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ABSTRACT

Modern semiempirical electronic structure methods have considerable promise in drug dis-
covery as universal “force fields” that can reliably model biological and drug-like molecules,
including alternative tautomers and protonation states. Herein, we compare the perfor-
mance of several NDDO-based semiempirical (MNDO/d, AM1, PM6, PM6-D3H4X, PM7,
and ODM2), density-functional tight-binding based (DFTB3, DFTB/ChIMES, GFN1-xTB,
and GFN2-xTB) models with pure machine learning potentials (ANI-1x and ANI-2x) and
hybrid quantum mechanical /machine learning potentials (AIQM1 and QD7) for a wide range
of data computed at a consistent wB97X/6-31G™* level of theory (as in the ANI-1x database).
This data includes conformational energies, intermolecular interactions, tautomers, and pro-
tonation states. Additional comparisons are made to a set of natural and synthetic nucleic
acids from the artificially expanded genetic information system (AEGIS) that have impor-
tant implications in the design of new biotechnology and therapeutics. Finally, we examine
acid/base chemistry relevant for RNA cleavage reactions catalyzed by small nucleolytic ri-
bozymes, DNAzymes and ribonucleases. Overall, the hybrid quantum mechanical /machine
learning potentials appear to be the most robust for these datasets, and the recently devel-
oped QD7 model performs exceptionally well, having especially high accuracy for tautomers

and protonation states relevant to drug discovery.

I. INTRODUCTION

Alchemical free energy (AFE) simulations! are widely used for the prediction of ligand-
protein binding energies in drug discovery. These predictions are used to prioritize com-
pounds for costly synthesis and testing in the lead optimization cycle? The predictive capa-
bility of these methods relies critically on the accuracy of the force fields that are used.® For
well-studied biological systems such as proteins*® and common solvents such as water?
and monovalent ions!49 several molecular mechanical (MM) force fieldst®” have been de-
veloped and undergone extensive validation and revision based on comparison with a wide
range of experiments. These force fields have evolved to become increasingly robust and re-
liable in long-time molecular dynamics simulations, despite the simplicity of their functional

forms. On the other hand, the “general” molecular mechanical force fields needed to model



drug-like molecules that may not have ever been synthesized before, are generally much less
reliable. Moreover, conventional MM force fields are not “universal” in the sense that they
use a pre-defined covalent bonding topology, and are thus limited in their ability to model
alternative tautomers and protonation states. This is important as 30% of the compounds
in vendor databases and 21% drug databases have potential tautomerst®: further it has
been estimated that up to 95% of drug molecules contain ionizable groupst® (~75% weak

bases and ~20% weak acids?%2L).

Modern semiempirical quantum mechanical (QM) electronic structure methods?#43 pro-
vide an attractive alternative to the general MM force fields for drug discovery. The reason
is that, unlike a typical protein that may contain several thousands of atoms, approximately
79% of drugs are between 10-40 non-hydrogen atoms and the vast majority are less than 100
non-hydrogen atoms.?4 This is of the size range where semiempirical QM methods are able to
be used in combined quantum mechanical /molecular mechanical (QM/MM) simulations that
include explicit MM representation of the entire protein and surrounding solvent bath under
periodic boundary conditions. 228 Highly efficient (including parallel and GPU-accelerated)
implementations of semiempirical molecular orbital?? and density-functional tight-binding3"
have been made and are available for molecular dynamics simulations. More importantly, in
the context of AFE simulations, these QM /MM potentials can be efficiently integrated into
thermodynamic cycles using an indirect (or sometimes referred as “book-ending” or “refer-
ence potential”) approaches®!"3 that apply an end-state MM—-QM free energy correction to

a high-precision MM AFE simulation.

One potential caveat is the high level of accuracy required by drug discovery applications
that seek to distinguish binding free energies to a resolution of below kgT' (0.59 kcal/mol
at 300K)2Y 88 This is extremely challenging for even the most advanced modern semiem-
pirical QM methods. One path forward that appears promising is to use machine-learning
potentials (MLPs) either as stand-alone alternative models?? 4 or else to augment exist-
ing semiempirical QM methods 225l We will refer to the former class as “pure MLPs” and
the latter class as “QM/A-MLPs”. MLPs have emerged as powerful tools to enable fast
and accurate chemical models within the scope of their training#?41™4, Many such models
have emerged for different applications®?%7, although few, if any, have been used to their
full potential in rigorous AFE simulations. Application of these models in drug discovery

AFE simulations is challenging because they must: 1) make robust predictions for molecules
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within the relevant medicinal chemistry space that may have never been synthesized or
characterized®®, 2) model a wide range of intra- and intermolecular interactions, including
relative conformational energies, hydrogen bonding®”, = stacking®l London dispersion’?
and mixed interactions, 3) quantitatively handle different tautomers!®1%%3 and protonation
states?t. Currently, the ANIO340 class of models, and particularly the second generation
ANI-2x™ have received widespread attention. A limitation of these models is that they were
built for neutral molecules, and their functional forms do not explicitly account for total
molecular charge nor spin state. Consequently, they are not able to reliably predict energet-
ics for changing protonation states. This is a serious limitation, as it has been estimated that
up to 95% of drug molecules contain ionizable groups® Related to this, some of the pure
MLPs did not initially treat long-ranged electrostatic interactions, although there have been
efforts to remedy this.®® Alternatively, there have been several recent efforts to develop new
QM /A-MLPs*2U0 the most relevant in the current context being AIQM14% that is based
as the novel ODMx class of semiempirical models™ and has recently been demonstrated to

be robust for transition state optimizations™.

