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ABSTRACT

Spatial regimes (the spatial extents of ecological states) exhibit strong spatiotemporal order as they expand or
contract in response to retreating or encroaching adjacent spatial regimes (e.g., woody plant invasion of
grasslands) and human management (e.g., fire treatments). New methods enable tracking spatial regime
boundaries via vegetation landcover data, and this approach is being used for strategic management across bi-
omes. A clear advancement would be incorporating animal community data to track spatial regime boundaries
alongside vegetation data. In a 41,170-hectare grassland experiencing woody plant encroachment, we test the
utility of using animal community data to track spatial regimes via two hypotheses. (H1) Spatial regime
boundaries identified via independent vegetation and animal datasets will exhibit spatial synchrony; specifically,
grassland:woodland bird community boundaries will synchronize with grass:woody vegetation boundaries. (H2)
Negative feedbacks will stabilize spatial regimes identified via animal data; specifically, frequent fire treatments
will stabilize grassland bird community boundaries. We used 26 years of bird community and vegetation data
alongside 32 years of fire history data. We identified spatial regime boundaries with bird community data via a
wombling approach. We identified spatial regime boundaries with vegetation data by calculating spatial
covariance between remotely-sensed grass and woody plant cover per pixel. For fire history data, we calculated
the cumulative number of fires per pixel. Setting bird boundary strength (wombling R? values) as the response
variable, we tested our hypotheses with a hierarchical generalized additive model (HGAM). Both hypotheses
were supported: animal boundaries synchronized with vegetation boundaries in space and time, and grassland
bird communities stabilized as fire frequency increased (HGAM explained 38% of deviance). We can now track
spatial regimes via animal community data pixel-by-pixel and year-by-year. Alongside vegetation boundary
tracking, tracking animal community boundaries can inform the scale of management necessary to maintain
animal communities endemic to desirable ecological states. Our approach will be especially useful for conserving
animal communities requiring large-scale, unfragmented landscapes—Ilike grasslands and steppes.

1. Introduction

etal., 2017). Spatial regimes exhibit strong spatiotemporal order as they
move, expand, contract, appear, and disappear in response to distur-

Spatial regime monitoring has strong potential to advance resilience- bances (Roberts et al., 2022), global change (Iknayan and Beissinger
based management (Allen et al., 2016; Garmestani et al., 2020). Derived 2020), and human management (Bestelmeyer et al. 2011). Using high
from resilience theory, spatial regimes are defined as the spatial extent resolution vegetation data, recent studies showcase how tracking
and statistically delineated boundaries of an ecological state (Sundstrom boundaries between ecological states (i.e., tracking spatial regimes) can
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quantify outcomes of local-scale management actions such as grassland
restoration via brush management and prescribed fire (Uden et al. 2019)
and provide spatially-explicit early warnings of spatial regime shifts in
the form of contracting desirable regime extents or expansion of unde-
sirable regimes (Roberts et al., 2021). Building from this work, the
“tracking spatial regimes approach” defines management successes as
spatial expansion or stabilization of desirable vegetation regimes.
Conversely, it defines management failures and early warnings of
eroding resilience as an undesirable vegetation regime displacing a
desirable vegetation regime in space. Using this framework, tracking
spatial regimes via vegetation has been adopted by a biome-scale con-
servation framework to conserve grassland regimes in the face of woody
plant encroachment (NUSDA NRCS, 2021). It is also being used to craft
regional strategies for conserving sagebrush ecosystems and combating
shifts to exotic annual grass-dominated regimes (USDA NRCS, 2020).

