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Hamiltonian formulations of
quasilinear theory for
magnetized plasmas

Alain J. Brizard™ and Anthony A. Chan?

Department of Physics, Saint Michael's College, Colchester, VT, United States, 2Department of Physics
and Astronomy, Rice University, Houston, TX, United States

Hamiltonian formulations of quasilinear theory are presented for the cases of
uniform and nonuniform magnetized plasmas. First, the standard quasilinear
theory of Kennel and Engelmann (Kennel, Phys. Fluids, 1966, 9, 2377) is reviewed
and reinterpreted in terms of a general Hamiltonian formulation. Within this
Hamiltonian representation, we present the transition from two-dimensional
quasilinear diffusion in a spatially uniform magnetized background plasma to
three-dimensional quasilinear diffusion in a spatially honuniform magnetized
background plasma based on our previous work (Brizard and Chan, Phys.
Plasmas, 2001, 8, 4762-4771; Brizard and Chan, Phys. Plasmas, 2004, 11,
4220-4229). The resulting quasilinear theory for nonuniform magnetized
plasmas yields a 3 x 3 diffusion tensor that naturally incorporates quasilinear
radial diffusion as well as its synergistic connections to diffusion in two-
dimensional invariant velocity space (e.g., energy and pitch angle).

KEYWORDS

quasilinear theory, guiding-center approximation, wave-particle resonance,
Hamiltonian formulation, action-angle coordinates

1 Introduction

The complex interaction between charged particles and electromagnetic-field wave
fluctuations in a magnetized plasma represents a formidable problem with crucial
implications toward our understanding of magnetic confinement in laboratory and
space plasmas (Kaufman and Cohen, 2019). These wave-particle interactions can be
described either linearly, quasi-linearly, or nonlinearly, depending on how the
background plasma is affected by the fluctuating wave fields and the level of plasma
turbulence associated with them (Davidson, 1972).

In linear plasma wave theory (Stix, 1992), where the field fluctuations are arbitrarily
small, the linearized perturbed Vlasov distribution of each charged-particle species
describes the charged-particle response to the presence of small-amplitude
electromagnetic waves which, when coupled to the linearized Maxwell wave
equations, yields a wave spectrum that is supported by the uniform background
magnetized plasma (Stix, 1992).

In weak plasma turbulence theory (Sagdeev and Galeev, 1969; Galeev and Sagdeev,
1983), the background plasma is considered weakly unstable so that a (possibly discrete)
spectrum of field perturbations grow to finite but small amplitudes. While these small-
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amplitude fluctuations interact weakly among themselves, they
interact strongly with resonant particles, which satisfy a wave-
particle resonance condition in particle phase space (described in
terms of unperturbed particle orbits). These resonant wave-
particle interactions, in turn, lead to a quasilinear
modification of the background Vlasov distribution on a long
time scale compared to the fluctuation time scale (Kaufman,
1972a; Dewar, 1973).

Lastly, in strong plasma turbulence theory (Dupree, 1966),
nonlinear wave-wave and wave-particle-wave interactions
cannot be neglected, and wave-particle resonances include
perturbed particle orbits (Galeev and Sagdeev, 1983). The
reader is referred to a pedagogical review by Krommes
(Krommes, 2002) on the theoretical foundations of plasma
turbulence as well as a recent study on the validity of
quasilinear theory (Crews and Shumlak, 2022). In addition,
the mathematical foundations of quasilinear theory for
inhomogeneous plasma can be found in the recent work by

Dodin (Dodin, 2022).

1.1 Motivation for this work

The primary purpose of the present paper is to present
complementary views of two-dimensional quasilinear diffusion
in a uniform magnetized plasma. First, we review the quasilinear
theory derived by Kennel and Engelmann (Kennel and
Engelmann, 1966), which represents the paradigm formulation
upon which many subsequent quasilinear formulations are
derived (Stix, 1992). (We mainly focus our attention on non-
relativistic quasilinear theory in the text and summarize the
extension to relativistic quasilinear theory in Supplementary
Appendix A) As an alternative formulation of quasilinear
theory, we present a Hamiltonian formulation that relies on
the use of guiding-center theory for a uniform magnetic field
(Cary and Brizard, 2009). In this Hamiltonian formulation, the
quasilinear diffusion equation is described in terms of a diffusion
tensor whose structure is naturally generalized to three-
dimensional quasilinear diffusion in a nonuniform magnetized
plasma, as shown in the works of Brizard and Chan (Brizard and
Chan, 2001; Brizard and Chan, 2004).

Next, two formulations of three-dimensional quasilinear
theory are be presented. First, we present a generic quasilinear
formulation based on the action-angle formalism (Kaufman,
1972b; Mahajan and Chen, 1985), which applies to general
This formulation
highlighting the modular features of the quasilinear diffusion

magnetic-field geometries. is useful in
tensor. Our second three-dimensional quasilinear formulation is
developed for the case of an axisymmetric magnetic field B, = Vy
x Vg, for which the drift action J4 = qy/c is expressed simply in
terms of the magnetic flux y. The presentation of this case is
based on a summary of the non-relativistic limit of our previous
work (Brizard and Chan, 2004).
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1.2 Notation for quasilinear theory in a
uniform magnetized plasma

In a homogeneous magnetic field By = B Z, the unperturbed
Vlasov distribution f,(v) (for a charged-particle species with charge
q and mass M) is a function of velocity v alone and the perturbed
Vlasov-Maxwell fields (8f, OE, 0B) can be decomposed in terms of
Fourier components: of = 6f (v) exp (i9) + c.c. and
(8E, 6B) = (JE, OB) exp (i9) + c.c., where the wave phase is
Ix ) = k- x — w t and the dependence of the eikonal
(Fourier) amplitudes (8]?, OE,0B) on (k, w), which is denoted
by a tilde, is hidden. According to Faraday’s law, we find
0B = (kc/w) x 8E, which implies k - 0B =0. For the time
being, however, we will keep the perturbed electric and
magnetic fields separate, and assume that the uniform
background plasma is perturbed by a monochromatic wave
with definite wave vector k and wave frequency w.

Following the notation used by Kennel and Engelmann (Kennel
and Engelmann, 1966), the velocity v and wave vector k are
decomposed in terms of cylindrical components

v=v||ﬁ+vl(cos¢)2+sinqﬁ)?)]> (LD

k=kZ+k, (cosyX+sinyy)

so that k - v = kyv + kv, cos(¢ — v), where ¢ is the gyroangle
phase and y is the wave-vector phase. We note that the
unperturbed Vlasov equation dfy/0¢ = 0 implies that fo(v) is
independent of the gyroangle ¢, i.e., fo(v}, v.). In what follows, we
will use the definition

=

L

k- cosv/x+51n1//)7

(K+K)

and the identity

¢V (X iY) + - e (%+iY)
2 (1.2)

Eizcos¢x+sm¢y-e’(‘/’ v K/\/—+e”(‘7’ K /\/—
(1.3)

vy

We note that, in the work of Kennel and Engelmann (Kennel and
Engelmann, 1966), the right-handed polarized electric field is
8Eg = OE - Ke™™ and the left-handed polarized electric field is
0E; = OE - K" e'¥; we will refrain from using these components
in the present work.

