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Abstract

Hybrid zones can be studied by modeling clines of trait variation (e.g., morphology, genetics) over a linear transect. Yet, hybrid zones can also be
spatially complex, can shift over time, and can even lead to the formation of hybrid lineages with the right combination of dispersal and vicari-
ance. We reassessed Sibley's (1950) gradient between Collared Towhee (Pipilo ocai) and Spotted Towhee (Pipilo maculatus) in Central Mexico
to test whether it conformed to a typical tension-zone cline model. By comparing historical and modern data, we found that cline centers for
genetic and phenotypic traits have not shifted over the course of 70 years. This equilibrium suggests that secondary contact between these
species, which originally diverged over 2 million years ago, likely dates to the Pleistocene. Given the amount of mtDNA divergence, parental
ends of the cline have very low autosomal nuclear differentiation (F, = 0.12). Dramatic and coincident cline shifts in mtDNA and throat color
suggest the possibility of sexual selection as a factor in differential introgression, while a contrasting cline shift in green back color hints at a
role for natural selection. Supporting the idea of a continuum between clinal variation and hybrid lineage formation, the towhee gradient can
be analyzed as one population under isolation-by-distance, as a two-population cline, and as three lineages experiencing divergence with gene
flow. In the middle of the gradient, a hybrid lineage has become partly isolated, likely due to forested habitat shrinking and fragmenting as it
moved upslope after the last glacial maximum and a stark environmental transition. This towhee system offers a window into the potential
outcomes of hybridization across a dynamic landscape including the creation of novel genomic and phenotypic combinations and incipient
hybrid lineages.
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Introduction 2019), asymmetric introgression of advantageous traits
(Bennett et al., 2021), and gene flow on a complex landscape
involving more than two species (Pardo-Diaz et al., 2012).
Phylogenomic data are also revealing that many organismal
radiations bear the hallmark of ancient hybridization (Barley
et al., 2022; DeRaad et al., 2022; Ferreira et al., 2021; Meier
et al., 2017) and many modern species are products of signif-
icant genetic introgression (Racimo et al., 2015; Schumer et
al., 2018) or even hybrid speciation (Mallet, 2007).

Despite advances in our understanding of hybridization,
the connection between long-studied hybrid zones and evo-
lutionary radiations comprised of species showing evidence
for introgression remains murky. Given the dynamic climate
history of the Quaternary, several scenarios are imaginable
where hybrid zones could contribute to hybrid lineage for-
mation. In one scenario, lineages in the process of speciation
might come back into contact, exchanging genes for a while,

“If all animals currently displayed the patterns of variation
that have been described in the Mexican red-eyed towhees,
it would be impossible ever to arrive at a species con-
cept. It is fortunate, however, that a few examples of this
type are available for study, for they present the natural
proving grounds for the Neo-Darwinian theory of species
formation.”

Charles G. Sibley (1950)

Hybrid zones have long been proving grounds for evolution-
ary theory (Barton & Hewitt, 1985; Harrison & Harrison,
1993; Hewitt, 1988; Mallet & Barton, 1989). Advances in
cline theory provided a mathematical framework for the
study of hybrid zones (Barton, 1979; Endler, 1977). But
clinal variation across hybrid zones—the changes in traits

across a linear transect—is also a simplification of com-
plex phenomena that vary in both space and time. Recently,
genomic data have exposed the vast array of potential out-
comes when hybridization occurs in nature (Taylor & Larson,
2019), including dynamic shifts across time periods (Wielstra,

before diverging again through vicariance, producing retic-
ulate evolution in gene trees and discordance with the spe-
cies phylogeny (Cui et al., 2013; Good et al., 2003). Another
possibility is that portions of a hybrid zone might become
isolated through vicariance, leaving behind hybrid lineages on
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their own evolutionary trajectory (Dowling & Secor, 1997;
Hermansen et al., 2011; Ottenburghs, 2018).

Some recent empirical studies suggest that when hybrid
zones shift or break apart, they can leave behind isolated lin-
eages of hybrid origin. In western North America, Common
Ravens (Corvus corax) are a mosaic lineage formed from
ancient hybridization between non-sister species (Kearns et
al., 2018). Likewise, the Italian Sparrow (Passer italiae) likely
formed as a hybrid species when House Sparrows (P. domesti-
cus) and Spanish Sparrows (P. bispaniolensis) came into con-
tact (Hermansen et al., 2011), although the species is now
largely isolated reproductively and geographically. So far,
examples of hybrid zones spawning isolated hybrid lineages
are few and often controversial because they involve assump-
tions about the prior geographic ranges of modern species. To
better understand the link between hybrid zones and hybrid
lineage formation, we need more examples of hybrid zones
experiencing vicariance.

