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We investigate the dynamical characteristics corresponding to the structural fluctuations
of a cantilever suspended in a turbulent flow. To investigate the intricate dynamics of the
flow-structure interaction, first, we explore the ability of network analysis to identify the different
dynamical states and probe the viability of using quantifiers of network topology as precursors
for the onset of limit cycle oscillations. By increasing the Reynolds number, we observe that the
structural oscillations, measured using a strain gauge, transition from low amplitude chaotic
oscillations to large amplitude periodic oscillations associated with limit cycle oscillations.
We characterize the dynamical states of the system by constructing the weighted correlation
network from the time series of strain and identifying the network properties which have the
potential to be used as precursors for the onset of limit cycle oscillations. Furthermore, we
use Pearson correlation to illustrate the evolution of mutual statistical influence between the
structural oscillations and the flow field. We use this information and the Granger causality to
identify the causal dependence between the structural oscillations and velocity fluctuations. By
identifying the causal variable during each regime, we illustrate the directional dependence
through a ‘cause-effect’ relationship in this flow-structure interaction as it transitions to limit
cycle oscillations.

I. Introduction

We encounter fluid flow over solid structures in many natural and industrial processes. The interaction between
flows and an elastic structure, commonly known as flow-structure interaction, can lead to aeroelastic instabilities,

which can cause significant damage to bridges and buildings [1]. Aeroelastic instabilities can also cause dangerous
oscillations of lift generating structures of an aircraft during the flight, which may compromise the flight’s safety and
stability, leading to loss of life and property. [2, 3]. Although researchers have conducted many fundamental and applied
studies on this topic [4], identifying the onset of such instabilities remains challenging.

In the early 20th century, Hunsaker [5] and Perring[6] performed fundamental research on aeroelastic instability.
The development of finite element analysis in the 1970s paved the way for advanced analysis of aeroelastic instability on
complex surfaces [7, 8]. Some essential methods, such as the flutter margin method [9]; Nissim and Gilyard method
[10]; non-iterative P-K method [11]; and multi-fidelity modeling [12], are popular in anticipating the onset of aeroelastic
instability or sustained limit cycle oscillations. However, such methods cannot fully capture the non-linearities arising
from, e.g., structural fatigue and flow non-uniformities which can only be incorporated by real-time analysis of the time
series of an appropriate parameter.

The temporal evolution of system variables can provide us with detailed insights into the system’s dynamics.
Dynamical systems analysis, or the analysis of systems evolving in time subject to various constraints, can help us
obtain information about the states of the system [13–15]. In several studies, dynamical systems analysis for fluid-
structure interactions, particularly in turbulent flow, have been performed, and newer insights have been formed[16–20].
Researchers have acknowledged that most dynamical systems in nature are, in fact, complex systems. The “complexity” of
a complex system stems from the difficulty in inferring the system’s behavior from its properties. Ignoring or dismissing
such intricate system behavior as noise during modeling would lead to inaccuracies in the model. Characterizing such
problems is domain-specific as there is no general theory for addressing these intricacies, and they must be tackled
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case by case. Therefore, researchers in complex systems generally tend to these problems by focusing on capturing
rather than reducing the complexity of the systems [21, 22]. Systems are generally considered complex if there are
intricate interactions between a large number of their constituent subsystems, where we cannot anticipate the emergent
phenomena arising due to this mutual interaction from the behavior of individual component subsystems [23, 24]. Thus,
we can use different tools from dynamical systems theory like recurrence plots to provide accurate descriptions of the
different states of the system [25]. In some scenarios, we can analyze a complex system by using the complex network
theory tools [26, 27]. For instance, we can study the temporal evolution of a dynamic state variable of a complex system
by analyzing the evolution of the topology of a complex network derived from the time series of the state variable. One
method of deriving complex networks from a time series involves considering different data points of the time series as
individual nodes of the network, and connecting these nodes using edges that represent some relationship between the
two data points, such as correlations and causal relations. There are numerous ways to derive complex networks from a
time series and the construction methodology determines the type of information extracted from the time series which
are embedded in the network properties. For instance, some complex networks like correlation networks constructed
using Pearson correlation coefficients can provide information regarding the statistical interrelationships from climate
data on both local and global scales [28].

In addition to analysis of structural aspects, a separate treatment of the interaction of the flow and the structure
is required to elaborate on the change in dynamics as the system transitions to instability. The interaction of the
vortex shedding with the structure can lead to vortex-induced vibrations. The vortex shedding frequency locks into
the structure’s natural frequency, therefore leading to sustained high amplitude periodic oscillations [29]. The vortex
shedding due to an elastically mounted rigid cylinder has been well-documented [30–32]. The lock-in response of a flat
plate is nearly identical to the response of a standard airfoil, which indicates that a surface with a single sharp edge can
simulate the lock-in characteristics of an airfoil shaped structure [33]. [34] performed experimental investigations on
flow around a flat plate placed normal to the stream and constrained to rotate perpendicular to the axial and transverse
direction of the flow. The range of the forcing frequencies of the plate was kept in the neighborhood of the natural
vortex shedding frequencies for a range of Reynolds number. They observed that with an increase of forcing frequency
amplitude, the amplitude of peak corresponding to vortex shedding frequency from spectra of wake velocity reduces.
There is an emergence of peak corresponding to the forcing frequency, which dominates during the lock-on regime. [35]
studied the torsional oscillations due to vortex-induced oscillations on a flat plate in cross flow. They observed that
synchronous behavior or the lock in leading to high amplitude oscillations occur when the natural frequency of structure,
the vortex shedding frequency from the vibrating body and the frequency of the vibrating body in freestream are similar.