2 Kennel-Engelmann quasilinear
diffusion equation

In this Section, we review the quasilinear theory presented by
Kennel and Engelmann (Kennel and Engelmann, 1966) for the
case of a uniform magnetized plasma. Here, we make several
changes in notation from Kennel and Engelmann’s work in
preparation for an alternative formulation presented in Section 3.
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2.1 First-order perturbed Vlasov equation

The linearized perturbed Vlasov equation is expressed in
terms of the first-order differential equation for the eikonal
amplitude § f (v):

9o f

—i(w-k - v)8f Q— 3%

@)a —-i® o7
=—Qe‘a¢( 5f)

(2.1)
M(8E+f ><6B) afo

where Q = gB,/(Mc) denotes the (signed) gyrofrequency and the
solution of the integrating factor 00/0¢ =Q'd9/dt = (k- v - w)/Q
yields

o) = (M1 JorEt snto-v)
= p(9) +1 sin(4 - v).

(2.2)

where A = k,v,/Q. The perturbed Vlasov Eq. 2.1 is easily
solved as

.
af(v):‘]{;jj-@(am ><8B> af” ¢/,

where a prime denotes a dependence on the integration

(2.3)

gyroangle ¢'. Here, we can write the perturbed evolution

operator
I (sE+Y )3:~i ANy
YT 6E+ x 0B e 8V, o +6V, v, +0¢ 3¢
(2.4)
which is expressed in terms of the velocity-space eikonal
amplitudes.
oV, = i(af-pr v xafs) 3, (2.5)
Q c
8V, = <8E LN 51’%) 1, (2.6)
MQ
i 4 wz &\ ¢ 0B
=L [SE B ——, 2.
0¢ Mﬂ(a +— ><6) v B 2.7)

where ¢ = 01/0¢ = Z x 1. Whenever direct comparison with the
work of Kennel and Engelmann (Kennel and Engelmann, 1966)
is needed, we will use Faraday’s law to express 6B = (kc/w) x SE.
With this substitution (see Supplementary Appendix A for
details), for example, we note that Eqs. 2.4.7.-.Eqs. 2.2.7 agree
exactly with Eq. 2.12 of Kennel and Engelmann (Kennel and
Engelmann, 1966).

We now remark that, since ofo(v|, v,)/0¢ vanishes, only the
first two terms in Eq. 2.4 are non-vanishing when applied to f;.
Hence, Eq. 2.3 contains the integrals.

of? o
et@J e—z@ d¢’, (28)
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- ¢ N
e’QJ e 1'dgy’. (2.9)

In order to evaluate these integrals, we use the Bessel-Fourier

decomposition e® = ¢i? Ze—f Je (1) €49 5o that the scalar
integral Eq. 2.8 becomes
ei9J¢e-"®’d¢' = Y iAW L) €6, (210)
me=—co
where the resonant denominator is
= W%’ (2.11)

while, using the identity Eq. 1.3, the vector integral Eq. 2.9

becomes
¢ (9]
ei@f LA = Y i T (D) T (1) €00, (212)
m,€=—00

where we introduced the vector-valued Bessel function

K K
Je() = NG Jer () + NG Jear (M), (2.13)
with the identity
k- Jioe= e +Je) ki /2= (£Q)vy) Jo, (2.14)

which follows from a standard recurrence relation for Bessel
functions. The perturbed Vlasov distribution (Eq. 2.3) is thus
expressed as

where the Bessel-Fourier components are

. _ . 6B
8V||e = % (SE” ]g (/\) -V, ZX B_ . JJJ (A); (216)

Once again, Eqs. 2.15.17.-.Eqs. 2.2.17 agree exactly with Eq.
2.19 of Kennel and Engelmann (Kennel and Engelmann, 1966)
2.16, 2.17; see
The relativistic

when Faraday’s law is inserted in Egs.
Supplementary Appendix A for details.
version of Eqs. 2.15.17.-.Eqs. 2.2.17, which was first derived
by Lerche (Lerche, 1968), is also shown in Supplementary
Appendix A.

2.2 Quasilinear diffusion in velocity space
We are now ready to calculate the expression for the

quasilinear diffusion equation for the slow evolution (7 = €*)
of the background Vlasov distribution
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Qo MQ(SE +_X5B) w

|
(2o 2w 2]

(2.18)

where € denotes the amplitude of the perturbation fields, { )
denotes a gyroangle average, and (6\7"(,&71, &Z)*) are the
complex conjugates of Eqs. 2.5-2.7. In addition, the real part
appears on the right side of Eq. 2.18 as a result of averaging with
respect to the wave phase 9. We note that Kennel and Engelmann
(Kennel and Engelmann, 1966) ignore the term 0f,/0t on the left
side of Eq. 2.18, which is associated with the second-order
perturbed Vlasov distribution f, generated by non-resonant
particles (Kaufman, 1972a; Dewar, 1973). While this term was
shown by Kaufman (Kaufman, 1972a) to be essential in
demonstrating the energy-momentum conservation laws of
quasilinear theory, it is also omitted here and the right side of
Eq. 2.18 only contains resonant-particle contributions.

First, since Eqs. 2.5, 2.6 are independent of v and v,,
respectively, we find

5+ 00f o 9F, _ D

oV, o " Vg = —<5v”5f> - <6V 8f)
"o
= a—V” <6V\| (Sf> + Z a~
x (v OV, 8f)) -
(2.19)

where we took into account the proper Jacobian (v,) in
cylindrical velocity space (v, v,, ¢). On the other hand, the
third term in Eq. 2.18 can be written as

@5
MqQ<6E 2 6B*).<%8f>

- <‘SZL af>,

where the last term in Eq. 2.7 is independent of the gyroangle ¢.

Since this term cancels the last term in Eq. 2.19, the quasilinear
diffusion Eq. 2.18 becomes

Lofo_ 9 (reoViofy) - -

3 .
Qo TL(VL Re(8V51)).