A clear next step in advancing the approach is to track spatial regime
boundaries via animal community data. Using animal community data
alongside vegetation data to track spatial regimes would extend the
definition of successful management to expansion or stabilization of
boundaries of desirable vegetation and desirable animal regimes. Using
multiple, independent lines of evidence to track spatial regimes (vege-
tation and animal communities) will increase inferential power to
quantify management outcomes for multiple ecosystem services, such as
restoring rangeland productivity and animal biodiversity (Timmer et al.,
2021). Recent studies have shown spatial regime boundaries can be
tracked using animal data at broad scales. For example, sub-continental
avian regime boundaries moved > 500 km poleward in a tractable
fashion, ostensibly in response to climate change and woody plant
encroachment (Roberts et al., 2019), and spatial regime shifts have been
documented in coastal fish communities (Eklof et al., 2020). However,
this pursuit is complicated by two factors: animals’ high mobility and
the typically coarser spatial resolution of animal monitoring data rela-
tive to remotely-sensed vegetation data. Respectively, these factors
could muddle boundary signals or make them too coarse to be compa-
rable to vegetation boundaries at all but the broadest scales.

The key to incorporating animal community data into the tracking
spatial regimes approach is devising a workflow that produces outputs
that 1) are comparable to current vegetation applications in terms of
spatiotemporal resolution and 2) demonstrably respond to land man-
agement. A simple and theory-grounded way to test for these requisites
is to test for spatiotemporal synchrony between vegetation boundaries,
land management history, and animal community boundaries (Wang
et al., 2019). There is some evidence for synchrony across taxa in space
and time (Johnson and Hering 2010). There is also some support for
spatial synchrony between vegetation and animal boundaries (Kent
et al. 2013; Andersen and Steidl, 2019; Roberts et al., 2022) and be-
tween land management and animal boundaries (Severson et al., 2017;
Olsen et al., 2021). But it is uncertain if spatial synchrony will manifest
with sufficient strength or clarity to make tracking boundaries in animal
communities useful for incorporating into the tracking spatial regimes
approach.

An ideal system to test for synchrony between vegetation and animal
boundaries is a grassland experiencing woody plant encroachment.
Woody plant encroachment is a spatially contagious regime shift (Bes-
telmeyer et al.,, 2011; Ratajczak et al., 2014; Donovan et al., 2018),
making it ideal for applying the tracking spatial regimes approach. It is
also a globally relevant conservation challenge: on multiple continents,
woody plant encroachment is leading to regime shifts from grasslands to
woodlands, reducing aquifer recharge, disrupting rural livestock-based
economies, increasing wildfire risk, and causing precipitous declines
in grassland animal biodiversity (Veldman et al., 2015; Archer et al.,
2017; Adane et al., 2018; Donovan et al., 2020). Importantly, grassland
animal communities—particularly grassland birds—are known to
decline under even minimal or distant woody plant encroachment
(Cunningham and Johnson, 2006; Thompson et al., 2014; Fuhlendorf
et al., 2017). Due to this high sensitivity to woody plant encroachment,
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boundaries between grassland and woodland bird communities should
manifest with sufficient strength and clarity to correspond with vege-
tation regime boundaries and land management (i.e., grassland resto-
ration actions such as fire treatments; Cunningham and Johnson, 2019).

Here, our goal is to test the utility of a workflow for tracking spatial
regimes via animal community data. We set our study in a protected area
within the North American Great Plains that is actively managed via fire
to maintain tallgrass prairie in the face of regime shifts resulting from
biome- and local-scale woody plant encroachment. We test two hy-
potheses. (H1) Spatial regime boundaries identified via independent
vegetation and animal datasets will synchronize in space and time.
Specifically, we expect animal community boundary strength to peak at
weak-moderate vegetation boundary strengths, and we also expect an-
imal community boundary strength will decline at strong vegetation
boundaries because bird communities will shift from grassland to
woodland communities due to grassland birds’ sensitivity to even min-
imal woody plant cover (Thompson et al., 2014; Roberts et al., 2021).
(H2) Because fire is a critical negative feedback for maintaining the
grassland regime that historically dominated our study area (Twidwell
et al., 2020), animal community boundary strength should decline as
fire frequency increases.

