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Abstract

The quality of solar images plays an important role in the analysis of small events in solar physics. Therefore, the
improvement of image resolution based on super-resolution (SR) reconstruction technology has aroused the
interest of many researchers. In this paper, an improved conditional denoising diffusion probability model
(ICDDPM) based on the Markov chain is proposed for the SR reconstruction of solar images. This method
reconstructs high-resolution (HR) images from low-resolution images by learning a reverse process that adds noise
to HR images. To verify the effectiveness of the method, images from the Goode Solar Telescope at the Big Bear
Solar Observatory and the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory are used
to train a network, and the spatial resolution of reconstructed images is 4 times that of the original HMI images.
The experimental results show that the performance based on ICDDPM is better than the previous work in subject
judgment and object evaluation indexes. The reconstructed images of this method have higher subjective vision
quality and better consistency with the HMI images. And the structural similarity and rms index results are also
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higher than the compared method, demonstrating the success of the resolution improvement using ICDDPM.

Unified Astronomy Thesaurus concepts: Solar photosphere (1518); Neural networks (1933); Solar active

regions (1974)
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1. Introduction

Solar activity is closely related to human production and life
(Svalgaard 2013). Changes in solar activity affect the
environment and climate on Earth (Feulner & Rahmstorf 2010;
Engels & Van Geel 2012; Bamba et al. 2014). In addition, solar
activity can also cause strong geomagnetic storms in the
Earth’s magnetosphere and ionosphere, which may interfere
with the propagation of radio waves and the stability of
navigation systems (Usoskin 2017). Predicting the level of
solar activity can provide early warning for national security,
aerospace, power equipment protection, etc. Therefore, the
study of solar activity plays an important practical role.

The active regions of the Sun have a wide range of large-
scale (such as sunspots and pores) and small-scale (such as
Ellerman bombs) structures. Many small-scale events have the
same characteristics as large-scale events. The study of small
events and the comparison of the morphology of small events
and large events are helpful for the analysis and prediction of
solar activity (Nelson et al. 2013). A large number of fine
structures used in the study of the solar active region are in a
scale of 1” (Chae et al. 2013; Wang & Liu 2019). Therefore,
high-resolution (HR) solar images are beneficial for accurately
measuring physical phenomena (Wang & Liu 2019). The
continuous increase in the aperture of ground-based telescopes
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has improved the angular resolution of the observed solar
images to a certain extent. However, it also increases the cost of
manufacturing and maintenance of the telescope. Moreover,
due to the disturbance of atmospheric turbulence, the observed
images of solar activity obtained by ground-based telescopes
may still be fuzzy (Jia et al. 2019). In addition, a large amount
of observed solar data has been accumulated. This series of
historical data may be of great significance to the study of the
solar cycle or solar activity (Ajabshirizadeh et al. 2011; Jonas
et al. 2018). However, many events in active regions are
difficult to obtain due to the limitation in image clarity. It has a
certain impact on the study of historical data (Nelson et al.
2013). Therefore, it is necessary to use image postprocessing
techniques for super-resolution (SR) reconstruction of low-
resolution (LR) solar images.

The mapping relationship between images observed by
different telescopes can be constructed to perform SR
reconstruction of LR images, thereby providing clearer and
richer data for the study of solar physics. The Goode Solar
Telescope (GST) at the Big Bear Solar Observatory (BBSO) is
a large ground-based telescope that can obtain solar images
with a pixel size of 07034, providing data for the study of
small-scale structures (Goode & Cao 2012; Abramenko &
Yurchyshyn 2020). However, GST has a limited field of view
and cannot continuously observe the Sun for a long time. The
Helioseismic and Magnetic Imager (HMI) on the launched
Solar Dynamics Observatory (SDO) can acquire full-disk
images of the Sun with a pixel size of 0”5 and provide
uninterrupted observations of the Sun (Schou et al. 2012). But
its spatial resolution is not sufficient to observe the small-scale
structure of the Sun (Rahman et al. 2020). GST can provide
HMI with more detailed information about the solar images
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during the same period. Therefore, a method based on deep
learning is used to learn the mapping relationship between the
HMI images and the GST images in this paper, thereby
improving the spatial resolution of the HMI images.

The rest of the paper is organized as follows: Section 2
introduces three methods for SR reconstruction of solar images.
The basic principles and network structure of our model are
presented in Section 3. Section 4 shows the results of the SR
reconstruction of our model, and quantitatively analyzes the
results using the peak signal-to-noise ratio (peak S/N),
structural similarity (SSIM), rms, power spectrum curves,
scatter plot and gray histogram, etc., and also compares with
Deng et al. (2021). We abbreviate the method in that paper as
“SAGAN? later.

2. Related Work

The SR reconstruction of solar images refers to the
restoration of the original clear images as accurately as possible
from single or multiple LR images. Existing methods for SR
reconstruction of solar images can be divided into methods
based on interpolation, imaging models, and deep learning.

