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We employ deep kernel learning electronic coarse-graining (DKL-ECG) with approximate Gaussian Processes as a
flexible and scalable framework for learning heteroscedastic electronic property distributions as a smooth function of
coarse-grained (CG) configuration. The appropriateness of the Gaussian prior on the predictive CG property distribu-
tions is justified as a function of CG model resolution by examining the statistics of the target distributions. The cer-
tainties of the predictive CG distributions are shown to be limited by CG model resolution, with DKL-ECG predictive
noise converging to the intrinsic physical noise induced by the CG mapping operator for multiple chemistries. Further
analysis of the resolution dependence of the learned CG property distributions allows for the identification of CG map-
ping operators that capture CG degrees of freedom with strong electron-phonon coupling. We further demonstrate the
ability to construct the exact quantum chemical valence electronic density of states (EDOS), including behavior in the
tails of the EDOS, from an entirely CG model by combining iterative boltzmann inversion and DKL-ECG. DKL-ECG
provides a means of learning CG distributions of all-atom properties that are traditionally “lost" in CG model develop-
ment, introducing a promising methodological alternative to backmapping algorithms commonly employed to recover

all-atom property distributions from CG simulations.

I. INTRODUCTION

Coarse-grained (CG) modeling?™ is an essential sub-field

of molecular simulation aimed at understanding the meso-
scopic spatiotemporal scales dictating function in soft mate-
rials. By averaging collections of all-atom (AA) degrees of
freedom into CG pseudoatoms, the number of configurational
degrees of freedom is reduced and computational efficiency is
improved. These lower-dimensional CG models exhibit
smoother potential energy surfaces than their AA counter-
parts, accelerating the sampling of long spatiotemporal scales.
The effective potentials governing the thermodynamics of
CG models can be inferred by sampling trajectories of AA
systems using rigorous statistical mechanical techniques,%4
with recent approaches benefiting from advances in machine
learning (ML).*>7*° Furthermore, removing “irrelevant" de-
grees of freedom often leads to more interpretable models
that directly highlight the underlying structure-function rela-
tionships, rendering CG modeling both a computationally and
conceptually efficient strategy.

Coincident with the advantages of CG models are the limi-
tations imposed by marginalizing over subsets of AA degrees
of freedom. CG models are inherently limited in their rep-
resentation of AA systems as a result of the marginzalization
procedure; to retrieve this lost information, the decimated AA
degrees of freedom must be reimposed onto the CG repre-
sentation, followed by resampling at the AA resolution. This
challenge of retrieving lost information from CG models has
produced a variety of algorithmic solutions referred to col-
lectively as “backmapping",2°=2° that are designed to recover
AA detail from thermodynamically sampled CG configura-
tions. One implication of the information loss in CG models is
that backmapping often requires assumptions that inhibit
transferability. The non-invertibility of the CG map (i.e. one

to many) further necessitates the inclusion of multi-step cy-
cles of energy minimization and configurational sampling3°
to produce thermodynamically consistent AA configurations.
These complications negate many of the ostensible computa-
tional cost reductions of CG modeling, as one must re-employ
the AA model to obtain the “lost" AA properties. Recovery
of this lost information is critical to multiscale simulations
and represents an important fundamental research topic in CG
modeling.

Coupling electronic structure analysis to CG modeling rep-
resents an illustrative case of the computational burdens of
information transfer between CG and AA resolutions. In soft
materials simulations, one often computes the electronic prop-
erties (e.g. electronic conductivity, optical absorption, reactiv-
ity, dielectric breakdown) as a function of thermodynamic and
morphological parameters. The heterogeneity of soft materi-
als requires simulations spanning mesoscopic length (10 nm -1
mm ) and time ( 1 ms) scales, but the electronic degrees of
freedom necessitate quantum chemical (QC) methods. Con-
sequently, AA configurations must be backmapped onto sim-
ulated CG configurations, followed by QC evaluations of the
local electronic structure (note that due to the intrinsic struc-
tural heterogeneity of soft materials Bloch’s theorem cannot
be employed). These calculations must then be repeated, ad
nauseum, for every thermodynamic and morphological varia-
tion of interest, with requisite statistical sampling. Utilizing
modern density functional theory (DFT) methods, this effort
necessitates high-performance computing resources to predict
the electronic properties of even a small portion of the mor-
phological or thermodynamic design space. To tackle these
categories of in silico design tasks that underscore modern
soft materials challenges (e.g. chemical degradation, sustain-
ability, flexible electronics), a computational paradigm shift is
required.



The utilization of ML to augment CG molecular mod-
eling is increasingly common. Using frameworks such as
deep neural networks (DNNs) and Gaussian Process regres-
sion (GPR), multiple research groups have parameterized CG
force fields, 1183132 that accurately reproduce the thermody-
namics of underlying AA systems. Methods that incorporate
physical symmetries such as rotation and permutation invari-
ance directly into the structure of the ML framework have
been particularly effective in reducing cost and improving
accuracy.’®1®8 ML has found interesting uses in solving tradi-
tionally subjective tasks essential to CG modeling: generating
“good" CG mapping operators®*33 or collective variables3*
and performing AA backmapping.?42° A particularly inter-
esting thrust of research has employed ML to learn the under-
lying thermodynamic distribution of configurations, allowing
for efficient sampling of a complex configurational space af-
ter training.1>3%36 |n aggregate, these advances motivate the
potential efficacy of augmenting CG simulations using ML to
improve information transfer between CG and A A resolutions
in multiscale simulations.

Electronic Coarse-Graining (ECG)3’73° has been intro-
duced as a method for performing QC predictions using only
a molecule’s CG representation. In ECG, the conditional dis-
tribution of AA configurations mapped to a single CG config-
uration results in a thermodynamic distribution of electronic
properties consistent with that CG configuration. By treat-
ing the AA property distribution as noisy observations of an
underlying "true" function, GPR provides a framework for
learning the CG-projected mean AA electronic structure, as
well as a Gaussian fit on the conditional AA electronic prop-
erty distribution.3® This approach resembles CG methods for
structural predictions® in which the mean projected AA force
is used to construct a pairwise CG free energy function that
reproduces the equilibrium distribution of the underlying AA
model. Of critical note is that there is no a priori guaran-tee
that the width of the AA distribution associated with asingle
CG configuration should be independent of CG con-
figuration (i.e. homoscedastic). Consequently, GPR methods
using homoscedastic noise kernels learn a single AA Gaus-
sian distribution width averaged over all CG configurations.3®
To tackle the complexities of predicting AA distributions as a
function of CG configuration, a more flexible heteroscedastic
prediction of the AA distribution function is required. Such a
method would represent a generalizable path forward for
learning arbitrary AA property distributions directly from the
CG representation, without recourse to backmapping.