Very recently we introduced a first-generation QM/A-MLP for drug discovery™ The
Quantum Deep-learning Potential Interaction (QD7) model uses a fast, robust 3rd-order
self-consistent density-functional tight binding (DFTB3/30B) modelf?# that is corrected
to high-level accuracy through an MLP correction (A-MLP) based on our range-corrected
deep-learning potential (DPRc)*™8 as part of DeePMD-kit®? interfaced with AMBER®.
The underlying DF'TB3 model is able to capture long-range electrostatic interactions, as well
as changes in charge, protonation, and spin state. The intramolecular and short- to mid-
range intermolecular interactions are made quantitatively accurate by training the DPRc

model to correct the total energy and forces to match those of high-level ab initio methods.

In the present work, we compare the performance of several modern semiempirical QM,
QM /A-MLP and pure MLP models against consistent reference data derived from databases
relevant for drug discovery. Of particular focus of the present work is in characterizing the
ability of different potentials to accurately model intermolecular interactions, tautomers and
protonation states. Toward that end, we consider the a dataset of natural and synthetic
nucleic acids from the artificially expanded genetic information system (AEGIS)®+ &7 that
is being used for a wide range of biotechnology applications®®. The system uses 12 dif-

ferent nucleobases in its genetic code that include 4 canonical nucleobases found in DNA
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(adenine, cytosine, guanine and thymine) in addition to 8 synthetic nucleobases. These
serve as good test systems as they contain complex covalent bonding and exhibit a rich set
of tautomer forms, hydrogen bonded complexes, and alternative protonation states. The
remainder of the manuscript is organized as follows. The Methods section describes the
computational details pertaining to the various semiempirical QM (MNDO/d®? AM190
PM62L, PM6-D3H4X9293 PM74 ODM2® DFTB3%, GFN1-xTB?, GFN2-xTB%7 and
DFTB/ChIMES®), MLP (ANI-1x™ and ANI-2x™) and QM/A-MLP (AIQM14% and most
recently QD7) models, as well as the key modified databases (DBs) used as reference data
at the wB97X/6-31G*99 Jevel. The Results and Discussion section presents and analyzes
data for a set of 10 broad-spectrum databases for intermolecular interactions, tautomers,
and protonation states, and 2D conformational energy profiles. Further application is made
to examine the performance of modern semiempirical QM, MLP and QM/A-MLPs against
the AEGIS dataset®6. Finally, the paper provides contextual examples of acid/base chem-
istry relevant for RNA cleavage reactions catalyzed by small nucleolytic ribozymes and

ribonucleasestl,

II. METHODS

A. Models compared in the current work

a. Density-functional reference data. wB97X/6-31G** was performed using Gaussian
16194, Reference energy and forces (including geometry optimizations, where needed) were
performed at a consistent wB97X/6-31G*¥ level of theory.

b. NDDO-based semiempirical models. Semiempirical quantum mechanical (QM) mod-
els based on the neglect of diatomic differential overlap (NDDO) approximation enable the
number of electron repulsion integrals to be drastically reduced and the single-particle den-
sity matrix to be decomposed into effective atom-centered atomic orbital products (and
their resulting electrostatics represented as multipoles) 4 The NDDO approximation also
eliminates the need to explicitly enforce orthogonalization of the molecular orbitals that nor-
mally would be achieved by having an overlap matrix in the generalized eigenvalue equation.
Consequently, this may lead to poor modeling of conformational energies and their barriers

if left uncorrected. Much work has been made to introduce orthogonalization corrections
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into the theoretical framework which has resulted in the OMX class of methods!03106 T
the current work, the following NDDO-based methods are considered: MNDO/d®, AM19Y,
and PM62!' which were evaluated with the AMBER, 2017 SQM module!’®; and the ODM278
method which was evaluated using the MNDO program!® kindly provided by Dr. Axel
Koslowski, and PM6-D3H4XP293 PM 794 that was performed using the MOPAC software!lV.
PM6-D3H4X and PM7 correct PM6 using classical potentials and are often claimed to be the
most suitable methodology for drug design among NDDO-based semiempirical models 1412
c. DFTB-based semiempirical models. Density-functional tight binding methods offer
an intriguing alternative to the NDDO-based semiempirical models. DFTB methods use
an expansion of the energy!3 about a sum of neutral atoms densities together with a two-
center integral approximation to enable a framework for highly efficient calculations (speed
very comparable with NDDO-based methods). Unlike the NDDO-based methods, DFTB
methods keep the overlap matrix in the generalized eigenvalue equation, and thus explicitly
deal with orbital orthogonalization. However, this complicates the decomposition of the
density matrix which now contains 2-center products. Various density-matrix partition
schemes can be used to map the density onto atomic centers such that an atom-centered
(typically monopolar) representation can be made for the second-order electrostatic term
in the expansion. The DFTB-based methods considered here include: DFTB3% (30B
parameterst¥) that was performed using the AMBER 201%7 SQM module!®115: and GFN1-
xTB%, GFN2-xTB) DFTB/ChIMES? (30B parameterst'# and ChIMES parameters*%
kindly provided by Dr. Cong Huy Pham) models evaluated with the DFTB+ softwaresV.
Compared to DFTB3 and GFN1-xTB, GFN2-xTB represents the first broadly parametrized
tight-binding method, primarily designed for the fast calculation of structures and noncova-
lent interaction energies, to include electrostatic and exchange-correlation Hamiltonian terms
up to second order in the multipole expansion”” In this way, the model takes into account
anisotropic second order density fluctuation effects via short-range damped interactions of
cumulative atomic multipole moments. DFTB/ChIMESHY on the other hand, leverages
the relative simplicity of linear regression machine learning in the recently developed Cheby-
shev Interaction Model for Efficient Simulation (ChIMES) method ™ Validation tests of
DFTB/ChIMES demonstrate the model exhibits both transferability and extensibility, and

enable physical and chemical predictions with up to coupled-cluster accuracyt1®

It should be noted that the use of machine learning methods to enhance DFTB models in
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one form or other is not new. Notable works along these lines, in addition to DETB/ChIMES,
include, but are not limited to, the ML-Hamiltonian approach of Yaron and co-workers!s
the development of many-body potentials from deep tensor neural networks 2120 Gaussian
process regressiont?!, and unsupervised machine learning!#2.