Due to the emergence of synchronous behavior during the transition to instability, analysis of correlations between
multiple variables can provide crucial insights into how the different variables mutually interact [36]. However,
correlations can only provide information on whether and how much these variables are statistically interlinked but
cannot express the causal relationship between them. Therefore, in addition to obtaining how these variables are
correlated, it is interesting to elucidate the causal dependence between them [37], which we cannot obtain from
correlation information. Determination of this causal relationship is crucial in control systems analysis, where feedback
is provided to the ‘cause’ in order to obtain a desired response [38]. We note that the Granger causality, introduced by
Clive Granger [39], is one of the earliest and well-established statistical methods to determine and quantify the causal
relationship between various time series. Granger causality tells us that a signal 𝑦𝑡 causes 𝑥𝑡 if a signal 𝑥𝑡 can be better
predicted by including past terms of 𝑦𝑡 . Granger causality has been used to analyze turbulent channel flows to obtain the
various causalities between streak breakdown and wall-normal activities [40].

With the overarching goal of identifying the underlying relationship between the dynamics of the flow and the
structure oscillations during the transition to limit cycle oscillations, in this study, we will use three different yet relevant
analyses of time series data. First, we construct a weighted correlation network [41] from the time series of strain
resulting from the interaction between a cantilever and turbulent flow. Subsequently, we characterize the different
dynamical states of the system by using various network properties that quantify different aspects of the network based
on its topological features. Multiple network properties are studied, and we identify and communicate those which
can adequately classify the different states. Furthermore, we study the underlying relationship between the flow and
structure oscillations by obtaining the causal relationship between them. To obtain the causalities between the structural
oscillations and velocity fluctuations, first, we obtain information about how the velocity field and strain are mutually
interlinked statistically. Then, we use Granger causality to illustrate the changes in causal dependency as the flow
transitions towards the limit cycle oscillations.
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Fig. 1 Schematic of experimental setup with magnified image of the cantilever inset (not drawn to scale).

II. Experimental setup and sample time series
We used a simple setup to conduct the experiments where a cantilever was suspended in a turbulent flow resulting in

flow-structure interaction (Fig. 1). We generate the turbulent jet by discharging compressed air through a cylindrical
nozzle, with diameter 𝐷 = 16𝑚𝑚, which impacts the cantilever asymmetrically. Alicat mass flow controller controlled
the flow rate of the compressed air to modulate the mean velocity of the jet, which in turn allowed changes in the
dynamical states of the structure [42, 43]. The cantilever beam (Elastic modulus = 1.37GPa) has a length of 60mm, a
width of 15mm, and a thickness of 0.3mm, and was anchored at one end. We kept the relative position of the flow
and the structure constant. The lower end of the cantilever has a small horizontal fin of 15mm attached to it. The
experimentally obtained natural frequency of the structure was observed to be 12.5Hz (see supplementary material).
The impact of the jet on the cantilever causes oscillations in the structure. We measure the strain on the cantilever
arising due to this flow structure interaction using a strain gauge mounted just below the fixed end of the cantilever.
We used a strain gauge of bridge resistances 350Ω ± 0.6% and gauge factor 2.130 ± 0.5% attached to one arm of a
Wheatstone bridge connected to an input voltage of 12V. To obtain information about the interaction of the turbulent
jet with the cantilever, we perform particle image velocimetry (PIV). A laser sheet emanating from an Nd-YLF laser
(527nm) passes through the jet’s center and the cantilever. Seeding the flow by DEHS droplets resulted in scattering the
laser light by these particles, a phenomenon called Mie scattering, which we captured using a high-speed Phantom v710
camera with a 24-70mm lens situated at a right angle to the laser sheet. We used a signal generator and an external delay
generator to obtain the PIV and strain data simultaneously at a sampling frequency of 2kHz. We obtain the normalized
velocity field fluctuations, 𝑍𝑣 = (𝑣 − 𝑣̄)/𝜎𝑣 , from the PIV by dividing it by its standard deviations, where 𝑣, 𝑣̄ and 𝜎𝑣

are the instantaneous value, mean, and standard deviation of the axial velocity component, respectively. We observe
similar fluctuations in the transverse direction velocity as well.

We performed the experiment by varying in the incoming airflow rate 𝑄 from 5 slpm to 70 slpm, corresponding to a
flow Reynolds number 𝑅𝑒 = 1100 − 8100 (𝑅𝑒 = (𝜌𝑈𝑚𝑒𝑎𝑛𝐷)/𝜇𝑔, where 𝜌 is the density of air ≈ 1.2𝑘𝑔/𝑚3, 𝑈𝑚𝑒𝑎𝑛 is
mean velocity of the turbulent jet, 𝐷 is the diameter of nozzle and 𝜇𝑔 is the dynamic viscosity of air ≈ 1.85× 10−5Pa-s),
quasi-steadily resulting in transition from aperiodic low-amplitude structural oscillations to the periodic instability
through the intermittency route. The system approaches periodic oscillatory behavior around 𝑅𝑒 = 7000. The aperiodic
low amplitude oscillations are chaotic, which is confirmed by the 0-1 test for chaotic system [44]. The Z-values of time
series of strain fluctuations (𝑍𝑠 =