Our previous work on ECG combined the representational
power of DNNs with exact GPR within a Deep Kernel Learn-
ing (DKL) framework.3® Exact GPR*% assumes that all obser-
vations of the target variable are uniformly noisy, whereas a
CG map may introduce a CG configuration-dependent level of
noise. Additionally, due to inversion of the kernel matrix over
the training set, exact GPR training scales as O(N?3) with the
number of training points. These two limitations can be ad-
dressed via the introduction of inducing point methods,*~43
in which inference is performed through a smaller set of in-
ducing variables, the size of which is fixed independently of
the training set. This effort reduces training to O(N) and pre-

diction to a O(1) in the number of training points. The use of
inducing points can be further leveraged by treating them as
a variational hyperparameter that improve performance** and
provide a richer predictive noise that incorporates het-
eroscedasticity.

In this work, we extend ECG using a stochastic DKL frame-
work with approximate GPR to predict DFT-calculated elec-
tronic properties at CG resolutions. This approach provides
(i) improved scaling of ECG model training and (ii) flexi-
bility to handle heteroscedastic data sets. First, we describe
the method of CG mapping, data set generation. and the
stochastic DKL framework developed in this work (termed
DKL-ECG). We then estimate the ground truth CG distribu-
tions, providing quantitative validations of DKL-ECG predic-
tions for both the predictive mean and noise. DKL-ECG is
then applied to three canonical chemistries of electron trans-
porting polymers, bithiophene (BT), TEMPO, and sexi(3-
methyl)thiophene (S3MT), at a variety of CG resolutions to
assess model performance. Finally, DKL-ECG is combined
with Iterative Boltzmann Inversion (IBI) to simulate the full
electronic density of states (EDOS), including accurate esti-
mates in the tails of the EDQOS, at a purely CG resolution with-
out the use of backmapping. We then discuss the implications
of this work and summarize our conclusions.

Il. METHODS
A. Coarse-Grained Mapping

This paper studies the prediction of AA-derived QC prop-
erties using only a lower-dimensional CG representation of
the molecule’s configuration. While the methods outlined
can be applied to any AA-derived target variable that fol-
lows a sufficiently well-behaved function of AA configura-
tion, we use the highest occupied molecule orbital (HOMO)
energy of molecules as the target AA property. We fo-
cus on three canonical electron transporting chemistries:
BT (hole-transporting), TEMPQO (radical-transporting), and
S3MT (hole-transporting). Throughout this work a variety of
terms are used in developing DKL-ECG; Table | provides a
reference of the common notation used in this work.

A CG mapping is a linear projection from coordinates, r,
for the set of all N atoms within a molecule, to the CG coordi-
nates, R, for a predetermined set of M beads. We assume that
each CG bead is located at the center of mass of the atoms be-
longing to the bead, and that each atom belongs to precisely
one CG bead. This projection is non-invertible, and there ex-
ist infinitely many unique AA configurations that map to the
same CG configuration. The exact nature of this distribution,
p(rjR), is defined by molecular features (e.g. topology, na-
ture of interatomic bonds) as well as environmental factors
(e.g. temperature, pressure). Due to these features, predicting
a single scalar value of chemical property (e.g. a molecular or-
bital energy) is not sufficient to characterize the distributional
nature of the AA property at the CG resolution.

For each molecule in this work, the target AA distribution,
p(r), is the equilibrium distribution for a single molecule in



Symbol Description
Conditional distribution of HOMO energies, E, belonging to the same CG configuration, R, sampled over the
p(EjR) AA equilibrium distribution. The standard deviation of this distribution is the CG noise.
Conditional distribution of AA configurations, r, that are mapped to the same CG configuration, sampled over
p(rjR) the AA equilibrium distribution.
DKL-ECG predictive distribution approximating p(EjR). The standard deviation of this distribution is the
p(EjR) predictive noise.
DKL-ECG predictive distribution at a given point in the DKL latent space, z. The standard deviation of this
p(Ejz) distribution is the DKL noise.
Var(EjR) The variance of the predictive distribution, p(EjR).

The estimate of the CG energy distribution at R sampled over the AA equilibrium distribution with an

p(EjR;U +V)

additional biasing potential, V.

p(EjR;U) The estimate of the CG energy distribution at R after unbiasing the additional applied potential.
Var(EjR) The estimated variance of the energy, for a cluster of points localized around R.
The predictive variance over a cluster of points localized around R. This estimate takes into account the
Var©(EjR) fluctuation of p(hEijR) over the cluster.
p(E) The normalized sum of predictive distributions p(EjR) over a trajectory of CG configurations.

TABLE I: Table of terms and definitions used throughout this work.

vacuum. To generate a training set of molecular configura-
tions for each studied molecule, AA MD simulations of a
single molecule are performed in LAMMPS#*> using the op-
timized potentials for liquid simulation (OPLS)*® force field
(See SM for additional details). MD sampled configurations
are then piped to a wB97X-D3/def2-SVP calculation using
Orca®’ to generate all electronic molecular orbital energy lev-
els, and HOMO energy was extracted. Data generation for
S3MT is detailed in previous work,3® and all S3MT data here
are fully-flexible (no intramolecular constraints are applied).

For a given molecule and CG resolution, a choice of lin-
ear CG mapping operator was made based on symmetries of
the molecule and preservation of the degrees of freedom sus-
pected to be strongly correlated with the target variable. While
the choice of CG mapping operator affects the level of CG
noise in the target variable, this should not be interpreted as
affecting the ultimate performance of the DKL-ECG regres-
sion model. In contrast to a single-valued regression model,
here DKL-ECG is developed to learn an accurate estimate of
the conditional distribution p(EjR), where E represents the
HOMO energy of the molecule, at a wide range of relative
noise levels within a Gaussian approximation; reducing the
noise present at any single CG resolution is a separate ques-
tion related to the details of CG mapping operator selection.
Details of the CG mapping operators are provided in Supple-
mentary Materials Figure S1 and Table S1.

The CG resolution dependence of p(EjR) can be intuited
for certain limits of CG resolution. In the limit of M=N, the
CG property distribution converges to a delta function con-
sistent with the original one-to-one mapping between AA co-
ordinates and the associated AA electronic structure (not ac-
counting for electronic degeneracy). In the opposite limit (M =
1), the CG model has no internal degrees of freedom and the CG
property distribution function is simply the full thermo-
dynamic distribution function of the AA property (here, the
thermodynamically averaged EDOS), the structure of which
can assume any non-gaussian functional form (e.g. multi-
modal, long-tailed). In regimes where N > M » 1, single-

valued regression models predicting the expectation value of
the target distribution are likely reasonable approximations
for the narrow distributions,3”-38 with recent work introducing
homoscedastic GPR as a means to learn the noisy AA prop-
erty distribution at intermediate CG resolutions.3® Here, we
extend this development to predict the variance of p(EjR),
and approximate the full conditional target variable distribu-
tion within a Gaussian approximation.

p(EjR) N EXp (E)p(rjr) s Var (E) e (1)

We refer to the standard deviation of p(EjR) as the CG
noise. To train ML approximations to p(EjR), CG configura-
tions must be featurized into machine readable formats. Here
this is accomplished using the flattened upper triangle of the
CG distance matrix. Feature vectors are standardized such
that each dimension of the training data has zero mean and
unit variance.