2. Methods
2.1. Study site

We conducted this study at Fort Riley Army Base, Kansas, USA. Fort
Riley is a military reservation encompassing approximately 41,170 ha
and lies in the Flint Hills ecoregion of the North American Great Plains.
Elevation ranges between 335 and 397 m. Two major alternative re-
gimes dominate Fort Riley: a grass-dominated regime and a woody
plant-dominated regime (Ratajczak et al., 2014; S. Stratton, Fort Riley
DPW Environmental Division, oral comm, 2018). There is no livestock
grazing in Fort Riley, and the only large herbivores are white-tailed deer
(Odocoileus virginianus) and a small, reintroduced population of elk
(Cervus canadensis). Historically, the grassland regime dominated the
base—especially in the north-northwest—and a woody plant regime
dominated a small portion in the southeast along the Kansas River (S.
Stratton, Fort Riley DPW Environmental Division, oral comm, 2018).
The US Department of Defense values grasslands for training purposes,
and many grassland bird species are listed as species of greatest con-
servation need in the Flint Hills (Rohweder, 2015). Thus, for land
managers at Fort Riley, preventing woody spatial regimes from dis-
placing grass spatial regimes in the north-northwest portion of Fort Riley
would be considered a management success, whereas woody regimes
displacing grass regimes would be a management failure. To maintain
the grassland regime in the north-northwest of the base, land managers
at Fort Riley implement relatively frequent and large fire treatments,
and random fire ignitions from military training also contribute to
maintaining grasslands (S. Stratton, Fort Riley DPW Environmental Di-
vision, oral comm, 2018). Nevertheless, due to fire suppression, human
tree planting, increased atmospheric carbon dioxide, and positive
feedbacks such as woodland birds dispersing tree seeds, woody plant
regimes are actively displacing grassland regimes within and around
Fort Riley (Archer et al., 2017; Roberts et al., 2018; Roberts et al., 2022).
Importantly, we excluded a roughly circular area in the east-central of
Forty Riley from analyses because biologists were not able to conduct
bird surveys there due to intensive military exercises and munitions
firing (Fig. S1).

2.2. Data collection

2.2.1. Bird community data

Using a stratified random design based on soil-land cover type
combinations, Fort Riley personnel established 59 bird community
sampling locations in 1991 (Fig. S1). Fort Riley personnel surveyed
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sampling locations annually 1991-2017 during the breeding season
(May - June). At each sampling location, surveyors quantified bird
community composition along a 100 m transect. Transects originated at
the sampling location and extended 100 m along a randomly chosen
azimuth used for all years. Surveyors walked from the start to the end of
the transect in 6 min, stopped for 8 min at the end of the transect, and
then walked from the end to the start of the transect for 6 min. Surveyors
recorded the number and species of all birds seen or heard during these
surveys.

2.2.2. Vegetation data

We used the Rangeland Analysis Platform’s continuous 900 m? (30
x 30-meter pixels) annual percent cover data of plant functional groups,
version 2 (Jones et al., 2018; Allred et al., 2021). We specifically used
tree (2.8% mean absolute error) and perennial herbaceous forbs/grass
cover (10.3% mean absolute error) estimates (Allred et al., 2021). For
simplicity and because forbs comprised a smaller portion of vegetation
communities, we hereafter refer to “perennial herbaceous forbs/grasses”
as “grasses”. Due to error in vegetation cover estimates generated by
urbanized areas (roads, buildings), water (lakes, ponds, streams, rivers),
and croplands, we used the 2016 National Land Cover Database to mask
pixels falling into these categories (Homer et al., 2015; Allred et al.,
2021).

2.2.3. Fire history data

We obtained fire history data from the Monitoring Trends in Burn
Severity dataset (MTBS; Eidenshink et al., 2007). MTBS recorded 66
fires within the Fort Riley Army Base property from 1984 (the beginning
of MTBS data) to 2016 (the year before the final year of this study).
Because MTBS only records fires > 400 ha in the western United States,
we acknowledge that this is not an exhaustive fire history dataset.
However, this minimum MTBS fire size matches the typical sizes of
prescribed fires at Fort Riley (S. Stratton, Fort Riley DPW Environmental
Division, oral comm, 2018), and it is some of the best data currently
available. We downloaded fire history data as polygon shapefiles that
contained ignition date information. We then converted polygons into
three 900 m>-resolution rasters (30 x 30-meter pixels), where each
raster pixel value indicated the cumulative number of fires that occurred
in each pixel from 1984 to 1991, 1984-2005, and 1984-2016. We
assumed pixels with no recorded fires experienced no fire between 1984
and 2016 and set their values as 0.