d. Machine learning potentials (MLPs). The pure machine learning potentials con-
sidered in this work produce energies and atomic forces of a molecule given the positions
and elements. These potentials are quite fast compared with semiempirical QM models, and
they have more favorable scaling properties. However, some initial pure MLPs were built for
neutral molecules in singlet ground states, so they do not reliably model changes in charge
state that occur with the addition or loss of electrons and/or protons. The latter of which is
important for drug molecules that contain ionizable sites. The pure MLPs considered here
include: ANI-1x™ and ANI-2x79 models performed using the TorchANI software!23. Both
ANI-1x and ANI-2x models use the ANI descriptor® with a cutoff radius of 6 A and were
trained against wB97X/6-31G* with the active learning cycles. The training data of ANI-1x
only include energies, and the training data of ANI-2x include both energies and forces.

e. Combined semiempirical quantum mechanical and machine-learning potentials (QM /A-
MLPs). An attractive alternative to either semiempirical QM or pure MLPs is to combine
the strengths of both into a combined QM /A-MLP. In this way, it builds off of a fast and
robust semiempirical QM that inherently can accommodate changes in electronic charge
and spin states while using MLPs to greatly enhance the accuracy across a broad spectrum
of chemical environments. The QM/A-MLPs considered here include: the QD7 model,
which is based on DFTB3/30B»HOTHSIIAILS and the deep-learning potential available in
DeePMD-kit#283 and the AIQMI@QDFT*6 model based on a ODM2™109 model (which
includes the D4 dispersion correction!??) and a trained neural network correction using
TorchANI'23, The MLP component of QD uses the DeepPot-SE descriptor® with a cutoff
radius of 6 A and was trained against wB97X/6-31G* energies and forces for 241 M steps;
the MLP part of AIQM1@DFT* uses the ANI descriptor® with a cutoff radius of 6 A and
was trained against wB97X/def2-TZVPP energies and forces for 1000 epochs 46

All geometry optimizations using semiempirical QM, MLP or QM/A-MLP models
were performed using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)
algorithm12% in the ASE120 package. Relaxed 2D torsion profiles were made using the same

way described in Ref. [T7.



B. Databases and reference data used in the current work

The reference data used in the current work includes the modified ANI-1x52T 0 the
modified COMP5HATELESHL - S66 x 43152 HB375x 100033 TautoBase (TB)H34135 amino
acids (AA) and nucleic acid (NA)T30 PA26 and TAUT15737 RegioSQM20TH38 and
artificially expanded genetic information system (AEGIS)4%06  All reference data was
computed (or re-computed™) at the wB97X/6-31G* level of theory (consistent with the
most extensive ANI-1x and COMP5 databases).

Among all reference data, ANI-1x (or the modified version) dataset was used to parametrize
DFTB/ChIMES, ANI-1x, ANI-2x, QD7, and AIQM1; S66x8 was used to parametrize PM6-
D3H4X, ANI-2x and QDm; and TB, AA, NA, PA, and AEGIS were used for the training of
QDmr.

III. RESULTS AND DISCUSSION

The focus of the current article is on comparing modern semiempirical electronic structure
methods and machine learning potentials with respect to their ability to accurately model
conformers, tautomers and protonation states of biological and drug-like molecules. These

methods have potential impact for drug discovery owing to their efficiency and robustness.

A. Comparison of broad-spectrum databases

Important properties for consideration include: relative conformational energies, a wide
range of intermolecular interactions, as well as tautomeric and protonation state relative
energies. The QD7 model was trained with the same reference theory level as ANI-2x%
(wB97X/6-31G*) and considered a number of DBs that encompass conformational energies
(ANI-1x, COMP5), intermolecular interactions (S66x8, HB375x10) and tautomer (Tauto-
Base, Taut15) and protonation state relative energies (AA, NA, PA26, RegioSQM20) that
are described in detail elsewhere™. A comparison of 11 semiempirical quantum and machine
learning models are compared against 10 databases in Table [

Conformational energy datasets. With respect to the diverse conformational energy
datasets (ANI-1x™127 and COMPSMILELI0) - the mean absolute errors (makEs) in the

forces are smallest for the MLP and A-MLP potentials (QDm, ANI-2x, AIQM1 and ANI-1x),
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Table I: Mean absolute errors for different data sets used for training and testing of the QD7

model.®

ANI-1x S66 TB AA NA PA| COMP5 HB T15 SQM

E F AE AE AE AE AE| E F AE AE AE
QD7 0.83 1.16 0.13 0.82 0.09 0.17 0.39|1.48 1.14 0.44 0.70 2.53
AIQM1 3.10 0.57 2.07 7.30 4.71 5.06 2.59 0.71 1.37 2.75
ANI-1x 1.48 4.48 1.41 1.73 86.95 52.68 43.02|1.96 3.72 1.25 1.63 16.85
ANI-2x 1.07 2.11 0.37 1.76 70.52 52.48 23.80(1.67 1.86 1.40 1.00 13.64
GFN2-xTB 5.81 0.74 5.68 5.77 8.45 7.35 4.33 0.85 2.84 4.12
GFN1-xTB 4.69 0.77 5.23 5.00 11.73 4.43 3.68 0.87 5.32 4.10
DFTB3 7.58 1.14 5.45 8.63 10.85 12.54 5.46 1.17 3.65 4.59
DFTB/ChIMES 4.82 1.72 5.04 9.47 9.70 12.87 4.14 1.36 3.00 6.70
ODM?2 . 12.80 1.24 3.37 9.13 5.26 6.04 9.97 1.29 3.64 3.99
PM6 . 12,96 1.19 4.90 11.23 11.03 17.84 9.33 1.24 5.60 5.30
PM6-D3H4X . 13.60 0.63 5.44 9.67 11.72 7.78 . 10.27 0.84 6.16 6.61
PM7 . 11.98 0.84 4.34 7.24 10.72 10.11 8.54 1.00 3.74 5.93
AM1 . 14.95 217 5.01 4.43 7.32 13.51 . 12,13 2.57 3.99 4.13
MNDO/d . 15.14 6.67 9.69 11.71 11.29 13.07 . 11.52 9.36 7.78  5.18

