

integration time steps required for numerical stability but which limit the practically

achievable simulation time scales. Collective variable (CV) enhanced sampling tech-

niques apply biases to pre-defined collective coordinates to promote barrier crossing,

phase space exploration, and sampling of rare events. The efficacy of these techniques

is contingent on the selection of good CVs correlated with the molecular motions gov-

erning the long-time dynamical evolution of the system. In this work, we introduce

Girsanov Reweighting Enhanced Sampling Technique (GREST) as an adaptive sam-

pling scheme that interleaves rounds of data-driven slow CV discovery and enhanced

sampling along these coordinates. Since slow CVs are inherently dynamical quantities,

a key ingredient in our approach is the use of both thermodynamic and dynamical

Girsanov reweighting corrections for rigorous estimation of slow CVs from biased sim-

ulation data. We demonstrate our approach on a toy 1D 4-well potential, a simple
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biomolecular system alanine dipeptide, and the Trp-Leu-Ala-Leu-Leu (WLALL) pen-

tapeptide. In each case GREST learns appropriate slow CVs and drives sampling of

all thermally accessible metastable states starting from zero prior knowledge of the

system. We make GREST accessible to the community via a publicly available open

source Python package.

1 Introduction

Molecular dynamics (MD) simulations serve as a virtual microscope to provide microscopic

understanding of the atomic-scale structure, thermodynamics, and dynamics of molecular

and condensed-matter systems. By numerically integrating the classical equations of motion,

MD simulations can accurately describe the evolution of molecular systems.1 Advances in

computational hardware2,3 and simulation software4–6 have enabled simulations of systems

containing up to trillions of atoms.7 While the accessible size of systems continues to grow,

a fundamental limitation of MD is the need for short integration time steps commensurate

with the fastest atomic motions – typically on the order of femtoseconds – that limits prac-

tically achievable time scales to approximately microseconds to commodity hardware 8,9 and

milliseconds on specialized hardware.3 Many interesting processes such protein folding,10

protein-protein association,11 ligand binding12 and molecular self-assembly13 occur near or

far beyond these attainable time scales, which has motivated the development of computa-

tional strategies to facilitate the study of slow molecular motions and rare events.

Techniques like the string method,14 transition path sampling,15 and forward flux sam-

pling16 enable the study of rare events using astute initialization of simulation trajectories

to explore the configuration space along paths connecting pre-defined “reactant” and “prod-

uct” states (e.g., folded and unfolded states of a protein). Given these two end states,

these techniques present efficient means to sample the pathways and associated dynamical

properties of reactive transitions. Another class of popular methods are enhanced sam-

pling techniques that seek to accelerate sampling not of a single reactive transition, but to
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promote global exploration of configurational space by applying biasing potentials along pre-

defined collective variables (CVs).17 Well chosen CVs correlated with transitions of interest

and approximately orthogonal to separating free energy barriers can result in an increased

frequency of barrier crossing to drive rare transitions and improve global sampling of config-

urational phase space. By exploiting this feature and modifying the system Hamiltonian to

sample configurational space more efficiently, thermodynamic reweighting can be employed

to estimate thermodynamic averages under the unbiased Hamiltonian. A plethora of meth-

ods have been developed for constructing biasing potentials along predefined CVs including,

for example, metadynamics,18 hyperdynamics,19 umbrella sampling,20 thermodynamic inte-

gration,21 and variational enhanced sampling.22 While these methods are demonstratively

powerful tools for practitioners, their success is contingent upon the availability of good CVs

in which to accelerate sampling and surmount the free energy barriers separating the ther-

mally relevant metastable states. Accelerating poorly chosen CVs typically leads to little to

no improvement in sampling over unbiased MD simulations.

The manual definition of good CVs is challenging for large, complex molecular systems

where intuition is frequently limited. To help ameliorate this issue of proper CV selection,

data-driven techniques can deploy machine learning (ML) to automatically discover optimal

CVs for biasing. The central premise behind these approaches is an assumption of emer-

gent low-dimensionality, and it is a generic feature of molecular systems that cooperative

couplings between the atomic degrees of freedom lead to emergent low-dimensionality on

sufficiently long time scales.23–25,25–28 Geometrically, once can view the dynamical evolution

within the 3N -dimensional configurational phase space comprising the Cartesian coordinates

of the N constituent atoms to be approximately restrained to a low-dimensional manifold

supporting a dynamical attractor parameterized by the leading slow modes of the system

(e.g., large-scale folding/unfolding of a protein) and to which the fast degrees of freedom

(e.g., side chain rotations) are annealed as effective noise. In this sense, CV discovery can

be viewed as a form of dimensionality reduction for identifying variables from data that best
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characterize the slowest evolving (i.e., maximally autocorrelated) degrees of freedom. A cen-

tral challenge in data-driven approaches for CV discovery is a “chicken-and-egg problem”:

performing good configuration space sampling requires high-quality CVs to bias, but dis-

covery of high-quality CVs requires sufficient data obtained from good configuration space

sampling.28 Consequently, data-driven methods typically strive to overcome this conundrum

by iterating between rounds of enhanced sampling and CV learning to incrementally im-

prove configuration space coverage. To this end, a variety of methods performing on-the-fly

discovery of CVs and enhanced sampling have been proposed, including: REinforcement

learning based Adaptive samPling (REAP),29 Reweighted Autoencoded Variational Bayes

for Enhanced sampling (RAVE),30 Diffusion-Map-directed MD (DM-d-MD),31 intrinsic Map

Dynamics (iMapD),32 and Molecular Enhanced Sampling with Autoencoders (MESA).33 A

commonality between many of these adaptive sampling strategies is that they typically seek

to identify high-variance CVs correlated with the elongated directions in configurational

phase space containing the highest variance in the simulation trajectory. One may typically

expect the high-variance directions to also be slowly evolving since they generally correspond

to large-scale delocalized motions, but for the purposes of accelerating sampling along the

slow collective motions, one would typically prefer an approach capable of identifying them

directly.

Data-driven learning of slow CVs can be accomplished by appealing to the Variational

Approach to Conformational dynamics (VAC).34 The VAC formalism presents a variational

approach to numerically estimate the maximally autocorrelated CVs by empirical analysis

of time series data. The VAC underpins a number of popular techniques for slow CV dis-

covery, including Time-Lagged Independent Component analysis (TICA),35–37 kernel TICA

(kTICA),38 and State-free Reversible VAMPNets (SRVs),39 also known as Deep-TICA.40 In

particular, SRVs have been demonstrated as a powerful deep learning-enabled means to esti-

mate slow variables from simulation data that have been applied to produce high-resolution

models of Trp-cage miniprotein dynamics41 and describe DNA (de)hybridization.42 Crucially,
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since slow CVs are inherently dynamic observables, their recovery from biased simulation

data requires the use of dynamical, in addition to thermodynamic, corrections which are

sufficient for the reweighting of purely configurational quantities.43–45 Methods to rigorously

apply these dynamical corrections are necessary to solve the chicken and egg problem by

iterative rounds of slow CV discovery and enhanced sampling exploration of configurational

phase space.

A theoretical basis for dynamical reweighting is provided by path reweighting methods

rooted in the Girsanov theorem.43,45–48 These approaches are similar to dynamical reweight-

ing schemes that reweight discrete transition probabilities,49–53 but more powerful and gen-

eral in that it is applied directly to the transition density elements and so does not require

the assumption of local equilibrium or a predefined discretization of configurational phase

space.43,47,48 Conceptually, Girsanov reweighting is a technique to correct the probability

weights of dynamical pathways collected under a perturbed system Hamiltonian to those

under an unperturbed Hamiltonian by applying dynamical reweighting of the transition den-

sity elements along the dynamical path through phase space.48 Expectations of dynamical

observables can be formulated as expectations in a path ensemble, and Girsanov reweighting

provides a means to estimate unbiased averages from trajectories collected under an ap-

plied bias. Appealing to precisely the same rationale for enhanced sampling techniques in

the estimation of configurational observables, applied biases that improve sampling of the

phase space by accelerating rare transitions can lead to higher accuracy and lower variance

estimates of dynamical observables.

Path reweighting approaches present a powerful tool for the estimation of dynamical

observables from biased trajectories, but do have two important limitations. First, analytical

expressions for path reweighting factors are only available for particular choices of stochastic

integrators, specifically the Euler-Maruyama (E-M) scheme to integrate the overdamped

Langevin (i.e., Brownian dynamics) equation43,47,48 and the Izaguirre, Sweet, and Pande

(ISP) scheme – a variant of the Langevin leapfrog scheme – to integrate the (underdamped)
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Langevin equation.43,54 Elegant recent work by Kieninger and Keller developed a prescription

to derive path weights for other Langevin integration schemes and presented evidence that

approximate E-M reweighting expressions may offer high accuracy approximations for other

Langevin integrators, thereby generalizing the applicability of the methodology to popular

numerical schemes employed in the molecular simulation community.43 Second, the path

reweighting factors can become extremely large or extremely small for large applied biases

risking numerical instability and overflow/underflow. This means that there typically exists

a “Goldilocks region” for the intensity of the applied bias that is sufficiently high to promote

good sampling but sufficiently low for stable convergence and low-variance estimation of the

path ensemble expectations.45,47,48

There have been relatively few applications of Girsanov reweighting to molecular systems.

Viewing temperature as a simple modification of the system Hamiltonian, Chodera, Swope,

Noé, Prinz, Shirts, Smith, and Pande performed path reweighting of simulation trajecto-

ries at various temperatures within a parallel tempering / replica exchange framework to

estimate dynamical expectations from simulations conducted different temperatures under

an Anderson thermostat, overdamped Langevin dynamics, and Langevin dynamics.44,55 We-

ber and Pande employed the Girsanov approach to construct Markov state models (MSMs)

for the 20-residue Trp-cage fast-folding mini-protein using biased simulation trajectories in

which the dynamical evolution of a key dihedral angle was accelerated using artificial bias-

ing forces.45 Donati and Keller presented an elegant theoretical basis and devised efficient

numerical schemes that were applied to construct Markov state models of alanine dipeptide,

valine dipaptide, VGVAPG hexapeptide, and a β-hairpin peptide by on-the-fly Girsanov

reweighting of metadynamics enhanced sampling trajectories in which accelerating biases

were applied to pre-selected backbone or side-chain dihedral angles, key hydrogen bonds, or

the molecular end-to-end distance.47,48 In all studies to date, the CVs to accelerate, or more

generally the variables/parameters in which the Hamiltonian was modified, were pre-defined.