(2.20)

Next, using the identity Eq. 1.3, we find

Y T (1, 1) €0 )y = (7, (1), Toe (M),

so that, from Eq. 2.15, we find
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IOV 0 )y = A 8 J (1) v, 2

8B ) (2.21)

8V

- le>
7 o)y = 9 (of" 4 12 58"
; T M){SV € > MQ(&E +--x0B 2.22)

T =0V,

Hence, the quasilinear diffusion Eq. 2.20 can be written as

LOfo __ 0 Ipe| 3 inov(ov, 224 o7, 20
aor = om {Re[ YA (S‘V"e(SV"e 5, +OVie 5

£=-00

1 0 < 0
- =y Re[z 1Ag8Vlle<5V”e£

£=—00

- 0 0
w5
1

(2.23)
where the diagonal diffusion coefficients are
D'=z.D-z= ) Re(-iA) |6Vl (2.24)
¢=-00
DY =1-D-1=) Re(-iA) oV, (2.25)

while the off-diagonal diffusion coefficients are

DM=2.D. L= ) Re(-iA)Re(0V),0V,), (2.26)
£=—00
DY=1.D-Z2= ) Re(-iA)Re(0V,oVy), (2.27)

£=—00

which are defined to be explicitly symmetric (ie., D* = D*I).
Here, using the Plemelj formula (Stix, 1992), we find

iQ)

— | =7Q 6w, - kv - £Q),
(w=FKyvy —m)] ( i )

Re(-iA,) = Re[

(2.28)

where we assumed w = w, + i y and took the weakly unstable limit
y — 0". Hence, the quasilinear diffusion coefficients (2.24)-(2.27)
are driven by resonant particles, which satisfy the resonance
condition kyv.es = w — €Q. The reader is referred to the early
references by Kaufman (Kaufman, 1972a) and Dewar (Dewar,
1973) concerning the role of non-resonant particles in
demonstrating the energy-momentum conservation laws of
quasilinear theory.

Eq. 225 from Kennel and Engelmann (Kennel and
Engelmann, 1966) (see Supplementary Appendix A) can be
expressed as the dyadic diffusion tensor
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D = ) Re(-iA) ¥,V
11

=Y Re(=iA)[(8V), 2+ 8V, L)(8V)e 2+ 6V, 1)),
¢
(2.29)

which is Hermitian since the term — i A, is replaced with Re( —
i Ap). Here, the perturbed velocity

\73 = 5\7[[ 2+8‘7lg i

_4%E 5 5 1. 0B
=M JeM)Z2Z2+T,, () L] +2x B,

'o]]le (/1) (V” i -V 2)

(2.30)

explicitly separates the electric and magnetic contributions to the
quasilinear diffusion tensor Eq. 2.29. In particular, the role of the
perturbed perpendicular magnetic field is clearly seen in the
process of pitch-angle diffusion because of the presence of the
terms (vj L —v, 2) associated with it. We also note that the
of the field,
8Bj =2 - 6B, does not contribute to quasilinear diffusion in a

parallel component perturbed magnetic
uniform magnetized plasma. The components of the perturbed
electric field, on the other hand, involve the parallel component,
8E) = Z - 8E, as well as the right and left polarized components,
0Eg =0E - (X-iy)/\/2 0E, = 0E - (X+iy)/V2,
respectively, appearing through the definition Eq. 2.13.

Lastly, we note that the dyadic form Eq. 2.29 of the

quasilinear diffusion tensor in the quasilinear diffusion Eq.

and

2.23 can be used to easily verify that the unperturbed entropy

So= - jfo In f d*v satisfies the H Theorem:
%:—GZJ% (lnf0+1) d31/
o3 [recmon e B0 e
=€ . e(—14, o |Ve aV v .

Once again, the energy-momentum conservation laws in
quasilinear theory will not be discussed here. Instead the
interested reader can consult earlier references (Kaufman,
1972a; Dewar, 1973), as well as Chapters 16-18 in the
standard textbook by Stix (Stix, 1992).

2.3 Quasilinear diffusion in invariant
velocity space

In preparation for Section 3, we note that a natural choice of
velocity-space coordinates, suggested by guiding-center theory,
involves replacing the parallel velocity v, with the parallel
momentum p; = M v, and the perpendicular speed v, with
the magnetic moment y = Mv2/(2B,). We note that these two
coordinates are independent dynamical invariants of the particle
motion in a uniform magnetic field.

With this change of coordinates, the quasilinear diffusion Eq.
2.23 becomes
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ofo

1 9fo Ei(yp 9fo , o %)
opy oy

9 af, 0 f0>
+— | D" =—+D" — |,
oy ( opy ou

where the quasilinear diffusion coefficients are

(2.32)

D = M2 DV = " Re (=i A,) (85
14
DM = (M?v, /B,) D" = ZRe(—i Ar) Re(aﬂf‘sﬁf) . (233)
14

D" = (Mv,[By)’ D** = Y Re (i A,) 104,
¢
with the eikonal amplitudes

8Py = %(Mén Je+ % Jex0B - ﬁ), (2.34)

8, = Bg%(é‘fi + Vi—z ><8]§> - vy Jies (2.35)

and the symmetry D'? = D* follows from the assumption of a
Hermitian diffusion tensor. Lastly, as expected, we note that the
eikonal amplitude for the perturbed kinetic energy

65@ = Mv - f’e =V 6}5”3 + aﬁeBO = g 8E . (V" ]g i+ vy JJ_g),
(2.36)

only involves the perturbed electric field. Hence, another useful
representation of quasilinear diffusion in invariant velocity (&, y)
space is given by the quasilinear diffusion equation

13fo _ 3 [1( wdfo o 3fo
Q or ‘V”as[vu(D ae TP

(2.37)
01 ofo ofo
—|=(Dp* L2+ p* 22},
HOFY [v”< € 7 ou
where the quasilinear diffusion coefficients are
D = Y Re(-i Ap) |6&,[
¢
D = Y Re(~i A;) Re(8E,00,) | (2.38)
¢
D% = Y Re(~i Ay) |67,
€
and the Jacobian 1/vy is a function of (& p):

vl = / (2/M) (€ — u By), while the sign of v is a constant of

the motion in a uniform magnetic field.

3 Hamiltonian quasilinear diffusion
equation

In Section 2, we reviewed the standard formulation of
quasilinear theory in a uniform magnetized plasma (Kennel
and Engelmann, 1966). In this Section, we introduce the
Hamiltonian formulation of the Vlasov equation from which
we will derive the Hamiltonian quasilinear diffusion equation,
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which will then be compared with the Kennel-Engelmann
quasilinear diffusion Eq. 2.23.

In order to proceed with a Hamiltonian formulation,
however, we will be required to express the perturbed electric
and magnetic fields in terms of perturbed electric and magnetic
potentials. We note that, despite the use of these potentials, the
gauge invariance of the Hamiltonian quasilinear diffusion
equation will be guaranteed in the formulation adopted here.

