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Abstract
Molecular dynamics simulations of microscopic phenomena are limited by the short
integration time steps required for numerical stability but which limit the practically
achievable simulation time scales. Collective variable (CV) enhanced sampling tech-
niques apply biases to pre-defined collective coordinates to promote barrier crossing,
phase space exploration, and sampling of rare events. The efficacy of these techniques
is contingent on the selection of good CVs correlated with the molecular motions gov-
erning the long-time dynamical evolution of the system. In this work, we introduce
Girsanov Reweighting Enhanced Sampling Technique (GREST) as an adaptive sam-
pling scheme that interleaves rounds of data-driven slow CV discovery and enhanced
sampling along these coordinates. Since slow CVs are inherently dynamical quantities,
a key ingredient in our approach is the use of both thermodynamic and dynamical
Girsanov reweighting corrections for rigorous estimation of slow CVs from biased sim-

ulation data. We demonstrate our approach on a toy 1D 4-well potential, a simple
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biomolecular system alanine dipeptide, and the Trp-Leu-Ala-Leu-Leu (WLALL) pen-
tapeptide. In each case GREST learns appropriate slow CVs and drives sampling of
all thermally accessible metastable states starting from zero prior knowledge of the
system. We make GREST accessible to the community via a publicly available open

source Python package.

1 Introduction

Molecular dynamics (MD) simulations serve as a virtual microscope to provide microscopic
understanding of the atomic-scale structure, thermodynamics, and dynamics of molecular
and condensed-matter systems. By numerically integrating the classical equations of motion,
MD simulations can accurately describe the evolution of molecular systems.! Advances in
computational hardware?? and simulation software®® have enabled simulations of systems
containing up to trillions of atoms.” While the accessible size of systems continues to grow,
a fundamental limitation of MD is the need for short integration time steps commensurate
with the fastest atomic motions — typically on the order of femtoseconds — that limits prac-
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tically achievable time scales to approximately microseconds to commodity hardware
milliseconds on specialized hardware.® Many interesting processes such protein folding,
protein-protein association,!! ligand binding'? and molecular self-assembly ® occur near or
far beyond these attainable time scales, which has motivated the development of computa-
tional strategies to facilitate the study of slow molecular motions and rare events.
Techniques like the string method,!# transition path sampling,'® and forward flux sam-
pling!® enable the study of rare events using astute initialization of simulation trajectories
to explore the configuration space along paths connecting pre-defined “reactant” and “prod-
uct” states (e.g., folded and unfolded states of a protein). Given these two end states,
these techniques present efficient means to sample the pathways and associated dynamical

properties of reactive transitions. Another class of popular methods are enhanced sam-

pling techniques that seek to accelerate sampling not of a single reactive transition, but to



promote global exploration of configurational space by applying biasing potentials along pre-
defined collective variables (CVs).!” Well chosen CVs correlated with transitions of interest
and approximately orthogonal to separating free energy barriers can result in an increased
frequency of barrier crossing to drive rare transitions and improve global sampling of config-
urational phase space. By exploiting this feature and modifying the system Hamiltonian to
sample configurational space more efficiently, thermodynamic reweighting can be employed
to estimate thermodynamic averages under the unbiased Hamiltonian. A plethora of meth-
ods have been developed for constructing biasing potentials along predefined CVs including,
for example, metadynamics,'® hyperdynamics, ! umbrella sampling,?° thermodynamic inte-

2l and variational enhanced sampling.?* While these methods are demonstratively

gration,
powerful tools for practitioners, their success is contingent upon the availability of good CVs
in which to accelerate sampling and surmount the free energy barriers separating the ther-
mally relevant metastable states. Accelerating poorly chosen CVs typically leads to little to
no improvement in sampling over unbiased MD simulations.

The manual definition of good CVs is challenging for large, complex molecular systems
where intuition is frequently limited. To help ameliorate this issue of proper CV selection,
data-driven techniques can deploy machine learning (ML) to automatically discover optimal
CVs for biasing. The central premise behind these approaches is an assumption of emer-
gent low-dimensionality, and it is a generic feature of molecular systems that cooperative
couplings between the atomic degrees of freedom lead to emergent low-dimensionality on
sufficiently long time scales.?3 252528 Geometrically, once can view the dynamical evolution
within the 3/N-dimensional configurational phase space comprising the Cartesian coordinates
of the N constituent atoms to be approximately restrained to a low-dimensional manifold
supporting a dynamical attractor parameterized by the leading slow modes of the system
(e.g., large-scale folding/unfolding of a protein) and to which the fast degrees of freedom

(e.g., side chain rotations) are annealed as effective noise. In this sense, CV discovery can

be viewed as a form of dimensionality reduction for identifying variables from data that best



characterize the slowest evolving (i.e., maximally autocorrelated) degrees of freedom. A cen-
tral challenge in data-driven approaches for CV discovery is a “chicken-and-egg problem”:
performing good configuration space sampling requires high-quality CVs to bias, but dis-
covery of high-quality CVs requires sufficient data obtained from good configuration space
sampling.?® Consequently, data-driven methods typically strive to overcome this conundrum
by iterating between rounds of enhanced sampling and CV learning to incrementally im-
prove configuration space coverage. To this end, a variety of methods performing on-the-fly
discovery of CVs and enhanced sampling have been proposed, including: REinforcement
learning based Adaptive samPling (REAP),* Reweighted Autoencoded Variational Bayes
for Enhanced sampling (RAVE),3" Diffusion-Map-directed MD (DM-d-MD),3! intrinsic Map
Dynamics (iMapD),3? and Molecular Enhanced Sampling with Autoencoders (MESA).33 A
commonality between many of these adaptive sampling strategies is that they typically seek
to identify high-variance CVs correlated with the elongated directions in configurational
phase space containing the highest variance in the simulation trajectory. One may typically
expect the high-variance directions to also be slowly evolving since they generally correspond
to large-scale delocalized motions, but for the purposes of accelerating sampling along the
slow collective motions, one would typically prefer an approach capable of identifying them
directly.

Data-driven learning of slow CVs can be accomplished by appealing to the Variational
Approach to Conformational dynamics (VAC).3* The VAC formalism presents a variational
approach to numerically estimate the maximally autocorrelated CVs by empirical analysis
of time series data. The VAC underpins a number of popular techniques for slow CV dis-
covery, including Time-Lagged Independent Component analysis (TICA),3*37 kernel TICA
(kTICA),® and State-free Reversible VAMPNets (SRVs),?” also known as Deep-TICA.%° In
particular, SRVs have been demonstrated as a powerful deep learning-enabled means to esti-
mate slow variables from simulation data that have been applied to produce high-resolution

models of Trp-cage miniprotein dynamics?' and describe DNA (de)hybridization.*? Crucially,



since slow CVs are inherently dynamic observables, their recovery from biased simulation
data requires the use of dynamical, in addition to thermodynamic, corrections which are
sufficient for the reweighting of purely configurational quantities.** 4% Methods to rigorously
apply these dynamical corrections are necessary to solve the chicken and egg problem by
iterative rounds of slow CV discovery and enhanced sampling exploration of configurational
phase space.

A theoretical basis for dynamical reweighting is provided by path reweighting methods
rooted in the Girsanov theorem. 34548 These approaches are similar to dynamical reweight-
ing schemes that reweight discrete transition probabilities,** 3 but more powerful and gen-
eral in that it is applied directly to the transition density elements and so does not require
the assumption of local equilibrium or a predefined discretization of configurational phase
space. #3474 Conceptually, Girsanov reweighting is a technique to correct the probability
weights of dynamical pathways collected under a perturbed system Hamiltonian to those
under an unperturbed Hamiltonian by applying dynamical reweighting of the transition den-
sity elements along the dynamical path through phase space.*® Expectations of dynamical
observables can be formulated as expectations in a path ensemble, and Girsanov reweighting
provides a means to estimate unbiased averages from trajectories collected under an ap-
plied bias. Appealing to precisely the same rationale for enhanced sampling techniques in
the estimation of configurational observables, applied biases that improve sampling of the
phase space by accelerating rare transitions can lead to higher accuracy and lower variance
estimates of dynamical observables.

Path reweighting approaches present a powerful tool for the estimation of dynamical
observables from biased trajectories, but do have two important limitations. First, analytical
expressions for path reweighting factors are only available for particular choices of stochastic
integrators, specifically the Euler-Maruyama (E-M) scheme to integrate the overdamped

43,47,48

Langevin (i.e., Brownian dynamics) equation and the Izaguirre, Sweet, and Pande

(ISP) scheme — a variant of the Langevin leapfrog scheme — to integrate the (underdamped)



Langevin equation. *3°* Elegant recent work by Kieninger and Keller developed a prescription
to derive path weights for other Langevin integration schemes and presented evidence that
approximate E-M reweighting expressions may offer high accuracy approximations for other
Langevin integrators, thereby generalizing the applicability of the methodology to popular
numerical schemes employed in the molecular simulation community.*® Second, the path
reweighting factors can become extremely large or extremely small for large applied biases
risking numerical instability and overflow /underflow. This means that there typically exists
a “Goldilocks region” for the intensity of the applied bias that is sufficiently high to promote
good sampling but sufficiently low for stable convergence and low-variance estimation of the
path ensemble expectations. #>4748

There have been relatively few applications of Girsanov reweighting to molecular systems.
Viewing temperature as a simple modification of the system Hamiltonian, Chodera, Swope,
Noé, Prinz, Shirts, Smith, and Pande performed path reweighting of simulation trajecto-
ries at various temperatures within a parallel tempering / replica exchange framework to
estimate dynamical expectations from simulations conducted different temperatures under
an Anderson thermostat, overdamped Langevin dynamics, and Langevin dynamics. 445 We-
ber and Pande employed the Girsanov approach to construct Markov state models (MSMs)
for the 20-residue Trp-cage fast-folding mini-protein using biased simulation trajectories in
which the dynamical evolution of a key dihedral angle was accelerated using artificial bias-
ing forces.*> Donati and Keller presented an elegant theoretical basis and devised efficient
numerical schemes that were applied to construct Markov state models of alanine dipeptide,
valine dipaptide, VGVAPG hexapeptide, and a (-hairpin peptide by on-the-fly Girsanov
reweighting of metadynamics enhanced sampling trajectories in which accelerating biases
were applied to pre-selected backbone or side-chain dihedral angles, key hydrogen bonds, or
the molecular end-to-end distance.*”#® In all studies to date, the CVs to accelerate, or more
generally the variables/parameters in which the Hamiltonian was modified, were pre-defined.