𝑠−𝜇
𝜎

,where 𝜇 and 𝜎 are mean and standard deviation of strain fluctuations respectively)
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Fig. 2 Strain time series zoomed out (left column) and normalized zoomed in (right column) views. (a, d)
chaotic regime (𝑅𝑒 = 2300); (b, e) intermittency regime (𝑅𝑒 = 5800); (c, f) periodic regime (𝑅𝑒 = 8100).

are illustrated for different dynamical states in Fig. 2. The three dynamical states investigated are namely: chaotic
regime (CR), intermittency regime (IR), and periodic regime (PR) [45]. As we travel from chaos to periodicity through
intermittency, the oscillations become more periodic. The corresponding instantaneous vorticity (1/𝑠)[𝜔 = 𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦
],

where 𝑢 and 𝑣 are velocity components in the 𝑥 and 𝑦 directions respectively obtained from the PIV images for the
three dynamical regimes of the surrounding flow field is illustrated in Fig. 3. We note that the strength of the vorticity
increases with an increase in 𝑅𝑒. In other words, as the system transits to limit cycle oscillations or periodic oscillation,
the flow field demonstrates a strong vorticity field. During this regime, the ensuing interaction of the flow and the
structure results in vortex shedding from the lip with a frequency of 12.6Hz (see supplementary material). We can
observe the location of the shear layer from the vorticity field (marked with black dotted lines in Fig. 3) where a strong
vorticity field is present. This zone contains strong velocity gradients. We will now define four strategically located
points on the flow-field (as shown in Fig. 3), at which we will perform Granger causality analysis (Section III.C) to
evaluate the degree of interaction between the flow and cantilever. These four points are as follows, Point A: upstream
of the lip of the cantilever; Point B: right of the lip of the cantilever; Point C: downstream of the lip of the cantilever;
Point D: far downstream in the wake of the cantilever.

III. Results and discussions
This section will use the following methods to analyze the time-series data obtained from flow structure interactions.

First, to characterize the transition of the system to limit cycle oscillations, we will use the correlation network using
time series of strain imposed on the structure during the transition to instability. Such temporal characterization of
structural oscillations which delineate a distinct increase with change in parameter has the potential to be used as
precursors to instability. Subsequently, we will evaluate the correlation between flow velocity and strain on the structure
to evaluate their influence on each other. Finally, we evaluate the cause-effect relation using Granger causality.

A. Weighted correlation network with embedding: temporal characterization of dynamical regimes
This paper discusses a complex network framework that brings out the correlations and mutual statistical similarity

between different parts of a dynamical system’s trajectory obtained from the time series. Here, the connectivity between
various network components doesn’t necessarily imply ‘physical’ vertices and edges but instead reflects the statistical
interrelationships between the dynamics showcased by the system under observation [46]. In this network, the vertices
and edges reflect the correlations between the various subsets of the time series. In general, auto-correlation measures
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Fig. 3 Instantaneous vorticity field at (a) chaotic regime (𝑅𝑒 = 2300), (b) intermittency regime (𝑅𝑒 = 5800),
(c) periodic regime (𝑅𝑒 = 8100). Dotted lines mark strong shear layer regions. A,B,C & D are 4 representative
points to be discussed in Section III.C

.

the linear relationship between lagged values of a time series and thus can help us detect the seasonality or periodicity
of the time series. Since auto-correlation provides a quantitative estimate of periodicity in the time series, we propose a
weighted correlation network with embedding (CN) built using the correlation properties of a time series 𝜙(𝑡) of length
𝑁 . The first step of proper network representation for a time series is to provide an algorithm to define the vertices
and edges depending on what information we want to extract from the time series. The next step is to determine the
proper measures to characterize the system’s dynamics from the rich toolbox of complex network topological quantifiers.
These quantifiers help capture the dynamic system’s various features, which cannot be obtained from conventional
time series analyses. As we construct the complex networks from time series, these networks have specific signatures
corresponding to the dynamical regimes they belong to. Since the response data of the structure correspond to the state
it is currently in, e.g., high amplitude periodic oscillations which are usually associated with aeroelastic instability or
limit cycle oscillations, we can determine the relative state of the system by comparing it with the completely periodic
sinusoidal oscillations. We normalize the time series by their standard deviations to be comparable with the response
from any other measurement data for, e.g., turbulence excitation of wings or control surface excitation if the system goes
through a similar intermittent route to instability. Therefore, the main limitation of CN quantifiers is that these can be
used as potential precursors to the onset of any adverse event if that system takes a similar route to instability.

To construct the CN, we first need to transform the scalar time series into a multivariate state space, which is performed
using Takens’ embedding theorem [47]. It is often used to perform a time delay embedding for state space reconstruction
of time series. To obtain the delayed time vectors, we use a delayed time set [𝜙(𝑖), 𝜙(𝑖 + 𝜏), ..., 𝜙(𝑖 + (𝑚 − 1)𝜏)] of
length 𝑚, where 𝑚 is the embedding dimension and 𝜏 is the delay, is taken. The dimension 𝑚 is obtained from False
Nearest Neighbour Method [48] and the delay is obtained from the first minimum of mutual information vs. delay plot.
It obtains the time-delayed coordinates of the state space, which are maximally statistically independent of each other as
possible (a concept similar to getting the basis functions of a coordinate system). Therefore, the strain at present and
later time is a non-linear combination of almost all the dynamic variables of a system, since between 𝜙(𝑖) and 𝜙(𝑖 + 𝜏),
enough time would have evolved for the system to produce new information in the state space. So, mutual information
collected in this network answers the particular question: in our time series, how much can one learn about the strain
experienced by the structure at 𝜏 samples later, by measuring the strain at present [49]. Average mutual information is
given by the expression:

[𝐼 (𝜙(𝑡), 𝜙(𝑡 + 𝜏)) =
∑︁
𝑖, 𝑗

𝑝𝑖 𝑗 (𝜏)𝑙𝑜𝑔
𝑝𝑖 𝑗 (𝜏)
𝑝𝑖 𝑝 𝑗

] (1)

Where 𝑝𝑖 is the probability of 𝜙(𝑡) lying in the bin 𝑖 of histogram constructed from scalar 𝜙, 𝑝𝑖 𝑗 (𝜏) probability of
𝜙(𝑡) lying in bin 𝑖 and, 𝜙(𝑖 + 𝜏) in bin 𝑗 . Further details regarding the application of this methodology can be obtained

5



from [50]. The first minimum of the 𝐼 vs delay plot is the delay 𝜏. After obtaining the delayed vectors, we create a
matrix translating this set by one time-step over the whole series resulting in a 𝑁 − (𝑚 − 1)𝜏 × 𝑚 matrix, whose i𝑡ℎ row
element is

𝑥𝑖 =

[
𝜙(𝑖) 𝜙(𝑖 + 𝜏) . . . 𝜙(𝑖 + (𝑚 − 1)𝜏)

]
where 𝑖 = 1, 2, ..., 𝑁 − (𝑚 − 1)𝜏 (2)

and 𝑁 is the length of the time series. In the present study, we construct the network from 2000 data points or 𝑁 = 2000.
Now we find the correlation of each row, 𝑥𝑖 , with every other row, 𝑥 𝑗 , (including itself) according to the Pearson
correlation coefficient 𝑟𝑖, 𝑗 :

𝑟𝑖, 𝑗 = 𝑟 (𝑥𝑖 , 𝑥 𝑗 ) =

𝑚∑
𝑘=1

(𝑥𝑖 (𝑘) − 𝑥𝑖) (𝑥 𝑗 (𝑘) − 𝑥 𝑗 )√︂
𝑚∑
𝑘=1

(𝑥𝑖 (𝑘) − 𝑥𝑖)2
√︂

𝑚∑
𝑘=1

(𝑥 𝑗 (𝑘) − 𝑥 𝑗 )2
(3)

where 𝑥𝑖 =
𝑚∑
𝑘=1

𝑥𝑖 (𝑘)/𝑚. Thus, a weighted adjacency matrix 𝑤𝑖 𝑗 is created after subtracting the identity matrix from the

correlation matrix 𝑟𝑖, 𝑗 ,
𝑤𝑖 𝑗 = 𝑟𝑖 𝑗 − 𝛿𝑖 𝑗 , (4)

where 𝛿 is an identity matrix. In the present study, we keep the positive values of the correlation matrix unchanged while
we take the negative values as zero. This network preserves the topology of the attractor, i.e., the network structures
maintain the geometry of the state space. For example, chaotic attractors have fractal topology, while intermittent and
periodic orbits have orbits in the shape of a torus with different degrees of roundness [45]. This change in topology and
therefore the preservation of the state space topology is observed in CN structures in Figure 4. The network can also
find correlations between elements at both short and longer time scales.

In this network, the delay vectors preserve the non-linear correlations between two sets of time series, and the
weighted correlation matrix removes the ambiguity of selecting a critical correlation coefficient. The smaller but
meaningful correlations are not lost, which would have been the case if we had used a binary adjacency matrix. The
network structures of different regimes are shown in Fig. 4. We visualize the network structures in Gephi network
visualization software [51], and ForceAtlas 2 is the algorithm that has been used to create the structures. ForceAtlas
2 is a force-directed layout where the nodes repulse each other, and the edges attract the nodes (similar to springs);
their strength depends on the nodal degree and the distance between the nodes. Additionally, the edge weights also
affect the interactions in this weighted network. The sum of all these interactions leads to a converged state. Further
detailed discussion regarding the layout is provided in [52]. The chaotic attractor is shown in Fig. 4a. We observe
some symmetry, regularity, and non-uniformity in the network due to short-term correlations that occur because of its
deterministic nature. Such small correlations might have been lost if a binary adjacency matrix had been used. As we
transition towards limit cycle oscillations, the network becomes more ordered and uniform. In Fig. 4c, for limit cycle
oscillations, there is a uniform distribution of nodes all over the network in the annular disc (torus in 3-dimensional
phase space).

Fig. 4 Weighted correlation network structures of 𝑠′ at different regimes. (a) chaotic regime (𝑅𝑒 = 2300), (b)
intermittency regime (𝑅𝑒 = 5800), (c) periodic regime (𝑅𝑒 = 8100).