The success of the CV enhanced sampling is predicated on knowledge of CVs coincident with
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the slow motions of the system, and has limited applications to systems where this knowledge

is a priori available.

In the present work, we present Girsanov Reweighting Enhanced Sampling Technique

(GREST) as an adaptive sampling scheme that performs interleaved rounds of data-driven

slow CV discovery and enhanced sampling along those coordinates. Our approach is analo-

gous to our previously introduced Molecular Enhanced Sampling with Autoencoders (MESA)

method for interleaved data-driven discovery and enhanced sampling in high variance CVs,33

but by appealing to Girsanov reweighting GREST extends this approach to slow (i.e., max-

imally autocorrelated) CVs. We build upon the elegant theoretical and numerical work by

Keller and co-workers47,48 to perform nonlinear CV discovery using SRVs as a deep learning-

enabled version of TICA that employs both thermodynamic corrections and Girsanov path

weights to recover slow CVs from the biased simulation trajectories.39 This modification of

the SRV objective function enables the formally correct numerical estimation of slow col-

lective variables from short, biased, and discontinuous trajectories. This estimation process

is similar to that proposed by Bonati et al.,40 but we explicitly include the Girsanov path

weights in addition to the thermodynamic corrections to rigorously account for the influence

of the bias upon the dynamics, and, rather than a one-shot discovery paradigm, we perform

discovery within a virtuous iterative loop to simultaneously converge sampling of configu-

rational phase space and the learned slow CVs. We demonstrate GREST in applications

to two biomolecular systems – alanine dipeptide and the WLALL pentapeptide – and make

the approach freely available to the community via publicly available open source Python

packages accompanied with example notebooks. We anticipate that GREST may be a useful

tool for rapid exploration of the configurational phase space of molecular systems without

the requirement for prior knowledge of the important underlying slow dynamical modes, and

a means to advance fundamental understanding of the slow molecular modes, guide ratio-

nal molecular engineering, and furnish slow subspaces for the parameterization of efficient

reduced-dimensional dynamical simulators.56,57
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2 Methods

2.1 Transfer operator theory

The transfer operator Tτ of a dynamical system possessing configurational microstates x ∈

Rn propagates probability distributions over configurational microstates qt(x) normalized

with respect to the equilibrium probability distribution ut(x) = qt(x)/π(x) under transition

densities p(xt+τ |xt) at a lag time τ ,58,59

ut+τ (x) = Tτ ◦ ut(x) =
1

π(x)

∫
pτ (x|x′)ut(x′)π(x′)dx′. (1)

Here pτ (x|x′) = IP(x = xt+τ |x′ = xt) is the (normalized) conditional probability density

that a system in microstate x′ = xt at time t will advance to state x = xt+τ at time (t+ τ).

Crucially, Eqn. 1 assumes Markovianity, which is an increasingly good approximation at

large lag times τ , and time homogeneity of the transition densities pτ (x|x′). For equilibrium

systems satisfying detailed balance, we have the additional condition that,

π(x)pτ (x
′|x) = π(x′)pτ (x|x′), (2)

which implies the transfer operator Tτ , also known as the Perron-Frobenius operator describ-

ing the evolution of densities with respect to the equilibrium density, becomes identical to

the Koopman operator describing the evolution of observables, and self-adjoint with respect
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to the equilibrium distribution,58

〈Tτ ◦ g, h〉π =

∫
Tτ ◦ g(x)h(x)π(x)dx

=

∫ [
1

π(x)

∫
pτ (x|x′)g(x′)π(x′)dx′

]
h(x)π(x)dx

=

∫ ∫
π(x)

π(x′)
pτ (x

′|x)h(x)g(x′)π(x′)dx′dx

=

∫ [
1

π(x′)

∫
pτ (x

′|x)h(x)π(x)dx

]
g(x′)π(x′)dx′

=

∫
Tτ ◦ h(x′)g(x′)π(x′)dx′

= 〈g, Tτ ◦ h〉π. (3)

The self-adjoint nature of Tτ under the detailed balance condition implies that it admits

diagonalization into a set of eigenfunctions {ψi(x)} forming a complete orthonormal basis,

and that the associated eigenvalues {λi} are real and bounded from above by 1 = λ0 ≥ λ1 ≥

λ2 ≥ . . .,58,60–62

Tτ ◦ ψi(x) = λiψi(x), 〈ψi(x)|ψj(x)〉π = δij. (4)

As a result, any state function ξt(x) can be represented within the eigenfunction basis ξt(x) =∑
i〈ψi(x)|ξt(x)〉πψi(x), and we can describe the dynamical evolution of ξt in increments of

τ via consecutive applications of Tτ ,39,56

ξt+kτ (x) = Tτ ◦ Tτ ◦ . . . ◦ Tτ︸ ︷︷ ︸
k

◦ξt(x)

=
∑
i

〈ψi(x)|ξt(x)〉πT kτ ◦ ψi(x)

=
∑
i

〈ψi(x)|ξt(x)〉πλkiψi(x)

=
∑
i

〈ψi(x)|ξt(x)〉πe
(
− kτ
ti

)
ψi(x), (5)
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where we have transformed the eigenvalues into the implied time scales ti = −τ/ ln(λi) asso-

ciated with the relaxation of each of the orthonormal eigenfunctions in the expansion. These

time scales ti characterize the exponentially decaying contributions for the eigenfunctions

{ψi>0(x)}, such that at sufficiently large lag times τ the contributions from basis associated

with faster relaxation times can be neglected and ξ accurately approximated by keeping

only the leading slowest terms. The leading pair (ψ0 = 1, λ0 = 1) therefore corresponds to

the equilibrium distribution π(x) = limt→∞ qt(x) and the remaining pairs to a hierarchy of

increasingly quickly relaxing modes.

2.2 Approximating slow modes from data

The Variational Approach to Conformation dynamics (VAC) formalism provides a means to

approximate the eigenfunctions {ψi(x)} of the transfer operator Tτ . A variational principle

underpins the VAC approach.38,39,61 This can be straightforwardly understood by starting

from an identity that for the ith eigenfunction ψi(x) that follows directly from Eqn. 4,

〈ψi(x)|Tτ ◦ ψi(x)〉π
〈ψi(x)|ψi(x)〉π

= λi. (6)

Consider now a trial function ν(x) that is orthogonal to the preceding (i−1) eigenfunctions,

〈ψ0(x)|ν(x)〉π = 0, 〈ψ1(x)|ν(x)〉π = 0, . . . , 〈ψi−1(x)|ν(x)〉π = 0, (7)

and may therefore be expanded within the eigenfunction basis as,

ν(x) =
∑
j≥i

〈ψj(x)|ν(x)〉πψj(x) =
∑
j≥i

κjψj(x), (8)
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where κj = 〈ψj(x)|ν(x)〉π are the linear expansion coefficients. Combining Eqns. 4, 6, and

8, we obtain the following inequality,

λ̃i =
〈ν(x)|Tτ ◦ ν(x)〉π
〈ν(x)|ν(x)〉π

=
〈
∑

j≥i κjψj(x)|Tτ ◦
∑

j≥i κjψj(x)〉π
〈
∑

j≥i κjψj(x)|
∑

j≥i κjψj(x)〉π

=

∑
j≥i κ

2
jλj∑

j≥i κ
2
j

≤
∑

j≥i κ
2
jλi∑

j≥i κ
2
j

= λi, (9)

such that λ̃i is bounded from above by the true eigenvalue λi and the equality λ̃i = λi holds

if and only if the trial function ν(x) is equal to the true eigenfunction ν(x) = ψi(x). As such,

we are guaranteed to approach λi from below by variational optimization of a trial function

ν(x) to maximize λ̃i in Eqn. 9 subject to the orthogonality conditions in Eqn. 7.

It is convenient to construct trial functions as a linear expansion of arbitrary (possibly

non-orthogonal) basis functions {χi(x)} and optimize the expansion coefficients within this

basis to develop optimal approximations {φi(x)} to the true eigenfunctions {ψi(x)},

φi(x) =
∑
j

αijχj(x), (10)

where αij are the linear expansion coefficients for basis function j within our approximation

for eigenfunction i. Under this linear formulation, the VAC procedure can be shown to yield

the following generalized eigenvalue problem,61

Cταi = λ̃iSαi, (11)

where αi = {αij} = [αi0, αi1, αi2, . . .] are the linear expansion coefficients for assembling the
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approximate eigenfunction φi(x) with associated approximate eigenvalue λ̃i. This generalized

eigenvalue problem is isomorphic to the Roothaan-Hall equations in quantum mechanics that

are used to represent the Hartree-Fock equation in a non-orthonormal basis set. 63 The matrix

elements of Cτ and S are defined as,

Cτ
jk = 〈χj(x)|Tτ ◦ χk(x)〉π, (12)

Sjk = 〈χj(x)|χk(x)〉π, (13)

where Cτ is the time-lagged correlation matrix – analogous to the Fock matrix – and S

the overlap matrix. Standard techniques64 can be employed to solve the generalized eigen-

value problem in Eqn. 11, which will yield the linear expansion coefficients for the optimal

approximate eigenfunctions {φi(x)} within the basis {χi(x)}.