With the CG mapping operator defined, a CG potential en-
ergy function can also be parameterized to facilitate sampling
of CG configuration space. We use IBI1%*8 to learn a set of
bond, angle, and dihedral potentials that reproduce the CG-
mapped structural distribution functions. Following IBI con-
vergence, the use of the CG potentials allows for CG con-
figurational sampling, without further reference to the under-
lying AA model, at significantly reduced computational cost.
Specifically, in conjunction with DKL-ECG, this allows for an
entirely CG prediction of the structural and electronic proper-
ties of each chemical system without future reference to the
original AA models. Details of the IBI procedure, including
its convergence, are provided in the SM Section VIII.

B. Gaussian Process Regression

Exact GPR is a kernel method for estimating the value of
a target function, f, when the given data consists of samples



of the function observed with a constant, or homoscedastic,
noise (e).*°

yi= f(xi)+ei;ei N 0;s? (2)

Provided a set of N , observations f(xi;yi)jl i N.g, a
Gaussian Process (GP) is the further prior assumption on the
auto-correlation of f,

p(fix) = N (0; Kux) 3)
K(x;x%) = exp i(x xXO)T 2(x x9) (4)
where Ky is the matrix formed by evaluating a chosen ker-
nel function over the given points. Here, we use a radial basis
function (RBF) kernel, where ‘ is a learned hyperparameter
of the model that defines a characteristic length scale in each
feature dimension. The bold f indicates a vector of observa-
tions of the single-valued function f, for a vector of points x.
Conditioning on the N  training points, a prediction for a set of
test points, x, can be exactly calculated.

plyix) = N (K¢ (Kee+s21) ty;
s?+K  Ke(Keg+s?l) Ky) (5)

The hyperparameters of the kernel and s, a scalar charac-
terizing the homoscedastic noise, can be learned to minimize
the log likelihood, evaluated over the training set. The previ-
ous result requires inverting the kernel matrix over the entire
training set, which scales like O(Nt3r), and limits the use of
exact GPR on large data sets.

Approximate GPR methods provide a means of bypass-
ing the limitations of exact GPR by using a set of variational
hyperparameters called the inducing points, u, to learn an ap-
proximation of the distribution that the training set is sam-
pling. Each point in the set is parameterized by a tunable
location in the training domain, xy, and the inducing point
distribution

43,44

p(u)= N (m;S) (6)

in which the vector m and matrix S are further weights of
GPR. Inference on test points can be performed by integration
over the Nj,q-dimensional inducing point distribution, rather
than the GP prior on the training points. The loss function
used for approximate GPR is the predictive log likelihood for
its performance on heteroscedastic data sets.**

pyiy) = N (KuKy, nf; K
KuKl Ku
+KuKuu SKuu ku_'_SZ) (7)

We refer to the standard deviation of p(yjy) as the pre-
dictive noise. The scaling of approximate GPR training is

4

O(NtrNif1d + Niid), with Nij,q being set at model creation,
so computations are not limited by N,r. This independence
from the training set size allows for the use of much larger
training data sets for more complex systems. It has been
shown that the necessary number of inducing points scales
like O(logN'at (N,r)), for normally distributed N;,;-dimensional
data.?® For this work, we fixed the number of inducing points
in DKL-ECG at 1000. This choice did not appear to limit the
expressibility of the approximate GPR; determining the effect
of reduced inducing points, in the case of a smaller computa-
tional budget, would require further analysis.

Another feature of the approximate GPR model is a use-
ful decomposition of the predictive variance. For data sets
with highly-varying local noise, the homoscedastic term, s 2,
is not the dominant contributor to the overall variance. The
first two terms of the approximate GPR predictive variance,
K KuK 1ulgu, are a contribution from the uncertainty in the
fit of the latent mean function. In low-data regions, this term
reduces to the original GPR prior kernel of Equation 4. In
high-data regions, this term reduces to 0, as the predictive
mean is able to converge with minimal uncertainty. The third
term in the predictive variance, KyK 1§K 1u|§”' expresses the
variance associated with that point in the inducing approx-
imation of the training distribution. In a high-data region, this
term plus s2 can be roughly associated with the "physical"
noise present due to CG information loss. Further discussion
of the approximate GPR technique and an illustrative exam-
ple of the varying contributions to a heteroscedastic predictive
variance are presented in Appendix A.

C. Deep Kernel Learning

The distance matrix featurization of the CG coordinate vec-
tor, Ri, contains many highly correlated dimensions, which
interferes with the practical ability of the kernel hyperparam-
eters to converge. We employ a modification of DKL®? to
learn an effective feature representation for the GP kernel. In
DKL, featurized data is first input to a feedforward DNN, g,
parameterized by a set of weights, wg, and encoded to a point,
zj, in a lower-dimensional latent space.

g(R; wo) : RMIM 11721 RN (8)
"z g(Ri; wo) (9)

The length of this feature vector, N¢, is a hyperparameter
set before training. We add a further variational layer which
encodes the initial latent space projection to a normal distri-
bution of the same dimension, similar to the encoding layer
of a variational autoencoder.>! By initializing the variational
layer with a high encoding variance, we unbias the initial DKL
encoding and make more potential projections more accessi-
ble to DKL-ECG. This layer is generated by two feedforward
DNN, e; and e,, with sets of parameters w; and w, that define
the mean and logarithm of the variance of the encoded distri-
bution. A stochastic sample, zi, from this encoded distribution
is then used as input to the GPR.



e1(Zwq) :RNf I RN (10)
es(2;wy) :RNF IR (11)
p(zjRi;wi;wa) = N (e1(Zi); exp(ex(zi))1) (12)

The GPR kernel is now a function of the lower-dimensional
latent coordinates, rather than the original CG coordinates,
which simplifies the task of fitting an accurate predictive func-
tion.

K(Ri; Rj; Wo; W1 Wa) = K(zi;zj; Wo; Wi;w3) (13)

As the GPR loss function is expressed in terms of the ker-
nel, and the transformed inputs are smooth functions of the
DNN parameters, gradient descent on the GPR loss function
simultaneously optimizes GPR kernel parameters and DKL
parameters. This allows the DNN to learn a representation
specifically suited to the task of predicting the target variable,
increasing the representational power of DKL relative to tra-
ditional GPR.