To quantitatively characterize the various topological aspects of the network, one can use various quantification
measures, whose values are expected to evolve with the variation in the dynamical states of the system. In the present
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study, we only describe those quantifiers which has the potential to forewarn onset of instability. The first quantifier is
the weighted Characteristic Path Length (𝐶𝑃𝐿𝑤), which is the mean of all the shortest possible weighted paths between
the nodes of a network. For a network of total number of nodes 𝑁 , the normalized Characteristic Path Length can be
mathematically expressed as 𝐶𝑃𝐿∗

𝑤 =
∑

𝑖≠ 𝑗 𝑤𝑖 𝑗𝑑𝑖 𝑗/(𝑁 (𝑁 − 1)), where 𝑑𝑖 𝑗 is the shortest possible path between node 𝑖
and 𝑗 and 𝑤𝑖 𝑗 is the corresponding weight of that path. The second quantifier is the average weighted degree (⟨𝑘𝑤⟩),
which is defined as the mean of the number of possible weighted connections for each node of a network over the
whole network. Mathematically, it can be expressed as ⟨𝑘𝑤⟩ =

∑
𝑖≠ 𝑗 𝑤𝑖 𝑗/𝑁 . Finally, the average betweenness centrality

(𝐶𝑏 (𝑛)) measures how a node lies on the path between other nodes. The nodes with high betweenness influence the
network considerably because they control the connectivity between the different nodes of a network. Mathematically,

betweenness centrality is defined as 𝐶𝑏 (𝑛) =
𝑁∑

𝑖, 𝑗≠𝑛

𝜎̂𝑖, 𝑗 (𝑛)/𝜎̂𝑖, 𝑗 where, 𝜎̂𝑖, 𝑗 is the number of shortest paths between

nodes 𝑖 and 𝑗 and 𝜎̂𝑖, 𝑗 (𝑛) is the number of shortest paths between nodes 𝑖 and 𝑗 which passes through the node 𝑛. To
simplify visualization, we normalize each quantifier (denoted by *) by dividing their corresponding values by the value
of the quantifier for the sinusoidal time series.

Fig. 5 Network properties of weighted correlation network.(a) Variation of 𝐶𝑃𝐿∗
𝑤 with 𝑅𝑒. (b) Variation of

⟨𝑘∗𝑤⟩ with 𝑅𝑒. (c) Variation of ⟨𝐶∗
𝑏
⟩ with 𝑅𝑒.

The evolution of these network quantifiers for CN with Reynolds number (𝑅𝑒) is illustrated in Fig. 5. The
quantification measures of CN are highly dependent upon the correlation in state-space between the different subsets of
the whole time series. As the 𝑅𝑒 crosses a critical value (𝑅𝑒 > 7000) required for the onset of limit cycle oscillations, the
characteristic path length, 𝐶𝑃𝐿∗

𝑤 , sharply increases to a higher value. This dramatic change is due to more correlations
in the periodic regime, resulting in an increased number of connections in the network. Since these connections are
weighted by the correlations as observed from the network structures in Fig. 4, the mean path length is larger for each
connection occurring due to the correlation in states in the time series. Next, we focus on the degree of a node, which
represents the node’s connectivity. The variation of average degree (⟨𝑘∗𝑤⟩) with 𝑅𝑒 in Fig. 5b shows a sudden increase
as limit cycle oscillations is initiated for (𝑅𝑒 > 7000). We note that the correlation between different states increases
substantially with an increase in periodicity in the flow-structure interaction system. In a periodic regime, there is higher
synchronicity or connectivity between the nodes than the chaotic attractor, which is reflected in increased ⟨𝑘∗𝑤⟩. The
third quantifier, betweenness centrality, gives information about regions with a low nodal density that separates the
regions of a high nodal density in a network. For periodic data, there will be a uniform distribution of the regions with
a high nodal density since the correlations in time series occur at regular intervals, unlike the chaotic regime, where
the correlations are not so uniformly distributed. In chaotic attractors, the presence of nodes that monopolizes the ties
between low nodal density and high nodal density (also known as geometric bottlenecks) results in a larger number of
nodes with higher connectivities [53]. Hence, betweenness centrality is larger for chaotic regime and low for periodic
regime (high 𝑅𝑒) as seen in Fig. 5c.

In summary, we can see that quantification measures of a correlation network constructed from strain data in an
aeroelastic system show drastic changes at the onset of instability or periodic oscillations. These markers, thus, has the
potential to be used as precursors to instability and therefore, can be the subject of detailed study in future. Now that
we obtained information about the temporal correlations of strain data from the cantilever, we focus on how there is a
statistical linkage between the flow to structural oscillations and vice versa in both temporal and spatial dimensions. The

7



goal is to develop a causal relationship between the flow dynamics and the cantilever. To do this, first, we investigate the
statistical correlations between velocity and structural fluctuations.

B. Evolution of bi-variate correlations
In the context of flow-structure interaction, we can use multivariate correlations to extract information on how

correlations between the structure and fluid flow evolve with time. Although such a correlation cannot show if there is a
cause-effect relationship between two variables, it can provide us an idea of whether the mutual influence between the
variables is strong enough to perform prediction-based statistical analysis on them. Obtaining this correlation is, indeed,
the first step in assessing the cause-effect relationship between variables.