Using this VAC formalism we can numerically estimate {φi(x)} from trajectory data by

replacing the exact inner products in Eqns. 12 and 13 with empirical estimates,

Cτ
jk = 〈χj(x)|Tτ ◦ χk(x)〉π ≈ E[χj(xt)χk(xt+τ )]

≈ 1

T − τ

T−τ∑
t=1

χj(xt)χk(xt+τ )

≈ 1

L

L∑
i=1

χj(x
(i)
t )χk(x

(i)
t+τ ), (14)

Sjk = 〈χj(x)|χk(x)〉π ≈ E[χj(xt)χk(xt)]

≈ 1

T − τ

T−τ∑
t=1

χj(xt)χk(xt)

≈ 1

L

L∑
i=1

χj(x
(i)
t )χk(x

(i)
t ), (15)

where the terminal summations defining the estimators in Eqns. 14 and 15 are carried out

over i = 1 . . . L training samples harvested from the trajectory data assembled as pairs of
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states (x
(i)
t ,x

(i)
t+τ ) separated by a lag time τ .

2.3 State-free Reversible VAMPnets (SRVs)

The quality of the eigenfunction approximations under the VAC is contingent on the choice

of a sufficiently expressive and powerful basis. The Markov state model (MSM) formal-

ism65,66 follows as a special case of the VAC under a choice of basis corresponding to indi-

cator functions partitioning of the configurational phase space into nc disjoint sets {Sj}ncj=1

such that χj(x) = 1 for x ∈ Sj and χj(x) = 0 for x /∈ Sj.
34 In this case estimation of

the matrix elements Cτ
jk simply amounts to counting transitions from trajectory data that

carry states xt ∈ Sj to xt+τ ∈ Sk in a lag time τ . The inherent orthonormality and bi-

nary nature of the indicator function basis {χi} implies that the matrix S is diagonal with

matrix elements Sjj = πj corresponding to the stationary distribution of normalized state

counts πj =
∑T−τ
t=1 χj(xt)

T−τ .61 The elements of the approximate MSM eigenfunctions {φi(x)}

can then be interpreted as fluxes into or out of sets {Sj} with each eigenfunction φi(x)

characterizing slow modes as traversals along the discretized state-space {Sj}.67 The qual-

ity of state-space discretization is a critical determinant of MSM precision, and is typically

most amenable to metastable dynamics that can be effectively discretized into long-lived

metastable states.61,68 State-space clustering to determine disjoints sets that define the ba-

sis {χi} is commonly performed within low-dimensional embeddings of the full-dimensional

state-space using techniques such as TICA35–37 combined with k-means clustering. The

different interacting components within MSM workflows typically suffer from requiring man-

ual trial-and-error and human expertise to handle selecting the appropriate dimensionality

reduction technique, the number of cluster states, choice of clustering method, and opti-

mizing location of cluster centers.61 Mardt, Pasquali, Wu, and Noé developed VAMPnets

as an end-to-end replacement for MSM construction pipeline using deep neural networks

to integrate the featuruzation, dimensionality reduction, clustering, and kinetic modeling

steps.69 Indicator functions represent one rather restrictive choice of basis and the quality
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of the approximate eigenfunction expansions depends sensitively upon the choice of phase

space discretization. More general classes of basis functions offer the possibility of superior

eigenfunction approximations, but it is challenging to intuit good choices of a basis set.

We previously introduced State free Reversible VAMPNets (SRVs) as a means to per-

form data-driven learning of good basis functions for the VAC by performing simultaneous

learning of the basis functions and the linear expansion coefficients for approximation of the

transfer operator eigenfunctions.39 In brief, we learn {χi} from training trajectories using

simple feedforward neural networks, pass these basis functions through the VAC to learn

approximations for the leading transfer operator eigenfunctions {φi(x)}, and quantify the

quality of the learned eigenfunctions via a loss function based on the slowness of the associ-

ated implied time scales. We then iteratively update the neural networks to learn superior

basis functions by backpropagating the gradient of the loss function through the entire com-

putational graph.

Mathematically, the SRV neural networks f θ(x) ∈ Rm are parameterized with model

weights θ and tasked with learning a map from microstate configurations x into a m-

dimensional output space, where m is the number of desired approximate eigenfunctions

of the transfer operator (i.e., slow CVs) to learn. The neural network outputs χj(x) = f θj (x)

represent the learned basis functions, which we pass to the VAC and solve for the optimal

linear expansion approximations of the transfer operator eigenfunctions φi(x) =
∑

j αijχj(x)

using Eqns. 11-15. The model weights θ are optimized via minimization of the VAMP-r loss

function,

LSRV = −
m−1∑
j=0

λ̃rj , (16)

with a typical choice of r = 2 corresponding to the VAMP-2 loss that can be interpreted as the

cumulative kinetic variance.67,70 The loss function attains a minimum when the approximate

eigenfunctions equal the true eigenfunctions and the approximation becomes exact.69

Learning iterates between solving for the expansion coefficients {αij} and eigenvalues

{λ̃j} by solving the generalized eigenvalue problem in Eqn. 11 and updating the network
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weights θ by gradient descent steps of LSRV in Eqn. 16. The generalized eigenvalue problem

is formulated by estimating the matrices Cτ and S from the neural network outputs in

batches according to Eqns. 14 and 15, and solved using Cholesky decomposition to provide

stable gradients for the learning problem.39 The neural network weights are updated by mini-

batch gradient descent with the Adam71 optimizer. Neural network convergence is assessed

by monitoring and ensuring plateauing of the loss LSRV on a held-out validation set, which

together with providing randomly shuffled training samples, also serves as a regularizer to

also help prevent overfitting.

The trained SRV may then be used for out of sample inference on unseen configurations

x∗ to furnish the mappings into the approximate eigenfunctions x∗ → {φi(x∗)}m−1
i=0 . This

learned projection represents a data-driven embedding into a slow CV subspace spanned by

our approximations to the leading eigenfunctions of the transfer operator. An appropriate

number m of CVs to retain is typically informed by a gap in the eigenvalue spectrum sepa-

rating the slowly relaxing modes from a rapidly relaxing continuum of fast modes that are

effectively annealed to the slow subspace on sufficiently long time scales. An appropriate lag

time τ is determined by convergence of the implied time scales of the learned slow modes

and satisfaction of the Chapman-Kolmogorov test.39 Full details of the architecture, train-

ing, and hyperparameter tuning of the SRV models employed in this work are provided in

the Supporting Information.

2.4 Dynamical reweighting

Dynamical reweighting provides a formalism to estimate equilibrium dynamical properties

from biased simulation data. Dynamical reweighting corrections for biased data have been

analytically derived by Chodera and co-workers for the special case of temperature reweight-

ing,44,72,73 and Keller and co-workers for arbitrary biases.43,47,48 The premise of dynamical

reweighting lies in path reweighting methods, based mathematically on the Girsanov theo-

rem,46 in which phase space trajectories ω0→τ = ((x0,v0), (x∆t,v∆t), . . . , (xτ−∆t,vτ−∆t), (xτ ,vτ ))
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generated under some simulation potential Vsim(x) are associated with a path probability

density µsimΩτ,x0
(ω0→τ ), where Ωτ,x0 is the path space comprising the set of all paths of length

τ that start at x0. Positing that the simulation potential Vsim(x) = Vtarget(x)−Ubias(x) is a

superposition of the underlying target potential Vtarget(x) and a biasing potential Ubias(x),

path weights M(ω0→τ ) can be used to recover the probabilities for paths collected under the

simulation potential Vsim by reweighting to the target potential Vtarget,

µtargetΩτ,x0
(ω0→τ ) = M(ω0→τ )µ

sim
Ωτ,x0

(ω0→τ ). (17)

Until recently, analytical expressions of the path weights M(ω0→τ ) for arbitrary biasing

potentials were only available for the Euler-Maruyama scheme for overdamped Langevin dy-

namics (i.e., Brownian dynamics).43,74–77 More recently, analytical path weights have been

derived for (underdamped) Langevin dynamics schemes43 which are known to better re-

produce the true dynamics for large molecular systems and are widely implemented within

existing molecular dynamics frameworks.54,78–83 The molecular systems in this work are sim-

ulated in implicit solvent under (underdamped) Langevin dynamics that are numerically

integrated using a variant of the Langevin leapfrog scheme developed by Izaguirre, Sweet,

and Pande,54 hereafter referred to as the ISP scheme, for which analytical path weights

have been derived by Kieninger and Keller.43 These authors have also implemented this in-

tegrator within OpenMM84 along with numerically efficient implementations for on-the-fly

calculation of the path weights M(ω0→τ ) during runtime.

Co-opting this dynamical reweighting formalism within the SRV framework enables es-

timation of equilibrium slow modes from biased simulation data.47,48 Following the develop-

ment of Donati and Keller,48 we observe that the matrix elements Cτ
jk of the time-lagged

correlation matrix of basis functions {χi(x)} under the target potential Vtarget(x) can be

viewed as a nested integral of a path ensemble average over paths ωt→t+τ ∈ Ωτ,xt inside a
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phase space ensemble average over path starting configurations xt ∈ Γ,

Cτ
jk =

∫
Γ

µtargetΓ (xt)χj(xt)

∫
Ωτ,xt

µtargetΩτ,xt
(ωt→t+τ )χk(xt+τ )dωt→t+τdxt, (18)

where µtargetΓ (xt) and µtargetΩτ,xt
(ωt→t+τ ) are, respectively, the phase-space and path-space prob-

ability densities under Vtarget(x). For simulation data collected under a potential Vsim(x) =

Vtarget(x) − Ubias(x), we are compelled to apply thermodynamic and dynamical corrections

to estimate Cτ
jk under Vtarget(x),

Cτ
jk =

∫
Γ

h(xt)µ
sim
Γ (xt)χj(xt)

∫
Ωτ,xt

M(ωt→t+τ )µ
sim
Ωτ,xt

(ωt→t+τ )χk(xt+τ )dωt→t+τdxt. (19)

The thermodynamic reweighting correction accounts for the change in the configurational

probability of the initial configuration of the path xt under Vtarget relative to Vsim,

h(xt) =
µtargetΓ (xt)

µsimΓ (xt)

=
exp (−βVtarget(xt))

Ztarget

/
exp (−βVsim(xt))