The success of the CV enhanced sampling is predicated on knowledge of CVs coincident with



the slow motions of the system, and has limited applications to systems where this knowledge
is a prior: available.

In the present work, we present Girsanov Reweighting Enhanced Sampling Technique
(GREST) as an adaptive sampling scheme that performs interleaved rounds of data-driven
slow CV discovery and enhanced sampling along those coordinates. Our approach is analo-
gous to our previously introduced Molecular Enhanced Sampling with Autoencoders (MESA)
method for interleaved data-driven discovery and enhanced sampling in high variance CVs,3?
but by appealing to Girsanov reweighting GREST extends this approach to slow (i.e., max-
imally autocorrelated) CVs. We build upon the elegant theoretical and numerical work by
Keller and co-workers“7#® to perform nonlinear CV discovery using SRVs as a deep learning-
enabled version of TICA that employs both thermodynamic corrections and Girsanov path
weights to recover slow CVs from the biased simulation trajectories.?® This modification of
the SRV objective function enables the formally correct numerical estimation of slow col-
lective variables from short, biased, and discontinuous trajectories. This estimation process
is similar to that proposed by Bonati et al.,% but we explicitly include the Girsanov path
weights in addition to the thermodynamic corrections to rigorously account for the influence
of the bias upon the dynamics, and, rather than a one-shot discovery paradigm, we perform
discovery within a virtuous iterative loop to simultaneously converge sampling of configu-
rational phase space and the learned slow CVs. We demonstrate GREST in applications
to two biomolecular systems — alanine dipeptide and the WLALL pentapeptide — and make
the approach freely available to the community via publicly available open source Python
packages accompanied with example notebooks. We anticipate that GREST may be a useful
tool for rapid exploration of the configurational phase space of molecular systems without
the requirement for prior knowledge of the important underlying slow dynamical modes, and
a means to advance fundamental understanding of the slow molecular modes, guide ratio-
nal molecular engineering, and furnish slow subspaces for the parameterization of efficient

reduced-dimensional dynamical simulators. %657



2 Methods

2.1 Transfer operator theory

The transfer operator 7, of a dynamical system possessing configurational microstates x €
R™ propagates probability distributions over configurational microstates ¢;(x) normalized
with respect to the equilibrium probability distribution u;(x) = ¢;(x)/7(x) under transition

densities p(x;,,|X;) at a lag time 7,%%

1

- o 0

Here p,(x|x') = IP(x = x44,|x' = x;) is the (normalized) conditional probability density
that a system in microstate x’ = x; at time ¢ will advance to state x = x;., at time (¢t 4 7).
Crucially, Eqn. 1 assumes Markovianity, which is an increasingly good approximation at
large lag times 7, and time homogeneity of the transition densities p,(x|x’). For equilibrium

systems satisfying detailed balance, we have the additional condition that,

m(x)pr (X|x) = m(x)p (x[x'), (2)

which implies the transfer operator 7, also known as the Perron-Frobenius operator describ-
ing the evolution of densities with respect to the equilibrium density, becomes identical to

the Koopman operator describing the evolution of observables, and self-adjoint with respect



to the equilibrium distribution,®®

The self-adjoint nature of 7, under the detailed balance condition implies that it admits
diagonalization into a set of eigenfunctions {;(x)} forming a complete orthonormal basis,

and that the associated eigenvalues {\;} are real and bounded from above by 1 = A\g > A\; >

Ay > .. .758,60762
Trohi(x) = Aahi(x),  (hi(x)|15(x))r = 035 (4)

As a result, any state function &(x) can be represented within the eigenfunction basis & (x) =

> (i(x)[€4(x)) 210 (x), and we can describe the dynamical evolution of & in increments of

7 via consecutive applications of 7T;,3%56

$inr(X) = Tr oT; O %Oft (x)

= Z X)[€(%)) = T 0 1hi(x)
= Z X)6(%)) < AL i (%)
= il Deel ) (), (5)




where we have transformed the eigenvalues into the implied time scales ¢; = —7/In(\;) asso-
ciated with the relaxation of each of the orthonormal eigenfunctions in the expansion. These
time scales t; characterize the exponentially decaying contributions for the eigenfunctions
{ti=0(x)}, such that at sufficiently large lag times 7 the contributions from basis associated
with faster relaxation times can be neglected and ¢ accurately approximated by keeping
only the leading slowest terms. The leading pair (¢y = 1, A\ = 1) therefore corresponds to
the equilibrium distribution 7(x) = lim;_,, ¢;(x) and the remaining pairs to a hierarchy of

increasingly quickly relaxing modes.

2.2 Approximating slow modes from data

The Variational Approach to Conformation dynamics (VAC) formalism provides a means to
approximate the eigenfunctions {t;(x)} of the transfer operator 7,. A variational principle
underpins the VAC approach.3®3%6! This can be straightforwardly understood by starting

from an identity that for the i*! eigenfunction 1;(x) that follows directly from Eqn. 4,

(¥i(X)[Tr 0 $i(X))r

e ) ©)

=
<

Consider now a trial function v(x) that is orthogonal to the preceding (i — 1) eigenfunctions,

{@o()[v(x))r = 0, (L1 () (x))x = 0, .., (Yica (X) [V (X)) = 0, (7)

and may therefore be expanded within the eigenfunction basis as,

v(x) = D (W (x) [ ()i (x) = Y mjuhy(x (8)

j>i j>t
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where rk; = (¢;(x)|v(x)), are the linear expansion coefficients. Combining Eqns. 4, 6, and

8, we obtain the following inequality,

Y vE)r).
_ <Zj2i K (x)[T7 0 iji K05 (X))x
<Zj2i K (x)] iji K105 (X))
ZjZi ”?Aj
252K

2z R
= 2 i k5
=i, (9)

i _ I o v(x)e

such that ); is bounded from above by the true eigenvalue \; and the equality X\ = \; holds
if and only if the trial function v(x) is equal to the true eigenfunction v(x) = ¢;(x). As such,
we are guaranteed to approach \; from below by variational optimization of a trial function
v(x) to maximize \; in Eqn. 9 subject to the orthogonality conditions in Eqn. 7.

It is convenient to construct trial functions as a linear expansion of arbitrary (possibly
non-orthogonal) basis functions {y;(x)} and optimize the expansion coefficients within this

basis to develop optimal approximations {¢;(x)} to the true eigenfunctions {;(x)},
¢i(x) = Z X (%), (10)
J
where a;; are the linear expansion coefficients for basis function j within our approximation

for eigenfunction ¢. Under this linear formulation, the VAC procedure can be shown to yield

the following generalized eigenvalue problem, %

where a; = {a;;} = [0, i1, iz, . . .] are the linear expansion coefficients for assembling the
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approximate eigenfunction ¢;(x) with associated approximate eigenvalue X;. This generalized
eigenvalue problem is isomorphic to the Roothaan-Hall equations in quantum mechanics that
are used to represent the Hartree-Fock equation in a non-orthonormal basis set. % The matrix

elements of C™ and S are defined as,

Tk = 0G|z 0 Xk (%)) (12)
Sik = (X (%) [xk (%)), (13)

where C7 is the time-lagged correlation matrix — analogous to the Fock matrix — and S
the overlap matrix. Standard techniques® can be employed to solve the generalized eigen-
value problem in Eqn. 11, which will yield the linear expansion coefficients for the optimal
approximate eigenfunctions {¢;(x)} within the basis {x;(x)}.

Using this VAC formalism we can numerically estimate {¢;(x)} from trajectory data by

replacing the exact inner products in Eqns. 12 and 13 with empirical estimates,

ka = (G (X)[T7 o xx(x))r & Elx;(xe) Xr (Xt47)]

T—1

1

S — 2 X (%e) Xk (Xetr)

Z ve(x), (14)

b« |

Sir = 06 () i (x))x = Bl (%e) xk (%))

~ T;—T Z X5 (%) Xk (%)
~ S ), (15)

=1

where the terminal summations defining the estimators in Eqns. 14 and 15 are carried out

over ¢ = 1...L training samples harvested from the trajectory data assembled as pairs of
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states (xf), XEQT) separated by a lag time 7.