To perform correlation analysis, we use the Pearson correlation between 𝑍𝑣 and 𝑍𝑠, the normalized velocity, and
strain fluctuations, respectively (defined in Section II). This approach aims to observe the evolution of the correlations
between velocity and strain, calculated at multiple sub-periods, with time. The length of the sub-period is 𝑛 = 40, larger
than the minimum sample size for Pearson correlation given by David [54] and Bonnet et al [55]. For 𝑛 samples, the
correlation is given by,

𝑟 (𝑍𝑣 , 𝑍𝑠) =

𝑛∑
𝑘=1

(𝑍𝑣 (𝑖) (𝑘) − 𝑍𝑣) (𝑍𝑠 (𝑖) (𝑘) − 𝑍𝑠)√︂
𝑛∑

𝑘=1
(𝑍𝑣 (𝑖) (𝑘) − 𝑍𝑣)2

√︂
𝑛∑

𝑘=1
(𝑍𝑠 (𝑖) (𝑘) − 𝑍𝑠)2

(5)

where, 𝑍𝑣 and 𝑍𝑠 is the mean of normalized velocity and strain fluctuations respectively.
We illustrate the results of this analysis for the three dynamical regimes in Fig. 6a-c. For chaotic regime (CR), we

observe that the correlation is weak for almost all the instances. The weak correlation is because the interaction between
the turbulent flow field and the aperiodic oscillations of the cantilever is uncorrelated in time. Since there is very little
statistical influence between the fluctuations in the turbulent flow and the cantilever fluctuations, we observe very low
values of 𝑟 (𝑍𝑣 , 𝑍𝑠) in Fig. 6a.

As we increase the 𝑅𝑒, the vorticity at the shear layer start to become stronger, as illustrated in Fig. 3b. As the bar
starts oscillating with a higher amplitude, the fluctuations near that region start oscillating in tandem with the cantilever.
With an increase in flow rate or 𝑅𝑒, there is an increase in periodic bursts interspersed with chaotic fluctuations, which
is known as intermittency. We illustrate the variation of correlation with the position of the bar in Fig. 6b. Although
𝑟 (𝑍𝑣 , 𝑍𝑠) for other parts of the flow field varies with time, there is substantial and mostly consistent either high positive
or high negative 𝑟 (𝑍𝑣 , 𝑍𝑠) along with the shear layer. The high 𝑟 (𝑍𝑣 , 𝑍𝑠) is primarily because the shear layer near the
lip oscillates periodically due to the movement of the bar.

Moreover, the influence of oscillations of the cantilever on the flow is maximum at the lip because it is the point of
maximum deflection. Vortex shedding occurs in the wake of the cantilever lip at a frequency different from cantilever
oscillations. At this 𝑅𝑒, the perturbations produced by vortex shedding and structural oscillation near the wake of the lip
are unable to reach the state of resonance, a behavior also observed for other geometries of flow-structure interactions
[56].

With a further increase in 𝑅𝑒, the system reaches the state of limit cycle oscillations. During this periodic state,
the vortex shedding due to the movement of the bar causes the bar to oscillate in the transverse direction to the mean
flow. At this stage, the strong influence of vortex shedding emerges as the shedding frequency, and frequency of the
oscillation in the cantilever becomes similar[57] as shown in Fig. 7. This results in higher magnitude of the correlation
between 𝑍𝑠 and 𝑍𝑣 , a phenomenon known as ‘lock-in’ [58] and shown in Fig. 6c. Similar lock-in phenomena between
the frequency of buffeting flow and of an elastically suspended airfoil has also been observed in aeroelastic systems
[59]. Lock-in between acoustic pressure and heat release fluctuations has also been observed in thermoacoustic systems
[60] during combustion instability. During periodic regime (PR), there are large-amplitude periodic oscillations of the
cantilever and the flow field. The shear layer is positively correlated with the bar and the vortex shedding causing them
to oscillate simultaneously during the upwards trajectory of the cantilever.

We can use the information about the extent of mutual statistical correlation between the different regions’ flow
and the cantilever to develop a cause-effect relationship between the individual oscillators. While causation implies
correlation, the observed correlation does not warrant causation. Thus, in the following section, we will explore the
viability of using Granger causality, a well-established statistical hypothesis test, to see if causality exists in an aeroelastic
system that transitions to limit cycle oscillations.
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Fig. 6 Variation of correlation between 𝑍𝑣 and 𝑍𝑠 with movement of the cantilever at (a) chaotic regime
(𝑅𝑒 = 2300), (b) intermittency regime (𝑅𝑒 = 5800), (c) periodic regime (𝑅𝑒 = 8100).
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Fig. 7 FFT of (a) normalized strain and (b) normalized velocity fluctuations during limit cycle oscillations
(position of probe in the flow marked in the corresponding vorticity field).

C. Causal dependencies between flow and structure
Next, we focus on the directional dependence or the causalities between different variables. Among many methods,

we can quantify this dependence using Granger causality [39]. It is, indeed, one of the earliest and most well-established
statistical methods to determine and quantify the causal relationship between various time series. The method verifies if
inclusion of past observations of the ‘cause’ 𝑦(𝑡) in the linear regression model comprising of 𝑥(𝑡) and 𝑦(𝑡) reduces
the error in predicting the ‘effect’ 𝑥(𝑡). If this condition is satisfied, the method concludes that the time series 𝑥(𝑡) is
Granger caused by 𝑦(𝑡) (both stationary in time). Therefore, Granger causality provides a statistical measure of how the
change in one time series can be used to predict the change in another time series in the future.