3.1 Non-adiabatic decomposition of the
perturbed Vlasov distribution

The Hamiltonian formulation of quasilinear diffusion begins
with the representation of the perturbed electric and magnetic
fields in terms of the perturbed electric scalar potential 6@ and
the perturbed magnetic vector potential 6A, where 6E = -V —
¢ '00A/0t and 0B = V x JA. Hence, we find the identity

8E+X><6B:—V(6<D—X -<SA>—l doA
c 1Cd6A c dt
= -V -- —, 3.1
c dt (3.1)

where d/dt denotes the unperturbed time derivative. We note that

@) (3.2)

the gauge transformation

106
(6<I>,6A,6‘I’)—>< q)——a—X SA+ VoY, O¥ - - =

guarantees the gauge invariance of the right side of Eq. 3.1.
Next, by removing the perturbed magnetic vector potential
0A from the canonical momentum

P=mv+q (A +e8A)/c - Py =mv+qgA/c,

the noncanonical Poisson bracket (which can also be expressed in
divergence form)

_o |1 qBo Of of g
‘W[M(Vf W—VM v (av M>
(3.4)

only contains the unperturbed magnetic field B,., where fand g
are arbitrary functions of (x, v).

The removal of the perturbed magnetic vector potential SA
from the noncanonical Poisson bracket Eq. 3.3, however, implies
that the perturbed Vlasov distribution can be written as
0 f 0,

q OA -

5f = (3.5)

09 =T 5A - {x, fo} + {85, fol,
where the non-adiabatic contribution §g is said to be generated
by the perturbation scalar field 8s (Brizard, 1994; Brizard, 2018;
Brizard and Chandre, 2020), which satisfies the first-order
eikonal equation
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o )
i(k-v—w)(?s—Qa—(;: (5@-- 6A)Eq6‘l’. (3.6)

Hence, the eikonal solution for &5 is expressed with the same
integrating factor used in Eq. 2.3:

< 4 e Gt 0

85(v) = —5 J oV e as

=-a Z’Ae Ty é006 5w, 7

where the gyroangle Fourier component of the effective

perturbed potential is
0%, = (acb -4 5A”) o)== 0A - L), (38)

and the eikonal amplitude of the non-adiabatic perturbed Vlasov
distribution is

[T U 065\ Ofo
_ i9 i9 e L 2J0
dg=e {8se ,fo}—M ikd5+QZx Bv) e 69)
ik of 09 of, |
M ov B() a¢ a‘u’

where y = M|v,|*/(2B,) denotes the magnetic moment. We note
that, under the gauge transformations Eq. 3.2, the scalar field &s
transforms as 8s — 0s — (g/c) Oy (Brizard, 1994; Brizard, 2018;
Brizard and Chandre, 2020), and the expression Eq. 3.5 for the
perturbed Vlasov distribution is gauge-invariant. Moreover,
under the gauge transformation Eq. 3.2, the eikonal Fourier
amplitude Eq. 3.8 transforms as
8, - 0%, + E (w-kyvy - £Q) T, 8 (3.10)

which is consistent with Eq. 3.2.

Next, since the components of the Poisson bracket Eq. 3.3 are
constant, the unperturbed time derivative of df yields the
linearized perturbed Vlasov equation

djtf_zdrSA o fid +T0A - fv i)+ {d&s fo}
STBR e fo e Loa - (v fo) +(a0¥, fi) .
- <g %+qvaw) % fol

= q(6E+—><6B) afo
M c

which implies that the non-adiabatic decomposition Eq. 3.5 is a
valid representation of the perturbed Vlasov distribution.

3.2 Second-order perturbed Vlasov
equation

In order to derive an alternate formulation of quasilinear
theory for uniform magnetized plasmas, we begin with second-
order evolution of the background Vlasov distribution
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- (qV&‘{’+g ‘ij—f) x, 8f}, (3.12)

where, once again, 7 = €’t denotes the slow quasilinear diffusion
time scale, we have ignored the second-order perturbed Vlasov
distribution f,, and we have inserted Eqs. 3.1, 3.3. The first term
.12 can be written as

= {go%, 8f} - 5% - v, o)

={q0%, 8f}+gaA v, 81}
- {qa\y, (g SA - {x, fo} +8g>}
+§ SA - {v, of},

on the right side of Eq. 3

qveéY - {x, 8f}

(3.13)

where we have inserted the non-adiabatic decomposition Eq. 3.5,
so that the first term can be written as

{qé“I’, gSA {x,fo}} = (5‘1’ 0A} - {x, fo}
+0A - {8, % fo}})
2 SA - VOA - {x, fo}

gtgA Aqov, {x, foll,

(3.14)

where we used {8¥, A} = (JA/Mc) - VSA. The second term on
the right side of Eq. 3.12, on the other hand, can be written as

q doA " doA
Cdt{ﬂ}a oo fol)

dt( SA - Ix, ag})—zaA - {v.84)
+ ;8A Ax{fo, q0¥}}.
(3.15)

Next, by using the Jacobi identity for the Poisson
bracket (3.3):

{f:lg: Wt +lg. (. fH +{RAS gl} =0, (3.16)

which holds for arbitrary functions (f, g h), we obtain

%26A~ ({0¥. {x, fol} +{x{for O¥}})

2
= % SA - {fo{x, W)} = —{fo, 0H,), (3.17)
where 0H, = ¢’|0A]’/(2Mc?) is the second-order perturbed
Hamiltonian. We now look at the first term on the right side
of Eq. 3.15, which we write as

T LA fol) - oA jt(q A ol fil - 0n )

,féA (v dx fol} + x v fo}}) (3+18)

e dsA
-0A - C—z SA - {x,{x, fo}} - T
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Because of the symmetry of the tensor {x, {x, f 0}}, the last
term on the right side (omitting the minus sign) is equal to the
left side, so that we obtain

DA e el 6A—%<q 5A - P fx, fol} - 6A>

—C—2 SA - {v,{x, fo}} - A,

where we used the Jacobi identity Eq. 3.16 to find {x, {v, fo}} = {v.
{x, fol}, since {fo, {x, v}} = 0.

When these equations are combined into Eq. 3.12, we
obtain the final Hamiltonian form of the second-order
perturbed Vlasov equation

af O~ (8H,8g) + {0H,, fo} + i(ﬂ SA - [x, 8g)

%%Ammm}) (19)

where 6H = g 6% = q 60 — q SA - v/c and 0g = {6, fo}.

3.3 Hamiltonian quasilinear diffusion
equation

We now perform two separate averages of the second-
order perturbed Vlasov Eq. 3.19: we first perform an average
with respect to the wave phase 9, which will be denoted by an
overbar, and, second, we perform an average with respect to
the gyroangle ¢. We begin by noting that the averaged second-
= qzléAlz/ (2Mc?) is a
constant and, therefore, its contribution in Eq. 3.19

order perturbed Hamiltonian §H,
vanishes upon eikonal-phase averaging. Likewise, the total
time derivative in Eq. 3.19 vanishes upon eikonal-phase
averaging.

