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ABSTRACT

Modern semiempirical electronic structure methods have considerable promise in drug dis-

covery as universal “force fields” that can reliably model biological and drug-like molecules,

including alternative tautomers and protonation states. Herein, we compare the perfor-

mance of several NDDO-based semiempirical (MNDO/d, AM1, PM6, PM6-D3H4X, PM7,

and ODM2), density-functional tight-binding based (DFTB3, DFTB/ChIMES, GFN1-xTB,

and GFN2-xTB) models with pure machine learning potentials (ANI-1x and ANI-2x) and

hybrid quantum mechanical/machine learning potentials (AIQM1 and QDπ) for a wide range

of data computed at a consistent ωB97X/6-31G* level of theory (as in the ANI-1x database).

This data includes conformational energies, intermolecular interactions, tautomers, and pro-

tonation states. Additional comparisons are made to a set of natural and synthetic nucleic

acids from the artificially expanded genetic information system (AEGIS) that have impor-

tant implications in the design of new biotechnology and therapeutics. Finally, we examine

acid/base chemistry relevant for RNA cleavage reactions catalyzed by small nucleolytic ri-

bozymes, DNAzymes and ribonucleases. Overall, the hybrid quantum mechanical/machine

learning potentials appear to be the most robust for these datasets, and the recently devel-

oped QDπ model performs exceptionally well, having especially high accuracy for tautomers

and protonation states relevant to drug discovery.

I. INTRODUCTION

Alchemical free energy (AFE) simulations1 are widely used for the prediction of ligand-

protein binding energies in drug discovery. These predictions are used to prioritize com-

pounds for costly synthesis and testing in the lead optimization cycle.2 The predictive capa-

bility of these methods relies critically on the accuracy of the force fields that are used.3 For

well-studied biological systems such as proteins4–6, and common solvents such as water7–11

and monovalent ions12–15, several molecular mechanical (MM) force fields16,17 have been de-

veloped and undergone extensive validation and revision based on comparison with a wide

range of experiments. These force fields have evolved to become increasingly robust and re-

liable in long-time molecular dynamics simulations, despite the simplicity of their functional

forms. On the other hand, the “general” molecular mechanical force fields needed to model
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drug-like molecules that may not have ever been synthesized before, are generally much less

reliable. Moreover, conventional MM force fields are not “universal” in the sense that they

use a pre-defined covalent bonding topology, and are thus limited in their ability to model

alternative tautomers and protonation states. This is important as 30% of the compounds

in vendor databases and 21% drug databases have potential tautomers18,19; further it has

been estimated that up to 95% of drug molecules contain ionizable groups18 (∼75% weak

bases and ∼20% weak acids20,21).

Modern semiempirical quantum mechanical (QM) electronic structure methods22,23 pro-

vide an attractive alternative to the general MM force fields for drug discovery. The reason

is that, unlike a typical protein that may contain several thousands of atoms, approximately

79% of drugs are between 10-40 non-hydrogen atoms and the vast majority are less than 100

non-hydrogen atoms.24 This is of the size range where semiempirical QM methods are able to

be used in combined quantum mechanical/molecular mechanical (QM/MM) simulations that

include explicit MM representation of the entire protein and surrounding solvent bath under

periodic boundary conditions.25–28 Highly efficient (including parallel and GPU-accelerated)

implementations of semiempirical molecular orbital29 and density-functional tight-binding30

have been made and are available for molecular dynamics simulations. More importantly, in

the context of AFE simulations, these QM/MM potentials can be efficiently integrated into

thermodynamic cycles using an indirect (or sometimes referred as “book-ending” or “refer-

ence potential”) approaches31–35 that apply an end-state MM→QM free energy correction to

a high-precision MM AFE simulation.

One potential caveat is the high level of accuracy required by drug discovery applications

that seek to distinguish binding free energies to a resolution of below kBT (0.59 kcal/mol

at 300K)36–38. This is extremely challenging for even the most advanced modern semiem-

pirical QM methods. One path forward that appears promising is to use machine-learning

potentials (MLPs) either as stand-alone alternative models39–44, or else to augment exist-

ing semiempirical QM methods.45–51 We will refer to the former class as “pure MLPs” and

the latter class as “QM/∆-MLPs”. MLPs have emerged as powerful tools to enable fast

and accurate chemical models within the scope of their training39,41–44. Many such models

have emerged for different applications52–67, although few, if any, have been used to their

full potential in rigorous AFE simulations. Application of these models in drug discovery

AFE simulations is challenging because they must: 1) make robust predictions for molecules
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within the relevant medicinal chemistry space that may have never been synthesized or

characterized68, 2) model a wide range of intra- and intermolecular interactions, including

relative conformational energies, hydrogen bonding69, π stacking70,71, London dispersion72

and mixed interactions, 3) quantitatively handle different tautomers18,19,73 and protonation

states21. Currently, the ANI63,74–76 class of models, and particularly the second generation

ANI-2x76 have received widespread attention. A limitation of these models is that they were

built for neutral molecules, and their functional forms do not explicitly account for total

molecular charge nor spin state. Consequently, they are not able to reliably predict energet-

ics for changing protonation states. This is a serious limitation, as it has been estimated that

up to 95% of drug molecules contain ionizable groups.18 Related to this, some of the pure

MLPs did not initially treat long-ranged electrostatic interactions, although there have been

efforts to remedy this.66 Alternatively, there have been several recent efforts to develop new

QM/∆-MLPs45–51,77, the most relevant in the current context being AIQM146 that is based

as the novel ODMx class of semiempirical models78 and has recently been demonstrated to

be robust for transition state optimizations79.

Very recently we introduced a first-generation QM/∆-MLP for drug discovery.77 The

Quantum Deep-learning Potential Interaction (QDπ) model uses a fast, robust 3rd-order

self-consistent density-functional tight binding (DFTB3/3OB) model80,81 that is corrected

to high-level accuracy through an MLP correction (∆-MLP) based on our range-corrected

deep-learning potential (DPRc)47,48 as part of DeePMD-kit82 interfaced with AMBER83.