“Mean absolute errors in the energy (E, kcal/mol), forces (F, kcal/mol/A) and AE for ANI-

1xM27S66x8 (566413132 TautoBase (TB)*##12 amino acid and nucleic acid proton affinities

(AA and NAYS PA26 (PAYSE, COMPH ™0 HB375x10 (HB)', Tautl5 (T15)%% and

RegioSQM20 (SQM)1#¥ databases. Datasets on the right were not part of the QD training.

and the QDm model performs the overall best (maE values 1.16 and 1.14 kcal/mol/A for
ANI-1x and COMP5 datasets, respectively). This is likely due to the fact that the ANI-1x

dataset was an integral part of the training of these models. In general, the DF'TB models
(GFN1-xTB, GFN2-xTB and DFTB3/30B) have lower force errors with respect to the ref-
erence wBITX/6-31G* values (maE values range from 4.69-7.58 and 3.68-5.46 kcal/mol/A
for ANI-1x and COMPY5, respectively), whereas the NDDO-based methods have consider-
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ably larger errors (maE values range from 11.98-15.14 and 8.54-12.13 kcal /mol /A for ANI-1x
and COMPS5, respectively), with PM7 performing the best of the NDDO methods.

Intermolecular interaction datasets. With respect to intermolecular interaction DBs
(S66x8THL3LLI2 and HB375x10133) . several models have AE values below 1 kcal/mol on
average (QDm, AIQM1, GFN1-xTB, GFN2-xTB, PM6-D3H4X and PM7), with QDm and
AIQM1 having exceptional agreement with the reference data: QD7 has mak values of 0.13
and 0.44 kcal/mol, and AIQM1 has maE values of 0.57 and 0.71 kcal/mol for S66x8 and
HB375x10, respectively. The ANI-2x model has excellent maE values for S66x8 (maE 0.37
kcal/mol) but does not perform quite as well for the HB375x10 DB (maE 1.40 kcal/mol).
The DFTB3, DFTB/ChIMES, ODM2 and PM6 methods perform similarly with AE maE
values that range from 1.14-1.72 (S66x8) and 1.17-1.36 (HB375x10) kcal/mol for these DBs.
The MNDO/d method has the largest AE errors (6.67-9.36 kcal /mol), stemming from known
limitations in the core-core interactions that particularly affect hydrogen bonding, and that
the empirical modified core-core repulsions in AM1 were designed in part to partially alle-
viate (AM1 maFE values range from 2.17-2.57 kcal/mol).

Tautomer datasets. With respect to the tautomer databases, TautoBase!?#132 (TB) and
Taut1557 (T'15), only the QDm model achieves AE errors less than 1 kcal/mol (maE values
0.82 and 0.70 kcal/mol for TB and T15, respectively). The AIQM1, and ANI models
perform admirably with errors generally below 2 kcal /mol (maFE values range from 1.73-2.07
and 1.00-1.37 kcal/mol for TB and T15, respectively). The remainder of the DFTB-based
methods have makE values in excess of 5 kcal/mol for TB, and similar values for AM1, PM6
and PM6-D3H4X methods. The ODM2 method makes notable improvement with reduced
errors relative to the other NDDO-based methods (makE values of 3.37 and 3.64 kcal/mol
for TB and T15, respectively). The MNDO/d method overall performs the worst with maE
values for TB and T15 exceeding 9 kcal/mol.

Relative protonation datasets. The relative protonation datasets include amino and
nucleic acid models compounds’® (AA and NA) as well as more general proton affinity
(PA26%7) datasets and a subset of the RegioSQM20138 (SQM) database containing C, H, O,
and N elements. The latter involves many relative protonation energies not related to ion-
izable sites in biological or drug-like molecules, and hence may be of less relevance for drug
discovery. For the AA, NA and PA26 datasets, the QD7 model stands alone with respect to

having very high accuracy in relative deprotonation energies (makE values range from 0.09-
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0.39 kcal/mol). The next best models are AIQM1 (maE 4.71-7.30 kcal/mol). The other
semiempirical QM models exhibit much larger ranges: GFN2-xTB (5.77-8.45 kcal/mol),
GFN1-xTB (5.00-11.73 kcal/mol), DFTB3 (8.63-12.54 kcal/mol), DFTB/ChIMES (9.47-
12.87), ODM2 (5.26-9.13 kcal /mol), PM6 (11.03-17.84 kecal /mol), PM6-D3H4X (7.78-11.72),
PMT7 (7.24-10.72), AM1 (4.43-13.51 kcal/mol) and MNDO/d (11.29-13.07 kcal/mol). With
respect to the SQM dataset, again the QD7 and AIQM1 models perform best (maE val-
ues of 2.53 and 2.75 kcal/mol, respectively), and the remaining semiempirical QM models
perform similarly with maFE values that range from 3.99-6.70 kcal/mol. The pure MLP
models (ANI-1x and ANI-2x) break down with respect to their ability to predict relative

protonation/deprotonation energies as these potentials were designed for neutral molecules.