The Hamiltonian quasilinear diffusion equation is, therefore,
defined as

afo _ q
% ! <{8H ag}> oA 6]
+§<g : [ V8H+Q%18A><2> %D (3.20)

1/0 q 2\ 69
E<E . [(V6H+QZ<SA><Z) M]>

where we used the divergence form Eq. 3.4 of the Poisson bracket

and the eikonal average of the spatial divergence vanishes. Next,
the eikonal average of the first term on the last line of the right
side of Eq. 3.20 yields

(VéHbg) = ik (8H 85" - 8H  63),

so that

frontiersin.org


https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1010133

Brizard and Chan

0 dg 0 . o s S s
1 a . ~ - ~ % -~
B op [ik - (v.(0H 65" - 6H 63)>),
(3.21)
where py = M vj and y = M|v,|*/2B,. The eikonal average of the

second term on the last line of the right side of Eq. 3.20, on the
other hand, yields

2 2 [atan i iox o)

Q0 q OVy\ oon
B_@[Re(&‘m a¢)‘S >]

so that by combining Eqgs. 3.21, 3.22 into Eq. 3.20, we find

19f,_ 2 k”

1 0 avl
B—@[R“(

In order to evaluate the gyroangle averages in Eq. 3.23, we need to

(3.22)

.k'vl - ~%
+1T 6H>6g )],

(3.23)

¢

proceed with a transformation from particle phase space to
guiding-center phase space, which is presented in the next Section.

4 Guiding-center Hamiltonian
quasilinear diffusion equation

In this Section, we use the guiding-center transformation
(Northrop, 1963) in order to simplify the calculations involved in
obtaining an explicit expression for the Hamiltonian quasilinear
diffusion Eq. 3.23 that can compared with the standard
2.32 obtained from Kennel-
Engelmann’s work (Kennel and Engelmann, 1966).

quasilinear diffusion Eq.

4.1 Guiding-center transformation

In a uniform background magnetic field, the transformation
from particle phase space to guiding-center phase space is simply
given as x = X + p, where the particle position x is expressed as the
sum of the guiding-center position X and the gyroradius vector
p=2xv,/Q, while the velocity-space coordinates (py, y, ¢)
remain unchanged (Cary and Brizard, 2009). Hence, the

eikonal wave phase ¥ = k - x — w t becomes

9=k - (X+p)-wt=0+k-p=0+A, (4.1)

where 0 denotes the guiding-center eikonal wave phase and A=A
sin(¢p — v). Next, the particle Poisson bracket (Eq. 3.3) is
transformed into the guiding-center Poisson bracket (Cary
and Brizard, 2009)
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o3 (vp 95 OF G\ 0(0F 0G_0F 3G
G =2 \  9p opy By\9¢ u ou 3¢
Lz - VEX VG,

9B,
(4.2)

where the last term vanishes in the case of a uniform background
plasma since the guiding-center functions F and G depend on the
guiding-center position only through the guiding-center wave
phase 6 (with V@ = k).

4.2 First-order perturbed guiding-center
Vlasov equation

The
transformation on particle phase-space functions f to a

guiding-center  transformation  induces a
guiding-center phase-space function F through the guiding-
center push-forward T;CI: F = Tgclf. For a perturbed particle
phase-space function &g =8g exp(i9) +cc., we find the
perturbed guiding-center phase-space function
8G = 6G exp (i6) + c.c., where the eikonal amplitude 8G s

given by the push-forward expression as

S . 0fo s Q Ofy 988
0G=08ge™ =e {85, =ik =— =222
g { fo}gc "opy " By o 03¢

(4.3)

The eikonal amplitude of the guiding-center generating function
8S = 05 exp (—iA) satisfies an equation derived from the first-
order eikonal Eq. 3.6:

268
) 6S - Q%-éH

i (k” V|- _IA 6H (44)

The solution of the first-order guiding-center eikonal Eq. 4.4

makes use of the gyroangle expansion
08 =Y 0S,exp[-it(¢ - y)], which yields the Fourier
component

lAg

83, = 12 (5He iA

-ineit (9-v)y — o q0%,.

(4.5)

Inserting this solution into Eq. 4.3, with the gyroangle expansion

8G =Y 0Gyexp[-it(¢ — )], yields
8G, = i(k” o , £ af°>ase
-4 Lo a, <k af° £a %)
'op " By ou

Hence, the solution for the eikonal amplitude §g appearing in Eq.
3.23 can be obtained from the guiding-center pull-back
expression 03 = 6G exp (i A).
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4.3 Guiding-center Hamiltonian
quasilinear diffusion equation

Using the solution Eq. 4.6 for Gy, we are now ready to
calculate the quasilinear diffusion Eq. 3.23 and obtaina simple
dyadic form for the quasilinear diffusion tensor.

4.3.1 Quasilinear diffusion in guiding-center (p,
U)-space

Now that the solution for the eikonal amplitude dg is
obtained in terms of the guiding-center phase-space function
83 = 0G exp (i A), we are now able to evaluate the gyroangle-
averaged expressions in Eq. 3.23. We begin with the gyroangle-
averaged quadratic term

(8H 83"y = (OH (0Ge™)"y = (8He™) 6G")
- i 6@: <6I:Ie—i1\+i ¢ (¢—w)>
£=—00
= i 8%, G,
g-,

q af() €Q afo
= Z o |6F, > A% <k” 2! Bo o)

(4.7)

so that
Kk s afo £Q of,
6 Re(l 6H(sg > = Z k" Dg(k” ap” Bo a s (48)

£=—00

where we introduced the quasilinear perturbation potential

Dy =Re(=iA,) [(q/Q) 8%, =Re(—iA,) 18T, (4.9)
and

d ki N ~*> 0 < PP afO 14 8f0>
— | = Re{idHgG") D + DM =2 (4.10)
aPn<Q g ap\" " op " o

where DIf = ¥, ki Dy and D{f' = ¥,k (£ Q/Bo) D.
Next, we find

A58 . M 5
<< SA % a )5 >
9.~ ov, k- vl s
:((Z(SA. %+ 8H>(6G6A) )
LRy a_A~_H~_V_i A
_<[C6A 5 <" iagg (&D oA - éA)
x e ]6G")
D e . 060G
= :a¢(6He )8G ) = (6H % 5
= Y 6 8G,(0He Mt (+v)y = Z it q 8%, G,
£=—00
N 2 ed 2 ame%
—ezzoolAe Q2 (q/Q)" |8, (kll ap, B, ou )

(4.11)

so that
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1 0 q.~ ov, k-v, _\__,
o R ]
af e eq afe £Q af0>
=— i O T 412
aﬂ[z By e( "op, " By ou @12

£=—
= 0 D'? af0+DI4M %
H a‘u >

“ou\ " opy

where Df =¥, (¢Q/By) ky D, and D{f = ¥, (€ Q/By)* Dy. We
can now write the Hamiltonian quasilinear diffusion Eq.
3.23 as

l% 0 (DPP afo DP}‘ %)

Qor op\ "op " oo (4.13)
a (D”P afO + D af0>
H H
aﬂ opy ou

This quasilinear diffusion equation will later be compared with
the standard quasilinear diffusion Eq. 2.32 derived by Kennel and
Engelmann (Kennel and Engelmann, 1966).