Zsim

=
Zsim
Ztarget

exp (−βUbias(xt)), (20)

where we operate in the canonical ensemble such that Z =
∫

Γ
exp (−βV (x))dx is the con-

figurational part of the canonical partition function associated with a potential V (x), and

β=(kBT )−1, where kB is the Boltzmann constant, and T is the temperature. The dynamical

reweighting correction accounts for the change in the probability of the path under Vtarget

relative to Vsim,

M(ωt→t+τ ) =
µtargetΩτ,xt

(ωt→t+τ )

µsimΩτ,xt
(ωt→t+τ )

. (21)

For underdamped Langevin dynamics numerically integrated using the ISP scheme,54 an

explicit expression for this dynamical reweighting factor is known (c.f., Eqns. 23, 57, 58, 59
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and 60 in Ref.43),43,47,48

M(ωt→t+τ ) =

exp

− N∑
α=1

∑
γ={x,y,z}

τ/∆t−1∑
k=0

(
x

[α,γ]
t+(k+1)∆t − x

[α,γ]
t+k∆t

) (
∇[α,γ]Vtarget (xt+k∆t)−∇[α,γ]Vsim (xt+k∆t)

)
kBTξ(1 + exp(−ξ∆t))∆t


· exp

 N∑
α=1

∑
γ={x,y,z}

τ/∆t−1∑
k=0

v
[α,γ]
t+k∆t

(
∇[α,γ]Vtarget (xt+k∆t)−∇[α,γ]Vsim (xt+k∆t)

)
kBTξ(1 + exp(ξ∆t))


· exp

−exp(ξ∆t)− 1

exp(ξ∆t) + 1
·
N∑
α=1

∑
γ={x,y,z}

τ/∆t−1∑
k=0

(
(∇[α,γ]Vtarget (xt+k∆t))

2 − (∇[α,γ]Vsim (xt+k∆t))
2
)

2kBTξ2m[α]

 ,

(22)

where the summation α = 1 . . . N is carried over the N particles in the system, the sum-

mation γ = {x, y, z} over the three spatial dimensions, x
[α,γ]
t and v

[α,γ]
t represent the γ

components of the position and velocity of particle α, ∇[α,γ] is the partial derivative taken

with respect to the γ spatial component of particle α, m[α] is the mass of particle α, ξ is the

Langevin friction coefficient, ∆t the integration time step, and the lag time τ is restricted

to be an integer multiple of ∆t. This equation may be equivalently rewritten in terms of the

bias potential Ubias and the random number sequence that generated the Langevin integra-

tion path {ηt+k∆t}τ/∆t−1
k=0 to present a simpler and potentially less computationally expensive

expression to evaluate (c.f., Eqn. 27 in Ref.43),43,47,48

M(ωt→t+τ ) =

exp

− 1− exp(−ξ∆t)√
1− exp(−2ξ∆t)

·
N∑
α=1

∑
γ={x,y,z}

τ/∆t−1∑
k=0

∇[α,γ]Ubias (xt+k∆t) ηt+k∆t√
kBTξ2m[α]


· exp

−(1− exp(−ξ∆t))2

1− exp(−2ξ∆t)
·
N∑
α=1

∑
γ={x,y,z}

τ/∆t−1∑
k=0

(
∇[α,γ]Ubias (xt+k∆t)

)2

2kBTξ2m[α]

 . (23)

Having defined the reweighting factors, we return to Eqn. 19 and estimate it empirically
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from trajectories collected under the simulation potential Vsim = Vtarget − Ubias from which

we compile a batch of i = 1 . . . L training samples comprising pairs of states (x
(i)
t ,x

(i)
t+τ )

separated within a simulation trajectory by a lag time τ and connected by paths ω
(i)
t→t+τ =(

(x
(i)
t ,v

(i)
t ), (x

(i)
t+∆t,v

(i)
t+∆t), . . . , (x

(i)
t+τ−∆t,v

(i)
t+τ−∆t), (x

(i)
t+τ ,v

(i)
t+τ )

)
,

Cτ
jk ≈

1

L

L∑
i=1

h(x
(i)
t )M(ω

(i)
t→t+τ )χj(x

(i)
t )χk(x

(i)
t+τ ). (24)

As a corollary, the matrix elements Sjk of the instantaneous correlation matrix can be esti-

mated over the same data as,

Sjk ≈
1

L

L∑
i=1

h(x
(i)
t )M(ω

(i)
t→t+τ )χj(x

(i)
t )χk(x

(i)
t ). (25)

The matrices Cτ and S are subsequently used to solve for the basis function expansion

coefficients via the generalized eigenvalue problem defined in Eqn. 11. The thermodynamic

reweighting factor h(xt) (Eqn. 20) possesses a term
(

Zsim
Ztarget

)
that serves as a multiplicative

constant of each element of Cτ and S that is independent of state xt and path ω
(i)
t→t+τ and

may therefore be canceled out on each side of the generalized eigenvalue problem. As such,

this partition function ratio never need be computed and can be dropped. Defining,

g(xt) = exp (−βUbias(xt)), (26)

we can rewrite h(xt) =
(

Zsim
Ztarget

)
g(xt) and formally drop the partition function ratio by

replacing h(xt) with g(xt) in Eqns. 24 and 25 to yield,

Cτ
jk ≈

1

L

L∑
i=1

g(x
(i)
t )M(ω

(i)
t→t+τ )χj(x

(i)
t )χk(x

(i)
t+τ ), (27)

Sjk ≈
1

L

L∑
i=1

g(x
(i)
t )M(ω

(i)
t→t+τ )χj(x

(i)
t )χk(x

(i)
t ). (28)

19



Finally, we define a combined thermodynamic and dynamic reweighting factor,

W (ω
(i)
t→t+τ ) = g(x

(i)
t )×M(ω

(i)
t→t+τ ), (29)

and explicitly replace the basis functions {χi(x)} with the SRV neural network outputs

χj(x) = f θj (x) to obtain our final expressions for Cτ
jk and Sjk that we use in practice,

Cτ
jk ≈

1

L

L∑
i=1

W (ω
(i)
t→t+τ )f

θ
j (x

(i)
t )f θk (x

(i)
t+τ ), (30)

Sjk ≈
1

L

L∑
i=1

W (ω
(i)
t→t+τ )f

θ
j (x

(i)
t )f θk (x

(i)
t ). (31)

In the absence of bias (i.e., Ubias(x) = 0 ⇒ Vsim(x) = Vtarget(x)) the reweighting factors in

Eqns. 26 and 23 both reduce to unity (i.e., g(xt) = M(ωt→t+τ ) = 1 ⇒ W (ωt→t+τ ) = 1) and

the expressions for Cτ
jk and Sjk for biased simulation data (Eqns. 30 and 31) reduce to those

for unbiased data (Eqns. 14 and 15) as they should.

Having adapted the SRV framework incorporating dynamical reweighting, training can

now proceed to approximate the slow modes of a molecular system from short, discon-

tinuous, and biased trajectories. Since the learned modes will correspond only to the

slowest modes present within the training data, the true slow modes for systems contain-

ing high free energy barriers and rugged free energy landscapes will not be well approx-

imated within unbiased simulation trajectories that have a propensity to be kinetically

trapped. This is the primary motivation for the GREST approach presented herein that

performs interleaved rounds of slow CV discovery and enhanced sampling until conver-

gence is achieved in the explored phase space and the learned CVs. A Python package

containing a PyTorch85 implementation of SRVs with capabilities for training with biased

simulation data incorporating these reweighting factors is publicly available via GitHub at

https://github.com/andrewlferguson/snrv.
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2.5 GREST adaptive sampling workflow

The Girsanov Reweighting Enhanced Sampling Technique (GREST) is an adaptive sampling

workflow combines slow CV discovery with SRVs and Girsanov path reweighting to perform

simultaneous learning of the slow modes of a molecular system and efficient exploration of

configurational space. This is accomplished by interleaving rounds of slow CV estimation

with path reweighted SRVs and enhanced sampling along the discovered slow modes. Our

approach is procedurally similar to MESA33 but is designed to discover and accelerate slow

rather than high variance CVs. It employs the path reweighting developed by Keller and co-

workers to estimate dynamical observables from biased simulation trajectories, 47,48 but uses

this approach to iteratively discover slow CVs as opposed to construct MSMs from biased

simulations conducted in pre-defined CVs that was the focus of work by both Keller and

co-workers47,48 and Weber and Pande.45 The first iterative round of GREST shares method-

ological similarities with the approach reported in Ref.40 but we apply both dynamical and

thermodynamic corrections to rigorously reweight our path ensemble estimators of the slow

CVs and perform successive rounds of discovery and biasing to converge the CVs and ex-

ploration of configurational phase space. A schematic illustration of the four-step iterative

workflow is presented in Fig. 1 and an algorithmic overview is shown in Algorithm 1.

Step 0: Generation of initial training data. Conduct an initial simulation to gather

trajectory data for the first round of slow CV estimation. Slow CV estimation with SRVs is

ultimately a data-driven technique, and therefore generally benefits from training on larger

datasets that explore larger volumes of the configuration space. As this initial simulation

serves as only a starting point for the adaptive sampling protocol, the length of the trajectory

can judiciously be chosen by considering available computational resources. For larger,

complex systems with rugged free energy surfaces susceptible to kinetic trapping, an unbiased

simulation may be insufficient to provide adequate exploration of local configurational space

and a biased simulation in intuited CVs based on expert knowledge may be conducted to

provide more extensive configurational space coverage within this initial training dataset.
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Figure 1: Schematic illustration of four-step iterative Girsanov Reweighting Enhanced Sam-
pling Technique (GREST) workflow. (a) Initial training data is generated by unbiased or
biased simulation data accelerated along intuitive CVs. (b) Slow CVs are estimated from
the training data using Girsanov path reweighted State-free Reversible VAMPnets (SRVs).
(c) Enhanced sampling calculations are performed within the learned slow CVs using a CV
biasing technique such as metadynamics. (d) Convergence of the iterative cycle is assessed
by evaluating the stability of the learned CVs in successive iterations.