In the 1940s, Charles Sibley embarked on one of the first
and still most classic studies of avian hybridization between
what are now called the Collared Towhee (Pipilo ocai) and
Spotted Towhee (Pipilo maculatus) in Mexico. The system
had many compelling features to suit Sibley’s goal of studying
“the species problem.” Both species are distributed in mon-
tane forests, with varying degrees of hybridization where
they come into contact. The most well-studied of these con-
tact areas stretches across the Trans-Mexican Volcanic Belt
(TMVB) from Collared Towhee populations in the west to
Spotted Towhee populations in the east (Figure 1A). Sibley’s
plots of trait change along this hybrid gradient (Sibley, 1950,
1954) were striking, influencing both the modern synthesis
(Dobzhansky, 1955; Mayr, 1963) and the development of
cline theory (Endler, 1977).

Since Sibley’s pioneering work, genetic studies have val-
idated and extended many of his conclusions, especially
the clinal nature of variation in both phenotypic traits and
genetic loci in the towhees (Kingston et al., 2012; Kingston
et al., 2014). Yet, both Sibley’s data and modern work con-
tain hints that the situation might be more complex than a
simple cline and could involve both vicariance and incipi-
ent lineage formation. Sibley (1950) recognized subspecies
breaks in the phenotypic clines, and genetic ancestry based
on amplified fragment length polymorphisms suggested
population substructure across the TMVB (Kingston et al.,
2014). A phenotypically stable form in the eastern part of
the TMVB is recognized by some ornithologists as a distinct
taxon, called the Olive-backed Towhee (Howell & Webb,
1995), which might overlap geographically with a sub-
species of the Spotted Towhee (P. maculatus macronyx). A
more complete understanding of this gradient, integrating
phenotypic, genomic, and environmental data, would help
distinguish whether this case of secondary contact is best
described by a model of continuous divergence, a sigmoidal
cline model, or a multispecies model corresponding to geo-
graphic substructuring. Beyond helping resolve taxonomy,
testing these competing models would reveal the evolution-
ary outcomes of secondary contact across a complex bio-
geographic landscape shedding light on the roles of specific
isolating barriers and the ability of hybridization to generate
a novel and lasting variation.

Our goal was to assess the spatial and temporal context
of hybridization between the Collared Towhee and Spotted
Towhee using modern and historical specimens spanning the
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TMVB (Figure 1A). We start by using cline models to analyze
phenotype and genotype, both linked to a set of historical
specimens spanning the gradient. While genetics and pheno-
type have been studied independently, they have never been
analyzed together from the same specimens to understand
genotype-phenotype associations and differential introgres-
sion patterns. Second, we test whether cline centers have
shifted over 70 years by comparing our historical results to
modern data (Kingston et al., 2014; Kingston et al., 2017),
allowing us to determine whether introgression is operating
on ecological timescales, perhaps the result of modern hab-
itat alterations, as Sibley (1950) speculated, or evolutionary
timescales more likely influenced by habitat shifts during gla-
cial cycling. Next, we expand from cline models to assess evi-
dence of lineage formation using phylogenetics, population
genetics, and demographic modeling. Finally, we address the
association between niche variation and genetic breaks using
landscape-level environmental data associated with pho-
to-vouchered observations.

Methods

Genetic and phenotypic data collection

For DNA analysis, we sampled 32 historical museum speci-
mens, 4 individuals (or 8 alleles) from each of 8 populations
across the TMVB (Table 1; Figure 1A) from Jalisco in the
west to Puebla in the east (average distance between sites
= 82 km; range = 40-116 km). Specimens from 7 of 8 sites
were collected from 1939 to 1954 by Chester C. Lamb for
the Moore Laboratory of Zoology at Occidental College.
Specimens from one site derive from Sibley’s original col-
lections, which were made during a similar time period
(1946-1950), and which Lamb’s transect closely parallels.
The sampling design also mirrors a modern transect col-
lected from 2008 to 2009 (Kingston et al., 2014; Kingston
et al.,2017).

We scored plumage traits of vouchered specimens for the
32 genotyped individuals and a broader sample of 74 indi-
viduals at the transect sites following the key published in
Sibley (1950). Each trait received a value from 0 to 4, where 0
represents pure Collared Towhee phenotype, and 4 represents
pure Spotted Towhee phenotype: pileum (0 = rufous cap; 4
= all-black head), back color (0 = green; 1 = black), throat
color (0 = white; 4 = black), back spotting (0 = none; 4 = fully
spotted), tail spotting (0 = none; 4 = fully spotted), and flanks
(0 = gray; 4 = rufous).

DNA sequencing and SNP calling

We extracted DNA from a small fragment of the toepad of
each specimen. We digested the samples and extracted DNA
using phenol-chloroform (Tsai et al., 2020), with negative
controls and strict protocols for preventing cross-contamina-
tion, including carrying out the extraction in a clean room
using dedicated equipment and consumables. We performed
library preparation using a Kapa kit (Kapa Biosystems, Inc.)
with custom index tags (Glenn et al., 2019). We pooled eight
samples for target enrichment using the tetrapod 5K ultra-
conserved element (UCE) probe set (Faircloth et al., 2012).
We combined the enriched pools at equimolar ratios and
sequenced on a partial lane of an Illumina HiSeq 2500 using
125 base pair, paired-end (PE125) sequencing. We obtained a
total of 94 million read pairs with an average of 2.9 million
read pairs per sample.
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Figure 1. (A) Distribution map adapted from Sibley (1950), with the distribution of Spotted Towhee (P maculatus) shown in gray and the distribution
of Collared Towhee (P ocal) shown in light red. The inset plot shows the eight genetic sampling localities. Towhee illustrations by Alex Warnick. (B)
Haplotype network of the ND2 gene with hash marks indicating mutation steps. Pie colors represent the proportion of that haplotype represented in
the eight populations. (C) ADMIXTURE plot showing the genetic assignment of each individual with two (K = 2) and three (K = 3) genetic clusters.