2.3. Identifying boundaries in bird communities and vegetation

Using the data described above, we developed and implemented a
multi-step workflow to identify spatial regime boundaries using bird
community data (Fig. 1) and vegetation data. This workflow—described
below—generated two raster datasets which were then used alongside
fire history data to test our two hypotheses.

2.3.1. Identifying bird community boundaries

We identified bird community spatial regime boundaries using
geographically weighted regression as a generalized wombling method
for point-based data (hereafter “wombling”; Diniz-Filho et al., 2016).
Wombling is an established approach for identifying boundaries be-
tween ecological entities (Womble, 1951), and it has been performed via
various methods (Barbujani et al., 1989; Fitzpatrick et al., 2010; Kent
et al, 2013). The geographically weighted regression method for
wombling takes geographic coordinates and an environmental variable,
such as ordination values, and produces linear regression statistics (e.g.,
R? values) for each sampling location (Diniz-Filho et al., 2016). Higher
R? values indicate boundaries (locations of abrupt environmental
change), and low R? values indicate core areas (locations of relative
homogeneity and similarity) of spatial regimes.

Here, we used multivariate bird community sampling data and
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locations as inputs for the wombling method. Before performing ordi-
nation, we used a Hellinger transformation to correct for rare species
(Dray et al., 2012). We then performed principal components analysis
(PCA) on the full transformed dataset (all years, all sampling locations).
We used the first axis of the PCA as the biotic (“environmental”) values
for each point, and we used the latitude and longitude of each point as
the geographic coordinates (Diniz-Filho et al., 2016). We ran wombling
on each year of our data (1991-2017), except 2016 because < 30% of
bird point count locations were surveyed that year.

To transform wombling outputs into a form comparable to vegeta-
tion boundaries and fire history data, we used a generalized additive
model (GAM) to predict wombling values in space and time. For the
GAM'’s response variable, we used wombling R? values for all sampling
locations/years. For the predictor variable, we used a smoothed three-
way interaction term of time (year) and space (easting and northing in
Universal Transverse Mercator plane coordinate grid system). We then
used the GAM outputs to predict wombling values across the extent of
the study area as continuous raster surfaces at 900 m? spatial resolution
(to match vegetation remote-sensing resolution—see below) for three
years representing the beginning (1991), middle (2005), and end (2017)
of the study. Because wombling R? values can only range from 0 to 1, we
truncated GAM predictions < 0 (3% of predicted values) to be 0 and
GAM predictions > 1 to be 1 (0.2% of predicted values). Hereafter, we
refer to these predicted wombling R? values as “GAM-predicted wom-
bling R? values.”

2.3.2. Identifying vegetation boundaries

We identified grass:woody spatial regime boundaries by calculating
spatial covariance between percent woody plant and grass cover for
each raster cell in 1,739-hectare moving window (139 x 139 pixels;
Uden et al., 2019). This window size encompasses a broad-scale radius
at which grassland birds are known to respond to woody plant
encroachment (Cunningham and Johnson, 2006; Thompson et al., 2014;
Cunningham and Johnson, 2019; Roberts et al., 2022) while also being
small enough to detect variation within the boundaries of the study area
(41,170 ha).

Spatial covariance ranges continuously from positive to negative
values. Positive values indicate that tree cover and grass cover increase
or decrease together across the window; values near zero indicate no
spatial relationship between tree and grass cover across the window; and
negative values indicate that as tree cover increases across the window,
grass cover decreases (or vice versa) (Uden et al., 2019). Thus, strongly
negative spatial covariance signifies a spatial regime boundary, where
trees and grass are spatially segregated. Near-zero spatial covariance
signifies core areas of spatial regimes. To make spatial covariance values
comparable across years, we divided the spatial covariance value for
each raster cell at each moving window extent by the standard deviation
of spatial covariance for each year from 1991 to 2017.