To perform this analysis, first, we provide a univariate linear autoregression model for time series 𝑥(𝑡) with lag 𝜏,
which is less than the length of the time series 𝑁 ,

𝑥(𝑡𝑚) =
𝜏∑︁
𝑖=1

𝑝𝑖𝑥(𝑡𝑚−𝑖) + 𝜖1 (𝑡𝑚) (6)

and a bi-variate linear regression model which can be expressed as,

𝑥(𝑡𝑚) =
𝜏𝑥∑︁
𝑖=1

𝑝𝑖𝑥(𝑡𝑚−𝑖) +
𝜏𝑦∑︁
𝑗=1

𝑞 𝑗 𝑦(𝑡𝑚− 𝑗 ) + 𝜖2 (𝑡𝑚) (7)

In equations 6 and 7, 𝑝𝑖 , 𝑝𝑖 and 𝑞𝑖 are the coefficients of the model while 𝜖1 and 𝜖2 are their respective prediction errors.
The lags 𝜏𝑥 and 𝜏𝑦 are obtained using Bayesian Information Criterion (BIC) [61]. In order to conclude whether 𝑦(𝑡)
causes 𝑥(𝑡), the coefficient 𝑞𝑖 must be significantly different than 0. This is determined by performing the residual sum
of squares based F-test of the null hypothesis that 𝑞𝑖 = 0. The F-test can be expressed as:

𝐹 =
𝑅𝑆𝑆𝑢 − 𝑅𝑆𝑆𝑙/𝜏𝑦

𝑅𝑆𝑆𝑙/(𝑇 − 𝜏𝑦 − 𝜏𝑥 − 1) ∼ 𝐹 (𝜏𝑦 , 𝑇 − 𝜏𝑦 − 𝜏𝑥 − 1) (8)

where, 𝑅𝑆𝑆𝑢 denotes the residual sum of squares without lagged times series 𝑦(𝑡𝑚), and 𝑅𝑆𝑆𝑙 denotes the residual sum
of squares with lagged times series 𝑦(𝑡𝑚). If 𝐹 (𝜏𝑦 , 𝑇 − 𝜏𝑦 − 𝜏𝑥 − 1) is less than the corresponding 𝐹𝛼 from the F-table,
we reject the null hypothesis. We have used a significance level of 𝛼 = 0.05 in the present study, i.e., if there is more
than 95% probability that 𝑞𝑖 ≠ 0, we conclude that 𝑦(𝑡) Granger causes 𝑥(𝑡). Keeping lower significance levels might
prevent the identification of the causal variable, commonly known as Type II error in statistics, while larger significance
levels can lead to spurious causalities.

The current study tries to obtain the causal relationship between velocity fluctuations and strain fluctuations. We use
the method outlined by Jiang et al. [62] to procure information about the evolving causal dependencies in the system.
However, since the motivation of the current study is to identify the most influential causal dependencies, we look at
the probability of occurrence of each of the possible causalities. In this method, we obtain the time series of flow
velocity fluctuations (𝑍𝑣) from points A, B, C, and D in the flow field (illustrated in Fig. 3) and the time series of strain
fluctuations (𝑍𝑠) of length 𝑇 , both normalized by their respective standard deviations. Then, for each of the larger time
series, we create a smaller sub-period of length 𝑛𝑡 . The criteria for choosing this sub-period are as follows: (1) the time
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series for each sub-period must be stationary, (2) the length of the sub-period should be sufficient to provide information
about the various short-term transitions, and (3) the causal dependencies should not mirror the larger time series. Once
we fix the sub-period size using the above criteria, we slide this sub-period of constant length by a single time step
over the whole time series, therefore obtaining information about the evolution of causal dependencies at each time
interval. In the current study, there are only four possibilities of causality: (1) velocity causes strain (𝑣 → 𝑠), (2) strain
causes velocity (𝑠 → 𝑣), (3) both strain and velocity cause each other (𝑣 ↔ 𝑠) and (4) none of the variable cause each
other (𝑣 × 𝑠). Here, 𝑣 × 𝑠 denotes that we can ascertain no significant causal dependencies between the variables. For
bidirectional causality (𝑣 ↔ 𝑠), the implications here are two-fold: either both the time series are indeed causal to each
other, or there is a presence of one or more common causal processes mutually driving both the time series [63]. A
further investigation will be required to differentiate between such causalities, which is beyond the focus of the present
study.

We perform Granger analysis for these four representative points in the flow and illustrate the individual probabilities
of occurrence of these four possible causalities in Fig. 8. For CR, as also outlined in Section III.B, there is no region
with any strong directional dependence between velocity and strain which we have illustrated in Fig. 8a. This low
dependence is reasonably intuitive since the correlations between the movement of the cantilever and the turbulent
velocity fluctuations are very weak. Therefore, it is difficult to identify a causal variable that can help predict the
other dependent variable. Points A and B are perturbed weakly by the movement of the cantilever. Even though the
correlations are weak, the causality analysis is sensitive to the chaotic structural oscillations and their effect on the flow.
That is why we observe an increase in the probability of both (𝑠 → 𝑣) and (𝑣 → 𝑠) in point C, located just downstream
of the lip. At point C, as observed from Fig. 3a, there is a strong velocity gradient due to the presence of the shear layer,
which increases the directional dependence between 𝑣 and 𝑠. Point D in the flow is too far away from the lip or shear
layer to be affected by the cantilever’s oscillations. Therefore, we observe no significant contribution from (𝑠 → 𝑣) and
(𝑣 → 𝑠).