The commonly used methods based on interpolation include
nearest neighbor interpolation and bicubic interpolation, etc.
These methods have the advantages of low computational cost
and high speed. However, the methods based on interpolation
reconstruct the image based on the pixel values of the original
image itself, so the reconstructed result may appear smooth or
miss small-scale textures and other phenomena (Stengel et al.
2020; Xie et al. 2022). The methods based on the imaging
model perform reconstruction tasks by obtaining the point-
spread function (PSF), including speckle imaging, multiframe
blind deconvolution (MFBD), phase diversity (PD), etc. The
speckle imaging uses the statistical characteristics of atmo-
spheric turbulence to reconstruct the phase and amplitude of the
object (Wang et al. 2021). This method has been continuously
developed since it was proposed in 1970, and it has also been
used on solar telescopes such as GST and New Vacuum Solar
Telescope (NVST). At present, a new HR reconstruction
algorithm for solar images has also been proposed using its
theory (Liu et al. 2022). Considering that PD and phase-diverse
speckle (PDS) are special cases of MFBD, Lofdahl (2002)
proposes a general formulation and uses a single algorithm to
solve the MFBD problem. This method was successfully
applied to the test data of PD, PDS, and MFBD. Multiobject
multiframe blind deconvolution (MOMFBD) is a kind of
MEFBD. More information can be used to restore image details
through MOMFBD with PD (Lofdahl et al. 2021). This kind of
method can obtain good image quality by using the information
from multiple images and different prior assumptions or prior
values for PSF or the observed image (Ramos et al. 2018; Jia
et al. 2019), and has been widely used in SR reconstruction of
solar images (Ramos & Olspert 2021; Wang et al. 2021).

The methods based on deep learning reconstruct HR solar
images by learning the mapping relationship between HR and
LR images (Tian et al. 2019). These methods have been widely
used in the SR reconstruction of solar images in recent years
and have achieved good results. Baso & Ramos (2018)
introduced deep learning earlier to the task of SR reconstruc-
tion of solar images based on two deep fully convolutional
neural networks. Ramos et al. (2018) effectively combined
deep learning and blind deconvolution processes, and proposed
an end-to-end method for MFBD of solar images based on deep
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convolutional neural networks. This method can reconstruct
images quickly and has better real-time performance. Since
solar images of the same wavelength have similar textures, Jia
et al. (2019) used a cycle-consistent adversarial network to
recover blurred images of the same stable physical process.
Baso et al. (2019) recovered weak signals from images
corrupted by complex noise through a neural network without
prior knowledge of clean signals. This method is especially
suitable for sparse wavelength sampling. Rahman et al. (2020)
applied a residual attention model and a progressive generative
adversarial network model to enhance the magnetograms of
SDO/HMI. The magnetograms generated by the models are
almost consistent with the corresponding target magnetograms.
Jia et al. (2020) proposed a PSF-NET, which had a recurrent
convolutional neural network structure. After training, PSF-
NET is able to recover short-exposure images blurred by
atmospheric turbulence to have the same contour. On the basis
of this algorithm, Jia et al. (2021) further developed a deep
neural network-based PSF modeling method. It trained the
network with the collected system calibration data, and then
estimated the PSF in any field of view from several discretely
sampled star maps. Wang et al. (2021) proposed a channel-
sharing spatiotemporal network, which used a complex spatial
variant end-to-end blind restoration network to construct clear
solar images. It is proved that this method cannot only remove
the spatially variant blur included in the training, but also
remove the unseen spatially variant blur, and has good
generalization performance. Li et al. (2021) proposed a
deblurring method based on coupling double-stage feature
pyramid networks (FPN) with a single pipeline (DSFSP) to
reconstruct HR solar speckle images. It can restore high-
frequency details and remove artifacts. Deng et al. (2021)
introduced a self-attention (SA) mechanism in conditional
generative adversarial networks (CGAN) and constructed the
HMI image and GST image pairs for training. This method can
reconstruct HMI images with four times higher resolution.
The methods based on deep learning can learn a lot of
information about HR images through a neural network and
reconstruct high-quality images. This kind of method can also
improve the quality of the image to a certain extent based on
the data-driven idea (Wang et al. 2022). Therefore, the
exploration of the methods based on deep learning has a
good prospect. This study is inspired by denoising diffusion
probabilistic models (DDPMs; Ho et al. 2020). DDPMs are
generative models inspired by nonequilibrium thermodynamics
that can generate high-quality images from noise and have a
relatively complete theoretical derivation. DDPMs, normal-
izing flows (Rezende & Mohamed 2015; Baso et al. 2022), and
variational autoencoder (Kingma & Welling 2013) are all
likelihood-based generative models that use log-likelihood (or
a suitable surrogate) as the training objective and can generate
samples from the learned posterior. They have all been
successfully applied to some tasks in the image processing
(Song & Ermon 2019; Whang et al. 2021). DDPMs have been
proven to outperform state-of-the-art models of the same period
in sample quality in image generation (Dhariwal & Nichol
2021). Compared with the state-of-the-art GAN-based methods of
the same period, the outputs of DDPMs have better consistency
with LR inputs in image SR reconstruction (Saharia et al. 2022).
And DDPMs have also achieved good results in other image fields
(Choi et al. 2021; Whang et al. 2021; Lugmayr et al. 2022). This
probabilistic model adds Gaussian noise to images in multiple
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Figure 1. The overall framework of our ICDDPM. The number after n is the number of the channel. y, x(, and ¢, represent the HMI image, GST image, and prediction

noise, respectively.

steps to gradually convert a data distribution into a Gaussian
distribution. The model then learns the inversion of this process
and iteratively estimates the reversal results for multiple steps,
which is simpler than estimating the data distribution directly
(Sohl-Dickstein et al. 2015). It is also allowed to refine and correct
the results of a single step after each estimation. This controls the
reconstruction process so that the results are toward the desired
target (Choi et al. 2021). In terms of model optimization, this
model is easy to extend (Dhariwal & Nichol 2021) and modify
(Song et al. 2020). Considering the theoretical basis, good
performance in many fields, controllable reconstruction process,
and large optimization space of DDPMs, this paper proposes an
improved conditional denoising diffusion probability model
(ICDDPM) based on the principle of conditional DDPMs. And
this model is applied to the SR reconstruction of solar images.
The contributions of our paper are as follows:

1. DDPMs are applied to the SR reconstruction of solar
images. Based on the conditional DDPMs, the initializa-
tion and the middle of the reconstruction process are
improved to enhance the consistency between the
reconstruction results and the input images;

2. A new auxiliary term based on contrastive regularization
is added to the loss function to improve the reconstruction
ability of the model, so that the reconstruction results
have a certain improvement in the indexes.