Overall, the QD7 model performs exceptionally well across all datasets. The AIQM1
model is also impressive in this regard, with the exception of the protonation/deprotonation
energies where AIQM1 have larger errors for the AA, NA and PA datasets. Clearly the
QM/A-MLP form, using DFTB3 or ODM2 as a QM base model, considerably enhances
the accuracy across all datasets listed in Table [l The pure MLP models, and particularly
ANI-2x, generally perform better than the semiempirical QM models, with the exception
of protonation/deprotonation energies where the model gives very larger errors. Of the
semiempirical QM models, the DFTB-based methods have smaller force errors than the
NDDO-based models. The GFN1-xTB, GFN2-xTB, PM6-D3H4X and PM7 models perform
well for intermolecular interactions, slightly better than the DFTB3, DFTB/ChIMES and
ODM2 models. All of the semiempirical QM models are fairly comparable in modeling
tautomer energy differences (with the exception of MNDO/d that is less accurate), with
ODM2 performing best over a broad range of data. For protonation/deprotonation energies,
however, there is no clear trend with the semiempirical QM potentials — they all deviate

from the reference data with AE maE values exceeding 8 kcal/mol for at least one of the

datasets (AA, NA, PA or SQM).

In the remainder of the manuscript, we focus comparison to the most recent modern
semiempirical QM (DFTB3, DFTB/ChIMES, GFN2-xTB, ODM2, PM6-D3H4X, PMT7),
MLP (ANI-2x) and QM/A-MLP (QDm and AIQM1) models.
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Figure 1: Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac.
Each molecule was computed using wB97X/6-31G*, QD7, AIQM1, and ANI-2x, respectively.
The reference level of theory is wB97X/6-31G*. The color bars represent of the potential energy

(with respect to the minimum energy) in kcal/mol.

B. Comparison of 2D conformation energy profiles

We examined relaxed 2D torsion profiles for three systems: the alanine dipeptide, and the
drug molecules ibuprofen and ketorolac illustrated in Figures[I] 2| and [3] These figures com-
pare 2D torsion profiles at the wB97X/6-31G* reference level with the QM/A-MLP /pure
MLP models QDm, AIQM1 and ANI-2x (Fig. , DFTB-based GFN2-xTB, DFTB3 and
DFTB/ChIMES (Fig. [2), and NDDO-based ODM2, PM3-D3H4X and PM7 (Fig. [3) mod-
els. The relative energy values for the stationary points are provided in Table S1 of the
Supporting Information. All of the models qualitatively predict the correct trends. A mod-
est exception occurs with PM6-D3H4X and PM7 that do not predict a pronounced minimum
in the 3 region (~180/180) of the ¢ /¢ map (Fig. ). Overall, the QDm and AIQM1 mod-
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Figure 2: Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac.
Each molecule was computed using wB97X/6-31G*, GFN2-xTB, DFTB3, and DFTB/ChIMES,
respectively. The reference level of theory is wB97X/6-31G*. The color bars represent of the

potential energy (with respect to the minimum energy) in kcal/mol.

els have the closest agreement with wB97X/6-31G*, with ANI-2x only slightly worse. The
GFN2-xTB, DFTB3 and ODM2 semiempirical QM models tend to systematically under-
estimate the conformational barriers between minima (Table S1 in Supporting Information).
The largest errors that occur for the QD7 model are for the transition states in the ibuprofen

example, that like the semiempirical QM models, are systematically underestimated.

C. Comparison of hydrogen bond complex energies for natural and artificial

nucleic acids

The natural and modified nucleic acids exhibit a wide range of canonical and non-

canonical hydrogen bonded base pairs, including some that involve non-standard tautomer
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QM /A-MLP or MLP DFTB NDDO

wBI7TX | QD7m AIQM1 ANI-2x|GFN2 DFTB3 ChIMES|ODM2 D3H4X PMT7
Complex AE Err  Err Err Err Err Err Err Err  Err
C oG -32.90| 0.16 7.75 9.84| 3.66 10.98 0.08| 10.35 4.87 1.92
T -e-A -18.22]-0.14 6.71 3.65| 2.15 9.33 2.19| 7.51 2.90 0.88
U -o-A -18.36| 0.17 7.39 3.39] 2.12 9.35 2.22| 7.45 2.94 0.96

S -e-B -37.40| 0.03 10.01 767 3.99 11.34  -0.64| 10.18 6.62 3.80
V-e-J -34.52| 0.00 9.70 8.04] 2.43 9.32 -2.73| 8.57 5.25 1.83
K -e-X -22.46|-0.08 7.06 6.34| 2.13 9.56 1.99| 9.14 1.69 -1.24
7/ @-P -33.111-0.05 8.13 10.77) 3.65 10.14  -0.76| 10.93 5.50 1.83

B -e-G -32.50]-0.31 8.20 838 3.72 10.21 -0.69| 10.13 5.28 1.28
B -e-P -33.68| 0.13 745 10.02] 4.56 11.02 -0.56| 11.61 6.47 1.77
Bwme G | -22.46| 0.09 8.76 9.08/ 3.56 10.54 3.50]  9.95 4.24 -0.24
G-eT" | -33.99| 0.03 7.28 10.79| 4.59 10.11 -3.34] 9.56 5.51 3.22
G* -e-T | -23.00| 0.39 7.82 7.14| 3.03 9.49 -0.04] 8.55 0.41 -0.67
B* -G | -25.59|-0.11 8.99 13.00f 3.14 10.75 -2.45| 8.60 1.71 -3.49
T-e-B* | -22.92|-0.03 5.80 6.18| 3.04 9.44 0.24] 8.88 0.43 -0.08
K" -=X"|-144.48| 0.10 12.53 79.73| 14.30  18.59 8.26| 15.79 15.52 15.29
- -G | -43.33|-0.07 1236 11.58| 6.69 15.35 3.42| 12.16 4.25 1.90
C-e=P" | —47.17| 0.04 6.77 2445 3.38 1341 0.87] 9.41 7.35 4.82
mak ... 011 8.46 14.17| 4.25 11.22 1.99| 10.08 4.87 2.77
rmsE ... 0.15 8.66 2251 5.09 11.49 2.83| 10.26 5.97 4.44