At a higher 𝑅𝑒 and in the IR state, there is slowly an emergence of causal dependence in the flow adjacent to the
cantilever (Points A, B, and C). Here, we observe that there is an increase in the probability of strain Granger causing
velocity (𝑠 → 𝑣) in this region in Fig. 8b. Since the effect of the structural oscillations is most potent along the path of
oscillation of the cantilever, point B shows the highest probability of (𝑠 → 𝑣), while at A and C, it is marginally lesser.
Higher correlations in this region, as also observed in Section III.B, is consistent with the fact that the high amplitude
oscillations of the cantilever cause the intermittent velocity fluctuations to originate, resulting in the emergence of order
in the flow field, i.e., correlated shear layer oscillations and vortex shedding. The movement of the cantilever essentially
controls the vortex shedding process in this regime, as the oscillation frequency approaches the natural frequency of the
cantilever. The mutual dependence between flow and velocity (𝑣 ↔ 𝑠) increases as we move downstream. This increased
dependence can be because the vortex shedding frequency is different from the natural frequency of the cantilever.
There is a mutual causality between them, i.e., the structural oscillations affect the vortex shedding, which affects the
cantilever’s movement. Both are causing each other as large-scale perturbations due to the structural oscillations and
vortex shedding occurring at different frequencies, neither of which are phase-locked.

As an even higher 𝑅𝑒, when we reach the PR state, the high amplitude fluctuations of the shear layer and the vortex
shedding is driving the periodic oscillations of the cantilever, and hence at all locations (A, B, C, and D), we observe high
probability for velocity Granger causing strain (𝑣 → 𝑠), as shown in Fig. 8c. During this regime, the vortex shedding
frequency escalates to the oscillating frequency of the cantilever [64]. It is to be noted that since there is a broadband
spectrum due to the high turbulence (see supplementary material), the structure’s natural frequency is one of the many
peak frequencies present in the turbulent flow. Despite this, the vortex shedding frequency locks on to this particular
frequency having a strong amplitude as we increase the 𝑅𝑒 (in our case, the natural frequency of 12.5Hz) resulting in
sustained high amplitude oscillations. Here, the flow regime constantly feeds energy to the cantilever during each cycle
of oscillations, resulting in instability-induced and sustained high amplitude cantilever oscillations. The momentum to
the cantilever resulting in high amplitude oscillations is imparted by the turbulent jet (therefore, the Granger causal
dependence) itself, which has a large momentum of its own. Therefore, the resultant vortex-shedding phenomenon
and the turbulent jet itself cause the cantilever to oscillate at high amplitude at its natural frequency. We observe the
considerable influence of the high amplitude oscillations of the cantilever on flow (Probability of 𝑠 → 𝑣 is ≈ 0.15) at
A, B, and C, since they are located near the highly oscillating lip of the cantilever. In the wake of the cantilever, far
downstream at D, the influence of the cantilever is minimized. Therefore, there is a decrease in the probability of 𝑠 → 𝑣.
A similar response has also been observed in the case of a circular cylinder in a fluid flow by Bishop [65].
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(a)

(b)

(c)

Fig. 8 All possible probabilities of causalities between flow and structure for (a) chaotic regime (𝑅𝑒 = 2300), (b)
intermittency regime (𝑅𝑒 = 5800), (c) periodic regime (𝑅𝑒 = 8100). Probabilities are illustrated for the 4 points
marked in Fig. 3.

IV. Summary and Conclusions
The current investigation has illustrated how we can use time series-based methods to provide precursors to the onset

of limit cycle oscillations. By mapping the temporally fluctuating strain into a complex network framework, we have
used various quantification parameters that can quantify the topological aspects of the complex network as potential
precursors to instability. These quantifiers capture the transition of the dynamical system, in our case, the oscillating
cantilever, from aperiodic to sustained periodic oscillations. Each precursor illustrated in this study has its merits and
specific purpose. As we approach limit cycle oscillations, each quantifier varies with a different level of sensitivity and
robustness. The characteristic path length and average degree vary rapidly after intermittency, while the betweenness
centrality varies less drastically. Therefore, one can use multiple quantifiers in combination with each other to provide
a reliable set of precursors for the onset of the limit cycle oscillations that prevents false positive and false negative
warnings or even a single one based on specific requirements of the system.

To illustrate the causal dependence between the flow and the cantilever, we first obtain the mutual statistical
correlation between the variables through the bivariate Pearson correlation for the whole flow field. For the chaotic
regime, we observe very little statistical correlation between the variable as the structural oscillations are chaotic, and
there is not much influence on the turbulent fluctuations by the cantilever. We observe a stronger correlation between
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intermittency and periodic regime as order emerges in the flow structure interaction system. There is a strong positive
correlation along the shear layer due to the correlated movement of the cantilever and the flow field. Once we obtain the
statistical extent of mutual correlation between the variables, we try to determine the directional dependence between
them. For the chaotic regime, due to a low statistical correlation between 𝑣 and 𝑠, we cannot obtain a clear causal
dependence between them. However, fluctuations in the regions in the flow near the cantilever lip are affected by the
movement of the cantilever. With the emergence of order during intermittency, we observe that the structural oscillations
cause velocity fluctuations in the vicinity of the lip of the cantilever. Further downstream, there is mutual causality due
to the effect of vortex shedding and high amplitude oscillations of the cantilever. Further increase in 𝑅𝑒 results in limit
cycle oscillations when the periodic vortex shedding and shear layer oscillations lock onto the transverse movement of
the cantilever. The large momentum of the turbulent jet and the vortex shedding ensuing due to the interaction causes
the sustained high amplitude oscillations of the cantilever at its natural frequency. This combined system oscillates at
the oscillation frequency of the cantilever.
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