3. An Improved Conditional Denoising Diffusion
Probability Model

3.1. Basic Principles

An ICDDPM transforms the original distribution of the HR
solar image x( into a Gaussian distribution by gradually adding
Gaussian noise to x(. This process is a forward process. Under
the action of the LR solar image y, the reversal of the forward
process is learned so that the noisy image is denoised in
multiple steps, and obtains the SR reconstructed image. This
process is a reverse process (Figure 1). This section specifically

describes the forward and reverse processes, and introduces the
loss function used to train the model.

3.1.1. Forward Process

Given the distribution xo ~ g(x) of the HR solar image. The
Gaussian noise € is gradually added to the solar image xo by T
steps, so that the latents x,...,x7 are obtained sequentially. x1
is approximately an isotropic Gaussian distribution. The
forward process is fixed on a Markov chain with T transitions
so that the original data distribution is transformed into a
known simple distribution (Ho et al. 2020; Nichol &
Dhariwal 2021):

T
g@irixo) = [ q@elxi—),
=1
qxx;—1) = Nx; N Bixi—1, B, (D

where (1,...,0r is an increasing sequence in the range of (0,1),
which is used to control the noise addition rate of the forward
process. Ho et al. (2020) set 3, to a small value, that is, adding
noise in small steps. This setting makes when the forward
q(xsx,_1) is a Gaussian, and the reverse g(x,_|x;) is also a
Gaussian (Xiao et al. 2021). The property of the forward
process allows obtaining a noisy solar image x, at any ¢ given
X in a closed form. This property avoids iteratively solving x;,
from x:

q(xilro) = Nxi; JJauxo, (1 — anl), 2

where oy =1 — 3, & =[[,_, a;. By Equation (2), the
relationship between the noisy solar image x,;, the HR solar
image x,, and the noise € can be obtained:

x,(xo, €) = Jauxo + J(1 — a)e, 3)

where € ~N(0, I). According to Equations (1) and (2), using
Bayes’ theorem, the posterior distribution of x, ; can be
obtained when x, and x, are given in the forward process
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(Ho et al. 2020; Song et al. 2020; Nichol & Dhariwal 2021):

q e 1lxe, x0) = Nx—1; 1, (xr, x0), B,
\/dt—lﬂt \/Et(l - @z—l)x

i, (x;, xo) = —Xxo + — ,
— Qg 1 —a;
- 1 —a._
By =—"18, ©))
1 — &

The reverse process fits this posterior distribution to
complete the denoising operation. The principle of the reverse
process will be explained later.

3.1.2. Reverse Process

The model learns the reversal of the forward process, and
HR solar images can be reconstructed through iterations of the
reverse process. The reverse process is also fixed on a Markov
chain. Many DDPMs start with p(x7) ~ M(xr; 0, I) (Saharia
et al. 2022; Li et al. 2022). However, this study draws on the
idea of Stochastic Differential Editing (SDEdit; Meng et al.
2021). A hyperparameter f, (fy < T) is selected in the reverse
process, and the iteration starts from ¢, (Figure 1). This has two
advantages. First, it reduces the number of iterations from 7 to
to, which saves time in reconstructing solar images. Second, the
result of Gaussian perturbation of the LR image y at time #, is
used as the initialization of the reconstruction. It adds more
information about the solar image than starting from a Gaussian
distribution. The improved initialization is expressed as:

Xy, = b,y + 1 — €. 5)

Under the condition y, the reverse process learns pg(x;_|x;,
y) to fit g(x,_|x;, xo), thereby guiding the reconstructed image
to be close to the HR image corresponding to the LR image.
Finally, py(x() obtained by the reverse iteration is used to fit the
real distribution ¢g(x,) of the solar image:

P@(xO:tOU’) = p(xy) H Pa(xt—1|xta », (6)

=1
where pg(x;_1|x;, y) can be expressed as a Gaussian transition
with a learned mean and a fixed variance Xy (x;, y, t) = Ufl :

pﬁ(x1—1|xlay)
:N(xtfl; “H(xl’ Yy, t)’ Eﬁ(xtv Yy, t)) (7)

According to Equations (3) and (4), py can be decomposed
into a linear combination of x, and a prediction noise e.
Denoising diffusion implicit models (DDIMs; Song et al. 2020)
remove the random item by setting o, to 0. This operation can
increase the certainty of the reverse process. Since the task of
SR reconstruction of solar images should reduce the uncer-
tainty of the reconstruction process, this paper also adopts the
same setting. This enables the HR solar image to be
reconstructed from the latent in fixed processes. That is, under
the same initialization, it is avoided that the detailed features of
the results obtained by multiple reconstructions are quite
different. The reconstruction process of the solar image is
expressed as:

Xi—1= py(x;, y, 1)
1 By

= (x, —

Jau VI — &

€9(x1, y, 1)) (®)
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In addition, accelerated sampling methods are used. It can
further accelerate the reconstruction process without compro-
mising the quality of the reconstruction results (Song et al.
2020). That is, in the process of 1 ~ 1y, a subset x,...,.X,.... X
of length § (S < 1y) is extracted and the corresponding noise
schedule is selected, where 7 is an increasing subsequence of
[1,...,5]. Thus, after S steps of iteration from x, to x, ,, the
reconstructed image of the LR image y can be obtained.