By encoding each input configuration to a distribution in
latent space, the overall projection of the training data can be
regularized to any desired distribution by approximating the
KL divergence, L, of the target distribution and the com-
bined distribution of the points in the training batch, py(z).
Given a specific prior distribution in latent space po(z) and a
batch of Ny, training points, we define the approximation

1 Mo .
Po(z) = — § Pe(zjRi) (14)
Nb =1
‘ b (2)
Lki(pbipo) = dzpu(z)log 00(2) (15)
Np
Jog Pb(zk) (16)
A

This formulation differs from pointwise latent space regu-
larization functions by comparing the full batch distribution
to the desired prior, rather than each training point individu-
ally. While this leads to a more complicated calculation of
the regularization loss, it can be readily extended to other de-
sired prior distributions, beyond a normal distribution in latent
space. We incorporate this regularization loss to limit model
overfitting as a result of the DKL projection and enforce spe-
cific structures on the latent projection of the data set.

The overall workflow is presented in Figure 1. We start with
an AA MD trajectory which samples configurations from the
canonical ensemble, and use those configurations for QC cal-
culations to generate individual samples of the target HOMO
energy distribution p(EjR). AA configurations are mapped to a
CG resolution by a defined linear CG mapping operator and
featurized for input to DKL-ECG. Approximate GPR utiliz-
ing variational DKL is then used to produce heteroscedastic
predictions of p(EjR). This trained DKL-ECG model is then
able to predict HOMO energy distributions for any other point
in CG configuration space of the target molecule.

Implementation of DKL-ECG is performed through the
GPyTorch package.>>°3 Details of DKL-ECG training are
provided in the SM, with an implementation of the method
provided at https://github.com/ThelacksonlLab/DKL_ECG.

D. Estimates of Target Distributions
1. Additional Equilibrium Samples for Test Sets

To validate DKL-ECG, two types of data sets are con-
structed for validation using (i) equilibrium and (ii) con-
strained sampling techniques. Equilibrium sampling involves
drawing statistically uncorrelated additional samples from the
canonical ensemble using MD. For BT/TEMPO, the test set
is generated by an additional 400/40 ns MD simulation. For
S3MT the test set was generated by randomly splitting the
data set into training and test sets. The reason for the order of
magnitude difference between the BT and TEMPO data sets is
that accurate evaluation of DKL-ECG predictions made on
localized regions of CG space requires significantly more data
than the amount needed to train DKL-ECG on the equilibrium
distribution. Isolating only the subset of the sample of the
equilibrium distribution in the neighborhood of a single CG
configuration either requires a much higher data density, or re-
sults in high sampling uncertainty when estimating CG noise.
BT exhibits a richer dependence of its electronic structure on
configuration than TEMPO; the main influence on TEMPQO'’s
HOMO energy level is the N-O bond length, whereas the
interplay S-C-C-S dihedral and intraring vibrations mediate
electronic structure variations in BT. Therefore, we focus all
data-intensive validations of DKL-ECG (i.e. noise estimates)
on BT throughout the work.

2. Estimates of Local Energy Fluctuations in Test Sets

The test sets generated in the previous section are used as
independent estimates of the local mean and noise of the con-
ditional distribution p(Ejz). We refer to the standard devia-
tion of p(Ejz) as the DKL noise. We take the mean values
e1(Zi) of the latent projections of the test set, and use Gaus-
sian Mixture Modeling (GMM) to cluster the overall set into
samples of the local energy distribution. GMM is performed
five times, with N = 20, 40, 60, 80, and 100 (low population
clusters (npop < 15) are discarded). For each configuration in
a remaining cluster, the predictive distribution is calculated.
These test estimates of the local energy mean and noise are
then compared to the corresponding predictions by DKL-ECG
to give root-mean-squared error (RMSE) values for the mean
and noise. All cluster distribution properties are evaluated as
weighted sums according to the GMM-provided class proba-
bility over the elements of the test set whose highest classifica-
tion probability is in that cluster; details of these calculations
are provided in SM Section VII. GMM is implemented using
the scikit-learn package.”* When calculating local DKL noise
values in clustered test data, the DKL-ECG predictive mean is
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FIG. 1: Schematic of the DKL-ECG method. Predictions of all-atom fluctuations in a target electronic property are performed
using only the CG representation of the molecule. This is compared to canonical individual samples from QC calculations.
While individual QC calculations produce samples of the CG energy distribution, DKL-ECG predicts the full distribution.

Enomo is the HOMO energy level, and throughout the text is expressed as simply E.

first subtracted from the test data energy value. This step fa-
cilitates the generation of higher-population clusters, and thus
lower sampling uncertainty in the DKL noise. Sampling un-
certainty can strongly affect the calculation of the global het-
eroscedasticity, especially when the heteroscedasticity present
in the data is low. We also note that the process of encod-ing
CG configurations to a lower-dimensional latent space via
DKL is similar to the CG map, the initial source of noise in
our target variable. We separately need to verify that the DKL
noise matches the CG noise, and the DNN is only discarding
information irrelevant to the prediction of the target variable.

3. Generation of CG Distributions through Backmapping

To determine the true CG noise at a given configuration,
R, we sample p(rjR) through a constrained MD simulation,
similar to other works backmapping CG configurations to AA
coordinates.?? This procedure is performed for only BT and
TEMPO due to the more tractable CG configurational space
for constrained sampling relative to S3MT. To generate con-
strained AA configurations, a CG configuration is drawn from
the training distribution. The training configurations were first
sorted according to the degree of freedom known to strongly
influence the value of the HOMO energy level; ten configura-
tions were then sampled from those nearest to a desired value
of the DOF. For BT, the value of the S-C-C-S dihedral an-gle
was used, and eight samples were taken uniformly from 0 to
315 degrees. For TEMPO, the length of the N-O bond was
used, and nine samples were taken across four total stan-dard
deviations of the training distribution. Sampling across CG
configurations tests the ability of DKL-ECG to reproduce
electronic distributions across the full range of the thermal en-

ergy distribution.