The underlying DFTB3 model is able to capture long-range electrostatic interactions, as well

as changes in charge, protonation, and spin state. The intramolecular and short- to mid-

range intermolecular interactions are made quantitatively accurate by training the DPRc

model to correct the total energy and forces to match those of high-level ab initio methods.

In the present work, we compare the performance of several modern semiempirical QM,

QM/∆-MLP and pure MLP models against consistent reference data derived from databases

relevant for drug discovery. Of particular focus of the present work is in characterizing the

ability of different potentials to accurately model intermolecular interactions, tautomers and

protonation states. Toward that end, we consider the a dataset of natural and synthetic

nucleic acids from the artificially expanded genetic information system (AEGIS)84–87 that

is being used for a wide range of biotechnology applications88. The system uses 12 dif-

ferent nucleobases in its genetic code that include 4 canonical nucleobases found in DNA
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(adenine, cytosine, guanine and thymine) in addition to 8 synthetic nucleobases. These

serve as good test systems as they contain complex covalent bonding and exhibit a rich set

of tautomer forms, hydrogen bonded complexes, and alternative protonation states. The

remainder of the manuscript is organized as follows. The Methods section describes the

computational details pertaining to the various semiempirical QM (MNDO/d89, AM190,

PM691, PM6-D3H4X92,93, PM794, ODM278, DFTB395, GFN1-xTB96, GFN2-xTB97, and

DFTB/ChIMES98), MLP (ANI-1x74 and ANI-2x76) and QM/∆-MLP (AIQM146 and most

recently QDπ77) models, as well as the key modified databases (DBs) used as reference data

at the ωB97X/6-31G*77,99 level. The Results and Discussion section presents and analyzes

data for a set of 10 broad-spectrum databases for intermolecular interactions, tautomers,

and protonation states, and 2D conformational energy profiles. Further application is made

to examine the performance of modern semiempirical QM, MLP and QM/∆-MLPs against

the AEGIS dataset85,86. Finally, the paper provides contextual examples of acid/base chem-

istry relevant for RNA cleavage reactions catalyzed by small nucleolytic ribozymes and

ribonucleases100.

II. METHODS

A. Models compared in the current work

a. Density-functional reference data. ωB97X/6-31G*99 was performed using Gaussian

16101. Reference energy and forces (including geometry optimizations, where needed) were

performed at a consistent ωB97X/6-31G*99 level of theory.

b. NDDO-based semiempirical models. Semiempirical quantum mechanical (QM) mod-

els based on the neglect of diatomic differential overlap (NDDO) approximation enable the

number of electron repulsion integrals to be drastically reduced and the single-particle den-

sity matrix to be decomposed into effective atom-centered atomic orbital products (and

their resulting electrostatics represented as multipoles).102 The NDDO approximation also

eliminates the need to explicitly enforce orthogonalization of the molecular orbitals that nor-

mally would be achieved by having an overlap matrix in the generalized eigenvalue equation.

Consequently, this may lead to poor modeling of conformational energies and their barriers

if left uncorrected. Much work has been made to introduce orthogonalization corrections
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into the theoretical framework which has resulted in the OMX class of methods103–106. In

the current work, the following NDDO-based methods are considered: MNDO/d89, AM190,

and PM691 which were evaluated with the AMBER 20107 SQM module108; and the ODM278

method which was evaluated using the MNDO program109 kindly provided by Dr. Axel

Koslowski, and PM6-D3H4X92,93, PM794 that was performed using the MOPAC software110.

PM6-D3H4X and PM7 correct PM6 using classical potentials and are often claimed to be the

most suitable methodology for drug design among NDDO-based semiempirical models.111,112

c. DFTB-based semiempirical models. Density-functional tight binding methods offer

an intriguing alternative to the NDDO-based semiempirical models. DFTB methods use

an expansion of the energy113 about a sum of neutral atoms densities together with a two-

center integral approximation to enable a framework for highly efficient calculations (speed

very comparable with NDDO-based methods). Unlike the NDDO-based methods, DFTB

methods keep the overlap matrix in the generalized eigenvalue equation, and thus explicitly

deal with orbital orthogonalization. However, this complicates the decomposition of the

density matrix which now contains 2-center products. Various density-matrix partition

schemes can be used to map the density onto atomic centers such that an atom-centered

(typically monopolar) representation can be made for the second-order electrostatic term

in the expansion. The DFTB-based methods considered here include: DFTB395 (3OB

parameters114) that was performed using the AMBER 20107 SQM module108,115; and GFN1-

xTB96, GFN2-xTB97, DFTB/ChIMES98 (3OB parameters114 and ChIMES parameters116

kindly provided by Dr. Cong Huy Pham) models evaluated with the DFTB+ software30.

Compared to DFTB3 and GFN1-xTB, GFN2-xTB represents the first broadly parametrized

tight-binding method, primarily designed for the fast calculation of structures and noncova-

lent interaction energies, to include electrostatic and exchange-correlation Hamiltonian terms

up to second order in the multipole expansion.97 In this way, the model takes into account

anisotropic second order density fluctuation effects via short-range damped interactions of

cumulative atomic multipole moments. DFTB/ChIMES116, on the other hand, leverages

the relative simplicity of linear regression machine learning in the recently developed Cheby-

shev Interaction Model for Efficient Simulation (ChIMES) method.117 Validation tests of

DFTB/ChIMES demonstrate the model exhibits both transferability and extensibility, and

enable physical and chemical predictions with up to coupled-cluster accuracy.116

It should be noted that the use of machine learning methods to enhance DFTB models in
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one form or other is not new. Notable works along these lines, in addition to DFTB/ChIMES,

include, but are not limited to, the ML-Hamiltonian approach of Yaron and co-workers118,

the development of many-body potentials from deep tensor neural networks119,120, Gaussian

process regression121, and unsupervised machine learning122.