2.4. Hypothesis tests

We tested two hypotheses (H1: spatialtemporal synchrony between
grass:woody and bird community boundaries; H2: bird community
boundary strength will decline as the number of fires increases) by
modeling the response of GAM-predicted wombling R values to spatial
covariance and fire history (Fig. 2). To reduce temporal autocorrelation
issues, we analyzed a subset of years when bird data was collected.
Specifically, we overlayed GAM-predicted wombling R? rasters from
1991, 2005, and 2017, spatial covariance rasters from 1991, 2005, and
2017, and fire history rasters with cumulative fire history from 1984 —
1991, 1984 - 2005, and 1984 — 2016. To reduce issues with spatial
autocorrelation, we randomly sampled 10% of the pixels within each
year’s raster. This yielded 15,528 samples (i.e., pixels) total.

With these 15,528 samples, we developed a hierarchical generalized
additive model (HGAM) using the “mgcv” package (Wood et al., 2017;
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Fig. 1. Visual representation of the workflow for
identifying spatial regime boundaries at Fort Riley
Army Base, Kansas, USA, using bird community data.
Gray rectangles contain description of the data at
each stage of the workflow, and green ovals show the
calculation or model used to generate the subsequent
stage. The first stage is raw bird community
composition data collected from field surveys. Then
we used wombling (a geographically weighted
regression) to calculate bird community boundary
strength for each survey location. Finally, we used a
generalized additive model to predict bird boundary
strength across a continuous raster surface. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)
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Fig. 2. Conceptual representation of the first hypothesis (H1): spatial regime boundaries identified via independent vegetation and animal datasets will synchronize
in space and time. Parallelograms represent a two-dimensional landscape at two time steps (t = 1, t = 2). Green icons represent (A) woodland vegetation regimes and
(B) woodland bird community regimes. Black icons represent (A) grassland vegetation regimes and (B) grassland bird community regimes. Purple lines represent the
signal strength of statistically identified spatial regime boundaries between woodland and grassland regimes, and red lines indicate where on the landscape these
boundaries manifest. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Pedersen et al., 2019). In the HGAM, we set GAM-predicted wombling
R? values as the response variable and used restricted maximum likeli-
hood (Pedersen et al., 2019). We set spatial covariance (H1) and number
of fires (H2) as smoothed predictor variables (thin plate splines). We
allowed intercepts to vary by year (thin plate spline).

3. Results
3.1. Bird community boundaries

Between 1991 and 2017, surveyors recorded 99 bird species.
Calculated wombling R? values ranged from 0 to 0.99. The GAM for
predicting wombling values onto continuous surfaces explained 38% of
deviance (Table S1). Per expectations, GAM-predicted wombling R?
values revealed two major spatial regimes in the study area: a ‘crescent’
of grassland regime in the north and central portion of the study area
and a forest regime in the southeast of the study area (Fig. 3A). The
northernmost portion of the grassland regime remained remarkably
stable throughout the study period (Fig. 3A). The western boundary of
the central portion of the grassland crescent constricted; but the eastern
boundary expanded slightly (Fig. 3A). There is some evidence that the
southern portion of the grassland regime also expanded (Fig. 3A).

3.2. Vegetation boundaries

Across the study area and period, scaled spatial covariance values
ranged between —2.92 and —0.02 (Fig. 3B). As expected, grass:woody
boundary strength was weakest (approximately O scaled spatial
covariance) in the north, north-central portions of the study area, cor-
responding with the grassland regime (Fig. 3B). Conversely, grass:
woody boundary strength was strongest in the south, corresponding
with the forest regime (Fig. 3B). Between 1991 and 2005, the grassland

regime contracted considerably, especially at its northwestern and
southern boundaries, but between 2005 and 2017, the grassland regime
expanded back to a similar extent as in 1991—although it did not
reclaim its southern extent.