2.3 State-free Reversible VAMPnets (SRVs)

The quality of the eigenfunction approximations under the VAC is contingent on the choice
of a sufficiently expressive and powerful basis. The Markov state model (MSM) formal-
ism 9556 follows as a special case of the VAC under a choice of basis corresponding to indi-
cator functions partitioning of the configurational phase space into n. disjoint sets {5;}7<,
such that y;(x) = 1 for x € S; and y;(x) = 0 for x ¢ S;.** In this case estimation of
the matrix elements C7; simply amounts to counting transitions from trajectory data that
carry states x, € S; to x4, € S in a lag time 7. The inherent orthonormality and bi-
nary nature of the indicator function basis {y;} implies that the matrix S is diagonal with
matrix elements S;; = 7; corresponding to the stationary distribution of normalized state
counts m; = Z:’ST:%W.M The elements of the approximate MSM eigenfunctions {¢;(x)}
can then be interpreted as fluxes into or out of sets {S;} with each eigenfunction ¢;(x)
characterizing slow modes as traversals along the discretized state-space {S;}.” The qual-
ity of state-space discretization is a critical determinant of MSM precision, and is typically
most amenable to metastable dynamics that can be effectively discretized into long-lived
metastable states.%1%% State-space clustering to determine disjoints sets that define the ba-
sis {x;} is commonly performed within low-dimensional embeddings of the full-dimensional
state-space using techniques such as TICA3 37 combined with k-means clustering. The
different interacting components within MSM workflows typically suffer from requiring man-
ual trial-and-error and human expertise to handle selecting the appropriate dimensionality
reduction technique, the number of cluster states, choice of clustering method, and opti-
mizing location of cluster centers.®® Mardt, Pasquali, Wu, and Noé developed VAMPnets
as an end-to-end replacement for MSM construction pipeline using deep neural networks

to integrate the featuruzation, dimensionality reduction, clustering, and kinetic modeling

steps. % Indicator functions represent one rather restrictive choice of basis and the quality

13



of the approximate eigenfunction expansions depends sensitively upon the choice of phase
space discretization. More general classes of basis functions offer the possibility of superior
eigenfunction approximations, but it is challenging to intuit good choices of a basis set.

We previously introduced State free Reversible VAMPNets (SRVs) as a means to per-
form data-driven learning of good basis functions for the VAC by performing simultaneous
learning of the basis functions and the linear expansion coefficients for approximation of the
transfer operator eigenfunctions.®® In brief, we learn {y;} from training trajectories using
simple feedforward neural networks, pass these basis functions through the VAC to learn
approximations for the leading transfer operator eigenfunctions {¢;(x)}, and quantify the
quality of the learned eigenfunctions via a loss function based on the slowness of the associ-
ated implied time scales. We then iteratively update the neural networks to learn superior
basis functions by backpropagating the gradient of the loss function through the entire com-
putational graph.

Mathematically, the SRV neural networks f?(x) € R™ are parameterized with model
weights 6 and tasked with learning a map from microstate configurations x into a m-
dimensional output space, where m is the number of desired approximate eigenfunctions
of the transfer operator (i.e., slow CVs) to learn. The neural network outputs y;(x) = f7(x)
represent the learned basis functions, which we pass to the VAC and solve for the optimal
linear expansion approximations of the transfer operator eigenfunctions ¢;(x) = > ; Qi X;(x)
using Eqns. 11-15. The model weights 6 are optimized via minimization of the VAMP-r loss

function,

m—1
Lspy ==Y X\, (16)
§=0

with a typical choice of r = 2 corresponding to the VAMP-2 loss that can be interpreted as the
cumulative kinetic variance.%”™ The loss function attains a minimum when the approximate
eigenfunctions equal the true eigenfunctions and the approximation becomes exact. %

Learning iterates between solving for the expansion coefficients {a;;} and eigenvalues

{:\]} by solving the generalized eigenvalue problem in Eqn. 11 and updating the network
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weights 6 by gradient descent steps of Lsgy in Eqn. 16. The generalized eigenvalue problem
is formulated by estimating the matrices C” and S from the neural network outputs in
batches according to Eqns. 14 and 15, and solved using Cholesky decomposition to provide
stable gradients for the learning problem. 3’ The neural network weights are updated by mini-
batch gradient descent with the Adam™ optimizer. Neural network convergence is assessed
by monitoring and ensuring plateauing of the loss Lsgy on a held-out validation set, which
together with providing randomly shuffled training samples, also serves as a regularizer to
also help prevent overfitting.

The trained SRV may then be used for out of sample inference on unseen configurations
x* to furnish the mappings into the approximate eigenfunctions x* — {¢;(x*)}7,'. This
learned projection represents a data-driven embedding into a slow CV subspace spanned by
our approximations to the leading eigenfunctions of the transfer operator. An appropriate
number m of CVs to retain is typically informed by a gap in the eigenvalue spectrum sepa-
rating the slowly relaxing modes from a rapidly relaxing continuum of fast modes that are
effectively annealed to the slow subspace on sufficiently long time scales. An appropriate lag
time 7 is determined by convergence of the implied time scales of the learned slow modes
and satisfaction of the Chapman-Kolmogorov test.?? Full details of the architecture, train-
ing, and hyperparameter tuning of the SRV models employed in this work are provided in

the Supporting Information.

2.4 Dynamical reweighting

Dynamical reweighting provides a formalism to estimate equilibrium dynamical properties
from biased simulation data. Dynamical reweighting corrections for biased data have been
analytically derived by Chodera and co-workers for the special case of temperature reweight-

ing, 47273

and Keller and co-workers for arbitrary biases.*>47*® The premise of dynamical
reweighting lies in path reweighting methods, based mathematically on the Girsanov theo-

rem, ‘% in which phase space trajectories wo_,, = ((Xo, Vo), (Xat, Vat)s - - -, (Xr—ats Ve ar)s (Xr, Vi)
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generated under some simulation potential Vi, (x) are associated with a path probability
density uf{j‘xo (wor), where Q, , is the path space comprising the set of all paths of length
7 that start at x,. Positing that the simulation potential Vi, (x) = Vigrget(X) — Upias(x) is a
superposition of the underlying target potential Vigget(x) and a biasing potential Upiqs(%),

path weights M (wo_,,) can be used to recover the probabilities for paths collected under the

simulation potential V;,, by reweighting to the target potential Vig,get,

target

/LQT,XO (w()—rr) = M(UJO_)T),MSm (w0—>7)- (17)

T,X(Q

Until recently, analytical expressions of the path weights M (wq_,,) for arbitrary biasing
potentials were only available for the Euler-Maruyama scheme for overdamped Langevin dy-
namics (i.e., Brownian dynamics).*™ 7" More recently, analytical path weights have been
derived for (underdamped) Langevin dynamics schemes®® which are known to better re-
produce the true dynamics for large molecular systems and are widely implemented within
existing molecular dynamics frameworks. 783 The molecular systems in this work are sim-
ulated in implicit solvent under (underdamped) Langevin dynamics that are numerically
integrated using a variant of the Langevin leapfrog scheme developed by Izaguirre, Sweet,
and Pande,® hereafter referred to as the ISP scheme, for which analytical path weights
have been derived by Kieninger and Keller.*3 These authors have also implemented this in-
tegrator within OpenMM®* along with numerically efficient implementations for on-the-fly
calculation of the path weights M (wg_,,) during runtime.

Co-opting this dynamical reweighting formalism within the SRV framework enables es-
timation of equilibrium slow modes from biased simulation data.4”*® Following the develop-
ment of Donati and Keller,*® we observe that the matrix elements Cj. of the time-lagged
correlation matrix of basis functions {x;(x)} under the target potential Vjg get(x) can be

viewed as a nested integral of a path ensemble average over paths w; 1y, € (2, «, inside a
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phase space ensemble average over path starting configurations x; € I,

ka = /N?argEt(Xt)Xj(Xt)/ Ngl:ift(wt—>t+r)Xk(Xt+T)dwt—>t+TdXt7 (18)
r

QT,xt

where p"9 (x,) and /Lgfi‘:t(wHHT) are, respectively, the phase-space and path-space prob-

ability densities under Vi, get(x). For simulation data collected under a potential Vi, (x) =
Viarget(X) — Ubias(x), we are compelled to apply thermodynamic and dynamical corrections

to estimate C7; under Viarget (X),

]Tk, = / h(Xt)uiiim(Xt)Xj (Xt> / M(wtatJrr)Mf)iTXt (wt%tﬁ*T)Xk (XtJrT)dwt%tJerXt- (19)
r Qrox,

The thermodynamic reweighting correction accounts for the change in the configurational

probability of the initial configuration of the path x; under Viyge: relative to Vi,

) = P )
™ (%)
_ exXp (_ﬁmarget (Xt)) /GXp (_ﬁ‘ézm(xt))
Ztarget Zsim
Z,Zsim
- 7 €xXp (_BUbias(Xt))a (20)
target

where we operate in the canonical ensemble such that Z = [, exp (—3V (x))dx is the con-
figurational part of the canonical partition function associated with a potential V(x), and
B=(kgT)~!, where kg is the Boltzmann constant, and T is the temperature. The dynamical
reweighting correction accounts for the change in the probability of the path under Vigges

relative to Vi,
target
Ha, (Wistrr)

M(wistr) = (21)

,Uf)im (wt%tJrT) .