d. Machine learning potentials (MLPs). The pure machine learning potentials con-

sidered in this work produce energies and atomic forces of a molecule given the positions

and elements. These potentials are quite fast compared with semiempirical QM models, and

they have more favorable scaling properties. However, some initial pure MLPs were built for

neutral molecules in singlet ground states, so they do not reliably model changes in charge

state that occur with the addition or loss of electrons and/or protons. The latter of which is

important for drug molecules that contain ionizable sites. The pure MLPs considered here

include: ANI-1x74 and ANI-2x76 models performed using the TorchANI software123. Both

ANI-1x and ANI-2x models use the ANI descriptor63 with a cutoff radius of 6 Å and were

trained against ωB97X/6-31G* with the active learning cycles. The training data of ANI-1x

only include energies, and the training data of ANI-2x include both energies and forces.

e. Combined semiempirical quantum mechanical and machine-learning potentials (QM/∆-

MLPs). An attractive alternative to either semiempirical QM or pure MLPs is to combine

the strengths of both into a combined QM/∆-MLP. In this way, it builds off of a fast and

robust semiempirical QM that inherently can accommodate changes in electronic charge

and spin states while using MLPs to greatly enhance the accuracy across a broad spectrum

of chemical environments. The QM/∆-MLPs considered here include: the QDπ77 model,

which is based on DFTB3/3OB95,107,108,114,115 and the deep-learning potential available in

DeePMD-kit82,83, and the AIQM1@DFT*46 model based on a ODM278,109 model (which

includes the D4 dispersion correction124) and a trained neural network correction using

TorchANI123. The MLP component of QDπ uses the DeepPot-SE descriptor61 with a cutoff

radius of 6 Å and was trained against ωB97X/6-31G* energies and forces for 241 M steps;

the MLP part of AIQM1@DFT* uses the ANI descriptor63 with a cutoff radius of 6 Å and

was trained against ωB97X/def2-TZVPP energies and forces for 1000 epochs.46

All geometry optimizations using semiempirical QM, MLP or QM/∆-MLP models

were performed using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

algorithm125 in the ASE126 package. Relaxed 2D torsion profiles were made using the same

way described in Ref. 77.
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B. Databases and reference data used in the current work

The reference data used in the current work includes the modified ANI-1x74,77,127, the

modified COMP574,77,128–130, S66×874,131,132, HB375×1077,133, TautoBase (TB)77,134,135, amino

acids (AA) and nucleic acid (NA)77,136, PA26 and TAUT1577,137, RegioSQM2077,138, and

artificially expanded genetic information system (AEGIS)77,84–86. All reference data was

computed (or re-computed77) at the ωB97X/6-31G* level of theory (consistent with the

most extensive ANI-1x and COMP5 databases).

Among all reference data, ANI-1x (or the modified version) dataset was used to parametrize

DFTB/ChIMES, ANI-1x, ANI-2x, QDπ, and AIQM1; S66×8 was used to parametrize PM6-

D3H4X, ANI-2x and QDπ; and TB, AA, NA, PA, and AEGIS were used for the training of

QDπ.

III. RESULTS AND DISCUSSION

The focus of the current article is on comparing modern semiempirical electronic structure

methods and machine learning potentials with respect to their ability to accurately model

conformers, tautomers and protonation states of biological and drug-like molecules. These

methods have potential impact for drug discovery owing to their efficiency and robustness.

A. Comparison of broad-spectrum databases

Important properties for consideration include: relative conformational energies, a wide

range of intermolecular interactions, as well as tautomeric and protonation state relative

energies. The QDπ model was trained with the same reference theory level as ANI-2x76

(ωB97X/6-31G*) and considered a number of DBs that encompass conformational energies

(ANI-1x, COMP5), intermolecular interactions (S66×8, HB375×10) and tautomer (Tauto-

Base, Taut15) and protonation state relative energies (AA, NA, PA26, RegioSQM20) that

are described in detail elsewhere77. A comparison of 11 semiempirical quantum and machine

learning models are compared against 10 databases in Table I.

Conformational energy datasets. With respect to the diverse conformational energy

datasets (ANI-1x74,127 and COMP574,77,128–130), the mean absolute errors (maEs) in the

forces are smallest for the MLP and ∆-MLP potentials (QDπ, ANI-2x, AIQM1 and ANI-1x),
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Table I: Mean absolute errors for different data sets used for training and testing of the QDπ

model.a

ANI-1x S66 TB AA NA PA COMP5 HB T15 SQM

E F ∆E ∆E ∆E ∆E ∆E E F ∆E ∆E ∆E

QDπ 0.83 1.16 0.13 0.82 0.09 0.17 0.39 1.48 1.14 0.44 0.70 2.53

AIQM1 . . . 3.10 0.57 2.07 7.30 4.71 5.06 . . . 2.59 0.71 1.37 2.75

ANI-1x 1.48 4.48 1.41 1.73 86.95 52.68 43.02 1.96 3.72 1.25 1.63 16.85

ANI-2x 1.07 2.11 0.37 1.76 70.52 52.48 23.80 1.67 1.86 1.40 1.00 13.64

GFN2-xTB . . . 5.81 0.74 5.68 5.77 8.45 7.35 . . . 4.33 0.85 2.84 4.12

GFN1-xTB . . . 4.69 0.77 5.23 5.00 11.73 4.43 . . . 3.68 0.87 5.32 4.10

DFTB3 . . . 7.58 1.14 5.45 8.63 10.85 12.54 . . . 5.46 1.17 3.65 4.59

DFTB/ChIMES . . . 4.82 1.72 5.04 9.47 9.70 12.87 . . . 4.14 1.36 3.00 6.70

ODM2 . . . 12.80 1.24 3.37 9.13 5.26 6.04 . . . 9.97 1.29 3.64 3.99

PM6 . . . 12.96 1.19 4.90 11.23 11.03 17.84 . . . 9.33 1.24 5.60 5.30

PM6-D3H4X . . . 13.60 0.63 5.44 9.67 11.72 7.78 . . . 10.27 0.84 6.16 6.61

PM7 . . . 11.98 0.84 4.34 7.24 10.72 10.11 . . . 8.54 1.00 3.74 5.93

AM1 . . . 14.95 2.17 5.01 4.43 7.32 13.51 . . . 12.13 2.57 3.99 4.13

MNDO/d . . . 15.14 6.67 9.69 11.71 11.29 13.07 . . . 11.52 9.36 7.78 5.18
aMean absolute errors in the energy (E, kcal/mol), forces (F, kcal/mol/Å) and ∆E for ANI-