In order to make the reconstruction result clear and faithful
to the LR input, it is necessary to pay attention to the
consistency between the input and output (Saharia et al. 2022).
Therefore, the intermediate steps of the reverse process of
conditional DDPMs are improved in this paper. This paper
introduces the idea of Iterative Latent Variable Refinement
(ILVR; Choi et al. 2021). The generated x, , after each
iteration is refined by y and used as the input of the next
iteration. This ensures that the downsampled image ¢n(xo) of
the reconstructed image x is equal to ¢(y). That is, the target
reconstructed image has the same low-frequency information as
the LR image. ¢n( - ) represents linear low-pass filtering, which
is a sequence of downsampling and upsampling by a factor
of N.

According to the linear properties of ¢ and Equation (3),
Oy ) = by, )y, =&,y + 1 — &, €canbe
obtained. Therefore, the distribution of x, , can be refined by
matching ¢y (x;,_,) of x;_ with ¢y (y, ) of y_ :

x‘f'r—l = ¢N(y7'l,]) + xT,,] - ¢N(x7},1)' (9)

In summary, the LR solar image y has three purposes: the
first is to use the y, obtained from y as the initialization x,, of
the reverse process to increase the useful information of
initialization; the second is that it acts as a condition to guide
the reverse process; the third is to refine each x|, thereby
limiting the reconstruction result to be faithful to the
corresponding LR image. Therefore, with reasonable initializa-
tion, the guidance of the LR images, and refinement of each
reconstruction step, the reconstruction result with enhanced
consistency with the input y can be obtained.

3.1.3. Loss Function

In order to enable the network to better complete the
mapping between the LR and HR solar images, the model
needs to be controlled by the loss function. During model
training, p,(x,, 7) in p,(x; |x,,y) needs to fit the true
reverse distribution fi,(x;, xo) in g(x, ,|x;, Xp). So the loss
function is expressed as:

L = Bylll @, (xrs X0) — poCer, P (10)

According to the representation of the mean in Equation (8),
the loss function can be simplified (Ho et al. 2020):

L=y ycllle — €(arxo

+ 1 —azey, mIP (11

In order to enhance the ability of the model to predict HR
images x, this paper discusses a new loss function term on the
basis of retaining the existing loss function. Wu et al. (2021)
proves that the contrastive regularization can be well applied to
the problem of improving image sharpness. This idea is used in
this task of SR reconstruction of solar images. It can be
explained as follows: combining the € and the known x, at
each 7, time, the prediction ¥, of x at this time can be obtained



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 263:25 (15pp), 2022 December

according to Equation (3). The loss calculation involving only
the predicted ¥, and x, cannot use the information of the LR
image y. Thus, the loss calculation that makes ¥ close to the
details of x( and far away from the details of y is considered. It
can make full use of the known information of HR and LR
images. The extracted features of each image are used to
participate in the loss calculation:

" D(Gi(xo), Gi(Fo)

Ly =L+ \)  w; —,
,;1 D(Gi(y), Gi(%)

where, A is a hyperparameter to prevent the added auxiliary
loss term from overwhelming L, and is set to 0.1. The value of
n is 5, which represents five layers of the pretrained VGG-19
network. The hidden features of the images extracted by these
five layers are used. wj is a coefficient that controls the weight
of features of each layer. D(I, J) represents the L1 distance
between I and J. G; represents the ith extracted feature. This
paper uses the same hyperparameters and pretrained VGG-19
as Wu et al. (2021).

Lygc helps improve the indexes of some results. In order to
further improve the results on multiple evaluation indexes, the
images are directly used for loss calculation. The loss function
is further improved as:

12)

D(x, Xo))

Lopew =L+ \ )
" D(y, %)

13)

3.2. Network Structure

The network structure of ICDDPM refers to the design of
Nichol & Dhariwal (2021), which is a U-Net backbone used to
predict noise at different times. During training, the LR image y
and its corresponding noisy HR image x, are concatenated as
input, and the range of pixel values is normalized to [—1, 1]. To
facilitate concatenation of y and x, based on channel, the LR
image is subjected to 4 times bilinear interpolation. The
predicted value €, of the noise added to the HR image xj is the
output (Figure 1). During testing, the LR image and its
Gaussian perturbation results are concatenated and input into
U-Net. By gradually removing the S prediction noises output
by the network, the reconstructed HR image is finally obtained.

The network consists of three parts: the shrinking path, the
middle part, and the expanding path. The shrinking path
extracts the features of the input image, with a total of six
layers:

M = S6(S5(S4(S3(S2(S1(x))))), (14)

where x, S; and M represent the input of the network, the
operation of the ith layer on the shrinking path and the input of
the middle part, respectively. Each layer contains two residual
blocks. Each residual block contains two operations consisting
of a group normalization, an activation function and a filter of
size 3 and stride 1. A transformer sinusoidal position
embedding (Vaswani et al. 2017) is added in the middle of
the two operations to make the residual block determine the
time ¢ Residual blocks are used to mitigate network
degradation (He et al. 2016). Group normalization can reduce
the impact of batch size (Wu & He 2018). Except for Sg, the
other layers perform a downsampling operation. When the
feature map size is 16 x 16 and 8 x 8§, the shrinking path S5 and
Se add the SA mechanism with four attention heads. The
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multihead attention is beneficial for the model to pay attention
to the information of different representation subspaces at
different positions (Vaswani et al. 2017). The number of
channels gradually increases according to the specified channel
multiplier.