Step 1: Slow CV estimation using SRVs. Train path reweighted SRV models using

unbiased or biased simulation data to estimate slow CVs. The SRV learns a mapping from

configuration space coordinates x to approximate slow eigenfunctions of the transfer operator

x→ {φi(x)}. Since the dimensionality of the slow subspace may change over the course of the

GREST iterative cycles as a result of the region and volume of configurational phase space

that has been explored by the simulation trajectories, we recommend first training SRVs

with a relatively high number of CVs (e.g., n ∼ 10) to attempt to discern a spectral gap in

the slow mode eigenvalue spectrum and make a principled inference of the dimensionality
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Algorithm 1: Girsanov Reweighting Enhanced Sampling Technique (GREST) work-
flow
1 x ← Initial short simulation // Step 0

/* From an unbiased simulation or basing along intuited CVs */

2 k ← 0 // GREST round # counter

3 notConverged ← True
4 while notConverged do

5 {ψ(k)
i (x)} ← SRV(x) // Step 1

6 /* Estimate slow CVs from simulation data using SRVs with Girsanov

Reweighting if applicable */

7 x ← EnhancedSampling({ψ(k)
i (x)}) // Step 2

8 /* Perform enhanced sampling in the learned slow CVs to gather

biased simulation data */

9 if ConvergenceCriterion({ψ(k)
i (x)}, {ψ(k−1)

i (x)}, . . .) then
10 notConverged ← False // Step 3

/* Analyze successive rounds of learned slow modes to determine

convergence */

11 k ← k + 1 // Increment round # counter

of the slow subspace. The only exception to this recommendation is for the first round of

sampling where exploration may be poor and we have found that it can be useful to simply

choose a 2D latent space for the purposes of driving the first round of biased sampling.

Step 2: Enhanced sampling along slow CVs. Perform enhanced sampling within

the SRV-determined CVs. The slow CVs learned by the SRV can be passed to any CV en-

hanced sampling technique and used to drive accelerated sampling in an off-the-shelf manner.

For the molecular systems in this work, we choose to employ well-tempered metadynamics

(WTMetaD).18,86 Converging WTMetaD can become computationally burdensome when

sampling in more than two CVs, and in this case we recommend well-tempered parallel bias

metadynamics (PBMetaD) as an approach that scales well to large numbers of CVs. 87,88

The accumulation of bias throughout the metadynamics run can lead to large variances in

the estimator of the dynamical path weights48 and produce numerical instabilities during

SRV training. As suggested in Refs.,45,48 we instead converge the metadynamics bias Umeta

and construct a potential Vsim = Vtarget − Ubias = Vtarget − γUmeta under which we conduct
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an additional round of metadynamics enhanced sampling in which we do not update the

terminal bias potential and modulate its strength by a factor γ = [0, 1]. This constitutes

enhanced sampling under an attenuated bias potential that eliminates the need to track the

time varying nature of the bias and also enables us to judiciously tune the aggressiveness of

the applied bias via the attenuation factor γ. Consistent with previous observations,48 we

have found that selecting an attenuation factor of γ ≈ 0.05 − 0.2 tends to provide a good

balance between enhancing sampling of configurational space while moderating the magni-

tude of the path weights to stabilize low-variance numerical estimation of path ensemble

averages. In this work, we adopt a relatively conservative attenuation factor of γ = 0.05.

This attenuation of the applied bias does limit the barrier crossing accelerations achievable

by the technique. The exponential nature of barrier crossing dynamics, however, means

that significant accelerations can be achieved even by relatively modest reductions in barrier

heights. For example, assuming a simple Arrhenius dependence k = A exp
(
− Ea
kBT

)
, where

k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, kB is

the Boltzmann constant, and T is the temperature, a modest 5% decrease of a Ea=10 kBT

barrier leads to a 65% elevation of the rate constant.

Step 3: Evaluating convergence. Assess the convergence of our adaptive sampling

workflow by determining if the learned SRV CVs have stabilized. Using all accumulated

enhanced sampling data, we evaluate the Pearson correlation coefficient of the learned SRV

CVs between consecutive enhanced sampling rounds. Plateauing of this metric suggests the

slow modes identified with SRVs trained on our enhanced sampling data have approximately

converged. Based on this metric we can evaluate if CV learning has halted and terminate

our workflow. Otherwise, we perform another iterative round of GREST.
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2.6 Simulation settings and parameters

2.6.1 One-dimensional four-well potential

Simulations under (underdamped) Langevin dynamics are performed for a single particle

moving on the 1D 4-well potential V4−well(x) = 2x8 + 1.6 exp(−80x2) + 0.4 exp(−80(x −

0.5)2) + exp(−40(x + 0.5)2) introduced by Schwantes and Pande.38 The ISP scheme43 – a

full-step adaptation of the Langevin leapfrog algorithm developed by Izaguirre, Sweet, and

Pande54 – is used to integrate the dynamics forward in time. Simulations are performed

using a time step of 0.01 s for a 1 kg particle with a friction coefficient of ξ = 1 s−1 at a

temperature of 60 K. Configurations are saved for analysis at a period of 0.05 s.

2.6.2 Alanine dipeptide

Simulations of alanine dipeptide (ADP) are carried out at a temperature of 300 K in implicit

solvent using OpenMM84 with the AMBER99SB-ILDN89 force field and the GBSA-OBC90

solvation model. Nonbonded interactions were cutoff at distances beyond 1 nm. The system

is numerically integrated under (underdamped) Langevin dynamics using the ISP scheme54

for which Keller and co-workers developed analytical expressions and efficient numerical

calculation schemes for the Girsanov path weights.43,47,48 A simulation time step of 2 fs is

used with a friction coefficient of ξ = 10 ps−1. Configurations are saved for analysis at a

period of 0.1 ps.

2.6.3 WLALL

Simulations of the Trp-Leu-Ala-Leu-Leu (WLALL) pentapeptide are conducted at a temper-

ature of 300 K using OpenMM84 and the CHARMM2291,92 force field with the GBSA-OBC90

implicit solvent model. All non-bonded interactions are cutoff at 1 nm. The system is nu-

merically integrated under (underdamped) Langevin dynamics using the ISP scheme54 and

path weights calculated using the approach developed by Keller and co-workers.43,47,48 A
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simulation time step of 2 fs is used with a friction coefficient of ξ = 10 ps−1. Configurations

are saved for analysis at a period of 0.1 ps.

3 Results

3.1 One-dimensional four-well potential

As a first illustrative toy example, we consider a single particle moving on the 1D 4-well

potential (Fig. 2a).38 We model single particle diffusion over this landscape under (under-

damped) Langevin dynamics. This system is sufficiently simple that the four wells and three

barrier hopping transitions can be comprehensively explored under long unbiased simulations

to provide a gold standard baseline against which to benchmark GREST.38,39 We represent

the system state of this simple 1D system to our path reweighted SRVs by simply furnishing

the 1D coordinate x = x ∈ R1. In contrast to linear algorithms such as TICA,35–37 the

SRV deep learning architecture can learn nonlinear transformations of the x coordinate to

learn a hierarchy of slowly relaxing CVs. Full details of the simulations are provided in the

Supporting Information.

Pre-defined bias. We first demonstrate the capacity of the dynamically reweighted

SRVs to learn the correct slow modes and associated time scales under a pre-defined bias.

This can be conceived of as a first round of a GREST campaign in which the user ap-

plies an intuitive biasing potential to accelerate sampling of the system prior to any data-

driven learning of the slow modes. The 4-well potential serves as the target potential under

which we wish to estimate the slow modes Vtarget = V4−well = 2x8 + 1.6 exp(−80x2) +

0.4 exp(−80(x− 0.5)2) + exp(−40(x+ 0.5)2) but we perform simulations under a 2-well po-

tential Vsim = V2−well = 2x8 + 1.75 exp(−80x2) (Fig. 2a). Formally, since the simulation

and target potentials are related via the applied bias as Vsim = Vtarget − Ubias, this amounts

to adopting Ubias = V4−well − V2−well as our biasing potential. The effect of this bias is to

flatten the two smaller barriers to leave only the single high barrier at the origin intact. We
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Figure 2: Application of GREST to the 1D 4-well potential as an illustrative toy exam-
ple. (Left column.) Application of GREST under pre-defined bias. (a) The target 4-well
potential Vtarget (blue) is shown alongside the 2-well potential under which the biased sim-
ulation is performed Vsim. The challenge is for path reweighted SRVs to correctly recover
the slowly relaxing modes and associated time scales of the 4-well system in simulations
conducted under the 2-well potential. (b-d) Comparison of the leading three leading slow
eigenfunctions {φ1(x), φ2(x), φ3(x)} recovered by path reweighted SRVs from long unbiased
reference data Vtarget (green), alongside eigenfunctions learned using biased simulation data
collected under Vsim to which we apply path weights comprising dynamical and thermo-
dynamic corrections (orange), only thermodynamic corrections (red), and no reweighting
corrections (blue). Eigenvectors are defined only up to scaling and sign so are presented
under unit normalization and, if necessary, inversion of sign to align them with the unbiased
reference data. (e) Associated implied time scales ti = −τ/ ln(λi) for the SRV eigenfunc-
tions in panels (b-e) with error bars showing the standard deviation over 10 independently
trained models with different random seeds. (Right column.) Application of GREST un-
der a learned bias. (f) A biasing potential Ubias is constructed by projecting the unbiased
reference data into the leading slow mode φ1(x) learned by a path reweighted SRV fit to
the unbiased 4-well simulation trajectories. Application of the bias to the target potential
results in a simulation potential Vsim = Vtarget − Ubias that attenuates the highest central
potential energy barrier by ∼0.5 kJ/mol and the other potential energy barriers by ∼0.25
kJ/mol. (g-i) Comparison between the reference eigenfunctions and those estimated from
biased simulation data under Vsim in panel (f) to which we apply various path weights. (j)
Associated implied time scales ti = −τ/ ln(λi) for the SRV eigenfunctions in panels (g-i)
with error bars showing the standard deviation over 10 independently trained models with
different random seeds.

therefore challenge our path reweighted SRVs to recover the correct slow modes and time

scales of the 4-well system under simulations conducted under the 2-well potential.