T,Xt
For underdamped Langevin dynamics numerically integrated using the ISP scheme,®® an

explicit expression for this dynamical reweighting factor is known (c.f., Eqns. 23, 57, 58, 59
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and 60 in Ref. 43)743,47,48

/ot (inleH)At - Iﬁlz]m) (V[aﬂ]Vtarget (Xtrhat) — Viaq Vsim (Xt+kAt))

N
exp [ - ) kTE(1 + oxp(—CAD)AL

T/At—l [a,fﬂ

ZN: Z vt—i—kAt (v[a,v] ‘/target (Xt—l—kAt) - v[a,'y] ‘/szm (XH—kAt))
kpT€(1 + exp(EAt))

((V[a,'y]‘/ta'rget (Xt+kAt))2 - (v[a,ﬂ ‘/szm (Xt+kAt>>2)

2kBT§2m[a]

(22)

where the summation o« = 1... N is carried over the N particles in the system, the sum-

[a,7] 7]

mation v = {z,y, 2z} over the three spatial dimensions, z; " and U,£ represent the -y
components of the position and velocity of particle «, Vi, is the partial derivative taken
with respect to the 7 spatial component of particle o, m, is the mass of particle «, § is the
Langevin friction coefficient, At the integration time step, and the lag time 7 is restricted
to be an integer multiple of At. This equation may be equivalently rewritten in terms of the
bias potential Uy, and the random number sequence that generated the Langevin integra-
tion path {nt+km};/: %t_l to present a simpler and potentially less computationally expensive

expression to evaluate (c.f., Eqn. 27 in Ref.%3) 434748

M<wt~>t+7'> =

v[a,’y] Ubias (Xt+kAt) Tt+ kAt

1 —exp(=€Al) i

exp | —
V1 —exp(—26At) 4 —rmz) k=0 kpTE*myq
T/At—1 2
exp [ - (Lo e(EAN)" S~ (Vian Ubias (xetkar)) -
1 — exp(—2£At) 2kpTE2myy)

Having defined the reweighting factors, we return to Eqn. 19 and estimate it empirically



from trajectories collected under the simulation potential Vi, = Vigrget — Upias from which
we compile a batch of ¢ = 1...L training samples comprising pairs of states (xgi),xgi)

separated within a simulation trajectory by a lag time 7 and connected by paths wgt gy =

((XE)’V?) (Xilmavﬁm) (XEJZT Ata"ﬁzr At (X§2T7Vt(2‘l')>7

Zh M ()5 0 )X (x4 ) (24)

As a corollary, the matrix elements Sj; of the instantaneous correlation matrix can be esti-

mated over the same data as,

Zh M (2 (e (). (25)

The matrices C™ and S are subsequently used to solve for the basis function expansion
coefficients via the generalized eigenvalue problem defined in Eqn. 11. The thermodynamic

reweighting factor h(x;) (Eqn. 20) possesses a term <%> that serves as a multiplicative
arge

constant of each element of C7 and S that is independent of state x; and path wt(gt 4+ and
may therefore be canceled out on each side of the generalized eigenvalue problem. As such,

this partition function ratio never need be computed and can be dropped. Defining,

9(xt) = exp (=BUias(x1)), (26)

Zsz'm
Ztarget

we can rewrite h(x;) = < ) g(x;) and formally drop the partition function ratio by

replacing h(x;) with g(x;) in Eqns. 24 and 25 to yield,

T Zg M) (6 )X (xi2,). (27)

Zg M (w2 )xG () x(x(?). (28)
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Finally, we define a combined thermodynamic and dynamic reweighting factor,
Wi(w® _ DY s M(w® 29
(Wisisr) = 9(x;7) (WiSir ) (29)

and explicitly replace the basis functions {y;(x)} with the SRV neural network outputs

X;(x) = f¥(x) to obtain our final expressions for C7; and Sj; that we use in practice,

L
;1 i i i
T~ 7 2 Wil f ) L), (30)
i=1
L
1 i i i
Sie 7 > W(w ) R D). (31)
=1

In the absence of bias (i.e., Upigs(X) = 0 = Vi (X) = Vigrger(X)) the reweighting factors in
Eqns. 26 and 23 both reduce to unity (i.e., g(x;) = M(wi1r) = 1 = W(w;yr) = 1) and
the expressions for C7, and Sj; for biased simulation data (Eqns. 30 and 31) reduce to those
for unbiased data (Eqns. 14 and 15) as they should.

Having adapted the SRV framework incorporating dynamical reweighting, training can
now proceed to approximate the slow modes of a molecular system from short, discon-
tinuous, and biased trajectories. Since the learned modes will correspond only to the
slowest modes present within the training data, the true slow modes for systems contain-
ing high free energy barriers and rugged free energy landscapes will not be well approx-
imated within unbiased simulation trajectories that have a propensity to be kinetically
trapped. This is the primary motivation for the GREST approach presented herein that
performs interleaved rounds of slow CV discovery and enhanced sampling until conver-
gence is achieved in the explored phase space and the learned CVs. A Python package
containing a PyTorch® implementation of SRVs with capabilities for training with biased
simulation data incorporating these reweighting factors is publicly available via GitHub at

https://github.com/andrewlferguson/snrv.
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2.5 GREST adaptive sampling workflow

The Girsanov Reweighting Enhanced Sampling Technique (GREST) is an adaptive sampling
workflow combines slow CV discovery with SRVs and Girsanov path reweighting to perform
simultaneous learning of the slow modes of a molecular system and efficient exploration of
configurational space. This is accomplished by interleaving rounds of slow CV estimation
with path reweighted SRVs and enhanced sampling along the discovered slow modes. Our
approach is procedurally similar to MESA 33 but is designed to discover and accelerate slow
rather than high variance CVs. It employs the path reweighting developed by Keller and co-
workers to estimate dynamical observables from biased simulation trajectories, *"*® but uses
this approach to iteratively discover slow CVs as opposed to construct MSMs from biased
simulations conducted in pre-defined CVs that was the focus of work by both Keller and
co-workers*”*® and Weber and Pande.*® The first iterative round of GREST shares method-
ological similarities with the approach reported in Ref.% but we apply both dynamical and
thermodynamic corrections to rigorously reweight our path ensemble estimators of the slow
CVs and perform successive rounds of discovery and biasing to converge the CVs and ex-
ploration of configurational phase space. A schematic illustration of the four-step iterative
workflow is presented in Fig. 1 and an algorithmic overview is shown in Algorithm 1.

Step 0: Generation of initial training data. Conduct an initial simulation to gather
trajectory data for the first round of slow CV estimation. Slow CV estimation with SRVs is
ultimately a data-driven technique, and therefore generally benefits from training on larger
datasets that explore larger volumes of the configuration space. As this initial simulation
serves as only a starting point for the adaptive sampling protocol, the length of the trajectory
can judiciously be chosen by considering available computational resources. For larger,
complex systems with rugged free energy surfaces susceptible to kinetic trapping, an unbiased
simulation may be insufficient to provide adequate exploration of local configurational space
and a biased simulation in intuited CVs based on expert knowledge may be conducted to

provide more extensive configurational space coverage within this initial training dataset.
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Figure 1: Schematic illustration of four-step iterative Girsanov Reweighting Enhanced Sam-
pling Technique (GREST) workflow. (a) Initial training data is generated by unbiased or
biased simulation data accelerated along intuitive CVs. (b) Slow CVs are estimated from
the training data using Girsanov path reweighted State-free Reversible VAMPnets (SRVs).
(c) Enhanced sampling calculations are performed within the learned slow CVs using a CV
biasing technique such as metadynamics. (d) Convergence of the iterative cycle is assessed
by evaluating the stability of the learned CVs in successive iterations.

Step 1: Slow CV estimation using SRVs. Train path reweighted SRV models using
unbiased or biased simulation data to estimate slow CVs. The SRV learns a mapping from
configuration space coordinates x to approximate slow eigenfunctions of the transfer operator
x — {¢i(x)}. Since the dimensionality of the slow subspace may change over the course of the
GREST iterative cycles as a result of the region and volume of configurational phase space
that has been explored by the simulation trajectories, we recommend first training SRVs
with a relatively high number of CVs (e.g., n ~ 10) to attempt to discern a spectral gap in

the slow mode eigenvalue spectrum and make a principled inference of the dimensionality
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Algorithm 1: Girsanov Reweighting Enhanced Sampling Technique (GREST) work-
flow

1 x < Initial short simulation // Step O
/* From an unbiased simulation or basing along intuited CVs */
2 k<« 0 // GREST round # counter

3 notConverged < True
4 while notConverged do

5 (" (%)} + SRV(x) // Step 1
6 /* Estimate slow CVs from simulation data using SRVs with Girsanov
Reweighting if applicable */
7 | x < EnhancedSampling({¢*(x)}) // Step 2
/* Perform enhanced sampling in the learned slow CVs to gather
biased simulation data */
9 if C’onvergenceC’riterion({Qﬁi(k) (x)}, {@D;k_l)(x)}, ...) then
10 notConverged < False // Step 3
/* Analyze successive rounds of learned slow modes to determine
convergence */
11 E+—Fk+1 // Increment round # counter

of the slow subspace. The only exception to this recommendation is for the first round of
sampling where exploration may be poor and we have found that it can be useful to simply
choose a 2D latent space for the purposes of driving the first round of biased sampling.
Step 2: Enhanced sampling along slow CVs. Perform enhanced sampling within
the SRV-determined CVs. The slow CVs learned by the SRV can be passed to any CV en-
hanced sampling technique and used to drive accelerated sampling in an off-the-shelf manner.
For the molecular systems in this work, we choose to employ well-tempered metadynamics
(WTMetaD). 8% Converging WTMetaD can become computationally burdensome when
sampling in more than two CVs, and in this case we recommend well-tempered parallel bias
metadynamics (PBMetaD) as an approach that scales well to large numbers of CVs.878
The accumulation of bias throughout the metadynamics run can lead to large variances in
the estimator of the dynamical path weights*® and produce numerical instabilities during