The middle part consists of two residual blocks and a SA
module, whose output is the input of the expanding path. The
expanding path is similar to the shrinking path, which also
contains SA mechanisms. Dhariwal & Nichol (2021) found in
experiments that increasing the number of the SA module and
the SA head can improve the performance of the network.
However, this network does not adopt a larger architecture due
to the limitations of the experimental environment. The output
of the upper layer and the feature map of the corresponding size
of the shrinking path are skipped as the input of the lower layer.
Each layer contains three residual blocks to receive feature
maps of corresponding scales on the shrinking path. This
maximizes the use of information on the shrinking path. The
upsampling operation is performed in the first five layers, and
the number of channels is gradually reduced. As shown in the
following equation:

O = Ex(Or—1 + Sn—k+1), (15)

where Oy, E; and Sy_;., represent the output result of the kth
layer, the operation of the kth layer of the expanding path and
the output of the corresponding layer of the shrinking path,
respectively. N is set to 6, which means that the expanding path
has six layers.

This network is implemented on Pytorch. Existing models
based on DDPMs use more GPUs, making the batch size up to
256 (Nichol & Dhariwal 2021; Saharia et al. 2022). Our lab is
limited by hardware and uses a V100, so the batch size is set to
four. To match this batch size, the learning rate is chosen to be
a small 1 x 107>, Although this limits the performance of the
algorithm to a certain extent, it still achieves relatively good
results. T is set to 4000, and this larger T is chosen to obtain a
smaller (. 3y,...,0r are set as a linear increasing sequence from
25%107° to 5x 107> (Nichol & Dhariwal 2021). When
reconstructing the image, the optimal parameters are selected
through experiments. The hyperparameter v is set to 2.3
to perform brightness preprocessing on the test set. The
hyperparameter ¢ is set to 3000. When ¢, is smaller or larger,
the results are usually worse on the indexes. The number of
reconstruction step S affects the reconstruction time. The
experimental results show that a larger S does not significantly
improve the results of each index while spending more
reconstruction time. When S is set to smaller values (such as
25, 15, 10, and 5), the peak S/N and SSIM indexes of the
results will get better with the decrease of S, but the rms index
will get worse. Therefore, S is set to 25. In the analysis part of
the experimental results, S is 25 as an example to show, unless
otherwise specified. The specific details of the network are
shown in Table 1.

4. Result Analysis
4.1. Data Set

The same scale-invariant feature transform (SIFT) method
(Lowe 2004) for image pairing as SAGAN is used. The SIFT
method is completed through three main steps of feature point
identification, feature point matching, and registration para-
meter determination. The GST image and the HMI image are
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Table 1
Structure of the Neural Network

Layer Channel Self- Number of Upsampling/ Input Output

Multiplier attention Residual Blocks Downsampling HxWxC) HxWxC)
@ (@) 3 (C) ® ©) O]
S1 1 0 2 down 256 x 256 x 2 128 x 128 x 192
S2 1 0 2 down 128 x 128 x 192 64 x 64 x 192
S3 2 0 2 down 64 x 64 x 192 32 x 32 x 384
S4 2 0 2 down 32 x 32 x 384 16 x 16 x 384
S5 4 2 2 down 16 x 16 x 384 8 x 8 x 768
S6 4 2 2 no 8 x 8 x 768 8 x 8 x 768
Middle 1 2 no 8 x 8 x 768 8 x 8 x 768
El 4 3 3 up 8 x 8 x 768 16 x 16 x 768
E2 4 3 3 up 16 x 16 x 768 32 x 32 x 768
E3 2 0 3 up 32 x 32 x 768 64 x 64 x 384
E4 2 0 3 up 64 x 64 x 384 128 x 128 x 384
E5 1 0 3 up 128 x 128 x 384 256 x 256 x 192
E6 1 0 3 no 256 x 256 x 192 256 x 256 x 1

Note. The number of each module used in the different layers of the network structure and the dimensions of the input and output are described in detail in the table.
The third column represents the number of times the SA mechanism with four attention heads. In the fifth column, “down” represents downsampling, “up” represents

upsampling, and “no” represents no upsampling or downsampling.

taken as HR and LR image pairs, and SIFT matches the image
pairs by the feature points of the HR and LR images. In order to
avoid the large difference in resolution between the GST image
and the HMI image from affecting the registration, the GST
image needs to be preprocessed. The original GST image is
Gaussian blurred and downsampled to 0”126. This spatial
resolution is about four times that of the HMI image, and image
patches of size 256 x 256 pixels are cropped from their centers.

The original data of ICDDPM and SAGAN are consistent
with verifying the effectiveness of the algorithm. A total of
1597 GST and HMI image pairs are used, of which 1497 are
used as a training set and the remaining 100 are used as a
test set.

4.2. Evaluation Index

In order to evaluate the results of our model objectively,
peak S/N, SSIM, and rms are introduced in this paper. Peak
S/N is based on the error of the corresponding pixels of the HR
image and the SR image. The higher the value of peak S/N, the
higher the similarity between the two images. Peak S/N is a
relatively broad objective evaluation index for images.

MZ
Uk () — Isp())?

i=1

Peak S/N = 10log, (16)

where ¢, Iygr, and I represent the total number of pixels of the
image, the pixel value of the HR image, and the pixel value of
the SR image, respectively. M is the maximum pixel value of
the image, and the value is 255 for the sampling point
represented by 8 bits.