We present in Fig. 2b-d (green) approximations to the three leading slow eigenfunctions

{φ1(x), φ2(x), φ3(x)} learned using SRVs from long unbiased reference trajectories collected

under Vtarget = V4−well. The leading eigenfunction φ1(x) changes sign at x = 0 m and

corresponds to the slowest occurring transitions over the largest potential barrier. The next

eigenfunction φ2(x) is approximately zero in the right half space and changes sign at x =

(-0.5) m to characterize transitions over the next highest potential barrier. Finally, φ3(x) is

approximately zero in the left half space and changes sign at x = +0.5 m to characterize

transitions over the lowest potential barrier. The associated implied time scales for these

relaxations are presented in Fig. 2e.
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We also present in Fig. 2b-e the eigenfunctions and implied time scales learned by path

reweighted SRVs from biased simulation data collected under Vsim = V2−well under different

choices of path weights: dynamical and thermodynamic corrections (orange), only ther-

modynamic corrections (red), and no reweighting corrections (blue). The 2-well landscape

differs from the 4-well landscape largely by flattening of the two lower potential barriers

and leaving the largest central potential barrier largely intact. Recognizing that the slowest

relaxing mode is associated with the same dynamical process of transitions over this central

barrier, we anticipate good agreement between the leading slow mode estimated under the

4-well and 2-well simulation trajectories. Inspection of Fig. 2b shows that this is indeed the

case: the estimate of φ1(x) from unbiased reference data collected under V4−well (green) is in

good agreement in the uncorrected estimate of φ1(x) computed from simulation trajectories

collected under V2−well (blue). Application of thermodynamic only (W (ωt→t+τ ) = g(xt),

red) or thermodynamic and dynamical (W (ωt→t+τ ) = g(xt)×M(ωt→t+τ ), orange) reweight-

ing corrections within the SRV estimation (cf. Eqn. 29) therefore does little to improve the

agreement with the φ1(x) unbiased reference. Reweighting is, however, critical in accurate

estimation of the correct implied time scale associated with this mode (Fig. 2e, left). The

largest error in predicting the reference time scale of the leading mode (green) occurs when

no reweighting corrections are applied (blue). Incorporating thermodynamic corrections

alone improves agreement (red), but only by incorporating both the thermodynamic and

dynamical corrections do we accurately recover the true time scale (orange).

The 2-well potential lacks potential barriers at x = (-0.5) m and x = +0.5 m meaning

that biased simulations conducted under Vsim = V2−well do not contain any signatures of

relaxations associated with these barrier crossings and these modes are completely obfus-

cated due to obliteration of these barriers by the applied bias (Fig. 2b-e, blue). Nevertheless,

φ2(x) and φ3(x) and the associated implied time scales are accurately recovered when in-

corporating both thermodynamic and dynamical reweighting corrections into SRV learning

(orange). Interestingly, the thermodynamic correction alone does very little to improve esti-
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mation of the true slow eigenfunctions and implied time scales, cautioning against omission

of the dynamical path weights in estimating slow CVs.40 This example illustrates that path

reweighting can accurately learn the slow dynamical modes and time scales of a dynamical

system from biased simulation trajectories.

Learned bias. We now test the capacity of the learned slow CVs to support an ac-

celerating biasing potential and promote enhanced sampling of configurational phase space.

This can be approximately conceived as the second round of a GREST campaign in which

sampling is enhanced by accelerating biases in learned slow modes. We construct the bias po-

tential by assuming that the projection of the unbiased reference simulation into the leading

slow mode P (φ1(x)) is Boltzmann distributed and may therefore be inverted to construct

an effective potential F (φ1(x)) = −kBT log(P (φ1(x))). This represents a good candidate

biasing potential as it flattens out the portion of the potential associated with dynamical

transitions in φ1(x) and can therefore help accelerate sampling of these events. This leads

us to define the biasing potential as the functional composition Ubias = F(φ1(x)), where

F(φ1) is an analytical fit to F (φ1) that we find to be well described by a super-Gaussian

F (φ1) ≈ F(φ1) = A exp(−( (φ1−x0)2

2σ2 )P ) with A = 3.1 kJ/mol, x0= 0.049 m, σ2 = 0.058 m2,

and P = 2 (see Supporting Information). This functional fit also admits continuous first

derivatives required to compute the biasing forces on the particle through the chain rule,

fbias = −dUbias
dx

= − dF
dφ1

dφ1
dx

, where dF
dφ1

is available analytically and dφ1
dx

from automatic differ-

entiation through the trained SRV neural network. In Fig. 2g, we illustrate Vtarget = V4−well,

Ubias, and Vsim = Vtarget− γUbias = V4−well− 0.2Ubias, where we have chosen to set the atten-

uation factor to γ = 0.2 (cf. Section 2.5). The biasing potential depresses the height of the

central highest potential barrier by ∼0.5 kJ/mol, resulting in an observed ∼150% increase

in the number of (x < 0)↔ (x > 0) transitions. It also suppresses the two auxiliary barriers

at x = −0.5 m and x = 0.5 m by ∼0.25 kJ/mol, resulting in modest increases in the number

of (x < −0.5) ↔ (x > −0.5) and (x < 0.5) ↔ (x > 0.5) transitions by ∼20% and ∼14%,

respectively.
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We present in Fig. 2g-j the reference and learned eigenfunction approximations under

different reweighting schemes. Due to the relatively small perturbation to the target poten-

tial, we see qualitative agreement with the unbiased reference eigenfunctions (green) even

in the absence of any corrections (blue) or thermodynamic-only corrections (red), but the

full thermodynamic and dynamical corrections (orange) are required to achieve quantita-

tive agreement. The second and third implied time scales are in good agreement for all

reweighting schemes since the barriers associated with these dynamical transitions are only

moderately affected by the application of the bias, but we see that both the thermodynamic

and dynamical corrections are imperative for accurate estimation of the leading time scale

associated with transitions over the highest central potential barrier. This example demon-

strates that an SRV-learned slow mode can be used to effectively accelerate slow dynamical

transitions in a biased simulation from which path reweighted SRVs can accurately recover

the true slow modes.

3.2 Alanine dipeptide

We now demonstrate our approach in an application to the widely studied biomolecular

system alanine dipeptide (ADP). This system represents the “hydrogen atom of molecular

simulation”93 and we challenge GREST to simultaneously estimate the slow CVs governing

its biomolecular dynamics and recover the underlying molecular free energy landscape with-

out any prior knowledge of this system. Full details of the application of GREST to this

system including all path reweighted SRV training settings and metadynamics hyperparam-

eters are provided in the Supporting Information.

Unbiased reference benchmark. We first perform a long unbiased simulation to serve

as a baseline reference for the thermodynamics and kinetics of our ADP system against which

to benchmark the performance of GREST. We present in Fig. 3a-i the ADP free energy sur-

face as a φ-ψ projection into the backbone dihedral angles that are known to be good CVs

with which to differentiate the metastable conformational states of the system. 61,94 To ensure
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comprehensive sampling of configurational space, the reference simulation data was gathered

from 8 × 0.5 µs simulations initialized from configurations nearest k-means centroids identi-

fied by k-means clustering the φ-ψ projection of an initial 250 ns unbiased simulation. The

slowest relaxing implied time scale for this system is ∼1.4 ns, so these reference trajectories

provide excellent sampling of all relevant transitions in this ADP system. We train an SRV

over these unbiased simulation data in which we represent the instantaneous state of the

ADP system through all
(

22
2

)
= 231 pairwise atomic distances to define a translationally and

rotationally invariant featurization x ∈ R231 of the system.

The slowest process captured by the first SRV mode φ1(x) characterizes transitions

between the triplet of metastable states {C5, PII , αR} where φ < 0 and the doublet of

metastable states {αL, C7ax} where φ > 0 (Fig. 3a-ii). The second slow mode φ2(x) largely

subpartitions the {C5, PII , αR} triplet by characterizing transitions in ψ between {C5, PII}

and αR (Fig. 3a-iii). Throughout our adaptive sampling workflow we constrain the path

reweighted SRV to return two slow CVs since it is known that ADP possesses a 2D intrin-

sic manifold lying on the surface of a flat torus that is well parameterized by the φ and ψ

backbone dihedrals.33,95–98 In general, one would determine the appropriate number of CVs

to retain by searching for a gap in the SRV eigenvalue spectrum at each round of GREST.

Our goal is to learn to recapitulate these kinetics by biasing along dynamically estimated

slow modes to visit relevant macrostates and efficiently sample state-to-state transitions.