4.3.2 Quasilinear diffusion in guiding-center
(Jg, £)-space

Before proceeding with this comparison, however, we
consider an alternate representation for the Hamiltonian
quasilinear diffusion Eq. 4.13, which will be useful in the
derivation of a quasilinear diffusion equation for nonuniform
magnetized plasmas. If we replace the guiding-center parallel
momentum p; with the guiding-center kinetic energy
&€ = pj/2m + u By, and the guiding-center magnetic moment y
with the gyroaction J; = uB/€), the Fourier eikonal solution Eq.
4.6 becomes

ofo ¢ 9fo

(SGg:qS\ile ﬂﬁ'—&\y(g Ae(ﬂ) —_— +

e an>’ (414

where the first term on the right side is interpreted as a guiding-
center adiabatic contribution to the perturbed Vlasov
distribution (Brizard, 1994), while the remaining terms
(proportional to the resonant denominator A,) are non-
adiabatic contributions.

By substituting this new solution in Eq. 4.8, we find

% Re(zSI:I(Sg*> = Z Kk De< ﬂ af0>’ (4.15)

aJ,
while
Re<<ﬂ5A %+ e aH)ag*>
c o afo o, (4.16)
B Z:ZOOEQ DZ( aJ )

where the guiding-center adiabatic contribution has cancelled
out. The guiding-center quasilinear diffusion Eq. 4.13 becomes
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1 dfo 0 [1 (Dgg 9fo + D& af0>]

Qor  Mog|w\ Tt g T By 417)
+v 0 DJE afo DJJ afo '
10d, "9 TTH 3,

where the guiding-center quasilinear diffusion tensor is

represented in 2 X 2 matrix form as

00 EZ fw
Dy= ) ( >De. (4.18)

=0\ ¢

We note that, because of the simple dyadic form of Eq. 4.18, other
representations for the guiding-center quasilinear diffusion
tensor Dy can be easily obtained, e.g., by replacing the
guiding-center gyroaction Jg; with the pitch-angle coordinate
& = /T = uBy/E. We also note that the dyadic quasilinear tensor
(4.18) has a simple modular form compared to the dyadic form
Eq. 2.29.

4.4 Comparison with Kennel-Engelmann
quasilinear theory

We can now compare the Kennel-Engelmann quasilinear
diffusion Eq. 2.32 with the guiding-center Hamiltonian
quasilinear diffusion Eq. 4.13. First, we express the perturbed
fields Eqs. 2.34, 2.35 in terms of the perturbed potentials
(6D, SA):

aﬁ”g = M 8‘7”[
-1 []e (—ik” 60 +i % 5A") ~ " (ik 84~ ik OA) - JM]
N 6A
= —l‘k” 8je+i(w—k|‘V|‘ —ZQ)—” ]e,
(4.19)
and
- My
Sy = —— 8V,
= q:;iﬂ : zk6<l>+1 sA+d (zk6A||—zk|| 5A)]
0
£Q SA
=—l—8jg+l(w k”V” —L’Q)%Q Vl‘]he,

(4.20)

which are both gauge invariant according to the
transformation (Eq. 3.10). Hence, these perturbed fields
are expressed in terms of a contribution from the
perturbed action 6jg and a contribution that vanishes for
resonant particles (i.e., kj vjres = @ — €Q). We note that, in the
resonant-particle limit (A, — 00), the difference between the
Kennel-Engelmann formulation and the Hamiltonian
formulation vanishes. For example, the Kennel-Engelmann
quasilinear diffusion coefficient DP? =) ,Re (—iA) |815‘|g|2 is
expressed as
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DPP = ZRe(_jA[)[ |5je| + 2k||]eRe<é:7e qul)
e |64, e C 2
q 2184177, PP
+(Qc) 1A - b

which yields DF?
In summary, we have shown that, in the resonant-particle

in the resonant-particle limit (A, — ©0).

limit (A, — 00), the Hamiltonian quasilinear diffusion Eq. 4.13 is
identical to the standard quasilinear diffusion Eq. 2.32 derived by
Kennel and Engelmann (Kennel and Engelmann, 1966) for the
case of a uniform magnetized plasma. In the next Section, we will
see how the Hamiltonian quasilinear formalism can be extended
to the case of a nonuniform magnetized plasma.

5 Hamiltonian quasilinear
formulations for nonuniform
magnetized plasma

In this Section, we briefly review the Hamiltonian formulation
for quasilinear diffusion in a nonuniform magnetized background
plasma. In an axisymmetric magnetic-field geometry, the 2 x 2
quasilinear diffusion tensor in velocity space is generalized to a 3 x
3 quasilinear diffusion tensor that includes radial quasilinear
diffusion. In a spatially magnetically-confined plasma, the
process of radial diffusion is a crucial element in determining
whether charged particles leave the plasma. A prime example is
provided by the case of radial diffusion in Earth’s radiation belt,
which was recently reviewed by Lejosne and Kollmann (Lejosne
and Kollmann, 2020).

We present two non-relativistic Hamiltonian formulations of
quasilinear diffusion in a nonuniform magnetized plasmas. The
first one based on the canonical action-angle formalism
(Kaufman, 1972b; Mahajan and Chen, 1985; Mynick and
Duvall, 1989; Schulz, 1996) and the second one based on a
summary of our previous work (Brizard and Chan, 2004).

5.1 Canonical action-angle formalism

When a plasma is confined by a nonuniform magnetic field,
the charged-particle orbits can be described in terms of 3 orbital
angle coordinates @ (generically referred to as the gyration,
bounce, and precession-drift angles) and their canonically-
conjugate 3 action coordinates J (generically referred to as the
gyromotion, bounce-motion, and drift-motion actions). In
principle, these action coordinates are adiabatic invariants of
the particle motion and they are calculated according to standard
methods of guiding-center theory (Tao et al, 2007; Cary and
Brizard, 2009), which are expressed in terms of asymptotic
expansions in powers of a small dimensionless parameter €5 =
p/Lg < 1 defined as the ratio of a characteristic gyroradius (for a
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given particle species) and the gradient length scale Ly associated
with the background magnetic field B,. When an asymptotic
expansion for an adiabatic invariant J = Jy + €gJ; is truncated at
first order, for example, we find dJ/dt ~ -3123 and the orbital
angular average (dJ/dt) = 0 is the necessary condition for the
adiabatic invariance of J. The reader is referred to Refs. (Cary and
Brizard, 2009) and (Tao et al., 2007) where explicit expansions
for all three guiding-center adiabatic invariants are derived in the
non-relativistic and relativistic limits, respectively, for arbitrary
background magnetic geometry.