1x74,127, S66×8 (S66)74,131,132, TautoBase (TB)134,135, amino acid and nucleic acid proton affinities

(AA and NA)136, PA26 (PA)137, COMP574,128–130, HB375×10 (HB)133, Taut15 (T15)137 and

RegioSQM20 (SQM)138 databases. Datasets on the right were not part of the QDπ training.

and the QDπ model performs the overall best (maE values 1.16 and 1.14 kcal/mol/Å for

ANI-1x and COMP5 datasets, respectively). This is likely due to the fact that the ANI-1x

dataset was an integral part of the training of these models. In general, the DFTB models

(GFN1-xTB, GFN2-xTB and DFTB3/3OB) have lower force errors with respect to the ref-

erence ωB97X/6-31G* values (maE values range from 4.69-7.58 and 3.68-5.46 kcal/mol/Å

for ANI-1x and COMP5, respectively), whereas the NDDO-based methods have consider-
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ably larger errors (maE values range from 11.98-15.14 and 8.54-12.13 kcal/mol/Å for ANI-1x

and COMP5, respectively), with PM7 performing the best of the NDDO methods.

Intermolecular interaction datasets. With respect to intermolecular interaction DBs

(S66×874,131,132 and HB375×10133), several models have ∆E values below 1 kcal/mol on

average (QDπ, AIQM1, GFN1-xTB, GFN2-xTB, PM6-D3H4X and PM7), with QDπ and

AIQM1 having exceptional agreement with the reference data: QDπ has maE values of 0.13

and 0.44 kcal/mol, and AIQM1 has maE values of 0.57 and 0.71 kcal/mol for S66×8 and

HB375×10, respectively. The ANI-2x model has excellent maE values for S66×8 (maE 0.37

kcal/mol) but does not perform quite as well for the HB375×10 DB (maE 1.40 kcal/mol).

The DFTB3, DFTB/ChIMES, ODM2 and PM6 methods perform similarly with ∆E maE

values that range from 1.14-1.72 (S66×8) and 1.17-1.36 (HB375×10) kcal/mol for these DBs.

The MNDO/d method has the largest ∆E errors (6.67-9.36 kcal/mol), stemming from known

limitations in the core-core interactions that particularly affect hydrogen bonding, and that

the empirical modified core-core repulsions in AM1 were designed in part to partially alle-

viate (AM1 maE values range from 2.17-2.57 kcal/mol).

Tautomer datasets. With respect to the tautomer databases, TautoBase134,135 (TB) and

Taut15137 (T15), only the QDπ model achieves ∆E errors less than 1 kcal/mol (maE values

0.82 and 0.70 kcal/mol for TB and T15, respectively). The AIQM1, and ANI models

perform admirably with errors generally below 2 kcal/mol (maE values range from 1.73-2.07

and 1.00-1.37 kcal/mol for TB and T15, respectively). The remainder of the DFTB-based

methods have maE values in excess of 5 kcal/mol for TB, and similar values for AM1, PM6

and PM6-D3H4X methods. The ODM2 method makes notable improvement with reduced

errors relative to the other NDDO-based methods (maE values of 3.37 and 3.64 kcal/mol

for TB and T15, respectively). The MNDO/d method overall performs the worst with maE

values for TB and T15 exceeding 9 kcal/mol.

Relative protonation datasets. The relative protonation datasets include amino and

nucleic acid models compounds136 (AA and NA) as well as more general proton affinity

(PA26137) datasets and a subset of the RegioSQM20138 (SQM) database containing C, H, O,

and N elements. The latter involves many relative protonation energies not related to ion-

izable sites in biological or drug-like molecules, and hence may be of less relevance for drug

discovery. For the AA, NA and PA26 datasets, the QDπ model stands alone with respect to

having very high accuracy in relative deprotonation energies (maE values range from 0.09-
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0.39 kcal/mol). The next best models are AIQM1 (maE 4.71-7.30 kcal/mol). The other

semiempirical QM models exhibit much larger ranges: GFN2-xTB (5.77-8.45 kcal/mol),

GFN1-xTB (5.00-11.73 kcal/mol), DFTB3 (8.63-12.54 kcal/mol), DFTB/ChIMES (9.47-

12.87), ODM2 (5.26-9.13 kcal/mol), PM6 (11.03-17.84 kcal/mol), PM6-D3H4X (7.78-11.72),

PM7 (7.24-10.72), AM1 (4.43-13.51 kcal/mol) and MNDO/d (11.29-13.07 kcal/mol). With

respect to the SQM dataset, again the QDπ and AIQM1 models perform best (maE val-

ues of 2.53 and 2.75 kcal/mol, respectively), and the remaining semiempirical QM models

perform similarly with maE values that range from 3.99-6.70 kcal/mol. The pure MLP

models (ANI-1x and ANI-2x) break down with respect to their ability to predict relative

protonation/deprotonation energies as these potentials were designed for neutral molecules.