Table II: Hydrogen bond complex energies from wB97X/6-31G* and model errors (kcal/mol) for
artificially expanded genetic information system (AEGIS) base pair dataset™"*% with Leontis

139H141

and Westhof symbols used for classification of nucleic acid base pairs , including complexes

that involve alternative tautomers and protonation states.®

“Models and datasets are described in the Methods section. An illustration of each of the
complexes is provided in Figure Complexes include: Adenine (A), cytosine (C), guanine
(G), thymine (T), uracil (U), isoguanine (B), isocytosine (S), 6-amino-5-nitropyridin-2-one (Z),
2-aminoimidazo|1,2a|[1,3,5]triazin-4(1H)-one (P), imidazo[l,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione
(X), 2,4-diaminopyrimidine (K), 4-aminoimidazol[l,2-a][1,3,5|triazin-2(8H)-one (J), 6-amino-3-
methylpyridin-2(1H)-one (V)42 The "*” symbol refers to tautomeric form, and ”+" and ”-”

symbols refer to the positive and negative charge.
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Figure 3: Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac.
Each molecule was computed using wB97X/6-31G*, ODM2, PM6-D3H4X, PM7, respectively.
The reference level of theory is wB97X/6-31G*. The color bars represent of the potential energy

(with respect to the minimum energy) in kcal/mol.

forms and protonation states. The base pairs considered in the AEGIS datasetTZ8586 are
illustrated in Figure [} This dataset represents a rich set of hydrogen bonding interactions
between endocyclic and exocyclic amine, carbonyl and hydroxyl functional groups. The
results are listed in Table [T} and the neutral base pairs are illustrated in Figure [f] Overall,
the QD7 model gives excellent agreement with the wB97X/6-31G* reference level over the
entire set with AE maE of 0.11 kcal/mol and maximum error of 0.39 kcal/mol for G* -@=
T. The DFTB/ChIMES model has next lowest error (makE 1.99 kcal /mol), followed by PM7
(maE 2.77 kcal/mol), and GFN2-xTB (maE 4.25 kcal/mol) and PM6-D3H4X (maE 4.87
kcal/mol). The remainder of the models have maE values in excess of 8 kcal/mol. The
ANI-2x model has a large makE value (14.17 kcal/mol), but the errors are dominated by base

pairs involving ionized nucleobases that range from 11.58-79.73 kcal/mol, whereas the range

15
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Figure 4: Structures for artificially expanded genetic information system (AEGIS) base pair
dataset ™880 with Leontis and Westhof symbols used for classification of nucleic acid base

pairsl39fl41

of errors for neutral base pairs in much smaller (3.39-13.00 kcal/mol, maE of the neutral
subset 9.72 kcal /mol).

Examination of the correlation of hydrogen complex energies for neutral nucleobases
reveals that QD7 has the highest correlation (R? value 0.999), followed by DFTB/ChIMES,
AIQM1 and ODM2 with R? values of 0.99. Whereas DFTB/ChIMES is well aligned with
the reference data, the ODM2 and related AIQM1 models have values systematically shifted
to lower AE values. Both PM7 and PM6-D3H4X models show impressive correlation (R?

16
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Figure 5: Relation between hydrogen bond complex energies calculated by wB97X/6-31G* and
QDm, AIQM1, ANI-2x, GFN2-xTB, DFTB3, DFTB/ChIMES, ODM2, PM6-D3H4X, and PM7
for the artificially expanded genetic information system (AEGIS) base pair dataset®™®, including
complexes that involve alternative tautomers and protonation states. Illustrations of each of the
complexes is provided in Figure [4. The three base pairs that involve ionized nucleobases are
excluded from the regression as they have much larger binding energy values that would

artificially skew the correlation.

17



values of 0.97) and low maE values (1.80 and 4.03 kcal/mol, respectively) for complexes of

these neutral nucleobases.

D. Comparison of tautomer energies for natural and artificial nucleic acids

The artificially expanded genetic information system (AEGIS) dataset also exhibits
a rich set of tautomeric forms that have been studied extensively with computational
methods 78587 These tautomeric pairs are illustrated in Figure [6] and their AE values are
listed in Table [[T]| and illustrated in Figure[7] Overall, both QD7 and AIQM1 give excellent
agreement with the wB97X/6-31G* reference values, with AE maE values of 0.71 and 0.77
keal/mol, respectively, and high correlation (R? value 0.99). The ANI-2x is the next most
accurate, but with errors roughly twice as large (maE 1.41 kcal/mol) and (R? 0.97). The
DFTB/ChIMES and GFN2-xTB models have considerably higher errors (maE 2.20 and
3.16 kcal/mol, respectively) but maintains high correlation with the reference values (R?
value 0.97), whereas DFTB3 and ODM2 have larger errors (maE 5.25 and 4.69 kcal/mol,
respectively) and lower correlation (R? values of 0.61 and 0.85, respectively). The largest
errors occur for PM7 and PM6-D3H4X (maFE 5.70 and 7.98 kcal/mol, respectively).

It has been estimated that 30% of the compounds in vendor databases and 21% drug
databases have potential tautomers ! For drug discovery applications, it is thus vitally
important to be able to model alternative tautomer forms, discern which forms are relevant
for ligand-protein binding, and if binding induces a change in tautomer state, to quanti-
tatively determine the tautomerization energy contribution to binding with sub-kcal/mol
accuracy. In some cases, the semiempirical QM models incorrectly predict the lowest energy
tautomer (1 case for GFN2-xTB, 2 cases for DFTB3, and 9 cases each for ODM2, PM6-
D3H4X and PM7). For the models compared here, only QD7 and AIQM1 are able to achieve

the requisite accuracy for quantitative prediction of ligand-protein binding applications.