The canonical action-angle formulation of quasilinear
that, in the
perturbations, the action coordinates ] are constants of
motion dJ/dt = — 0Hy/00 = 0, which follows from the
invariance of the unperturbed Hamiltonian Hy(J) on the

theory absence of wave-field

assumes

canonical orbital angles 6. In this case, the unperturbed
Vlasov distribution Fy(J) is a function of action coordinates
only. We note that the action coordinates considered here are
either exact invariants or adiabatic invariants (Kaufman, 1972b;
Mynick and Duvall, 1989) of the particle motion, and it is
implicitly assumed that any adiabatic action invariant used in
this canonical action-angle formulation of quasilinear theory
can be calculated to sufficiently high order in e within a region
of particle phase space that excludes non-adiabatic diffusion in
action space (Bernstein and Rowlands, 1976). For example, see
Ref. (Brizard and Markowski, 2022) for a brief discussion of the
breakdown of the adiabatic invariance of the magnetic moment
(on the bounce time scale) for charged particles trapped by an
axisymmetric dipole magnetic field.

In the presence of wave-field perturbations, the perturbed
Hamiltonian can be represented in terms of a Fourier
decomposition in terms of a discrete wave spectrum w; and
orbital angles (with Fourier-index vector m):

SH(),0,t) =) SH(J) exp(im - O—iwt) +cc,  (5.1)
mk

where the parametric dependence of 07 on the Fourier indices
(m, k) is hidden. The perturbed Vlasov distribution &F is
obtained from the perturbed Vlasov equation

06F 06F O0H, O0H OF,

0 e a) (5:2)

from which we obtain the solution for the Fourier component 0 f:

aﬁ:_<L)m
wr—m - Q

= 0H,/0J denotes the unperturbed orbital-frequency

OF,
Tk (5.3)
where Q(J)
vector.

The quasilinear wave-particle interactions cause the
Vlasov distribution Fy(J, 7) to evolve on a slow time
scale 7 = €°t, represented by the quasilinear diffusion
equation
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IFy (1) R

1 1
or 2O =g G O
o) .
= 5 (gl;mlm(&H 8F>)
B 2 I Z —mm |6H|? aFo (5.4)
- 8]' m Hwg-m-Q 8]

0 oF,
a (DQL ' a—1>’

where ( ) includes orbital-angle averaging and wave time-scale

averaging, and the canonical quasilinear diffusion tensor

Do = ) mm[nd(w; - m - Q)] |6H| (5.5)
mk

is expressed in terms of a dyadic Fourier tensor mm, a wave-
particle resonance condition obtained from the Plemelj formula

-1 i
Im(wk—m.Q>_Re<wk—m.Q)_ﬂa(wk_m.ﬂ)’

and the magnitude squared of the perturbed Hamiltonian
Fourier component 8H (J), which is an explicit function of the
action coordinates J and the perturbation fields [see of Ref.
(Brizard and Chan, 2004), for example]. We note that the
perturbed Hamiltonian SH (J) will, therefore, include terms
that contain a product of an adiabatic action coordinate (such
as the gyro action J;) and a wave perturbation factor (such as 6B/
By ~€s). This means that an expansion of an adiabatic action
coordinate (e.g., Jg = Jéo) +€p Jg(l) +---) in the factor |8H|? in
Eq. 5.5 results in a leading term of order €, followed by negligible
terms of order €3 eg < 6‘25. Hence, only a low-order expansion (in
ep) of the adiabatic action coordinates J =], is needed in an
explicit evaluation of Eq. 5.5. In addition, we note that the form
Eq. 5.4, with Eq. 5.5, guarantees that the Vlasov entropy S = -
|Fo InFy &)

dso aaT nFy+ 1) d3

(1
( alnFo

<]
<zl

) n8(we—m - Q) |SHP* d*] > 0
(5.6)

satisfies the H Theorem. Lastly, we note that collisional transport
in a magnetized plasma can also be described in terms of drag
and diffusion in action space (Bernstein and Molvig, 1983).

5.2 Local and bounce-averaged wave-
particle resonances in quasilinear theory

The
Section 5.1 unfortunately makes use of the bounce action
Jp = ¢ pj(s)ds, which is a nonlocal quantity (Northrop,
1963), while the drift action Jgq = (q/27c) $yde = qylc is a
local coordinate in an axisymmetric magnetic field B = Vy x Vo,

canonical action-angle formalism presented in
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where the drift action is canonically conjugate to the toroidal
angle ¢. In our previous work (Brizard and Chan, 2001; Brizard
and Chan, 2004), we replaced the bounce action with the
guiding-center kinetic energy £ in order to obtain a local
quasilinear diffusion equation in three-dimensional J' =

(Jb> €, Jq) guiding-center invariant space:
1 0 0F,

aFO _
(o )22 )

where the bounce period 7, =¢ ds/v| is the Jacobian. In addition,

or,_ o
or od

the 3 x 3 quasilinear diffusion tensor

2 tw, tm
Dy = Z Wl wp wxm | Teion (5.8)
ekm\ me mw, m

is defined in terms of the Fourier indices ¢ (associated with the
gyroangle () and m (associated with the toroidal angle ¢) and the
wave frequency wy, while the scalar Ty, was shown in Ref.
(Brizard and Chan, 2004) to include the bounce-averaged wave-
particle resonance condition

wp = {we)y, + nwy + m{wady, (5.9)
where (w1, = (q/Mc) {B)y, and {wg)y, are the bounce-averaged
cyclotron and drift frequencies, respectively, and wy, = 27/, is the
bounce frequency. Here, the bounce-average operation is
defined as

<"'>szib Z rv ds (), (5.10)

=~ Jo vl

where o = v/|v|| denotes the sign of the parallel guiding-center
velocity, and the points sy (J) along a magnetic field line are the
bounce (turning) points where v changes sign (for simplicity, we
assume all particles are magnetically trapped). In this Section, we
present a brief derivation of the quasilinear diffusion Eq. 5.7, with
the 3 x 3 quasilinear diffusion tensor Eq. 5.8 and the wave-
particle resonance condition Eq. 5.9, based on our previous work
(Brizard and Chan, 2004), which is presented here in the non-
relativistic limit.