Overall, the QDπ model performs exceptionally well across all datasets. The AIQM1

model is also impressive in this regard, with the exception of the protonation/deprotonation

energies where AIQM1 have larger errors for the AA, NA and PA datasets. Clearly the

QM/∆-MLP form, using DFTB3 or ODM2 as a QM base model, considerably enhances

the accuracy across all datasets listed in Table I. The pure MLP models, and particularly

ANI-2x, generally perform better than the semiempirical QM models, with the exception

of protonation/deprotonation energies where the model gives very larger errors. Of the

semiempirical QM models, the DFTB-based methods have smaller force errors than the

NDDO-based models. The GFN1-xTB, GFN2-xTB, PM6-D3H4X and PM7 models perform

well for intermolecular interactions, slightly better than the DFTB3, DFTB/ChIMES and

ODM2 models. All of the semiempirical QM models are fairly comparable in modeling

tautomer energy differences (with the exception of MNDO/d that is less accurate), with

ODM2 performing best over a broad range of data. For protonation/deprotonation energies,

however, there is no clear trend with the semiempirical QM potentials – they all deviate

from the reference data with ∆E maE values exceeding 8 kcal/mol for at least one of the

datasets (AA, NA, PA or SQM).

In the remainder of the manuscript, we focus comparison to the most recent modern

semiempirical QM (DFTB3, DFTB/ChIMES, GFN2-xTB, ODM2, PM6-D3H4X, PM7),

MLP (ANI-2x) and QM/∆-MLP (QDπ and AIQM1) models.
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Figure 1: Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac.

Each molecule was computed using ωB97X/6-31G*, QDπ, AIQM1, and ANI-2x, respectively.

The reference level of theory is ωB97X/6-31G*. The color bars represent of the potential energy

(with respect to the minimum energy) in kcal/mol.

B. Comparison of 2D conformation energy profiles

We examined relaxed 2D torsion profiles for three systems: the alanine dipeptide, and the

drug molecules ibuprofen and ketorolac illustrated in Figures 1, 2, and 3. These figures com-

pare 2D torsion profiles at the ωB97X/6-31G* reference level with the QM/∆-MLP/pure

MLP models QDπ, AIQM1 and ANI-2x (Fig. 1), DFTB-based GFN2-xTB, DFTB3 and

DFTB/ChIMES (Fig. 2), and NDDO-based ODM2, PM3-D3H4X and PM7 (Fig. 3) mod-

els. The relative energy values for the stationary points are provided in Table S1 of the

Supporting Information. All of the models qualitatively predict the correct trends. A mod-

est exception occurs with PM6-D3H4X and PM7 that do not predict a pronounced minimum

in the β region (∼180/180) of the ϕ/ψ map (Fig. 3). Overall, the QDπ and AIQM1 mod-
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Figure 2: Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac.

Each molecule was computed using ωB97X/6-31G*, GFN2-xTB, DFTB3, and DFTB/ChIMES,

respectively. The reference level of theory is ωB97X/6-31G*. The color bars represent of the

potential energy (with respect to the minimum energy) in kcal/mol.

els have the closest agreement with ωB97X/6-31G*, with ANI-2x only slightly worse. The

GFN2-xTB, DFTB3 and ODM2 semiempirical QM models tend to systematically under-

estimate the conformational barriers between minima (Table S1 in Supporting Information).

The largest errors that occur for the QDπ model are for the transition states in the ibuprofen

example, that like the semiempirical QM models, are systematically underestimated.

C. Comparison of hydrogen bond complex energies for natural and artificial

nucleic acids

The natural and modified nucleic acids exhibit a wide range of canonical and non-

canonical hydrogen bonded base pairs, including some that involve non-standard tautomer

13



QM/∆-MLP or MLP DFTB NDDO

ωB97X QDπ AIQM1 ANI-2x GFN2 DFTB3 ChIMES ODM2 D3H4X PM7

Complex ∆E Err Err Err Err Err Err Err Err Err

C  G −32.90 0.16 7.75 9.84 3.66 10.98 0.08 10.35 4.87 1.92

T  A −18.22 −0.14 6.71 3.65 2.15 9.33 2.19 7.51 2.90 0.88

U  A −18.36 0.17 7.39 3.39 2.12 9.35 2.22 7.45 2.94 0.96

S  B −37.40 0.03 10.01 7.67 3.99 11.34 −0.64 10.18 6.62 3.80

V  J −34.52 0.00 9.70 8.04 2.43 9.32 −2.73 8.57 5.25 1.83

K  X −22.46 −0.08 7.06 6.34 2.13 9.56 1.99 9.14 1.69 −1.24

Z  P −33.11 −0.05 8.13 10.77 3.65 10.14 −0.76 10.93 5.50 1.83

B  G −32.50 −0.31 8.20 8.38 3.72 10.21 −0.69 10.13 5.28 1.28

B  P −33.68 0.13 7.45 10.02 4.56 11.02 −0.56 11.61 6.47 1.77

B ∎  G −22.46 0.09 8.76 9.08 3.56 10.54 3.50 9.95 4.24 −0.24

G  T∗ −33.99 0.03 7.28 10.79 4.59 10.11 −3.34 9.56 5.51 3.22

G∗  T −23.00 0.39 7.82 7.14 3.03 9.49 −0.04 8.55 0.41 −0.67

B∗  G −25.59 −0.11 8.99 13.00 3.14 10.75 −2.45 8.60 1.71 −3.49

T  B∗ −22.92 −0.03 5.80 6.18 3.04 9.44 0.24 8.88 0.43 −0.08

K+  X− −144.48 0.10 12.53 79.73 14.30 18.59 8.26 15.79 15.52 15.29

Z−  G −43.33 −0.07 12.36 11.58 6.69 15.35 3.42 12.16 4.25 1.90

C  P+ −47.17 0.04 6.77 24.45 3.38 13.41 0.87 9.41 7.35 4.82

maE . . . 0.11 8.46 14.17 4.25 11.22 1.99 10.08 4.87 2.77

rmsE . . . 0.15 8.66 22.51 5.09 11.49 2.83 10.26 5.97 4.44

Table II: Hydrogen bond complex energies from ωB97X/6-31G* and model errors (kcal/mol) for

artificially expanded genetic information system (AEGIS) base pair dataset77,85,86 with Leontis

and Westhof symbols used for classification of nucleic acid base pairs139–141, including complexes

that involve alternative tautomers and protonation states.a

aModels and datasets are described in the Methods section. An illustration of each of the

complexes is provided in Figure 4. Complexes include: Adenine (A), cytosine (C), guanine