45,48

SRV training. As suggested in Refs., we instead converge the metadynamics bias U,etq

and construct a potential Vgip, = Vierget — Ubias = Viarget — YUmeta under which we conduct

23



an additional round of metadynamics enhanced sampling in which we do not update the
terminal bias potential and modulate its strength by a factor v = [0,1]. This constitutes
enhanced sampling under an attenuated bias potential that eliminates the need to track the
time varying nature of the bias and also enables us to judiciously tune the aggressiveness of
the applied bias via the attenuation factor . Consistent with previous observations,*® we
have found that selecting an attenuation factor of v ~ 0.05 — 0.2 tends to provide a good
balance between enhancing sampling of configurational space while moderating the magni-
tude of the path weights to stabilize low-variance numerical estimation of path ensemble
averages. In this work, we adopt a relatively conservative attenuation factor of v = 0.05.
This attenuation of the applied bias does limit the barrier crossing accelerations achievable
by the technique. The exponential nature of barrier crossing dynamics, however, means

that significant accelerations can be achieved even by relatively modest reductions in barrier

heights. For example, assuming a simple Arrhenius dependence k = Aexp <— kEB“T>, where
k is the rate constant, A is the pre-exponential factor, F, is the activation energy, kg is
the Boltzmann constant, and 7T is the temperature, a modest 5% decrease of a F,=10 kgT
barrier leads to a 65% elevation of the rate constant.

Step 3: Evaluating convergence. Assess the convergence of our adaptive sampling
workflow by determining if the learned SRV CVs have stabilized. Using all accumulated
enhanced sampling data, we evaluate the Pearson correlation coefficient of the learned SRV
CVs between consecutive enhanced sampling rounds. Plateauing of this metric suggests the
slow modes identified with SRVs trained on our enhanced sampling data have approximately

converged. Based on this metric we can evaluate if CV learning has halted and terminate

our workflow. Otherwise, we perform another iterative round of GREST.
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2.6 Simulation settings and parameters
2.6.1 One-dimensional four-well potential

Simulations under (underdamped) Langevin dynamics are performed for a single particle
moving on the 1D 4-well potential Vj_,e(z) = 22% + 1.6 exp(—802?) + 0.4 exp(—80(z —
0.5)?) 4+ exp(—40(x + 0.5)?) introduced by Schwantes and Pande.?® The ISP scheme®® — a
full-step adaptation of the Langevin leapfrog algorithm developed by Izaguirre, Sweet, and
Pande® - is used to integrate the dynamics forward in time. Simulations are performed

1

using a time step of 0.01 s for a 1 kg particle with a friction coefficient of £ = 1 s7" at a

temperature of 60 K. Configurations are saved for analysis at a period of 0.05 s.

2.6.2 Alanine dipeptide

Simulations of alanine dipeptide (ADP) are carried out at a temperature of 300 K in implicit
solvent using OpenMM 8 with the AMBER99SB-ILDN® force field and the GBSA-OBC™
solvation model. Nonbonded interactions were cutoff at distances beyond 1 nm. The system
is numerically integrated under (underdamped) Langevin dynamics using the ISP scheme®*
for which Keller and co-workers developed analytical expressions and efficient numerical
calculation schemes for the Girsanov path weights. 34748 A simulation time step of 2 fs is

1

used with a friction coefficient of €& = 10 ps™". Configurations are saved for analysis at a

period of 0.1 ps.

2.6.3 WLALL

Simulations of the Trp-Leu-Ala-Leu-Leu (WLALL) pentapeptide are conducted at a temper-
ature of 300 K using Open MM 3* and the CHARMM?22192 force field with the GBSA-OBC?
implicit solvent model. All non-bonded interactions are cutoff at 1 nm. The system is nu-
merically integrated under (underdamped) Langevin dynamics using the ISP scheme® and

path weights calculated using the approach developed by Keller and co-workers. 434748 A
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simulation time step of 2 fs is used with a friction coefficient of £ = 10 ps~!. Configurations

are saved for analysis at a period of 0.1 ps.

3 Results

3.1 One-dimensional four-well potential

As a first illustrative toy example, we consider a single particle moving on the 1D 4-well
potential (Fig. 2a).3® We model single particle diffusion over this landscape under (under-
damped) Langevin dynamics. This system is sufficiently simple that the four wells and three
barrier hopping transitions can be comprehensively explored under long unbiased simulations
to provide a gold standard baseline against which to benchmark GREST.3%3% We represent
the system state of this simple 1D system to our path reweighted SRVs by simply furnishing
the 1D coordinate x = = € R!. In contrast to linear algorithms such as TICA,3537 the
SRV deep learning architecture can learn nonlinear transformations of the x coordinate to
learn a hierarchy of slowly relaxing CVs. Full details of the simulations are provided in the
Supporting Information.

Pre-defined bias. We first demonstrate the capacity of the dynamically reweighted
SRVs to learn the correct slow modes and associated time scales under a pre-defined bias.
This can be conceived of as a first round of a GREST campaign in which the user ap-
plies an intuitive biasing potential to accelerate sampling of the system prior to any data-
driven learning of the slow modes. The 4-well potential serves as the target potential under
which we wish to estimate the slow modes Vigrger = Vicwen = 228 + 1.6 exp(—80x2) +
0.4 exp(—80(x — 0.5)%) 4+ exp(—40(z + 0.5)?) but we perform simulations under a 2-well po-
tential Vi, = Vo_wey = 22% + 1.75exp(—80z?%) (Fig. 2a). Formally, since the simulation
and target potentials are related via the applied bias as Vin = Viarget — Ubias, this amounts
to adopting Upius = Vi_wenr — Vo—wen as our biasing potential. The effect of this bias is to

flatten the two smaller barriers to leave only the single high barrier at the origin intact. We
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Figure 2: Application of GREST to the 1D 4-well potential as an illustrative toy exam-
ple. (Left column.) Application of GREST under pre-defined bias. (a) The target 4-well
potential Vi,qer (blue) is shown alongside the 2-well potential under which the biased sim-
ulation is performed Vj;,,. The challenge is for path reweighted SRVs to correctly recover
the slowly relaxing modes and associated time scales of the 4-well system in simulations
conducted under the 2-well potential. (b-d) Comparison of the leading three leading slow
eigenfunctions {¢;(x), ¢2(X), p3(x)} recovered by path reweighted SRVs from long unbiased
reference data Vig,4e (green), alongside eigenfunctions learned using biased simulation data
collected under Vi;,, to which we apply path weights comprising dynamical and thermo-
dynamic corrections (orange), only thermodynamic corrections (red), and no reweighting
corrections (blue). Eigenvectors are defined only up to scaling and sign so are presented
under unit normalization and, if necessary, inversion of sign to align them with the unbiased
reference data. (e) Associated implied time scales t; = —7/1In();) for the SRV eigenfunc-
tions in panels (b-e) with error bars showing the standard deviation over 10 independently
trained models with different random seeds. (Right column.) Application of GREST un-
der a learned bias. (f) A biasing potential Uy;.s is constructed by projecting the unbiased
reference data into the leading slow mode ¢;(x) learned by a path reweighted SRV fit to
the unbiased 4-well simulation trajectories. Application of the bias to the target potential
results in a simulation potential Vi, = Vigrger — Upias that attenuates the highest central
potential energy barrier by ~0.5 kJ/mol and the other potential energy barriers by ~0.25
kJ/mol. (g-i) Comparison between the reference eigenfunctions and those estimated from
biased simulation data under V;, in panel (f) to which we apply various path weights. (j)
Associated implied time scales t; = —7/1In();) for the SRV eigenfunctions in panels (g-i)
with error bars showing the standard deviation over 10 independently trained models with
different random seeds.

therefore challenge our path reweighted SRVs to recover the correct slow modes and time
scales of the 4-well system under simulations conducted under the 2-well potential.

We present in Fig. 2b-d (green) approximations to the three leading slow eigenfunctions
{p1(x), Pp2(x), p3(x)} learned using SRVs from long unbiased reference trajectories collected
under Vigrget = Vi_wen. The leading eigenfunction ¢;(x) changes sign at x = 0 m and
corresponds to the slowest occurring transitions over the largest potential barrier. The next
eigenfunction ¢9(x) is approximately zero in the right half space and changes sign at x =
(-0.5) m to characterize transitions over the next highest potential barrier. Finally, ¢3(x) is
approximately zero in the left half space and changes sign at x = 4+0.5 m to characterize
transitions over the lowest potential barrier. The associated implied time scales for these

relaxations are presented in Fig. 2e.