Since peak S/N does not consider the structural information
of the image, the evaluation index SSIM is also used. SSIM
measures the similarity of images from three aspects:

brightness o, contrast u, and structure. It is defined as:

(Q’NHRMSR + Cl) (UHRSR + C2)
(K + Hag + ) (OFR + O8g + €2)

where ¢; = 6.5025 and ¢, = 58.5225. Since the peak S/N and
SSIM indexes are calculated by the skimage library (Van der
Walt et al. 2014) in the experiment, the two constants here are
set directly by the code in the library without manual setting.
Brightness and contrast are obtained from the covariance and
mean of the images, respectively.

The rms is the most commonly used method in solar image
quality evaluation (Popowicz et al. 2017; Denker et al. 2018). It
is related to the contrast of the image, the higher the value, the
higher the image quality. It is defined as:

N
rms = L2(177)2/1_, (18)
N3

where N, I, and I are the total number of pixels of the image,
the pixel values of the image, and the average of image pixel
values, respectively.

SSIM = (17)

4.3. Comparative Experiment

To show the complete reconstruction process of a solar
image, Figure 2 shows the intermediate output results of the
reconstruction in turn. The examples shown below are the
reconstruction results of models trained with L,.,, as the loss
function. The contour of the sunspot has been clearly seen in
the output of the fifth iteration. And the penumbra region has
appeared in the output of the sixth iteration (Figure 2). The 100
images in the test set are SR reconstructed. Under the same
hardware conditions, the reconstructed process in the test part
based on ICDDPM consumes about 4 minutes, which is four
times slower than the reconstruction by SAGAN. The
reconstruction results for five HMI images are shown in
Figure 3, with a field of view of about 30” x 30”. The first two
rows are examples of granulation in solar inactive regions and a
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6 7

Figure 2. The reconstruction process of a solar image. The numbers below each image represent the number of iterations. The number of reconstruction step S is 10.

Table 2
The Average Value of Different Indexes of the Experimental Results

Evaluation Index HMI Image SAGAN SR Image Our SR Image (L) Our SR Image (Lygg) Our SR Image (Lyew)
eV} 2 (3) @) (5) (6)

Peak S/N/dB 12.41220 23.01999 20.26631 19.61052 20.32623
SSIM 0.39692 0.47109 0.52120 0.50789 0.54558

rms 0.10842 0.22911 0.23284 0.26369 0.23294

Note. This table shows the average value of peak S/N and SSIM of HMI images, SAGAN SR images, our SR images with GST images in the test set, and the average

of rms for various images.

small pore, and the last three rows are examples of solar active
regions containing sunspots. From the perspective of subjective
evaluation, the SR images of ICDDPM reconstruct a large
number of details on the basis of preserving the HMI image
structure. This result achieves our desired goal. As shown in
the red boxes in Figure 3, our model reconstructs wider granule
borders and penumbral filaments compared with SAGAN. But
most of them are closer in location and orientation to the details
in GST images. Although SAGAN reconstructs finer structures,
it also introduces more artifacts. This may be because the two
models use different loss functions. The adversarial loss in
SAGAN emphasizes more on perceptual quality and can
reconstruct more details. But it may also lead to the
introduction of artifacts. The details on the image are irregular
and human perception is not very sensitive to this (Liang et al.
2022b). Therefore, the details and artifacts reconstructed by
SAGAN are difficult to distinguish. This may affect the
application of reconstructed images in scientific fields.
ICDDPM mainly employs a mean squared error loss. This
loss emphasizes fidelity (Liang et al. 2022b) and thus may lead
to wider granule borders and penumbral filaments being
reconstructed. In addition, our model focuses on the consis-
tency of the reconstructed image with the HMI image, while
SAGAN focuses on the similarity of the reconstructed image
with the GST image. Therefore, the results of ICDDPM are
slightly closer to the HMI images in terms of brightness and
contrast. Figure 4 shows the reconstructed details of the small-

scale structure of the solar image. It can be seen that our model
is able to reconstruct structures smaller than 1” and obtain more
natural details.

An animation of 833 images of the Sun is created in a
continuous observation period (Figure 5). The animation shows
a typical dynamic of a sunspot. From a subjective angle, both
SAGAN and ICDDPM reconstruct many detailed structures.
However, the edges of the reconstructed image of SAGAN
have slightly obvious artifacts. And it has unnatural penumbral
filaments in the lower left area of the penumbra. The details of
the reconstructed image of ICDDPM are more natural.

In order to test the effect of different loss functions, this
paper conducts comparative experiments on L, Lygg, and Lye,-
The average values of peak S/N, SSIM, and rms on the test set
are shown in Table 2. The results show that, compared with the
values of the indexes of the HMI images, the results obtained
by using different loss functions are improved to a certain
extent. Comparing the results of the three indexes, the model
with L., as the loss function has better results. This may be
because the added loss term constrains the upper and lower
bounds of the result. This constraint enables the reconstruction
results to contain details close to the GST images while staying
away from the fuzzy information in the HMI images. Although
Ly is also constrained by upper and lower bounds, it may be
that the features extracted from the solar image involved in the
loss calculation are inaccurate. This limits the improvement of
the indexes.
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Figure 3. Five reconstruction results. The images from left to right correspond to the HMI image, the GST image, the SAGAN SR image, and our SR images,
respectively. The field of view is about 30” x 30”. Red dotted boxes are used to facilitate the comparison of images.