(G), thymine (T), uracil (U), isoguanine (B), isocytosine (S), 6-amino-5-nitropyridin-2-one (Z),

2-aminoimidazo[1,2a][1,3,5]triazin-4(1H)-one (P), imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione

(X), 2,4-diaminopyrimidine (K), 4-aminoimidazo[1,2-a][1,3,5]triazin-2(8H)-one (J), 6-amino-3-

methylpyridin-2(1H)-one (V)86,142. The ”*” symbol refers to tautomeric form, and ”+” and ”-”

symbols refer to the positive and negative charge.
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Figure 3: Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac.

Each molecule was computed using ωB97X/6-31G*, ODM2, PM6-D3H4X, PM7, respectively.

The reference level of theory is ωB97X/6-31G*. The color bars represent of the potential energy

(with respect to the minimum energy) in kcal/mol.

forms and protonation states. The base pairs considered in the AEGIS dataset77,85,86 are

illustrated in Figure 4. This dataset represents a rich set of hydrogen bonding interactions

between endocyclic and exocyclic amine, carbonyl and hydroxyl functional groups. The

results are listed in Table II, and the neutral base pairs are illustrated in Figure 5. Overall,

the QDπ model gives excellent agreement with the ωB97X/6-31G* reference level over the

entire set with ∆E maE of 0.11 kcal/mol and maximum error of 0.39 kcal/mol for G∗  

T. The DFTB/ChIMES model has next lowest error (maE 1.99 kcal/mol), followed by PM7

(maE 2.77 kcal/mol), and GFN2-xTB (maE 4.25 kcal/mol) and PM6-D3H4X (maE 4.87

kcal/mol). The remainder of the models have maE values in excess of 8 kcal/mol. The

ANI-2x model has a large maE value (14.17 kcal/mol), but the errors are dominated by base

pairs involving ionized nucleobases that range from 11.58-79.73 kcal/mol, whereas the range
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Figure 4: Structures for artificially expanded genetic information system (AEGIS) base pair

dataset77,85,86 with Leontis and Westhof symbols used for classification of nucleic acid base

pairs139–141.

of errors for neutral base pairs in much smaller (3.39-13.00 kcal/mol, maE of the neutral

subset 9.72 kcal/mol).

Examination of the correlation of hydrogen complex energies for neutral nucleobases

reveals that QDπ has the highest correlation (R2 value 0.999), followed by DFTB/ChIMES,

AIQM1 and ODM2 with R2 values of 0.99. Whereas DFTB/ChIMES is well aligned with

the reference data, the ODM2 and related AIQM1 models have values systematically shifted

to lower ∆E values. Both PM7 and PM6-D3H4X models show impressive correlation (R2
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Figure 5: Relation between hydrogen bond complex energies calculated by ωB97X/6-31G* and

QDπ, AIQM1, ANI-2x, GFN2-xTB, DFTB3, DFTB/ChIMES, ODM2, PM6-D3H4X, and PM7

for the artificially expanded genetic information system (AEGIS) base pair dataset86, including

complexes that involve alternative tautomers and protonation states. Illustrations of each of the

complexes is provided in Figure 4. The three base pairs that involve ionized nucleobases are

excluded from the regression as they have much larger binding energy values that would

artificially skew the correlation.
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values of 0.97) and low maE values (1.80 and 4.03 kcal/mol, respectively) for complexes of

these neutral nucleobases.

D. Comparison of tautomer energies for natural and artificial nucleic acids

The artificially expanded genetic information system (AEGIS) dataset also exhibits

a rich set of tautomeric forms that have been studied extensively with computational

methods.77,85–87 These tautomeric pairs are illustrated in Figure 6, and their ∆E values are

listed in Table III and illustrated in Figure 7. Overall, both QDπ and AIQM1 give excellent

agreement with the ωB97X/6-31G* reference values, with ∆E maE values of 0.71 and 0.77

kcal/mol, respectively, and high correlation (R2 value 0.99). The ANI-2x is the next most

accurate, but with errors roughly twice as large (maE 1.41 kcal/mol) and (R2 0.97). The

DFTB/ChIMES and GFN2-xTB models have considerably higher errors (maE 2.20 and

3.16 kcal/mol, respectively) but maintains high correlation with the reference values (R2

value 0.97), whereas DFTB3 and ODM2 have larger errors (maE 5.25 and 4.69 kcal/mol,

respectively) and lower correlation (R2 values of 0.61 and 0.85, respectively). The largest

errors occur for PM7 and PM6-D3H4X (maE 5.70 and 7.98 kcal/mol, respectively).

It has been estimated that 30% of the compounds in vendor databases and 21% drug

databases have potential tautomers.18,19 For drug discovery applications, it is thus vitally

important to be able to model alternative tautomer forms, discern which forms are relevant

for ligand-protein binding, and if binding induces a change in tautomer state, to quanti-

tatively determine the tautomerization energy contribution to binding with sub-kcal/mol

accuracy. In some cases, the semiempirical QM models incorrectly predict the lowest energy

tautomer (1 case for GFN2-xTB, 2 cases for DFTB3, and 9 cases each for ODM2, PM6-

D3H4X and PM7). For the models compared here, only QDπ and AIQM1 are able to achieve

the requisite accuracy for quantitative prediction of ligand-protein binding applications.