E. Comparison of protonation energies for common general acids and bases

Modeling protonation states is important for drug discovery applications as it has been
estimated that up to 95% of drug molecules contain ionizable groupst® (~75% weak bases and

~20% weak acids?2l)and protonation states can sometimes change upon ligand binding.
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QM/A-MLP or MLP DFTB NDDO
wBI7X| QD7w AIQM1 ANI-2x| GFN2 DFTB3 ChIMES|ODM2 D3H4X PM7

Tautomer pair| AE | Err Err Err Err Err Err Err Err Err

1b - 1a 2.43|-0.36  -1.07 -1.35|-2.75* -6.25* -2.38| 3.48 6.60 2.67
lc - 1b 17.39] 0.36 0.40 0.83| -0.72 2.68 2.58] -6.65 -11.01 -7.46
2b - 2a -5.41|-1.12 0.13 -0.29| 281 -4.39 -1.02| 6.31* 12.62* 8.85*
2¢ - 2b 4.95] 1.22 -0.74 2.30] -2.61 4.74 1.54|-7.50* —14.46* —-10.85*
3b - 3a -6.32|-0.28 -0.16 0.89] 3.53 -3.90 -0.77| 6.39* 12.95*% 9.24*
3c-3b 4.05/-0.15 -0.15 3.05| -2.48 4.44 1.02|-7.07* -13.56* -9.97*
4b - 4a -6.81| 0.69 0.37 0.58| 3.60 -4.06 -0.94| 7.06* 13.49* 10.01*
4c - 4b 2.76| 0.06 —-0.82 1.14| -1.90 5.47 1.98|-6.48* —12.55% -8.93*
5b - ba -6.12|-0.41 0.66 -0.28| 3.07 -4.60 -1.43| 7.34* 13.36* 9.71%*
5¢c - 5b 3.23|-0.57 -0.57 0.49] -1.92 5.97 2.56|-6.59* -13.03* -9.41*
6b - 6a 12.24/-0.01 -0.20 -2.56| -1.85 -3.22 -3.63| 3.76 -494 -0.92
6c - 6b 20.12|-0.10 -0.35 2.63| -5.80 -3.10 -0.26| -4.60 -8.47 -8.48
b - Ta 20.15| 1.40 -0.63 -1.39| -4.87 -5.71 -5.32| 5.63 -0.67 -0.43
Tc-Tb -19.17/-0.96 0.94 -0.22| 4.79 6.93 1.64| -0.25 -0.01 2.86
8b - 8a 21.32] 0.84 -1.79 -0.08] -5.43 -10.25 -2.12| 1.57 3.71 1.24
8c - 8b -6.16| 0.31 -0.43 1.10| -1.52 0.18 1.28| -1.34 -3.27 -3.05
9b - 9a 5.42| 0.77 -0.89 -0.45| -5.39 -7.41* -4.94| 4.64 -3.31 -3.53
9c - 9b -10.02|-0.74 0.40 0.29] 3.20 6.10 1.29| -0.76 -1.38 1.91
10b - 10a 7.95] 2.11 -0.57 -2.50| -1.83 0.77 -3.26| 3.28 -3.84 -1.36
10c - 10b 22.201-2.92 -292 -5.08| -6.40 -15.21 0.78] -9.14 -11.36 -9.26
10d - 10c 4.01] 0.04 1.54 2.86| -1.71 5.13 -3.27| 9.90 12.36 7.71
11b - 11a -0.86/-0.63 -0.19 -0.36| —-0.47 -4.04 -0.58| 3.42*  7.69* 4.68*
11c - 11b 24.35|-0.84 -0.90 -4.13| -4.19 -5.43 -6.39| 1.67 -8.47 -6.13
12b - 12a 22.00| 0.41 -1.80 0.14] -5.51 -10.37 -2.16| 1.34 3.73 1.31
12¢ - 12b =7.79] 0.54 0.54 0.29] -0.62 0.87 1.78] -0.98 -2.70 -2.59
malk ... 071 0.77 141 3.16 5.25 2.20| 4.69 7.98 5.70
rmsE ..o 0.97 1.00 1.94| 3.59 6.12 2.67| 5.42 9.28 6.72

Table III: Tautomerization energies from wB97X/6-31G* and model errors (kcal/mol) for the

artificially expanded genetic information system (AEGIS) tautomer dataset.®

“Models and datasets are described in the Methods section. Illustrations of each of the tautomer-
ization reactions is provided in Figure [7] Errors corresponding to wrong prediction of more stable

tautomer are indicated by an asterisk (*).
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Figure 6: Structures for artificially expanded genetic information system (AEGIS) tautomer
dataset "> Guanine derivatives(1-5, 2: nucleobase code B), codes 6: A, 7: C, 8 T, 9: S, 10: P,
11: Z.

Hence, quantitatively accurate modeling of protonation/deprotonation events at these ion-
izable sites is critical to obtain high predictive capability. As an illustrative set of examples,
we examine simple model systems that mimic the acid/base chemistry associated with RNA

cleavage reactions catalyzed by small nucleolytic RNA enzymes (ribozymes) and protein
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QM/A-MLP or MLP DFTB NDDO
wBITX | QD7w AIQM1 ANI-2x|GFN2 DFTB3 ChIMES|ODM2 D3H4X PM7

Protonation pair| AE Err Err Err Err Err Err Err Err Err

[Lys:NH»,iPrOH]| 167.76| 0.00 -0.64 -115.04| 0.04 6.11 -6.87|-15.24 -13.15 -10.15
[His:N,,iPrOH] 158.33] 0.08 -9.22 -126.62| -7.02 -11.33 -17.47|-18.74 -12.96 -6.19
[EtO~,His:N.H*] |-160.25|-0.02  12.82 137.70| 9.66 11.71 18.09 21.92 12.24 5.36