After choosing a CG configuration, a series of harmonic
potentials (k = 510* kcal/mol A 2), denoted V, are placed at
the initial center of mass of each CG bead, constraining the
positions of the underlying AA coordinates to that point. The
slope of these potentials bias the atoms to fluctuate only in the
degrees of freedom that do not affect its CG represen-tation.
The MD simulation timestep was changed to 0.05 fs due to
the strong harmonic constraints, but no other environ-mental
procedures were changed from the MD simulation for the
training and test sets. For TEMPO, a 125 ps MD simu-lation
was run, with a sampling interval of 2.5 fs. For BT, the
length of the MD simulation was 600 ps, to reduce sam-pling
uncertainty in the distributions. After sampling these
constrained distributions, further wB97X-D3/def2-SVP cal-
culations were performed to generate the sampled distribution
p(EjR). The constrained trajectory follows a biased distri-
bution as the molecules experience the sum of the original
atomic potential energies functions, U, and the newly applied
harmonic bias V. To generate an unbiased estimate of the local
mean and CG noise of the energy, we re-weight the expecta-
tion value according to

hAebViU +V

hAIU =
hebV iu+v

(17)

when calculating the mean and standard deviation of the
energies for the constrained trajectory.

Due to the finite nature of the applied potentials, each sam-
ple of the constrained distribution, C, has some spread in both
CG space and latent space. Fluctuations of the underlying
mean energy function hp(EjR)i over the cluster domain can
cause the sampled noise to be higher than the true noise at the
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FIG. 2: Fraction of constrained BT energy distributions in
which the null hypothesis of normality has been rejected by
the Shapiro-Wilk test. Results are shown for different CG
resolutions (Ncg) as a function of the number of samples
(Nsamp) at each constrained configuration. Uncertainty bands
indicate one standard deviation of 25 different samples.

target CG coordinate. We incorporate this into the model’s
prediction for the cluster by also sampling the predictive noise
over the full domain of C, rather than just the target CG coor-
dinate.

Yar (yjR) = hVar(yjmi)im;2c (18)
+Var (Exp(yjmi)) m,2c (19)

I1l. RESULTS

We first test the assumption that p(EjR) can be well-
approximated by the normal distribution within DKL-ECG.
A Shapiro-Wilk normality test>® is applied to the constrained
BT energy distributions. Each trajectory contains 250 total
samples of the full distribution, p(EjR), drawn from con-
strained MD simulations. We draw Nsamp Samples without
replacement from the distribution, and apply the test with a
set significance value of 0.05 and a null hypothesis of a nor-
mal distribution. Figure 2 shows the fraction of distributions
for which the null hypothesis was rejected as a function of the
number of samples, Nsamp, and CG model resolution (N¢g).
Finer resolution (larger Ncg) distributions are close to 5%, as
expected by the choice of significance threshold. Small N¢g
show higher rejection fractions, with the 4-resolution condi-
tional distribution showing rejection as much as 20% of the
time. This higher rejection rate reinforces that there is no
guarantee for the molecule averaged CG conditional distribu-
tion (i.e. Ncg = 1, the electronic density of states of the sys-
tem) to be normally distributed. Taken together, these results
support the idea that the Gaussian assumption of the condi-
tional distribution inherent to DKL is appropriate for our data
sets, though may deteriorate at the coarsest model resolutions.

With p(EjR) being sufficiently approximated by a normal
distribution at most CG resolutions, we next examine the abil-
ity of trained DKL-ECG models to reproduce the CG mean
and noise of the target distribution throughout CG configura-
tion space. Figure 3 illustrates the latent projection, e; g(R), for
the training set and constrained trajectories of BT at an 8-bead
CG resolution. To aid in visualization, the latent space was
regularized against the prior distribution N (0;1), with
regularization parameter | = 10 %, and a latent feature di-
mension of two. First, Figure 3 visually corroborates that the
projected training distributions match the Gaussian prior, in
agreement with Figure 2. Second, Figure 3 proves that lo-cal
regions in CG configuration space provided by constrained
dynamics are mapped through the DNN representation of the
kernel to local neighborhoods of latent space. It is generally
observed that regions of comparable planarity of the S-C-C-S
dihedral angle map to similar regions of the regularized la-
tent space, with 90/270, 45/135/225/315, and 0/180 being ap-
proximately sorted according to z,. A physical interpretation
of z; is less forthcoming, but the general structuring of la-
tent space according to known geometric descriptors relevant
to large electron phonon couplings in BT is an encouraging
feature of the learned latent space. Quantitatively, the DKL-
ECG predictive distribution, p(EjR), over the GMM clus-
tered data agrees well with the target distributions sampled by
both explicitly constrained MD and GMM clustering over the
canonically sampled data.

Next, we assess DKL-ECG’s performance as a conven-
tional regression model that outputs a single-valued predic-
tion of the distribution mean for a given CG configuration.
Figure 4 shows the RMSE on the training set, the average pre-
dictive noise predicted by DKL-ECG, the average CG noise
derived from constrained trajectory data, and the average DKL
noise derived from GMM clustering over canonically sam-
pled trajectories of BT, TEMPO, and S3MT. The RMSE of
the predictive mean converges to both the mean of the pre-
dictive noise and the CCG and GMM estimated noise values,
for all molecules and CG resolutions. These facts indicate that
there is no significant source of error in the DKL-ECG predic-
tion beyond the intrinsic CG noise resulting from application
of the CG mapping operator to the AA data - the predictive
accuracy of DKL-ECG is CG mapping operator limited. This
is particularly important as these results indicate that the noise
value reached by the predictive distribution matches the phys-
ical CG noise in the data set, in spite of the dimensionality
reduction of DKL. These results demonstrate that DKL-ECG
can converge accurate prediction models of HOMO energies
across multiple chemistries and CG resolutions, with nearly
all prediction error can be associated with the intrinsic noise
resulting from definition of the CG mapping operator.

An additional implication of the convergence of RMSE,
predictive noise, and CCG sampled noise in Figure 4 is that
DKL-ECG can be used to screen for “optimal" CG mapping
operators. Sharp increases in the average predictive noise cor-
respond to a sudden increase in the amount of information loss
due to the CG mapping operator. For example, in TEMPO, the
important difference between the 5-bead and 4-bead CG rep-
resentations used in Figure 4b is the decimation of the N-O
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FIG. 3: Projection of AA BT MD trajectories (gray, white, and yellow atoms) constrained to regions of CG configuration space
(red beads) onto a regularized DKL-ECG latent space. fy;, denotes the S-C-C-S interring dihedral angle of BT. p(EjR;U +V ),
p(EjR;U), and p(EjR) denote the conditional distribution for HOMO energy (E) predictions associated with constrained MD
simulations (U+V), canonically sampled MD simulations (U), and the learned DKL-ECG model applied to GMM clusters from
canonically sampled data, respectively.

bond degree of freedom. The length of this bond is strongly
associated with the molecular orbital energy of the radical,>®
and consequently choosing a CG mapping operator that deci-
mates this bond information introduces a large amount of CG
noise (Figure 4b). Further coarsening of the CG resolution
produces less significant changes in the noise. Similarly, BT
exhibits a sharp increase in noise in going from four beads
to six beads (Figure 4a), which is attributable to a deteriorated
description of the intermonomer dihedral when averaging over
both the conjugated rings and side chains. For S3MT, a steep
increase in noise is observed in moving from 12 beads to 6
beads (Figure 4c), consistent with a loss in the ability to cap-
ture interring dihedral angles. Provided a single training data
set, many different CG maps can be trialed by training DKL-
ECG on each CG representation and evaluating the mean pre-
dictive noise. These results underscore the potential for DKL-
ECG to identify important collective degrees of freedom to
preserve when choosing a CG mapping operator.