E. Comparison of protonation energies for common general acids and bases

Modeling protonation states is important for drug discovery applications as it has been

estimated that up to 95% of drug molecules contain ionizable groups18 (∼75% weak bases and

∼20% weak acids20,21), and protonation states can sometimes change upon ligand binding.
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QM/∆-MLP or MLP DFTB NDDO

ωB97X QDπ AIQM1 ANI-2x GFN2 DFTB3 ChIMES ODM2 D3H4X PM7

Tautomer pair ∆E Err Err Err Err Err Err Err Err Err

1b - 1a 2.43 −0.36 −1.07 −1.35 −2.75* −6.25* −2.38 3.48 6.60 2.67

1c - 1b 17.39 0.36 0.40 0.83 −0.72 2.68 2.58 −6.65 −11.01 −7.46

2b - 2a −5.41 −1.12 0.13 −0.29 2.81 −4.39 −1.02 6.31* 12.62* 8.85*

2c - 2b 4.95 1.22 −0.74 2.30 −2.61 4.74 1.54 −7.50* −14.46* −10.85*

3b - 3a −6.32 −0.28 −0.16 0.89 3.53 −3.90 −0.77 6.39* 12.95* 9.24*

3c - 3b 4.05 −0.15 −0.15 3.05 −2.48 4.44 1.02 −7.07* −13.56* −9.97*

4b - 4a −6.81 0.69 0.37 0.58 3.60 −4.06 −0.94 7.06* 13.49* 10.01*

4c - 4b 2.76 0.06 −0.82 1.14 −1.90 5.47 1.98 −6.48* −12.55* −8.93*

5b - 5a −6.12 −0.41 0.66 −0.28 3.07 −4.60 −1.43 7.34* 13.36* 9.71*

5c - 5b 3.23 −0.57 −0.57 0.49 −1.92 5.97 2.56 −6.59* −13.03* −9.41*

6b - 6a 12.24 −0.01 −0.20 −2.56 −1.85 −3.22 −3.63 3.76 −4.94 −0.92

6c - 6b 20.12 −0.10 −0.35 2.63 −5.80 −3.10 −0.26 −4.60 −8.47 −8.48

7b - 7a 20.15 1.40 −0.63 −1.39 −4.87 −5.71 −5.32 5.63 −0.67 −0.43

7c - 7b −19.17 −0.96 0.94 −0.22 4.79 6.93 1.64 −0.25 −0.01 2.86

8b - 8a 21.32 0.84 −1.79 −0.08 −5.43 −10.25 −2.12 1.57 3.71 1.24

8c - 8b −6.16 0.31 −0.43 1.10 −1.52 0.18 1.28 −1.34 −3.27 −3.05

9b - 9a 5.42 0.77 −0.89 −0.45 −5.39 −7.41* −4.94 4.64 −3.31 −3.53

9c - 9b −10.02 −0.74 0.40 0.29 3.20 6.10 1.29 −0.76 −1.38 1.91

10b - 10a 7.95 2.11 −0.57 −2.50 −1.83 0.77 −3.26 3.28 −3.84 −1.36

10c - 10b 22.20 −2.92 −2.92 −5.08 −6.40 −15.21 0.78 −9.14 −11.36 −9.26

10d - 10c 4.01 0.04 1.54 2.86 −1.71 5.13 −3.27 9.90 12.36 7.71

11b - 11a −0.86 −0.63 −0.19 −0.36 −0.47 −4.04 −0.58 3.42* 7.69* 4.68*

11c - 11b 24.35 −0.84 −0.90 −4.13 −4.19 −5.43 −6.39 1.67 −8.47 −6.13

12b - 12a 22.00 0.41 −1.80 0.14 −5.51 −10.37 −2.16 1.34 3.73 1.31

12c - 12b −7.79 0.54 0.54 0.29 −0.62 0.87 1.78 −0.98 −2.70 −2.59

maE . . . 0.71 0.77 1.41 3.16 5.25 2.20 4.69 7.98 5.70

rmsE . . . 0.97 1.00 1.94 3.59 6.12 2.67 5.42 9.28 6.72

Table III: Tautomerization energies from ωB97X/6-31G* and model errors (kcal/mol) for the

artificially expanded genetic information system (AEGIS) tautomer dataset.a

aModels and datasets are described in the Methods section. Illustrations of each of the tautomer-

ization reactions is provided in Figure 7. Errors corresponding to wrong prediction of more stable

tautomer are indicated by an asterisk (*).
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Figure 6: Structures for artificially expanded genetic information system (AEGIS) tautomer

dataset.77,85 Guanine derivatives(1-5, 2: nucleobase code B), codes 6: A, 7: C, 8: T, 9: S, 10: P,

11: Z.

Hence, quantitatively accurate modeling of protonation/deprotonation events at these ion-

izable sites is critical to obtain high predictive capability. As an illustrative set of examples,

we examine simple model systems that mimic the acid/base chemistry associated with RNA

cleavage reactions catalyzed by small nucleolytic RNA enzymes (ribozymes) and protein