3.3. Fire history

The cumulative number of fires per pixel ranged from 0 to 9. There
were 7 fires between 1984 and 1991, 22 fires from 1984 to 2005, and 66
fires from 1984 to 2016. There were more fires in the north and
northeast of the study area, corresponding to the stable grassland regime
area in the bird community boundaries and the grass:woody boundaries
(Fig. 3C). There were very few fires in the southern portion of the study
area, which corresponded with the forest regime and the woody plant
encroachment at the southern grassland regime boundaries (Fig. 3C).

3.4. Hypothesis tests

Both of our hypotheses were supported: bird community and vege-
tation boundaries synchronized in space and time (H1), and grassland
bird communities stabilized in space as fire frequency increased (H2).
That is, where there were stronger grass:woody vegetation boundaries,
there were stronger bird community boundaries, and where there were
more fires, there were weaker bird boundaries. The HGAM testing these
hypotheses explained 38% of deviance (Table S2). Vegetation boundary
strength had a roughly quadratic relationship with bird community
boundary strength (effective degrees of freedom, EDF = 8.9; F = 967; P
< 0.01). Starting at very weak grass:woody boundary strength
(approximately —0.25 scaled spatial covariance), bird boundary
strength rapidly increased and then peaked at relatively weak grass:
woody boundary strength (approximately —0.75 scaled spatial covari-
ance; Fig. 4A. After this peak, bird boundary strength declined steadily
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Fig. 3. Tracking spatial regimes within Fort Riley Army Base, Kansas, USA from 1991 — 2017. (A) Bird community boundaries identified via generalized additive
model predicted wombling R? values. Color shift from green to black (increasing wombling R? values) indicates increasing boundary strength. (B) Vegetation (grass:
woody) boundaries at a 1,739 ha moving window size. Colors indicate scaled (divided by standard deviation annually) spatial regime boundary strength, with
warmer colors (negative spatial covariance values) representing greater boundaries strength and values near 0 representing lack of boundaries. (V) Fire history
indicated by the cumulative number of fires that occurred in each pixel between 1984 and 1991, 1984 — 2005, and 1984 — 2017. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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per 30 m? pixel). The grey ribbon indicates 99% confidence limits.

and then declined rapidly at the highest grass:woody boundary strengths
(Fig. 4A). Fire history had a roughly quadratic relationship with bird
community boundary strength (EDF = 3.6; P < 0.01; Fig. 4B). Areas with
0 - 3 fires were associated with slightly higher bird boundary strength,
but as the number of fires increased from 5 to 8, bird boundary strength
decreased (Fig. 4B).

4. Discussion

Both our hypotheses were supported: vegetation and animal com-
munity boundaries synchronized in space, and as the number of fires
increased, grassland bird communities stabilized in space and time.
Boundaries in bird communities clearly manifested when and where
they were expected to. For instance, grassland bird community bound-
aries contracted as expected in response to woody plant encroachment,
remained stable in response to negative feedbacks from fire, and
expanded where fire treatments killed woody plants and restored
grasslands. Conversely, woodland bird community boundaries remained
stable in the historically forested portion of the study area and displaced
grassland bird regimes where few to no fires occurred and woody
vegetation displaced grasses. This indicates our workflow successfully
tracked spatial regimes via animal community data and can be incor-
porated into the ’tracking spatial regimes’ approach alongside vegeta-
tion data. Our workflow’s success is further highlighted by the fact that,
despite the noisiness inherent in animal community data and docu-
mented idiosyncratic bird species responses to woody plant encroach-
ment and fire (Thompson et al., 2014; Cunningham and Johnson, 2019),
spatial boundaries derived from a community of 99 bird species
demonstrated clear responses to shifting vegetation and fire history over
26 years.