We begin with the linear guiding-center Vlasov equation in
guiding-center phase space (s, ¢, (;J):

dan 00F
dt ot

+{0F, &}y = ~{Fo, 8H} (5.11)

g
where the perturbed Hamiltonian is a function of the guiding-
center invariants (Jy, £,Jq) as well as the angle-like coordinates
(s, 9, O). The unperturbed guiding-center Poisson bracket, on the
other hand, is

L SO N IR AL
©7 30 3J, 9J, ol 3¢ s s ¢

[ GF _OF\0G _OF (dG _0G
dt ot )of o\ dt ot )

{F.G}
(5.12)
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and dy/dt = 0/0t + v| 0/0s + wq 0/0¢p + w. 0/0( denotes the
unperturbed Vlasov operator (s denotes the local spatial
coordinate along an unperturbed magnetic-field line). Since
the right side of Eq. 5.11 is

3Js 09

dt ot
(5.13)

~ (Fy, oH), OF, 08H OF, 88H+6F0<d08H 86H>

“a, o

we can introduce the non-adiabatic decomposition (Chen and
Tsai, 1983)

0F = 6H %+6G

3 (5.14)

where the non-adiabatic contribution 0G satisfies the perturbed
non-adiabatic Vlasov equation

400G <BF0 0 O0F, 0 OF, 0

H = H. .1
“ar \aJ, ot " ad, 3 o€ 8t>6 FoH. (515

Next, since the background plasma is time independent and
axisymmetric, and the unperturbed guiding-center Vlasov
distribution is independent of the gyroangle, we perform

Fourier transforms in (¢, ¢, ) so that Eq. 5.15 becomes

—€wc—mwd)]66(s,a) = [léé(s,a)

=i F8H(s,0),
(5.16)

o .
v E_Z(wk

where the amplitudes (3G, H) depend on the spatial parallel
coordinate s and the sign o = v/|v)| = £1, as well as the invariants
J, while the operator F becomes i F, with

_0F,
f:wk ¥+€

%ot m
aJ;

0F,
- 5.17
Y (5.17)
In order to remove the dependence of the perturbed Hamiltonian
0H on o (which appears through the combination vjdA;), we
follow our previous work (Brizard and Chan, 2004) and

introduce the gauge 8A; = 0d&/ds and the transformation

(8G,0H) — (8G',8K), where G’ =G +i (q/c)F d& and
0K = 8H + (q/c)[léd, so that Eq. 5.16 becomes LG (s, 0) =
i F 8K (s).

In order to obtain an integral solution for 8G', we now
introduce the integrating factor

0 -
[VII &—i (W —Lw.—muwy) |8G’ (s,0)

5 (5.18)
=" o [e770G! (s, 0)] = i F 5K (5),
where
s d !
0(s) = L (wr —Cw.(s") —mwa(s')) ﬁ (5.19)

is defined in terms of the lower (L) turning point s; (J). The
solution of Eq. 5.18 is, therefore, expressed as
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8G' (s,0) = 6G' &° +iaei"9<js SK (s') e (¢ )ds )

[y
(5.20)

where the constant amplitude 8G’ is determined from the
0G' (s1,+1) = 6G' (s1,-1)
G’ (sy,-1) at the two turning points. At the

matching conditions and
G (su,+1) = &
lower turning point, the matching condition implies that 6G’
is independent of 0. The matching condition at the upper turning

point, on the other hand, is expressed as

zrb lTb

=e© 8G' -
xe® F,

ei@ 585G + <8Ke—19> ex@ <6Kele>b

which yields

8G' = —% (cot@ (0K cos By, + (8K sin Q)b) F (5.21)

where

O=06(s) = 2 (- @y —m (o). (522)
We note that cot® in Eq. 5.21 has singularities at nm, which
immediately leads to the resonance condition Eq. 5.9.

Now that the solution 6G' has been determined, we can
proceed with the derivation of the quasilinear diffusion equation,
which has been shown by Brizard and Chan (Brizard and Chan,

2004) to be expressed as

OF,
o as[ (Z“’ Town >]
eré’km
X [ (f;n >] (5.23)
1 0
Tb EYR |:Tb<Z;nmr€km f)]
1 0 OF,
=— — DI =
Ty aJ( R an>
which requires us to evaluate

Toim = F ' Im(SH 6G)y, = F ' Im(SK 6G'Yy, which is found
to be expressed as

Tom = %Im(— cot ®) |(6K cos 6)b|2, (5.24)
the

(z —nm)™", we finally obtain

where, formula with the

cotz =Y

using Plemelj identity

Toon = [(OR cos Oy[" Y 7 8(wk — £<wedy — na, = m (wady).

n=-00

(5.25)

This expression completes the derivation of the quasilinear
diffusion tensor Eq. 5.8 and the perturbed Hamiltonian 0K is
fully defined in Ref. (Brizard and Chan, 2004). We note that, in the
limit of low-frequencies electromagnetic fluctuations, we also
recover our previous work (Brizard and Chan, 2001) from Eq. 5.8.

Frontiers in Astronomy and Space Sciences

13

10.3389/fspas.2022.1010133

We now make a few remarks concerning the bounce-averaged
wave-particle resonance condition Eq. 5.9. First, in the case of a
uniform magnetized plasma (with the drift frequency wq = 0), we
substitute the eikonal representations 0G = 8G exp (ikys) and
8H = 8H exp (ikys) in Eq. 516 and we recover the uniform
quasilinear diffusion Eq. 4.17. Second, the bounce-averaged
wave-particle resonance condition Eq. 59 assumes that the
waves are coherent on the bounce-time scale, which is not
realistic for high-frequency (VLF), short-wavelength whistler
waves (Stenzel, 1999; Allanson et al., 2021). We recover a local
wave-particle resonance condition by introducing the bounce-
angle coordinate &(s) (Brizard, 2000), which is defined by the
equation d&/ds = wy/v}, so that v 0/0s in Eq. 5.16 is replaced with
w,, 0/0&. Next, by introducing the bounce-angle Fourier series 6G =
Y G exp(iné) and 0H = Yoo o OH exp(inf) in Eq.5.16, the
integral phase Eq. 5.19 is replaced by the new integral phase

ax(s)=06(s)—né(s)

:anL(wk —lw (s -mwy(s) - nw)ds,

vl

(5.26)

If we now evaluate this integral by stationary-phase methods
(Stix, 1992), the dominant contribution comes from points sy
along a magnetic-field line where

[vy (so)l”

mwq (o) —nwy),
(5.27)

0=y'(s50) = "we —w(so) -

which yields the local wave-particle resonance condition,
provided vy(so) # 0 (i.e., the local resonance does not occur at
a turning point).

6 Summary

In the present paper, we have established a direct connection
between the standard reference of quasilinear theory for a uniform
magnetized plasma by Kennel and Engelmann (Kennel and
Engelmann, 1966) and its Hamiltonian formulation in guiding-
center phase space. We have also shown that the transition to a
quasilinear theory for a nonuniform magnetized plasma is greatly
facilitated within a Hamiltonian formulation. The main features of
a Hamiltonian formulation of quasilinear theory is that the
quasilinear diffusion tensor has a simple modular dyadic form
in which a matrix of Fourier indices is multiplied by a single
quasilinear scalar potential, which includes the resonant wave-
particle delta function. This simple modular is observed in the case
of a uniform magnetized plasma, as seen in Eq. 4.18, as well as in
the case of a nonuniform magnetized plasma, as seen in Eq. 5.8. In
particular, we note that the quasilinear diffusion tensor Eq. 5.8
naturally incorporates quasilinear radial diffusion as well as its
synergistic connections to diffusion in two-dimensional invariant
velocity space. These features are easily extended to the quasilinear
diffusion of relativistic charged particles that are magnetically
confined by nonuniform magnetic fields.
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