Figure 5 shows the results of the component RMSE val-
ues for the GMM and CCG data sets. As these are errors in
the parameters of a distribution, rather than the error of ele-
ments of a distribution measured against the mean, there is
no longer a predefined lower bound. All error components

generally decrease as a function of resolution, as expected
due to the overall decrease in average distribution width at
higher CG resolution. By scaling each element of the sum in-
volved in the RMSE calculation by the reference DKL noise,
we show that DKL-ECG achieves a consistent relative accu-
racy at all CG resolutions; this is discussed in further detail
in SM Figures S2-3. The CCG component error follows the
same trend as the GMM error, but at a consistently higher
value. In particular, the coarsest resolution of BT has a larger
gap between GMM and CCG errors than finer resolutions. It is
unclear whether this is due to an overfitting of the sample of
the equilibrium distribution, or due to the CCG samples not
accurately replicating the conditional equilibrium distri-
bution despite the reweighting scheme. Accurate sampling of
the conditional distribution p(rjR) may break at coarser CG
resolutions, when a single potential is biasing the motion of
many more atoms.

The level of CG noise in the observations of the target vari-
able is not only a function of the choice of molecule and CG
map, but also thermodynamic parameters. Figure 6 shows
the mean predictive noise, averaged over the testing points,
for DKL-ECG trained on S3MT at multiple CG resolutions
and temperatures from canonically sampled MD. Increasing
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FIG. 4: RMSE of mean predictions (blue curve) and average
CG noise estimates for (a) BT, (b) TEMPO, and (c) S3MT at
300 K. The orange curve is the GPR predictive variance,
averaged pointwise over the test set. The green and purple
curves are sampled noise estimates averaged over all
configurational clusters, where each cluster is generated by
GMM and CCG, respectively. Error bars of CCG curves are
the standard error of the mean; other error bars are one
standard deviation of 25 repeated trials.

the temperature increases thermal fluctuations within each CG
bead, leading to wider distributions of accessible AA config-
urations and larger fluctuations in the target variable. Figure 6
further supports the difference in predictive noise between the 6
and 12 bead CG resolutions of S3MT observed in Figure 4c.
Decreasing the temperature leads to smaller fluctuations until,
at zero temperature, one reaches the limit of quantum mechan-
ical zero-point motions of the bonded topology not captured
within classical MD sampling schemes.
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on the GMM/CCG-clustered test sets (solid/dashed lines) for
(a) BT, (b) TEMPO, and (c) S3MT at 300 K. Error bars are
the sum in quadrature of the standard deviation of 25 repeated
trials and mean sampling uncertainty of GMM estimates.

DKL-ECG provides a means of predicting AA distribu-
tion functions using only CG models without re-referencing
the AA resolution, dramatically improving computational ef-
ficiency. After training DKL-ECG on an AA data set, further
exploration of configurational space can be performed without
any future reference to the AA models. We use our training set
of AA configurations to train effective CG bonded potentials
via the IBl method. Using the converged IBl-generated po-
tentials, a CG MD trajectory through configuration space was
produced. As shown in SM Figure S13, this CG trajectory is
projected by DKL to the same distribution in latent space as
the DKL-ECG training set, confirming the validity of the IBI
procedure. Using this IBI generated trajectory of CG configu-
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FIG. 6: Mean predictive noise of the S3MT testing set
predicted by DKL-ECG as a function of simulation
temperature and CG resolution. Error bars indicate one
standard deviation of 25 repeated trials.

rations, we leverage the trained DKL-ECG model to generate
predictions of the AA HOMO energy distribution at all points
in the CG trajectory. A discrete set of sampled CG configu-
rations, and single-valued estimations of their energies (e.g.
the mean), produces only a discrete estimate of the overall
density of states. However, DKL-ECG is capable of estimat-
ing a continuous energy distribution for each individual CG
configuration within a Gaussian approximation, of which the
average of these predictions over a sampled trajectory T can
recreate a smooth estimation of the full DOS.

p(E)= —plEgR)) (20)

NT 27

Figure 7 shows the originally sampled DOS of the HOMO
energy level at the AA resolution, compared to predictions
generated by DKL-ECG, for BT, TEMPO, and S3MT. A
DOS generated by the distribution of predictions of the mean,
as shown by p'B'(hEi), underestimates contributions of ex-
treme energies and overestimates the middle of the distribu-
tion. In comparison, p'¢(E) is the result of Equation 20 sam-
pled over the test data set, and p'B'(E) is sampled over the
IBI-generated trajectory. Both distributions exhibit quantita-
tive agreement with the DOS of the underlying AA model.
This result is critically important for CG modeling, as extreme
values of the AA distribution (here, HOMO energies) often
dictate phenomenology that controls ultimate material perfor-
mance. In charge transporting polymers, this fact manifests
particularly strongly as the tail of the density of states controls
trap formation which dictates numerous device properties.>’
Figure 7 shows that extreme values of the AA distribution are
effectively sampled by DKL-ECG models by virtue of incor-
porating the width of the distribution, without the need for
backmapping and AA resampling paradigms. It should be
further noted that the distribution being reconstructed, the full
thermodynamic DOS, is also p(EjR) for a 1-bead CG map-
ping. While a trivial map eliminates the usefulness of a CG
model, the full DOS clearly deviates from the assumption of
normality made in the creation of DKL-ECG.
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FIG. 7: Approximation of the 300 K (a) BT, (b) TEMPO,
and (c) S3MT, HOMO DOS via four methods. The
histogram p'"(E) is the discrete sample of the DOS provided
by the training set, while the histogram p'B'(hEi) is the
prediction of the CG mean energy from DKL-ECG on the
IBI trajectory. p™®(E) and p'B'(E) are the continuous DOS
generated by the sum of DKL-ECG predictions on the testing
set and IBl-generated CG configurations, respectively. All
configurations used to generate p'B' are drawn from
IBI-derived CG potentials, and include no further reference
to AA configurations.