Application of GREST. We commence Round 0 of our adaptive sampling workflow

by running an initial unbiased 5 ns simulation with the resultant free energy profile shown

in (Fig. 3b-i). This initial simulation only samples the triplet of metastable states C5, PII ,

and αR residing in the low-φ/high-ψ superbasin and fails to experience any transitions to the

φ > 0 region. In the next step, we use this initial data to estimate the leading two SRV slow

modes (Fig. 3b-ii,iii). The paucity of training data in this initial round contributes to learning

a pair of seemingly degenerate slow modes that only capture transitions in φ. Equipped with

these learned slow modes and initial simulation data, we perform k-means clustering in the
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Figure 3: Application of GREST to ADP. (a-i) Reference free energy profile constructed
from 4 µs of unbiased simulation data projected into the φ-ψ backbone angles. The local free
energy minima are annotated with their associated macrostate labels: C5, PII , αR, αL, and
C7ax. (a-ii,iii) Leading two slow CVs φ1(x) and φ2(x) identified by application of SRVs to
the unbiased reference trajectories. φ1(x) characterizes transitions in the φ dihedral between
{C5, PII , αR} and {αL, C7ax}. φ2(x) primarily characterizes transitions in the ψ dihedral be-
tween {C5, PII} and αR. Rows (b)-(g) index successive rounds of GREST, commencing with
the initial unbiased Round 0 in (b) and ending with the terminal adaptive sampling Round
5 in (g). Columns (i)-(iv) index various facets of each round of GREST: (i) illustrates the
unbiased free energy landscape estimated by thermodynamic reweighting of the enhanced
sampling simulations performed under the fixed terminal metadynamics bias projected into
the φ-ψ backbone angles, (ii) and (iii) illustrate heatmaps of the path reweighted SRV slow
modes φ1(x) and φ2(x) learned from the enhanced sampling trajectories in the terminal
metadynamics bias potential projected into φ-ψ space, and (iv) illustrates the phase space
sampling density projected in φ-ψ space from well-tempered metadynamics simulations per-
formed in the two learned slow modes φ1(x) and φ2(x) illustrated in the preceding columns.
The GREST iterations are terminated when the CVs learned in successive rounds stabi-
lize, indicating no additional enhancement in configurational and dynamical exploration of
phase space. Convergence of GREST at Round 4 means that additional enhanced sampling
calculations are not conducted in Round 5.

feature space of the 231 pairwise atomic distances to identify configurations nearest 25 k-

means centroids that are used to initialize parallel walker metadynamics along our learned

SRV CVs in the subsequent step of GREST. Each walker is simulated for 1 ns yielding

an aggregate 25 ns of metadynamics simulation data. In Fig. 3b-iv we show the sampling

density from this metadynamics simulation as a visualization of the phase space explored

due to accelerating along the learned SRV slow modes φ1(x) and φ2(x). The resultant phase

space exploration along these learned CVs reveals that biasing has largely driven transitions

in ψ across the free energy barrier bridging metastable states PII and αR. To complete

Round 0, we perform enhanced sampling simulations using a time invariant and attenuated

version of the termminal metadynamics bias potential, which we reduce in magnitude by an

attenuation factor of γ = 0.05 to control the numerical instability associated with very large

and very small magnitude reweighting factors during the subsequent SRV training.45,48 These

enhanced sampling simulations are similarly executed in parallel with 25 × 1 ns simulations

initialized from configurations identified with the same k-means clustering protocol as in the
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previous step but applied to these 25 ns of metadynamics simulation trajectories.

In Fig. 3c, we illustrate Round 1 of our adaptive sampling protocol which proceeds anal-

ogously to the initial round except that the training data now comprises enhanced sampling

trajectories biased in the learned slow CVs from the previous round under the γ = 0.05 at-

tenuation factor. Although the applied biasing forces are relatively modest, the reweighted

free energy surfaces in Fig. 3c-i demonstrate that the biased trajectories experience tran-

sitions in φ and now visit metastable states αL and C7ax that were absent in the initial

unbiased data. Training path reweighted SRVs over these trajectories with thermodynamic

and dynamical corrections exposes two leading slow modes illustrated in Fig. 3c-ii,iii that

are now in much better agreement with those extracted from the long unbiased reference

data. (We recall that the sign of the learned eigenfunctions is immaterial.) We also see the

subsequent WTMetaD simulations performed along these SRV CVs by initializing 25 × 1 ns

walkers by k-means clustering in the feature space of 231 pairwise atomic distances drives

more comprehensive sampling of configurational phase space (Fig. 3c-iv). Visual analysis re-

veals that this time the enhanced sampling has driven transits over the free energy barriers

connecting PII and αR, PII and αL, αR and C7ax, and αL and C7ax. To complete Round 1,

we perform a final enhanced sampling simulation applying the terminal WTMetaD potential

under a γ = 0.05 attenuation factor using 25 × 1 ns walkers initialized by k-means clustering

in the feature space of 231 pairwise atomic distances, and pass this forwards as the biased

trajectory training data for Round 2.

We iterate this process to complete Rounds 2-5 of GREST that are illustrated in Fig. 3d-

g. Convergence is assessed by tracking the round-to-round change in the learned slow SRV

modes. Stabilization of the learned CVs between successive GREST rounds indicates that no

important new dynamical modes or regions of configurational phase space are being explored

under additional rounds of biased sampling. We quantify convergence by examining the Pear-

son correlation coefficient of SRV slow modes learned in consecutive rounds. Importantly,

we maximize the correlation coefficient under rigid rotations of the subspace spanned by the
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slow modes in successive rounds to account for possible rotational symmetries in which the

same subspace could be spanned by an equivalent rotation of the learned slow eigenfunctions.

Mathematically, this corresponds to identifying the affine transformation that maximizes the

correlation coefficient. Convergence is defined by stabilization in the number n of recovered

slow modes and round-to-round Pearson correlation coefficients {ρi > 0.8}ni=1 for all modes.

In the present case the former criterion is satisfied by default since we fix the dimensionality

of the SRV bottleneck layer to 2D. Consistent with expectations from inspection of the free

energy surfaces and slow CVs in Fig. 3, we illustrate in Fig. 4 that the latter criterion is

quickly satisfied after only Round 2, but we continue for three additional rounds for the

purposes of illustration.
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Figure 4: Convergence assessment of GREST applied to ADP by measuring the Pearson
correlation coefficient between SRV slow CVs discovered in successive rounds. Stabilization
of the CVs to ρ > 0.8 indicates that no important new dynamical modes or regions of
configurational phase space are being explored under additional rounds of biased sampling.

The excellent agreement between the free energy surface and slow modes of the terminal

round (Fig. 3g) and the unbiased reference data (Fig. 3a) indicate that the GREST iter-
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ations successfully recovered the true slow dynamical modes and used these to efficiently

enhance sampling of configurational phase space. While the ADP system does represent a

demonstrative and instructive molecular example for which the ground truth is well under-

stood, its small size and efficiency to simulate make it a relatively simple test of the GREST

methodology. In particular, expending the same computational effort expended within the

GREST pipeline (250 ns of cumulative simulation time) in unbiased simulations would ac-

curately recover the free energy surface by brute force and enable SRV discovery of the slow

modes without path reweighting. Moreover, the relatively low free energy barriers mean

that it is difficult to assess the gains realized by the relatively mild biases offered by the γ

= 0.05 attenuated enhanced sampling simulations since these barriers can be surmounted

by sufficiently long unbiased trajectories. In our next application, we apply GREST to a

larger, more complex molecular system where we demonstrate that the protocol does realize

substantial efficiency gains.

3.3 WLALL pentapeptide

As a more complex biomolecular system, we apply GREST to the Trp-Leu-Ala-Leu-Leu

(WLALL) pentapeptide.99 This system exhibits a number of metastable states separated by

free energy barriers that are sufficiently high to demonstrate the capabilities of GREST to

identify and surmount these barriers while still being sufficiently low to enable determination

of a ground truth benchmark by long unbiased simulations.

Unbiased reference benchmark. We generate unbiased reference simulation data for

the WLALL system in a similar manner to ADP. We first conduct an initial unbiased 250 ns

simulation then apply k-means clustering in a 2D TICA embedding using pairwise backbone

distances as features to seed initial configurations for 8 × 0.75 µs independent simulations

and produce 6 µs of aggregated reference data. As we will see, the slowest relaxing time

scale in this system is on the order of 19.6 ns, so these data provide comprehensive sampling

of configurational space. For the WLALL system, and many other systems of practical
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interest, intuitive low dimensional coordinates suitable for visualization, such as the two

backbone dihedrals for ADP, are not known a priori. For convenient visualization of the

WLALL free energy surface, we use TICA36,61,70 as a simple and convenient dimensionality

reduction technique to recover a two-dimensional representation of the WLALL phase space

independently of our SRVs. We represent the WLALL system to both the TICA and SRV

approaches as the
(

20
2

)
= 190 pairwise atomic distances between the 20 backbone atoms to

define a translationally and rotationally invariant featurization x ∈ R190. The free energy

surface resulting from projection of the unbiased reference trajectories into the leading two

TICA coordinates TIC1 and TIC2 is presented in Fig. 5a and reveals three predominant

macrostates: the unfolded ensemble (labeled 1 ), the folded state (2 ), and the misfolded

state (3 ). With the global free energy minima located in the unfolded ensemble under the

prevailing thermodynamic conditions, the compact folded state is differentiated from the

misfolded state with a comparatively lower free energy minima.

We next train an SRV over the unbiased reference data. An implied time scale analy-

sis reveals a gap in the eigenvalue spectrum after 2-3 leading slow modes (Fig. S3 in the

Supporting Information). For simplicity and visualization convenience, choose to retain the

leading two slow modes throughout our analyses of the WLALL system. As we shall see,

this results in empirically good performance in recapitulating and enhancing sampling of the

pentapeptide dynamics. The first slow mode φ1(x) possesses an implied time scale of t1 =

19.6 ns and characterizes transitions in and out of the misfolded state (Fig. 5b). The second

slow mode φ2(x) possesses an implied time scale of t2 = 11.3 ns and corresponds to transi-

tions in and out of the folded state (Fig. 5c). Having established this baseline understanding

of the structure, thermodynamics, and kinetics from a 6 µs unbiased reference simulation,

we now challenge GREST to automatically discover these slow modes and exploit them for

efficient enhanced sampling.