28



We also present in Fig. 2b-e the eigenfunctions and implied time scales learned by path
reweighted SRVs from biased simulation data collected under V;,, = Vo_ e under different
choices of path weights: dynamical and thermodynamic corrections (orange), only ther-
modynamic corrections (red), and no reweighting corrections (blue). The 2-well landscape
differs from the 4-well landscape largely by flattening of the two lower potential barriers
and leaving the largest central potential barrier largely intact. Recognizing that the slowest
relaxing mode is associated with the same dynamical process of transitions over this central
barrier, we anticipate good agreement between the leading slow mode estimated under the
4-well and 2-well simulation trajectories. Inspection of Fig. 2b shows that this is indeed the
case: the estimate of ¢;(x) from unbiased reference data collected under Vj_,¢; (green) is in
good agreement in the uncorrected estimate of ¢;(x) computed from simulation trajectories
collected under V5_yey (blue). Application of thermodynamic only (W (wiiir) = g(X¢),
red) or thermodynamic and dynamical (W (w;_y1r) = g(x¢) X M (w;—y41,), orange) reweight-
ing corrections within the SRV estimation (cf. Eqn. 29) therefore does little to improve the
agreement with the ¢;(x) unbiased reference. Reweighting is, however, critical in accurate
estimation of the correct implied time scale associated with this mode (Fig. 2e, left). The
largest error in predicting the reference time scale of the leading mode (green) occurs when
no reweighting corrections are applied (blue). Incorporating thermodynamic corrections
alone improves agreement (red), but only by incorporating both the thermodynamic and
dynamical corrections do we accurately recover the true time scale (orange).

The 2-well potential lacks potential barriers at x = (-0.5) m and x = +0.5 m meaning
that biased simulations conducted under Vi;, = Vo_,e do not contain any signatures of
relaxations associated with these barrier crossings and these modes are completely obfus-
cated due to obliteration of these barriers by the applied bias (Fig. 2b-e, blue). Nevertheless,
¢2(x) and ¢3(x) and the associated implied time scales are accurately recovered when in-
corporating both thermodynamic and dynamical reweighting corrections into SRV learning

(orange). Interestingly, the thermodynamic correction alone does very little to improve esti-
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mation of the true slow eigenfunctions and implied time scales, cautioning against omission
of the dynamical path weights in estimating slow CVs.% This example illustrates that path
reweighting can accurately learn the slow dynamical modes and time scales of a dynamical
system from biased simulation trajectories.

Learned bias. We now test the capacity of the learned slow CVs to support an ac-
celerating biasing potential and promote enhanced sampling of configurational phase space.
This can be approximately conceived as the second round of a GREST campaign in which
sampling is enhanced by accelerating biases in learned slow modes. We construct the bias po-
tential by assuming that the projection of the unbiased reference simulation into the leading
slow mode P(¢;(x)) is Boltzmann distributed and may therefore be inverted to construct
an effective potential F(¢;(x)) = —kpT log(P(¢1(x))). This represents a good candidate
biasing potential as it flattens out the portion of the potential associated with dynamical
transitions in ¢;(x) and can therefore help accelerate sampling of these events. This leads
us to define the biasing potential as the functional composition Upes = F(¢1(x)), where
F(¢1) is an analytical fit to F'(¢;) that we find to be well described by a super-Gaussian
F(é1) = F(¢1) = Aexp(—(%)lp) with A = 3.1 kJ/mol, zo= 0.049 m, o = 0.058 m?
and P = 2 (see Supporting Information). This functional fit also admits continuous first
derivatives required to compute the biasing forces on the particle through the chain rule,
fhins = —% = —%%, where C‘l% is available analytically and % from automatic differ-
entiation through the trained SRV neural network. In Fig. 2g, we illustrate Vigrget = Viweir
Ubias, and Vi, = Vigrget — YUbias = Va—wenr — 0.2Uhiqs, where we have chosen to set the atten-
uation factor to 7 = 0.2 (cf. Section 2.5). The biasing potential depresses the height of the
central highest potential barrier by ~0.5 kJ/mol, resulting in an observed ~150% increase
in the number of (x < 0) <> (x > 0) transitions. It also suppresses the two auxiliary barriers
at x = —0.5 m and x = 0.5 m by ~0.25 kJ/mol, resulting in modest increases in the number

of (x < —0.5) +» (x > —0.5) and (x < 0.5) <> (x > 0.5) transitions by ~20% and ~14%,

respectively.
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We present in Fig. 2g-j the reference and learned eigenfunction approximations under
different reweighting schemes. Due to the relatively small perturbation to the target poten-
tial, we see qualitative agreement with the unbiased reference eigenfunctions (green) even
in the absence of any corrections (blue) or thermodynamic-only corrections (red), but the
full thermodynamic and dynamical corrections (orange) are required to achieve quantita-
tive agreement. The second and third implied time scales are in good agreement for all
reweighting schemes since the barriers associated with these dynamical transitions are only
moderately affected by the application of the bias, but we see that both the thermodynamic
and dynamical corrections are imperative for accurate estimation of the leading time scale
associated with transitions over the highest central potential barrier. This example demon-
strates that an SRV-learned slow mode can be used to effectively accelerate slow dynamical
transitions in a biased simulation from which path reweighted SRVs can accurately recover

the true slow modes.

3.2 Alanine dipeptide

We now demonstrate our approach in an application to the widely studied biomolecular
system alanine dipeptide (ADP). This system represents the “hydrogen atom of molecular

793 and we challenge GREST to simultaneously estimate the slow CVs governing

simulation
its biomolecular dynamics and recover the underlying molecular free energy landscape with-
out any prior knowledge of this system. Full details of the application of GREST to this
system including all path reweighted SRV training settings and metadynamics hyperparam-
eters are provided in the Supporting Information.

Unbiased reference benchmark. We first perform a long unbiased simulation to serve
as a baseline reference for the thermodynamics and kinetics of our ADP system against which
to benchmark the performance of GREST. We present in Fig. 3a-i the ADP free energy sur-
face as a ¢-1 projection into the backbone dihedral angles that are known to be good CVs

61,94

with which to differentiate the metastable conformational states of the system. To ensure
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comprehensive sampling of configurational space, the reference simulation data was gathered
from 8 x 0.5 us simulations initialized from configurations nearest k-means centroids identi-
fied by k-means clustering the ¢-1 projection of an initial 250 ns unbiased simulation. The
slowest relaxing implied time scale for this system is ~1.4 ns, so these reference trajectories
provide excellent sampling of all relevant transitions in this ADP system. We train an SRV
over these unbiased simulation data in which we represent the instantaneous state of the
ADP system through all (222) = 231 pairwise atomic distances to define a translationally and
rotationally invariant featurization x € R?3! of the system.

The slowest process captured by the first SRV mode ¢;(x) characterizes transitions
between the triplet of metastable states {C5, Py, agr} where ¢ < 0 and the doublet of
metastable states {ap, Crq:} where ¢ > 0 (Fig. 3a-ii). The second slow mode ¢»(x) largely
subpartitions the {C5, P;;, ar} triplet by characterizing transitions in ¢ between {Cj, P}
and ag (Fig. 3a-iii). Throughout our adaptive sampling workflow we constrain the path
reweighted SRV to return two slow CVs since it is known that ADP possesses a 2D intrin-
sic manifold lying on the surface of a flat torus that is well parameterized by the ¢ and ¥
backbone dihedrals.3*%798 In general, one would determine the appropriate number of CVs
to retain by searching for a gap in the SRV eigenvalue spectrum at each round of GREST.
Our goal is to learn to recapitulate these kinetics by biasing along dynamically estimated
slow modes to visit relevant macrostates and efficiently sample state-to-state transitions.

Application of GREST. We commence Round 0 of our adaptive sampling workflow
by running an initial unbiased 5 ns simulation with the resultant free energy profile shown
in (Fig. 3b-i). This initial simulation only samples the triplet of metastable states Cs, Py,
and ap residing in the low-¢/high-1) superbasin and fails to experience any transitions to the
¢ > 0 region. In the next step, we use this initial data to estimate the leading two SRV slow
a pair of seemingly degenerate slow modes that only capture transitions in ¢. Equipped with

these learned slow modes and initial simulation data, we perform k-means clustering in the
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Figure 3: Application of GREST to ADP. (a-i) Reference free energy profile constructed
from 4 ps of unbiased simulation data projected into the ¢-1) backbone angles. The local free
energy minima are annotated with their associated macrostate labels: Cs, P, ag, ar, and

the unbiased reference trajectories. ¢;(x) characterizes transitions in the ¢ dihedral between
{C5, Prr, ag} and {ar, Crar b ¢2(x) primarily characterizes transitions in the ¢ dihedral be-
tween {C5, P} and ag. Rows (b)-(g) index successive rounds of GREST, commencing with
the initial unbiased Round 0 in (b) and ending with the terminal adaptive sampling Round
5in (g). Columns (i)-(iv) index various facets of each round of GREST: (i) illustrates the
unbiased free energy landscape estimated by thermodynamic reweighting of the enhanced
sampling simulations performed under the fixed terminal metadynamics bias projected into
the ¢-1) backbone angles, (ii) and (iii) illustrate heatmaps of the path reweighted SRV slow
modes ¢1(x) and ¢9(x) learned from the enhanced sampling trajectories in the terminal
metadynamics bias potential projected into ¢-1) space, and (iv) illustrates the phase space
sampling density projected in ¢-1) space from well-tempered metadynamics simulations per-
formed in the two learned slow modes ¢;(x) and ¢o(x) illustrated in the preceding columns.
The GREST iterations are terminated when the CVs learned in successive rounds stabi-
lize, indicating no additional enhancement in configurational and dynamical exploration of
phase space. Convergence of GREST at Round 4 means that additional enhanced sampling
calculations are not conducted in Round 5.

feature space of the 231 pairwise atomic distances to identify configurations nearest 25 k-
means centroids that are used to initialize parallel walker metadynamics along our learned
SRV CVs in the subsequent step of GREST. Each walker is simulated for 1 ns yielding
an aggregate 25 ns of metadynamics simulation data. In Fig. 3b-iv we show the sampling
density from this metadynamics simulation as a visualization of the phase space explored
due to accelerating along the learned SRV slow modes ¢;(x) and ¢o(x). The resultant phase
space exploration along these learned CVs reveals that biasing has largely driven transitions
in v across the free energy barrier bridging metastable states P;; and ag. To complete
Round 0, we perform enhanced sampling simulations using a time invariant and attenuated
version of the termminal metadynamics bias potential, which we reduce in magnitude by an
attenuation factor of v = 0.05 to control the numerical instability associated with very large
and very small magnitude reweighting factors during the subsequent SRV training.*>® These
enhanced sampling simulations are similarly executed in parallel with 25 x 1 ns simulations

initialized from configurations identified with the same k-means clustering protocol as in the
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previous step but applied to these 25 ns of metadynamics simulation trajectories.