20



QM/∆-MLP or MLP DFTB NDDO

ωB97X QDπ AIQM1 ANI-2x GFN2 DFTB3 ChIMES ODM2 D3H4X PM7

Protonation pair ∆E Err Err Err Err Err Err Err Err Err

[Lys:NH2,iPrOH] 167.76 0.00 −0.64 −115.04 0.04 6.11 −6.87 −15.24 −13.15 −10.15

[His:Nϵ,iPrOH] 158.33 0.08 −9.22 −126.62 −7.02 −11.33 −17.47 −18.74 −12.96 −6.19

[EtO−,His:NϵH
+] −160.25 −0.02 12.82 137.70 9.66 11.71 18.09 21.92 12.24 5.36

[G:N1
−,iPrOH] 43.06 −1.11 −1.15 −28.62 −2.69 −8.63 −11.17 −10.84 0.89 5.45

[EtO−,A:N1H
+] −165.06 1.25 12.94 137.24 10.02 15.21 23.15 20.74 8.07 1.25

[EtO−,A:N3H
+] −190.89 1.21 12.88 143.42 11.40 16.00 24.17 19.43 17.97 8.39

[EtO−,C:N3H
+] −160.33 0.89 12.78 145.20 6.58 4.66 16.93 20.19 7.03 2.22

[G:N1
−,A:N1H

+] −120.07 0.08 8.19 97.55 4.69 6.20 11.36 6.73 9.69 7.53

[G:N1
−,A:N3H

+] −145.91 0.04 8.12 103.73 6.07 6.99 12.38 5.41 19.58 14.67

[G:N1
−,C:N3H

+] −115.34 −0.27 8.03 105.50 1.25 −4.35 5.14 6.17 8.64 8.51

maE . . . 0.50 8.68 114.06 5.94 9.12 14.67 14.54 11.02 6.97

rmsE . . . 0.72 9.72 118.72 6.96 9.96 15.87 15.84 12.17 7.88

Table IV: Selected relative protonation/deprotonation energies from ωB97X/6-31G* and model

error (kcal/mol) relevant to acid/base catalysis in RNA cleavage reactions.a

aModels and datasets are described in the Methods section. Protonation pairs are written in

the general form as follows. [B,A]: B + A → BH+ + A−, or [B−,AH+]: B− + AH+ → BH + A.

Here B/BH+ and B−/BH are base/conjugate acids pairs and A/A− and AH+/A are acid/conjugate

base pairs. These are model systems for general acid and base catalysis in RNA cleavage reac-

tions by small nucleolytic ribozymes and ribonucleases100. Molecules indicated are: isopropanol

(iPrOH), ethoxide (EtO−), neutral lysine (Lys:NH2), neutral histidine (His:Nϵ), protonated histi-

dine (His:NϵH
+), deprotonated guanine at the N1 position (G:N1

−), protonated adenine at the N1

and N3 positions (A:N1H
+ and A:N3H

+) and protonated cytosine at the N3 position (C:N3H
+).

enzymes (ribonucleases)100. In these reactions, the 2’OH of an RNA nucleotide, modeled by

the secondary alcohol isopropanol (iPrOH), becomes activated (deprotonated) by a general

base that in ribozymes is often an ionized (deprotonated) guanine residue (G:N1
−), and in

RNase A143–145 is generally believed to be a histidine (His:Nϵ) although it has been specu-
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Figure 7: Relation between tautomerization energies calculated by ωB97X/6-31G* and QDπ,

AIQM1, ANI-2x, GFN2-xTB, DFTB3, DFTB/ChIMES, ODM2, PM6-D3H4X, and PM7 for the

artificially expanded genetic information system (AEGIS) tautomer dataset. An illustration of

each of the complexes is provided in Figure 6. In the regression plot shown, the sign convention

(direction of the tautomer reaction) is chosen such that the reference ∆E value is positive (this is

done to circumvent “spreading out” of the data and artificially inflating the correlation).
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lated that a neutral lysine (Lys:NH2) might also be capable. The activated nucleophile then

attacks the scissile phosphate, passing through a pentavalent transition state, followed by

departure of the 5’O leaving group (modeled by the primary alcoxide ethoxide (EtO−) with

the assistance of a general acid that in ribozymes can be either a protonated adenine at the

N1 or N3 positions (A:N1H+ and A:N3H+, respectively) or an ionized (protonated) cytosine

(C:N3H+), and in RNase A is a protonated histidine (His:NϵH+).

Table IV lists relative protonation/deprotonation reactions that model general acid/base

events in RNA cleavage reactions100. Overall, QDπ performs extremely well, with ∆E maE of

0.50 kcal/mol. Of the semiempirical QM methods, GFN2-xTB is the least inaccurate (maE

5.94 kcal/mol) followed by PM7 (6.97 kcal/mol), with other models notably higher (maE

values range from 9.12 to 14.67 kcal/mol). As mentioned earlier, the ANI-2x model was not

designed to handle ions; it produces errors on the order of 100 kcal/mol. The AIQM1 model

is greatly improved with respect to ANI-2x and ODM2 (the base QM model). The QDπ

∆E maE value is dominated by large positive errors involving the ethoxide and protonated

nucleobases (0.89-1.25 kcal/mol). The ethoxide anion is a primary alkoxide that is only

marginally stable in the gas phase, and thus especially challenging. The QDπ model is by

far the most accurate for protonation/deprotonation energies. It is a promising candidate

for use in drug discovery applications.

IV. CONCLUSION

We have compared the performance of several NDDO-based (MNDO/d, AM1, PM6,

PM6-D3H4X, PM7, and ODM2) and density-functional tight-binding based (DFTB3,

DFTB/ChIMES, GFN1-xTB, and GFN2-xTB) semiempirical models with pure machine

learning potentials (ANI-1x and ANI-2x) and hybrid quantum mechanical/machine learn-

ing potentials (AIQM1 and QDπ). We examine broad datasets computed at a consistent

ωB97X/6-31G* level of theory that includes conformational energies, intermolecular inter-

actions, tautomers, and protonation states. The methods were further compared against

the AEGIS dataset and acid/base chemistry relevant for RNA cleavage reactions catalyzed

by small nucleolytic ribozymes and ribonucleases. Overall, the recently developed QDπ

model performs exceptionally well across all datasets, having especially high accuracy for

tautomers and protonation states relevant to drug discovery. The AIQM1 model also has
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impressive performance for many cases, including tautomerization energies. All other meth-

ods examined have various strengths and weaknesses, but none have the broad range of

quantitative accuracy of the QDπ model for the data examined. Taken together, this sug-

gests that QM/∆-MLPs such as QDπ and AIQM1 have considerable promise as universal

force fields for drug discovery applications.

SUPPLEMENTARY MATERIAL

See supplementary material for relative energies for the minima and transition state of

the alanine dipeptide, ibuprofen, and ketorolac.
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41F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine Learning for Molecular

Simulation,” Annu. Rev. Phys. Chem. 71, 361–390 (2020).
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