Figure 6 shows the comparison of the evaluation indexes for
each reconstructed image of ICDDPM and SAGAN under the
same test set. Figure 6(a) shows the pixel-level similarity
between the reconstructed image and the GST image. The
larger the value of peak S/N, the more similar the reconstructed
image is to the GST image. SAGAN outperforms ICDDPM in
similarity to GST images (Figure 6(a)). In brightness, our
reconstruction results are closer to the HMI images. And the

reconstructed images of SAGAN are closer to the GST images.
This may have affected the peak S/N results. Therefore further
evaluations of the results are introduced. The SSIM index not
only considers the influence of the brightness, but also the
structure and contrast of the image. The reconstruction results
of ICDDPM are generally slightly better than those of SAGAN
in the SSIM index (Figure 6(b)). Compared with SAGAN, our
results increase the average SSIM index and rms index on the
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Figure 4. Shows the reconstructed small-scale structures of the solar penumbra (top), umbra (middle), and granulation (bottom) in turn. The first row is the HMI
image, the second row is the GST image, the third row is the SR image of SAGAN, and the fourth row is our SR image. Red dotted boxes are used to facilitate the
comparison of images.
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Figure 5. An animation of SR reconstruction results from 2017 September 1 to 9, comparing the HMI image (left), SAGAN SR image (middle), and our SR image
(right). The animation runs for a total of 34 s, and the reconstruction shows a dynamic progression of a sunspot.

(An animation of this figure is available.)
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Figure 6. Peak S/N, SSIM, and rms indexes of test results. The black lines in (a) and (b) represent the indexes of the HMI image and GST image, while the green and
red lines represent the indexes of our SR images, SR images of SAGAN and GST images, respectively. The black, blue, green, and red lines in (c) represent the

indexes of the HMI image, GST image, our SR images, and SR images of SAGAN, respectively. (d) represents the SSIM index of the GST images, and the index of
our SR images and the SR images of SAGAN after blurring.

test set by 0.074 and 0.004, respectively (Table 2). This may
represent that the reconstructed images of ICDDPM have
certain advantages in structure and contrast. In addition, on the

fluctuation of the rms curve, the SR image of SAGAN is
similar to the GST image, while our SR image is similar to the
HMI image (Figure 6(c)). This may indicate that the SR images

10
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Figure 7. The three rows are the comparison of the power spectrum, scatter plot, and gray histogram of the SR image, GST image, and HMI image, respectively. The
dotted lines in the scatter plot represent auxiliary lines with slopes of 0.5, 1, and 2 in turn. The left column compares the HMI image, SR image, and GST image. The

right column compares the HMI image, blurred SR image, and blurred GST image.

of ICDDPM preserve and utilize the information of the HMI
images as much as possible. In order to compare the
consistency of the reconstructed images with the HMI images
in terms of structure, contrast, etc., the resolutions of the

11

reconstructed results from SAGAN and ICDDPM are Gaussian
blurred to approximate the resolution of the HMI images.
Figure 6(d) shows the similarity of the blurred results of
SAGAN and ICDDPM to the HMI image, respectively.
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Figure 8. (a) Shows the HMI image, the SR image blurred to the resolution of the HMI image, and the residual image from left to right; (b) shows the GST image, the
SR image, and the prediction residual image from left to right. Blue dotted boxes are used to facilitate the comparison of images. The SR image in the first row in (a)

and (b) is the result of our model, and the SR image in the second row is the result of SAGAN.
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Figure 9. The resolution of the SR image in (a) is blurred to approximate the resolution of the HMI image. (a) The histogram of the residual image of the blurred SR
image and HMI image. (b) The histogram of the prediction residual image of the SR image and the GST image. The green and red curves in (a) and (b) represent the
residual values obtained from our results and the results of SAGAN, respectively.

Overall, their results are well consistent with the HMI image.
The average value of SSIM of the results of ICDDPM is 0.868.
This value is 0.007 higher than the results of SAGAN. This
may indicate a slight advantage in the consistency of the
reconstruction results of ICDDPM and the HMI images.

This paper also plots the azimuthally average power
spectrum of the HMI image, GST image, our SR image, and
SAGAN SR image. This is used to compare the information
content of each frequency in these four images. As shown in
Figure 7(a), compared with the HMI image, the mid-to-high
frequency of our SR image is improved to a certain extent. This
may represent an enhancement of the basic structure of the
image. The power spectrum curve of SAGAN fluctuates around
90 Hz, in contrast, the curve of ICDDPM is more stable. This
may be because SAGAN introduces some artifacts in the high-
frequency information while reconstructing the details, causing
the curve to fluctuate. But these artifacts are also blurred when
the image is blurred, so there is no fluctuation in the power
spectrum curve of the blurred result of SAGAN (Figure 7(b)).
In Figures 7(a) and (b), the trends of the curves show that the
result of SAGAN is similar to those of the GST image. And the
result of ICDDPM is similar to those of the HMI image. This
may further illustrate the similarity of the reconstruction results
of SAGAN with GST images. And the consistency of
reconstruction results of ICDDPM with HMI images.
Figure 7(c) is a scatter plot of the SR image and the GST
image to compare the pixel values of corresponding points in
the two images. The more concentrated the generated points are
on a straight line with a slope of 1, the more similar the image
is to the corresponding pixels of the GST image. In Figure 7(c),
the gray, red, and green dots represent the correlations of the
HMI image, the SR image of SAGAN, and the SR image of
ICDDPM with the GST image, respectively. Compared to
SAGAN, the green dots representing our SR images are more
compactly concentrated near the straight line with a slope of 1
in the region with pixel values of 60 ~ 150. In the regions with
pixel values around 50 and 160, the overall slope of the green
point is similar to the gray point slope of the HMI image. This
may be because our SR image retains the main structural
features of the input HMI image while reconstructing certain
details. Figure 7(d) represents the similarity between the
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blurred image and the HMI image. Our blurred SR image
produces green dots with an overall slope close to 1. This
represents a strong linear relationship with the HMI image.
Figures 7(e) and (f) are the gray histograms of different images,
which are used to compare the number of pixels with different
grayscale values. It can be seen from Figure 7(e) that the pixel
value of the HMI image is mainly concentrated around 200.
This reflects that the overall brightness of the HMI image is
large, which is not conducive to observation. The results of
ICDDPM are more uniform in the intensity distribution of the
histogram than those of SAGAN. This means that the overall
contrast of the image is enhanced, which is consistent with the
information reflected in Figure 6(c). This helps to observe the
details of the image more clearly. In Figures 7(e) and (f),
fluctuations appear near the left side of the curve of the SR
image of ICDDPM. This may be due to the wide borders of the
reconstructed granules increasing the number of low-brightness
pixels. In terms of the peaks of the curves in Figure 7(f), our
result is slightly lower than the HMI image, and the SAGAN
result is slightly lower than the GST image. This may be due to
the image contrast being altered during the reconstruction of
some details. By analyzing Figure 7, the different reconstruc-
tion requirements of ICDDPM and SAGAN are further
verified. SAGAN focuses on SR reconstruction results with
the same rich details as GST images. ICDDPM focuses on
reconstructing more details while being faithful to the HMI
image.