In Fig. 3c, we illustrate Round 1 of our adaptive sampling protocol which proceeds anal-
ogously to the initial round except that the training data now comprises enhanced sampling
trajectories biased in the learned slow CVs from the previous round under the v = 0.05 at-
tenuation factor. Although the applied biasing forces are relatively modest, the reweighted
free energy surfaces in Fig. 3c-i demonstrate that the biased trajectories experience tran-
sitions in ¢ and now visit metastable states a; and C7,, that were absent in the initial
unbiased data. Training path reweighted SRVs over these trajectories with thermodynamic
are now in much better agreement with those extracted from the long unbiased reference
data. (We recall that the sign of the learned eigenfunctions is immaterial.) We also see the
subsequent WTMetaD simulations performed along these SRV CVs by initializing 25 x 1 ns
walkers by k-means clustering in the feature space of 231 pairwise atomic distances drives
more comprehensive sampling of configurational phase space (Fig. 3c-iv). Visual analysis re-
veals that this time the enhanced sampling has driven transits over the free energy barriers
connecting Prr and ag, P;; and «p, ag and Cr,.,, and af and Cr,,. To complete Round 1,
we perform a final enhanced sampling simulation applying the terminal WTMetaD potential
under a v = 0.05 attenuation factor using 25 x 1 ns walkers initialized by k-means clustering
in the feature space of 231 pairwise atomic distances, and pass this forwards as the biased
trajectory training data for Round 2.

We iterate this process to complete Rounds 2-5 of GREST that are illustrated in Fig. 3d-
g. Convergence is assessed by tracking the round-to-round change in the learned slow SRV
modes. Stabilization of the learned CVs between successive GREST rounds indicates that no
important new dynamical modes or regions of configurational phase space are being explored
under additional rounds of biased sampling. We quantify convergence by examining the Pear-
son correlation coefficient of SRV slow modes learned in consecutive rounds. Importantly,

we maximize the correlation coefficient under rigid rotations of the subspace spanned by the
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slow modes in successive rounds to account for possible rotational symmetries in which the
same subspace could be spanned by an equivalent rotation of the learned slow eigenfunctions.
Mathematically, this corresponds to identifying the affine transformation that maximizes the
correlation coefficient. Convergence is defined by stabilization in the number n of recovered
slow modes and round-to-round Pearson correlation coefficients {p; > 0.8}, for all modes.
In the present case the former criterion is satisfied by default since we fix the dimensionality
of the SRV bottleneck layer to 2D. Consistent with expectations from inspection of the free
energy surfaces and slow CVs in Fig. 3, we illustrate in Fig. 4 that the latter criterion is
quickly satisfied after only Round 2, but we continue for three additional rounds for the
purposes of illustration.
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Figure 4: Convergence assessment of GREST applied to ADP by measuring the Pearson
correlation coefficient between SRV slow CVs discovered in successive rounds. Stabilization
of the CVs to p > 0.8 indicates that no important new dynamical modes or regions of
configurational phase space are being explored under additional rounds of biased sampling.

The excellent agreement between the free energy surface and slow modes of the terminal

round (Fig. 3g) and the unbiased reference data (Fig. 3a) indicate that the GREST iter-
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ations successfully recovered the true slow dynamical modes and used these to efficiently
enhance sampling of configurational phase space. While the ADP system does represent a
demonstrative and instructive molecular example for which the ground truth is well under-
stood, its small size and efficiency to simulate make it a relatively simple test of the GREST
methodology. In particular, expending the same computational effort expended within the
GREST pipeline (250 ns of cumulative simulation time) in unbiased simulations would ac-
curately recover the free energy surface by brute force and enable SRV discovery of the slow
modes without path reweighting. Moreover, the relatively low free energy barriers mean
that it is difficult to assess the gains realized by the relatively mild biases offered by the ~
= 0.05 attenuated enhanced sampling simulations since these barriers can be surmounted
by sufficiently long unbiased trajectories. In our next application, we apply GREST to a
larger, more complex molecular system where we demonstrate that the protocol does realize

substantial efficiency gains.

3.3 WLALL pentapeptide

As a more complex biomolecular system, we apply GREST to the Trp-Leu-Ala-Leu-Leu
(WLALL) pentapeptide.? This system exhibits a number of metastable states separated by
free energy barriers that are sufficiently high to demonstrate the capabilities of GREST to
identify and surmount these barriers while still being sufficiently low to enable determination
of a ground truth benchmark by long unbiased simulations.

Unbiased reference benchmark. We generate unbiased reference simulation data for
the WLALL system in a similar manner to ADP. We first conduct an initial unbiased 250 ns
simulation then apply k-means clustering in a 2D TICA embedding using pairwise backbone
distances as features to seed initial configurations for 8 x 0.75 ps independent simulations
and produce 6 us of aggregated reference data. As we will see, the slowest relaxing time
scale in this system is on the order of 19.6 ns, so these data provide comprehensive sampling

of configurational space. For the WLALL system, and many other systems of practical
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interest, intuitive low dimensional coordinates suitable for visualization, such as the two
backbone dihedrals for ADP, are not known a priori. For convenient visualization of the

A366LT0 a5 4 simple and convenient dimensionality

WLALL free energy surface, we use TIC
reduction technique to recover a two-dimensional representation of the WLALL phase space
independently of our SRVs. We represent the WLALL system to both the TICA and SRV
approaches as the (220) = 190 pairwise atomic distances between the 20 backbone atoms to
define a translationally and rotationally invariant featurization x € R'%. The free energy
surface resulting from projection of the unbiased reference trajectories into the leading two
TICA coordinates TIC, and TICy is presented in Fig. 5a and reveals three predominant
macrostates: the unfolded ensemble (labeled 1), the folded state (2), and the misfolded
state (3). With the global free energy minima located in the unfolded ensemble under the
prevailing thermodynamic conditions, the compact folded state is differentiated from the
misfolded state with a comparatively lower free energy minima.

We next train an SRV over the unbiased reference data. An implied time scale analy-
sis reveals a gap in the eigenvalue spectrum after 2-3 leading slow modes (Fig. S3 in the
Supporting Information). For simplicity and visualization convenience, choose to retain the
leading two slow modes throughout our analyses of the WLALL system. As we shall see,
this results in empirically good performance in recapitulating and enhancing sampling of the
pentapeptide dynamics. The first slow mode ¢;(x) possesses an implied time scale of t; =
19.6 ns and characterizes transitions in and out of the misfolded state (Fig. 5b). The second
slow mode ¢,(x) possesses an implied time scale of £, = 11.3 ns and corresponds to transi-
tions in and out of the folded state (Fig. 5¢). Having established this baseline understanding
of the structure, thermodynamics, and kinetics from a 6 us unbiased reference simulation,
we now challenge GREST to automatically discover these slow modes and exploit them for
efficient enhanced sampling.

Application of GREST. We follow the same adaptive sampling routine for the WLALL

system as we demonstrated with ADP, beginning with a short unbiased 20 ns simulation to
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Figure 5: Unbiased reference simulations of WLALL pentapeptide. (a) The free energy
surface resulting from projection of 6 us of unbiased simulation data into the leading two
TICA coordinates identifies three predominant metastable minima marked by golden stars
and annotated with their corresponding relative free energy. Insets show a collection of
representative structures from each minima identifying the (1) unfolded state, (2) folded
state, and (3) misfolded state. (b) Application of SRVs to the unbiased reference data
resolves a leading slow mode ¢;(x) with an implied time scale of ¢; = 19.6 ns characterizing
transitions in and out of the misfolded state. (c) The next slowest mode ¢o(x) possesses an
implied time scale of 5 = 11.3 ns and corresponds to transitions in and out of the folded
state.

initialize Round 0. We illustrate the resulting free energy surface in Fig. 6a-i by projecting
these data into the two leading TICA coordinates T'1C and T'1C5 identified from our analysis
of the 6 us unbiased reference simulations. (We emphasize that the TICA coordinates
are used exclusively to provide a consistent and interpretable visual presentation of our
data as we progress through the GREST iterations, and the unbiased simulation data and
TICA analysis thereof play no role in the GREST analysis pipeline.) This initial Round 0
remains trapped in the unfolded ensemble and fails to explore any of the folded or misfolded
states, which results in learned SRV slow modes that only characterize transitions within the
simulation employing a time invariant v = 0.05 attenuated terminal metadynamics bias are
executed in the same manner as ADP, but in this instance we perform k-means clustering

in the space of our pairwise backbone distance featurization x € R to initialize 25 x 1 ns
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parallel walkers. In Round 1, we observe that the system escapes the unfolded ensemble and
successfully explores the folded state (Fig. 6b-i), which is now captured in the leading SRV
slow mode (Fig. 6b-ii) and results in accelerated metadynamics sampling along the transition
path connecting the unfolded and folded states (Fig. 6b-iv). This process continues with
the discovery and SRV characterization of the misfolded state in Round 2 (Fig. 6¢), and
convergence of the SRV slow modes after approximately five rounds (Fig. 6a-f, Fig. 7).