IV. DISCUSSION
A. Bypassing Backmapping in Multiscale Modeling

Projecting the equilibrium distribution of a molecule to a
CG resolution results in an information loss in the inference
of chemical properties defined within the AA representation.
While CG models are an important part of research into com-



plex molecular and polymeric systems, a single-valued pre-
diction of an AA property as a function of CG configura-
tion discards the full detail of the AA configuration belonging
to the original equilibrium distribution around a point in CG
configuration space. Generally, the process of backmapping
is required to sample this conditional distribution, which re-
quires complex computational workflows and many iterative
layers of repeated AA simulations or ML models. As a signif-
icant merit of CG modeling is the reduction in computational
cost relative to AA systems, the process of backmapping is
a considerable concern with regards to the scalable screening
of properties in complex morphologies, particularly those re-
quiring expensive QC calculations on the AA resolution.

By explicitly treating the AA target variable as an intrin-
sically noisy probability distribution within CG configuration
space, we have shown that DKL-ECG learns electronic struc-
ture predictions up to the limit of information loss from the
CG mapping. The ability to learn the heteroscedastic noise
values across CG configurations allows comparison of the lev-
els of information loss across choices of map, and bypasses
the need for backmapping to recreate the full atomistic vari-
able distribution. Specifically, one can generate stochastic
samples of the AA observable consistent with a point in CG
configuration space by sampling a normal distribution with a
learned mean and width as a function of CG configuration
space (Figure 7). Consequently, in multiscale workflows there
is considerable potential to learn information “lost" by ap-
plication of the CG mapping operator to within a Gaussian
approximation, and to use the learned distributions of DKL to
directly sample the thermodynamic values of the property,
without any future recourse to AA models. This represents a
powerful general paradigm for reducing information loss and
increasing computational efficiency in multiscale workflows
utilizing CG models.

B. Generalization to Other All-Atom Property Distributions

While in this work DKL-ECG was used to learn the CG
configuration dependence of the QC-derived HOMO energies
of molecules, its applications are general across a breadth of
AA-derived properties. Obvious future electronic property
applications are optical spectra, charge density fluctuations,
NMR chemical shifts, and multipolar moments over which
thermodynamic averaging of QC calculations often occurs. It
is likely that a DKL-ECG framework could also be employed
to learn any arbitrary AA property distribution that is lost via
the process of coarse-graining. Interesting future targets in-
clude vibrational spectra, hydrogen bonding, solvation shell
environments, and general AA structural distributions.

DKL-ECG methodologies capable of learning both the
mean and noise of the AA property distributions also possess
interesting applications in the field of intermolecular potential
fitting. As the derivative of a GP is another GP, it provides
a natural method for making stochastic force predictions. In
particular, learning not only the potential of mean force as a
function of CG configuration, but also the local distribution of
forces as a function of CG configuration may present a means
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of reincorporating fast, local dynamics lost in the smoother
CG-mapped free energy surface under assumptions of appro-
priate decorrelation of force-force and velocity-force correla-
tion functions. These considerations may potentially remedy
some aspects of well-known dynamical deficiencies of CG
models. Physically based models to this effect have managed
to recapture lost dynamical information in CG models devel-
oped via force-matching,® and could find application to exist-
ing CG ML potentials using DNN or GP like frameworks.'7

C. Limitations and Future Improvements

A clear limitation of the current DKL-ECG model is the
choice of data featurization, the full CG distance matrix.
While it provides a convenient way of enforcing rotational and
translational symmetries, applying this featurization to a much
larger system would result in an excessively large input vec-
tor due to the N2 scaling of the distance matrix. Future work
will explore modifying DKL with reduced distance matrices,
or replacing the feed forward neural network with graph neu-
ral network or graph kernel methods capable of learning more
robust three-dimensional representations with improved scal-
ing.

The process of hyperparameter optimization introduces a
computational overhead when fitting a single iteration of DKL-
ECG. In addition, while our testing indicated full-batch
training improved model performance, this may not be gen-
erally transferable. In some cases,”® DKL has been shown to
be susceptible to overfitting on data sets, with minibatching
being an important factor in regularizing the DKL projection.
This difference might be accounted for by recognizing that our
training and testing sets are intended to be thorough samples
of the full molecular equilibrium distribution, limiting the po-
tential for overfitting. A more general understanding of the ef-
fects of data set and model hyperparameters should be reached
in order to streamline this framework.

Convergence of the learned underlying AA distribution
functions with respect to training data is also an important
consideration. Here, we observe that O(10°) samples are
needed to develop confident estimates of local AA distribu-
tion widths for BT when sampling is performed over the full
equilibrium distribution. It appears that reasonable approxi-
mations of the mean and noise of the Gaussian distributions
consistent with O(10°) samples are learned by DKL-ECG
using O(10%) training samples. However, for QC data sets,
particularly at levels of electronic structure theory surpassing
DFT, this presents a considerable barrier to model training.
Consequently, active learning strategies can be explored in
future efforts.3® However, thoughtful approaches to incorpo-
rating the correct thermodynamic distribution of AA training
data, while simultaneously performing active sampling, will
be required. Individual estimates of CG energy distributions
can be accurately achieved with O(103) samples per CG con-
figuration, but this requires the assumption that p(rjR) is ac-
curately sampled. Deviations in this assumption result in a
mismatch between the training and evaluation configuration
distribution, and invalidating attempts at model evaluation.



Another point of consideration involves incorporating the
variance decomposition described in Appendix A more sys-
tematically into the DKL-ECG method. For BT, TEMPO, and
S3MT we are confident that we have obtained enough training
data to sufficiently converge the estimate of the distribution
widths. Consequently, the decomposition into sﬁ and sé was
not explicitly utilized in this work. However, in other sys-
tems where convergence has not been sufficiently achieved,
such a decomposition into the uncertainty of the mean predic-
tion and the expected CG noise could be more informative,
but considerable future work needs to be done to formalize
this strategy. Moreover, the basis of structural CG modeling
is that sufficient AA data exists to converge all estimates of
structural distribution functions in training, and consequently
it is sensible to necessitate a similar requirement with respect
to DKL-ECG model training.

A necessary aspect of predicting CG electronic variables is
the ability to make heteroscedastic noise predictions; there is
no reason to believe that fluctuations in the target variable are
completely uniform across CG configurational space. Direct
measurement of the level of heteroscedasticity in the data, cal-
culated as the standard deviation of the local CG noise, is lim-
ited due to the sampling uncertainty of these local estimates.
DKL-ECG often appears to show an underestimation of the
standard deviation of predictive variance, both compared to
DKL and CCG estimates of CG noise. Both of these sets suf-
fer from artificial increases in the observed heteroscedasticity,
due to the sampling uncertainty in the calculation of the stan-
dard deviation of a relatively small sample. These errors, as
well as errors in the prediction of the local mean and standard
deviation, improve as the size of the test set increases and sam-
pling uncertainty is reduced. The effects of increasing testing
set sizes on DKL-ECG evaluation accuracy is further detailed
in SM Figure S12. The remaining gap between DKL-ECG
predictive and CCG observed heteroscedasticity, requires fur-
ther work in generating unbiased estimates of p(rjR), in order
to more clearly determine the degree to which the DKL pro-
jection overfits when simplifying the training set.