[G:N;,iPrOH] 43.06|-1.11 -1.15 -28.62| -2.69 -8.63 -11.17|-10.84 0.89 5.45
[EtO7,A:N,H*] |-165.06| 1.25 12.94 137.24| 10.02 15.21 23.15| 20.74 8.07 1.25
[EtO™,A:N3H*] [-190.89| 1.21 12.88 143.42| 11.40 16.00 24.17) 19.43 1797 8.39
[EtO~,C:N3H*] |-160.33| 0.89 12.78 145.20| 6.58 4.66 16.93| 20.19 7.03 2.22

[G:N;7,A:N;H*] |-120.07| 0.08 8.19  97.55| 4.69 6.20 11.36| 6.73 9.69 7.53
[G:N;7,A:N3H*] |-145.91| 0.04 8.12 103.73| 6.07 6.99 12.38| 541 19.58 14.67
[G:N;7,C:N3H*] |-115.34|-0.27 8.03 105.50| 1.25 -4.35 5.14|  6.17 8.64 8.51

malb ...| 0.50 8.68 114.06| 5.94 9.12 14.67| 14.54 11.02 6.97
rmsE ... 0.72 9.72 118.72] 6.96 9.96 15.87| 15.84 12.17 7.88

Table I'V: Selected relative protonation/deprotonation energies from wB97X/6-31G* and model

error (kcal/mol) relevant to acid/base catalysis in RNA cleavage reactions.”

“Models and datasets are described in the Methods section. Protonation pairs are written in
the general form as follows. [B,A]: B+ A - BH* + A™, or [B",AH"]: B~ + AH" - BH + A.
Here B/BH* and B™/BH are base/conjugate acids pairs and A/A~ and AH* /A are acid/conjugate
base pairs. These are model systems for general acid and base catalysis in RNA cleavage reac-

tions by small nucleolytic ribozymes and ribonucleases

. Molecules indicated are: isopropanol
(iPrOH), ethoxide (EtO~), neutral lysine (Lys:NHz), neutral histidine (His:N), protonated histi-
dine (His:N.H"), deprotonated guanine at the N1 position (G:N;7), protonated adenine at the N1

and N3 positions (A:N;H" and A:N3H") and protonated cytosine at the N3 position (C:NgH™").

enzymes (ribonucleases)™. In these reactions, the 2’0OH of an RNA nucleotide, modeled by
the secondary alcohol isopropanol (iPrOH), becomes activated (deprotonated) by a general
base that in ribozymes is often an ionized (deprotonated) guanine residue (G:N;~), and in

RNase Al43145 ig generally believed to be a histidine (His:N,) although it has been specu-
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Figure 7: Relation between tautomerization energies calculated by wB97X/6-31G* and QDmr,
AIQM1, ANI-2x, GFN2-xTB, DFTB3, DFTB/ChIMES, ODM2, PM6-D3H4X, and PM7 for the

artificially expanded genetic information system (AEGIS) tautomer dataset. An illustration of
each of the complexes is provided in Figure[6] In the regression plot shown, the sign convention
(direction of the tautomer reaction) is chosen such that the reference AE value is positive (this is

done to circumvent “spreading out” of the data and artificially inflating the correlation).
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lated that a neutral lysine (Lys:NHz) might also be capable. The activated nucleophile then
attacks the scissile phosphate, passing through a pentavalent transition state, followed by
departure of the 5’0 leaving group (modeled by the primary alcoxide ethoxide (EtO~) with
the assistance of a general acid that in ribozymes can be either a protonated adenine at the
N1 or N3 positions (A:N;H* and A:N3H*, respectively) or an ionized (protonated) cytosine
(C:N3H*), and in RNase A is a protonated histidine (His:N.H*).

Table [[V] lists relative protonation/deprotonation reactions that model general acid/base
events in RNA cleavage reactionst®. Overall, QD7 performs extremely well, with AE maFE of
0.50 kecal/mol. Of the semiempirical QM methods, GFN2-xTB is the least inaccurate (maE
5.94 kcal/mol) followed by PM7 (6.97 kcal/mol), with other models notably higher (makE
values range from 9.12 to 14.67 kcal/mol). As mentioned earlier, the ANI-2x model was not
designed to handle ions; it produces errors on the order of 100 kcal/mol. The AIQM1 model
is greatly improved with respect to ANI-2x and ODM2 (the base QM model). The QD7
AE makE value is dominated by large positive errors involving the ethoxide and protonated
nucleobases (0.89-1.25 kcal/mol). The ethoxide anion is a primary alkoxide that is only
marginally stable in the gas phase, and thus especially challenging. The QD7 model is by
far the most accurate for protonation/deprotonation energies. It is a promising candidate

for use in drug discovery applications.

IV. CONCLUSION

We have compared the performance of several NDDO-based (MNDO/d, AM1, PMBG,
PM6-D3H4X, PM7, and ODM2) and density-functional tight-binding based (DFTB3,
DFTB/ChIMES, GFN1-xTB, and GFN2-xTB) semiempirical models with pure machine
learning potentials (ANI-1x and ANI-2x) and hybrid quantum mechanical/machine learn-
ing potentials (AIQM1 and QD7). We examine broad datasets computed at a consistent
wBI7X/6-31G* level of theory that includes conformational energies, intermolecular inter-
actions, tautomers, and protonation states. The methods were further compared against
the AEGIS dataset and acid/base chemistry relevant for RNA cleavage reactions catalyzed
by small nucleolytic ribozymes and ribonucleases. Overall, the recently developed QDm
model performs exceptionally well across all datasets, having especially high accuracy for

tautomers and protonation states relevant to drug discovery. The AIQM1 model also has
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impressive performance for many cases, including tautomerization energies. All other meth-
ods examined have various strengths and weaknesses, but none have the broad range of
quantitative accuracy of the QD7 model for the data examined. Taken together, this sug-
gests that QM/A-MLPs such as QD7 and AIQM1 have considerable promise as universal

force fields for drug discovery applications.

SUPPLEMENTARY MATERIAL

See supplementary material for relative energies for the minima and transition state of

the alanine dipeptide, ibuprofen, and ketorolac.
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