Tracking spatial regimes with animal community data pixel-by-pixel
and year-by-year adds to our ability to quantify a system’s ecological
resilience by detecting early warnings of eroding resilience. The pursuit
of early warnings is central to quantifying resilience (Angeler and Allen,
2016; Eby et al., 2017; Majumder et al., 2019), and Allen et al. (2016)
proposed the delineation of spatial regime boundaries as a critical step
in advancing resilience quantification. To illustrate—resilience theory

predicts that changes in vegetation boundaries may lag behind changes
in animal community boundaries (Kent et al., 2013; Allen et al., 2016).
This is reflected in our results: grassland bird communities occupied a
much narrower spatial extent than the grass:woody boundaries would
have suggested: that is, grassland bird communities were (spatially)
nested within grass:woody boundaries. Similarly, in areas where greater
numbers of fire treatments were applied and grasslands displaced
woodlands, grassland bird communities did not expand to the full extent
of the new grassland boundaries. This means contracting animal com-
munity boundaries (e.g., grassland bird communities being displaced by
woodland bird communities) alongside vegetation boundaries may
provide an earlier signal of eroding resilience than tracking vegetation
boundaries alone (Andersen and Steidl, 2019; Roberts et al., 2022). Also,
animal community boundaries may not respond until sufficiently large-
scale management occurs (Severson et al., 2017; Olsen et al., 2021).
Adding to recent studies showing spatial regimes can be tracked at
subcontinental scales (Roberts et al., 2019), we show how tracking
spatial regimes via animal community data now allows for resilience
quantification at the scale of baseball diamonds (900 m? pixels).
Regarding implications relevant to grassland ecosystems, bird com-
munity boundaries responded to both woody plant encroachment and
fire treatments in expected and interpretable ways. Bird community
boundary strength quickly increased and peaked at relatively weak
grass:woody boundary strength. This parallels grassland birds’ high
sensitivity to woody plant encroachment. Many grassland birds will
avoid areas with <1% tree cover within a 1,000 m radius (Thompson
et al., 2014), some grassland bird species will avoid areas with >2 trees
per hectare (Lautenbach et al., 2017), and landscape-scale tree cover far
outweighs the importance of microhabitat characteristics for grassland
bird nest survival and community composition (Chapman et al., 2004;
Fuhlendorf et al., 2017). Likewise, grassland bird community bound-
aries remained stable where fire occurred every 4-6 years on average (i.
e., 5-8 cumulative fires between 1984 and 2016), but they contracted
when fire occurred less than every 6 years (0-3 cumulative fires between
1984 and 2016). This echoes decades of research on fire return interval
effects on the maintenance of grassland vegetation and bird commu-
nities. In tallgrass prairie, fire return intervals of 3 years are the
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minimum necessary to maintain grassland regimes in the face of woody
plant encroachment (Ratajczak et al., 2016; Fogarty et al., 2021).
Increased heterogeneity and removal of trees resultant from fire is
known to increase grassland bird diversity and abundance (Fuhlendorf
et al., 2006). That bird community boundaries responded in expected
and interpretable ways further supports the applicability of the animal
community data to the tracking spatial regimes approach and resilience-
based management.

4.1. Conclusion

We showcase how tracking spatial regime boundaries with both
vegetation and animal community data can inform resilience-based
management strategies. Management predominately targets vegetative
or abiotic aspects of a system (via fire treatments, brush management,
etc.; Scholtz et al., 2021), and even relatively small-scale management
can produce short-term desired responses in vegetation regimes. But
because animal communities are often sensitive to particular plant
compositions and structures (Andersen and Steidl, 2019), management
often needs to reach a critical spatial scale or extent to effectively
maintain or restore animal components of spatial regimes. By incorpo-
rating animal community data into the tracking spatial regimes
approach, one can now ask questions such as “what is the minimum
grassland size necessary to manifest or maintain a grassland bird
regime?” or “what scale of management causes an expansion of desir-
able animal spatial regimes?”. Our approach will be especially useful for
motivating spatially-explicit conservation of animal communities that
require large-scale, unfragmented landscapes, such as grassland, sage-
brush steppe, and savanna (Fuhlendorf et al., 2017; Severson et al.,
2017). This a critical need as boundaries between ecoregions and biomes
are being redrawn globally (Roberts et al., 2019).
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