The task of image SR is an ill-posed problem, and the
uncertainty of SR has an impact on the accuracy of the model
output (Gitiaux et al. 2019). For scientific applications, in
addition to good visual effects, the estimation of errors and
uncertainties is also important (Gitiaux et al. 2019). To estimate
and compare the reconstruction errors of ICDDPM and
SAGAN, the HMI images and the residual images of the SR
and GST images are used as input to train additional networks.
During testing, the HMI images are used as input, and the
prediction residuals between the SR and GST images are
output. Taking the images in Figure 3(e) as an example, the
residual images obtained from them are shown in Figure 8.
Figure 8(a) shows the residuals between the blurred recon-
struction results and the HMI image. In the result of ICDDPM,
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the differences are concentrated in the lower left corner of the
reconstructed image. The contrast of this part of the
reconstructed image slightly deviates from the HMI image. It
is consistent with the conclusion in Figure 7(f). In the result of
SAGAN, the differences are concentrated at the edges of the
image. This may be caused by the blurring artifacts. Figure 8(b)
shows the residuals between the reconstruction results and the
GST image. In the results of ICDDPM, the differences are
concentrated at the junction of the umbra and penumbra. This
shows that the reconstruction of the junction needs to be
strengthened. For SAGAN, the differences are concentrated in
the penumbra. This may be because there are more artifacts in
this part. For ease of comparison, the histograms of the residual
images calculated from the SR reconstruction results in
Figure 8 are shown in Figure 9. The range of residual value
is [0, 255], and the smaller the value, the smaller the difference.
Both curves tend to O where the residual value is greater than
100, so the values on the horizontal axis only show [0, 100]. In
Figure 9(a), the peaks of the curves of ICDDPM and SAGAN
results are approximately at residual values of 5 and 15,
respectively. In contrast, the curve of ICDDPM is closer to 0,
representing less difference. This may further illustrate the
consistency between reconstructed images of ICDDPM and
HMI images. In Figure 9(b), the peak value of the curve of the
ICDDPM result is around the residual value of 10, which is
slightly worse than SAGAN. But in the region of 30 ~ 70, the
ICDDPM curve is lower than SAGAN. That is, ICDDPM has
fewer pixels with larger residual errors than SAGAN. This is
consistent with the information reflected in Figure 8(b). At the
same time, this may also mean that ICDDPM has relatively
small errors in the reconstruction process.

5. Conclusion

This paper proposes an SR reconstruction model of solar
images based on conditional DDPMs. During training, the new
auxiliary loss term is added. During reconstruction, the given
HMI images are used to construct the initialized images and
refine the results of each iterative step. By combining the
improvement of the loss function and the reconstruction
process, the model finally achieves the goal of reconstructing
the HMI images with four times the spatial resolution. We
evaluate this model both subjectively and objectively, and
compare it with SAGAN. The results show that our model can
complete the task of SR reconstruction well while being
faithful to the HMI image. This proves the feasibility of our
model in the SR reconstruction of solar images.

In the future, our goal is to reconstruct finer textures while
maintaining consistency with LR images. Different aspects will
be explored, such as in terms of data sets: more advanced
image registration algorithms (Liang et al. 2022a) will be used
to obtain more accurate image pairs as data sets; in the
improvement of the model: more lightweight DDPMs will be
studied, trying to reduce the dependence of this model on high-
performance hardware, and improve the reconstruction speed
while ensuring the quality of reconstruction. Various recon-
struction algorithms will be tried to combine effectively, such
as DDPMs combined with GAN (Xiao et al. 2021), or
combined with solar imaging processes (Jia et al. 2021), to
enhance the interpretability of the model while improving the
effect of reconstruction. We will also extend this work to SR
reconstruction of other solar image data sets to test the
universality of the model, such as the H-alpha image observed
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by NVST is used as the HR image, the H-alpha full-disk
observation data provided by Huairou Solar Observing Station
(HSOS) is used as the LR image.

The work is supported by the open project of CAS Key
Laboratory of Solar Activity (grant No. KLSA202114), Young
Academic Team Leadership Program (grant No. 2022QNYL31),
and Ability Enhancement Project for Scientific Research Manage-
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