Visual comparison of the free energy surface in the terminal round of GREST (Fig. 6f-
i) with that computed from the long unbiased reference data (Fig. 5a) demonstrates that
GREST learned to identify the relevant transitions between states and to recover all of
the important metastable states. Relative to the ~20 ns relaxation time of the slowest
mode in the system, GREST also accurately learned the leading slow relaxations from quite
parsimonious simulation data. A path reweighted SRV fitted to the accumulated 125 ns of
biased GREST simulation data identifies two slow modes that exhibit Pearson correlations
of pr = 0.91 and py = 0.99, respectively, with those estimated from the 6 us of unbiased
reference data. An implied time scale analysis of the biased data using a path reweighted
SRV also reveals converged timescales of the leading two slow modes in good agreement with
the unbiased reference data (Fig. S4 in the Supporting Information).

Finally, we verify that the enhanced sampling procedure effected within GREST does
substantially improve sampling even under the v = 0.05 attenuation factor in the metady-
namics bias potential by surgically directing sampling along the relevant slow modes albeit
with relatively modest accelerations to preserve numerical stability. Employing the same
computational budget of 250 ns of simulation time, we demonstrate that GREST outper-
forms (i) a single long 250 ns unbiased simulation, (ii) 125 ns of unbiased simulation + 10
x 12.5 ns of unbiased simulations seeded by k-means clustering in pairwise backbone atom
distances, and (iii) 250 ns of metadynamics performed in the squared molecular radius of
gyration RE as an intuitive CV (Fig. S5 in the Supporting Information). These alternative

approaches fail to identify all relevant metastable states and result in free energy surfaces
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Figure 6: Application of GREST to WLALL pentapeptide. Rows (a)-(f) index successive
rounds of GREST, commencing with the initial unbiased Round 0 in (a) and ending with
the terminal adaptive sampling Round 5 in (f). Columns (i)-(iv) index various facets of
each round of GREST: (i) illustrates the unbiased free energy landscape estimated by ther-
modynamic reweighting of the enhanced sampling simulations performed under the fixed
terminal metadynamics bias data projected into the two leading TICA coordinates T1C
and T'IC,, (ii) and (iii) illustrate heatmaps of the path reweighted SRV slow modes ¢;(x)
and ¢9(x) learned from the enhanced sampling trajectories in the terminal metadynamics
bias potential projected into T IC,-T1C4 space, and (iv) illustrates the phase space sampling
density projected into T IC,-T'I1C, space from well-tempered metadynamics simulations per-
formed in the two learned slow modes ¢;(x) and ¢o(x) illustrated in the preceding columns.
The GREST iterations are terminated when the CVs learned in successive rounds stabi-
lize, indicating no additional enhancement in configurational and dynamical exploration of
phase space. Convergence of GREST at Round 4 means that additional enhanced sampling
calculations are not conducted in Round 5.

Similiarty of consecutive SRV CVs
0 U]

=
o
|

o
o0
l

©

o
1
-
v

o
N
|

o
(N)
1

® 1SRV CV
® 2" SRVCV

Pearson correlation coefficient, p

©
o

Round #0 — Round #1 -
Round #1 — Round #2 -
Round #2 - Round #3 -
Round #3 — Round #4 -
Round #4 - Round #5 -

Figure 7: Convergence assessment of GREST applied to WLALL pentapeptide by measuring
the Pearson correlation coefficient between SRV slow CVs discovered in successive rounds.
Stabilization of the CVs to p > 0.8 indicates that no important new dynamical modes or
regions of configurational phase space are being explored under additional rounds of biased
sampling.
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with inferior coverage of the thermally accessible phase space compared to GREST.

4 Discussion & Conclusions

In this work we introduce Girsanov Reweighting Enhanced Sampling Technique (GREST) as
an adaptive sampling scheme that interleaves rounds of data-driven slow collective variable
discovery and enhanced sampling along these coordinates. We employ state-free reversible
VAMPNets (SRVs) to perform data-driven discovery of slow collective variables. The es-
timation of dynamical observables under an unbiased Hamiltonian from biased trajectories
collected under a perturbed Hamiltonian is enabled by the Girsanov formalism 34> that
prescribes how to apply reweighting of trajectories in the biased path ensemble according to
both thermodynamic and integrator-specific dynamical path weights. This unlocks the abil-
ity to bias along slow coordinates to accelerate exploration of configurational phase space and
then recover improved estimates for these slow coordinates under the enhanced sampling by
applying Girsanov reweighting to the biased trajectories. This capability is the key feature
underpinning GREST that interleaves successive rounds of path reweighted SRV slow col-
lective variable discovery and metadynamics enhanced sampling in the learned coordinates
until we achieve convergence.

In an application to a toy one-dimensional four-well system, we developed intuition for
the behavior of GREST and showed how biasing along SRV learned CVs serve to reduce po-
tential energy barriers mediating slow dynamical processes and accelerate sampling of phase
space. In applications to two biomolecular systems — alanine dipeptide and the WLALL pen-
tapeptide — we demonstrated how GREST can accelerate sampling of configurational phase
space and furnish accurate estimates of the slow collective variables without any prior knowl-
edge of the system. We achieve significant speedups in sampling the configurational phase
space of the WLALL pentapeptide that enable GREST to discover all relevant metastable

states whereas unbiased simulations and enhanced sampling in intuitive coordinates that are

43



not well correlated with the slow dynamical relaxations fail to explore all metastable states
in an equivalent simulation time.

In future work, we anticipate that GREST may be a valuable approach in realizing sig-
nificant efficiency gains in exploring the configurational phase space of large biomolecular
and macromolecular systems. We also observe that enhanced sampling need not be limited
to just those learned slow coordinates, and we propose that it may be profitable to augment
GREST with sampling in both intuited and learned coordinates as an inexpensive means
of incorporating prior knowledge into the approach. GREST is generically compatible with
any off-the-shelf collective variable biasing technique, but may also benefit from integration
with parallel tempering / replica exchange / Hamiltonian exchange formalisms to perform
generic acceleration of “all” system degrees of freedom as well as targeted enhanced sam-
pling along the learned slow modes.'% 1% Path weights under Hamiltonian exchange can
be treated under the same formalism presented in this work; analytical expressions for tem-
perature reweighting and efficient numerical solution schemes have been previously reported
by Chodera and co-workers. 477 Another future extension of GREST would involve ap-
plication to explicit solvent systems. Exposing both solvent and solute degrees of freedom
to the SRV network via permutationally invariant featurizations, such as the Permutation

106,107 would

Invariant Vector (PIV) formalism proposed by Fabio Pietrucci and co-workers,
enable learning of slow CVs over the solute and (permutationally invariant) solvent degrees
of freedom. However, Basconi and Shirts have shown that Langevin dynamics, along with
other velocity randomizing thermostats, may not be ideal for simulating solvated systems
because of their tendency to artificially dampen dynamical processes due to disturbances
of the natural time correlations of particle velocities and that these artifacts can only be
avoided by using weak coupling constants that can lead to imprecise temperature control. 1%
As such, care must be taken that the Langevin integration schemes for which analytical

expressions for Girsanov weights are available must be deployed with care. A further avenue

of exploration would be to conduct a comparison of the Girsanov reweighting formalism
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with the square root approximation (SqQRA) to dynamical reweighting. '** ! The SqRA re-
quires quite strong assumptions regarding the character of the potential energy landscape
and constancy of the diffusivity under an applied bias and so can only offer an approximate
reweighting scheme, but can convey advantages in terms of numerical robustness when these
conditions are satisfied and it offers an accurate approxiamtion to the exact Girsanov expres-
sions. The SqRA has been explored as an alternative to Girsanov reweighting by Donati,

Weber, and Keller in the context of Markov state models, '!!

and it would be interesting
to explore the quality of this approximation and its range of applicability in the context
of GREST. Finally, we observe that GREST may readily be applied to generic dynamical
systems beyond molecular dynamics to accelerate phase space exploration in numerical sim-
ulations in, for example, ecological modeling, climate science, process systems modeling, or
financial markets. The absence of detailed balance guarantees in generic dynamical systems
mean that the SRVs must be generalized to SNRVs (state-free non-reversible VAMPNets)

using the non-reversible VAC formalism,'"*'? but otherwise the approach may be deployed

in a largely analogous manner to that for molecular systems herein.

Data availability

A Python package implementing SRVs with capabilities for training over biased simulation
data is publicly available via GitHub at https://github.com/andrewlferguson/snrv. Ex-
ample Jupyter notebooks illustrating the application of GREST to the 4-well potential, ala-
nine dipeptide, and WLALL pentapeptide systems along with all associated simulation data
are hosted on Zenodo at DOI:10.5281 /zenodo.7552310. 113
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