Application of GREST. We follow the same adaptive sampling routine for the WLALL

system as we demonstrated with ADP, beginning with a short unbiased 20 ns simulation to

38



Figure 5: Unbiased reference simulations of WLALL pentapeptide. (a) The free energy
surface resulting from projection of 6 µs of unbiased simulation data into the leading two
TICA coordinates identifies three predominant metastable minima marked by golden stars
and annotated with their corresponding relative free energy. Insets show a collection of
representative structures from each minima identifying the (1) unfolded state, (2) folded
state, and (3) misfolded state. (b) Application of SRVs to the unbiased reference data
resolves a leading slow mode φ1(x) with an implied time scale of t1 = 19.6 ns characterizing
transitions in and out of the misfolded state. (c) The next slowest mode φ2(x) possesses an
implied time scale of t2 = 11.3 ns and corresponds to transitions in and out of the folded
state.

initialize Round 0. We illustrate the resulting free energy surface in Fig. 6a-i by projecting

these data into the two leading TICA coordinates TIC1 and TIC2 identified from our analysis

of the 6 µs unbiased reference simulations. (We emphasize that the TICA coordinates

are used exclusively to provide a consistent and interpretable visual presentation of our

data as we progress through the GREST iterations, and the unbiased simulation data and

TICA analysis thereof play no role in the GREST analysis pipeline.) This initial Round 0

remains trapped in the unfolded ensemble and fails to explore any of the folded or misfolded

states, which results in learned SRV slow modes that only characterize transitions within the

unfolded ensemble (Fig. 6a-ii,iii). The subsequent WTMetaD run (Fig. 6a-iv) and subsequent

simulation employing a time invariant γ = 0.05 attenuated terminal metadynamics bias are

executed in the same manner as ADP, but in this instance we perform k-means clustering

in the space of our pairwise backbone distance featurization x ∈ R190 to initialize 25 × 1 ns
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parallel walkers. In Round 1, we observe that the system escapes the unfolded ensemble and

successfully explores the folded state (Fig. 6b-i), which is now captured in the leading SRV

slow mode (Fig. 6b-ii) and results in accelerated metadynamics sampling along the transition

path connecting the unfolded and folded states (Fig. 6b-iv). This process continues with

the discovery and SRV characterization of the misfolded state in Round 2 (Fig. 6c), and

convergence of the SRV slow modes after approximately five rounds (Fig. 6a-f, Fig. 7).

Visual comparison of the free energy surface in the terminal round of GREST (Fig. 6f-

i) with that computed from the long unbiased reference data (Fig. 5a) demonstrates that

GREST learned to identify the relevant transitions between states and to recover all of

the important metastable states. Relative to the ∼20 ns relaxation time of the slowest

mode in the system, GREST also accurately learned the leading slow relaxations from quite

parsimonious simulation data. A path reweighted SRV fitted to the accumulated 125 ns of

biased GREST simulation data identifies two slow modes that exhibit Pearson correlations

of ρ1 = 0.91 and ρ2 = 0.99, respectively, with those estimated from the 6 µs of unbiased

reference data. An implied time scale analysis of the biased data using a path reweighted

SRV also reveals converged timescales of the leading two slow modes in good agreement with

the unbiased reference data (Fig. S4 in the Supporting Information).

Finally, we verify that the enhanced sampling procedure effected within GREST does

substantially improve sampling even under the γ = 0.05 attenuation factor in the metady-

namics bias potential by surgically directing sampling along the relevant slow modes albeit

with relatively modest accelerations to preserve numerical stability. Employing the same

computational budget of 250 ns of simulation time, we demonstrate that GREST outper-

forms (i) a single long 250 ns unbiased simulation, (ii) 125 ns of unbiased simulation + 10

× 12.5 ns of unbiased simulations seeded by k-means clustering in pairwise backbone atom

distances, and (iii) 250 ns of metadynamics performed in the squared molecular radius of

gyration R2
g as an intuitive CV (Fig. S5 in the Supporting Information). These alternative

approaches fail to identify all relevant metastable states and result in free energy surfaces
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Figure 6: Application of GREST to WLALL pentapeptide. Rows (a)-(f) index successive
rounds of GREST, commencing with the initial unbiased Round 0 in (a) and ending with
the terminal adaptive sampling Round 5 in (f). Columns (i)-(iv) index various facets of
each round of GREST: (i) illustrates the unbiased free energy landscape estimated by ther-
modynamic reweighting of the enhanced sampling simulations performed under the fixed
terminal metadynamics bias data projected into the two leading TICA coordinates TIC1

and TIC2, (ii) and (iii) illustrate heatmaps of the path reweighted SRV slow modes φ1(x)
and φ2(x) learned from the enhanced sampling trajectories in the terminal metadynamics
bias potential projected into TIC1-TIC2 space, and (iv) illustrates the phase space sampling
density projected into TIC1-TIC2 space from well-tempered metadynamics simulations per-
formed in the two learned slow modes φ1(x) and φ2(x) illustrated in the preceding columns.
The GREST iterations are terminated when the CVs learned in successive rounds stabi-
lize, indicating no additional enhancement in configurational and dynamical exploration of
phase space. Convergence of GREST at Round 4 means that additional enhanced sampling
calculations are not conducted in Round 5.
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Figure 7: Convergence assessment of GREST applied to WLALL pentapeptide by measuring
the Pearson correlation coefficient between SRV slow CVs discovered in successive rounds.
Stabilization of the CVs to ρ > 0.8 indicates that no important new dynamical modes or
regions of configurational phase space are being explored under additional rounds of biased
sampling.
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with inferior coverage of the thermally accessible phase space compared to GREST.

4 Discussion & Conclusions

In this work we introduce Girsanov Reweighting Enhanced Sampling Technique (GREST) as

an adaptive sampling scheme that interleaves rounds of data-driven slow collective variable

discovery and enhanced sampling along these coordinates. We employ state-free reversible

VAMPNets (SRVs) to perform data-driven discovery of slow collective variables. The es-

timation of dynamical observables under an unbiased Hamiltonian from biased trajectories

collected under a perturbed Hamiltonian is enabled by the Girsanov formalism43,45–48 that

prescribes how to apply reweighting of trajectories in the biased path ensemble according to

both thermodynamic and integrator-specific dynamical path weights. This unlocks the abil-

ity to bias along slow coordinates to accelerate exploration of configurational phase space and

then recover improved estimates for these slow coordinates under the enhanced sampling by

applying Girsanov reweighting to the biased trajectories. This capability is the key feature

underpinning GREST that interleaves successive rounds of path reweighted SRV slow col-

lective variable discovery and metadynamics enhanced sampling in the learned coordinates

until we achieve convergence.

In an application to a toy one-dimensional four-well system, we developed intuition for

the behavior of GREST and showed how biasing along SRV learned CVs serve to reduce po-

tential energy barriers mediating slow dynamical processes and accelerate sampling of phase

space. In applications to two biomolecular systems – alanine dipeptide and the WLALL pen-

tapeptide – we demonstrated how GREST can accelerate sampling of configurational phase

space and furnish accurate estimates of the slow collective variables without any prior knowl-

edge of the system. We achieve significant speedups in sampling the configurational phase

space of the WLALL pentapeptide that enable GREST to discover all relevant metastable

states whereas unbiased simulations and enhanced sampling in intuitive coordinates that are
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not well correlated with the slow dynamical relaxations fail to explore all metastable states

in an equivalent simulation time.

In future work, we anticipate that GREST may be a valuable approach in realizing sig-

nificant efficiency gains in exploring the configurational phase space of large biomolecular

and macromolecular systems. We also observe that enhanced sampling need not be limited

to just those learned slow coordinates, and we propose that it may be profitable to augment

GREST with sampling in both intuited and learned coordinates as an inexpensive means

of incorporating prior knowledge into the approach. GREST is generically compatible with

any off-the-shelf collective variable biasing technique, but may also benefit from integration

with parallel tempering / replica exchange / Hamiltonian exchange formalisms to perform

generic acceleration of “all” system degrees of freedom as well as targeted enhanced sam-

pling along the learned slow modes.100–105 Path weights under Hamiltonian exchange can

be treated under the same formalism presented in this work; analytical expressions for tem-

perature reweighting and efficient numerical solution schemes have been previously reported

by Chodera and co-workers.44,72,73 Another future extension of GREST would involve ap-

plication to explicit solvent systems. Exposing both solvent and solute degrees of freedom

to the SRV network via permutationally invariant featurizations, such as the Permutation

Invariant Vector (PIV) formalism proposed by Fabio Pietrucci and co-workers, 106,107 would

enable learning of slow CVs over the solute and (permutationally invariant) solvent degrees

of freedom. However, Basconi and Shirts have shown that Langevin dynamics, along with

other velocity randomizing thermostats, may not be ideal for simulating solvated systems

because of their tendency to artificially dampen dynamical processes due to disturbances

of the natural time correlations of particle velocities and that these artifacts can only be

avoided by using weak coupling constants that can lead to imprecise temperature control. 108

As such, care must be taken that the Langevin integration schemes for which analytical

expressions for Girsanov weights are available must be deployed with care. A further avenue

of exploration would be to conduct a comparison of the Girsanov reweighting formalism
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with the square root approximation (SqRA) to dynamical reweighting.109–111 The SqRA re-

quires quite strong assumptions regarding the character of the potential energy landscape

and constancy of the diffusivity under an applied bias and so can only offer an approximate

reweighting scheme, but can convey advantages in terms of numerical robustness when these

conditions are satisfied and it offers an accurate approxiamtion to the exact Girsanov expres-

sions. The SqRA has been explored as an alternative to Girsanov reweighting by Donati,

Weber, and Keller in the context of Markov state models,111 and it would be interesting

to explore the quality of this approximation and its range of applicability in the context

of GREST. Finally, we observe that GREST may readily be applied to generic dynamical

systems beyond molecular dynamics to accelerate phase space exploration in numerical sim-

ulations in, for example, ecological modeling, climate science, process systems modeling, or

financial markets. The absence of detailed balance guarantees in generic dynamical systems

mean that the SRVs must be generalized to SNRVs (state-free non-reversible VAMPNets)

using the non-reversible VAC formalism,17,112 but otherwise the approach may be deployed

in a largely analogous manner to that for molecular systems herein.

Data availability

A Python package implementing SRVs with capabilities for training over biased simulation

data is publicly available via GitHub at https://github.com/andrewlferguson/snrv. Ex-

ample Jupyter notebooks illustrating the application of GREST to the 4-well potential, ala-

nine dipeptide, and WLALL pentapeptide systems along with all associated simulation data

are hosted on Zenodo at DOI:10.5281/zenodo.7552310.113
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proach to molecular kinetics. J. Chem. Theory Comput. 2014, 10, 1739–1752.
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