V. CONCLUSIONS

We have developed a computational framework for by-
passing backmapping that learns the AA property distribution
functions associated with CG model representations within a
heteroscedastic Gaussian approximation. We have ap-
plied this framework to learn the configuration dependence
of QC-derived properties of multiple electron transporting
chemistries at CG resolutions. This development enables the
prediction of QC properties solely from a CG model resolu-
tion, without recourse to AA representations via backmapping
protocols. While this approach discards the ability to make
any inference on the AA fluctuations around individual CG
configurations, reliance on AA backmapping carries its own
costs. Placement of individual atoms must be carefully con-
sidered, and new target systems generally require new changes
to the backmapping algorithm. Ill-formed AA configurations
propagate these errors to calculations of the desired observ-
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able, which can manifest as extreme observable predictions
that present themselves without context. Moreover, modeling
is limited by the observable’s computational cost at the AA
resolution, which must be performed, ad nauseum, for every
subsequently backmapped AA configuration; in the case of
QC-derived observables, this cost can be severe. In contrast,
the width of the DKL-ECG predictive distribution is informed
by both the local CG configuration and the entire training
dataset, and contributions to the predictive variance can be
separately interpreted. Predictions can be made on new ob-
servables or CG representations by training a new instance of
DKL-ECG, with suitably replaced labels or input data. Once
trained, DKL-ECG can make predictions of the observable
on out-of-sample configurations at a significant speedup com-
pared to AA calculations.

We demonstrate that the prediction error of DKL-ECG con-
verges to the intrinsic physical noise limits induced by appli-
cation of the CG mapping operator across a wide range of
CG model resolutions and multiple chemistries. Moreover,
DKL-ECG reproduces physically intuitive noise behavior as a
function of temperature and CG model resolution. We demon-
strate the ability of DKL-ECG to produce the full thermody-
namic distribution of the EDOS of states using only CG mod-
els, obtaining high accuracy even in the tails of the EDOS.
This work focused on a single choice of system featurization,
which currently presents obstacles in analyzing systems much
larger than we have considered, or more complex condensed
phase effects. There remain open questions in the size of the
required training set, choosing certain model hyperparame-
ters, and scaling to more realistic case studies, but there also
exists a large design space in the field of machine learning to
improve the proposed framework. Given the results shown
for these initial cases, the DKL-ECG methodology should
find use not only in the reproduction of QC-derived electronic
properties from a CG model, but also for the preservation of
any AA information traditionally “lost" during CG model de-
velopment.

VI. SUPPLEMENTARY MATERIAL

Coarse-grained mapping operators, details of AA MD sim-
ulations, details of DKL-ECG training, resolution-dependent
RMSRE of test predictions, details of DKL-ECG training con-
vergence, sampling uncertainty in evaluating DKL-ECG pre-
dictions, weighted averages of GMM-clustered data, details
of IBI convergence, DKL-projected IBI trajectories.
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FIG. 8: Comparison of predictive distributions for exact and
approximate GPR when applied to toy homoscedastic and
heteroscedastic data sets. The predictive distribution of
approximate GPR matches the noise present in both data sets,
while the predictive variance of exact GPR in data-rich
regions is always the mean of the observed variance. In
data-rich regions, the predictive variance is dominated by the
terms s and ss. Outside of this region, both GPR methods
return to the GPR prior. Uncertainty bandwidths are two
standard deviations of the given distributions.
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Appendix A: Appendixes

1. Variance Decomposition in Exact and Approximate
Gaussian Process Regression

Exact GPR generates a predictive distribution for test points
by marginalizing the GP prior distribution over the latent func-
tion at the training points:

VA
e 1 e e
p(fiy) = oY) dfp(yjf)p(f; f) (A1)
=) p(fiy)= N mi;sg (A2)
plyiy)= N p&;s54s? (A3)

where specific expressions have been previously defined in
Equation 5. Evaluating s £ is a O(N2) in the number of train-
ing points, limiting the scalability of GPR when inferring on
large data sets. The GP prior distribution p(f;f) could be ex-
actly expressed in terms of the conditional distribution on a
further set of inducing variables, u. Approximate GPR mod-

ifies this expression such that f and f are conditionally inde-
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pendent given u.
A
p(f;f)= dup(f;fju)p(u)

p(f;fju) p(fju)p(fju)

This approximation implies that predictions on a test set are
made by inference on the set of inducing points, which can
remain fixed while the size of the training set increases.

p(fiu) = N KuKyy UK KuKyy Ku

(A4)
(A5)

) (A6)
The definition of the inducing point distribution is needed to
generate the final predictive distribution. Some methods ex-
press this distribution as a subset of the training observations.
The variational inducing point method treats the inducing dis-
tribution as a further set of hyperparameters of the model,

p(u)= N (m;S) (A7)

The locations of the inducing points, as well as the parame-
ters m and S, are learned based on the training observations,
and result in an approximation of the full training distribution,
from only the fixed-size inducing set.

z
p(fiy) = dup(fju)p(ujy) (A8)

z
dup(fju)p(u) (A9)

The last step is made because the inducing variational distri-
bution is independent of y, but parameterized through training
based on y. The approximate predictive distribution can now
be explicitly calculated, using known properties of normal dis-
tributions.

=) plyiy)= N (KuKyy m; (A10) K
KoKy Ku (A11)

+KuKyy SKyy Ku+s2) (A12)

=N mispesiats? (A13)

Figure 8 gives a practical visualization of the differences be-
tween the predictive distributions of exact and approximate
GPR when applied to one-dimensional toy data sets. Both
data sets have the same underlying sinusoidal mean function,
but differ in their local noise. One data set has a uniform
noise at all values of x, while the other has strongly het-
eroscedastic noise. While both methods are always able to
accurately predict the local mean p(fjx), clear differences ap-
pear in the predictive variance. Outside the domain sampled
by the training data, both models predict the GP prior p(f).
Inside the training domain, exact GPR is only able to predict
the mean variance of the full data set, which cannot match lo-
cal noise fluctuations in the heteroscedastic set. The approx-
imate GPR, however, is able to accurately predict the local
variance of both sets. Furthermore, the predictive variance in-
side the training region is dominated by the s and s 2 terms,
while the predictive variance outside this region is controlled
by the s term. Decomposing the variance calculation for a



new point whose location relative to the training domain is
unknown could then give more information on the model’s fit
uncertainty at that point.
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