To assemble UCEs from raw reads, we used illumiproces-
sor (Faircloth, 2014), a wrapper around the program trim-
momatic v.0.39.1 (Bolger et al., 2014), to clean and trim raw
reads. We then used SPAdes v.3.12.0 (Bankevich et al., 2012)
to assemble the cleaned reads into contigs and scaffolds. We

then followed the single nucleotide polymorphism (SNP)
calling pipeline used by McCormack et al. (2016). Briefly,
we used phyluce (Faircloth, 2016) to match the assembled
contigs to the probe set and determine how many loci were
successfully assembled in each sample. We then built a probe
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Table 1. Specimens used for linked genomic and phenotypic analysis.
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Museum Catalog Location Site Lat Lon

MLZ 26980 1 mi N Tapalpa, Jalisco, Mexico 1 19.960772 -103.75855
MLZ 26978 1 mi N Tapalpa, Jalisco, Mexico 1 19.960772 -103.75855
MLZ 26984 1 mi N Tapalpa, Jalisco, Mexico 1 19.960772 -103.75855
MLZ 26979 1 mi N Tapalpa, Jalisco, Mexico 1 19.960772 -103.75855
MVZ 122223 4 mi S Mazamitla, Jalisco, Mexico 2 19.8573541 -103.01944
MVZ 122216 4 mi S Mazamitla, Jalisco, Mexico 2 19.8573541 -103.01944
MVZ 122217 4 mi S Mazamitla, Jalisco, Mexico 2 19.8573541 -103.01944
MVZ 122219 4 mi S Mazamitla, Jalisco, Mexico 2 19.8573541 -103.01944
MLZ 24113 Rancho La Cofradia: 4 mi E Uruapdn, Michoacdn, Mexico 3 19.431778 -102.01743
MLZ 24115 Rancho La Cofradia: 4 mi E Uruapan, Michoacan, Mexico 3 19.431778 -102.01743
MLZ 24116 Rancho La Cofradia: 4 mi E Uruapdn, Michoacdn, Mexico 3 19.431778 -102.01743
MLZ 24118 Rancho La Cofradia: 4 mi E Uruapan, Michoacan, Mexico 3 19.431778 -102.01743
MLZ 55360 Lagunita, 13 mi NE Ario de Rosales, Michoacan, Mexico 4 19.35558 -101.67106
MLZ 55363 Lagunita, 13 mi NE Ario de Rosales, Michoacan, Mexico 4 19.35558 -101.67106
MLZ 55366 Lagunita, 13 mi NE Ario de Rosales, Michoacan, Mexico 4 19.35558 -101.67106
MLZ 55361 Lagunita, 13 mi NE Ario de Rosales, Michoacan, Mexico 4 19.35558 -101.67106
MLZ 57701 Puerto Morillos: 37 mi E Morelia by road, Michoacdn, Mexico N 19.66662 -100.80694
MLZ 57703 Puerto Morillos: 37 mi E Morelia by road, Michoacan, Mexico N 19.66662 -100.80694
MLZ 57719 Puerto Morillos: 37 mi E Morelia by road, Michoacdn, Mexico N 19.66662 -100.80694
MLZ 57707 Puerto Morillos: 37 mi E Morelia by road, Michoacan, Mexico N 19.66662 -100.80694
MLZ 30405 Puerto Lengua de Vaca, 15 mi E Zitacuaro, Mexico, Mexico 6 19.435109 -100.18668
MLZ 30413 Puerto Lengua de Vaca, 15 mi E Zitacuaro, Mexico, Mexico 6 19.435109 -100.18668
MLZ 30415 Puerto Lengua de Vaca, 15 mi E Zitacuaro, Mexico, Mexico 6 19.435109 -100.18668
MLZ 30408 Puerto Lengua de Vaca, 15 mi E Zitacuaro, Mexico, Mexico 6 19.435109 -100.18668
MLZ 41012 5 mi E Lerma, Mexico, Mexico 7 19.289842 -99.435342
MLZ 41050 S mi E Lerma, Mexico, Mexico 7 19.289842 -99.435342
MLZ 41271 5 mi E Lerma, Mexico, Mexico 7 19.289842 -99.435342
MLZ 41051 § mi E Lerma, Mexico, Mexico 7 19.289842 -99.435342
MLZ 23076 El Venerable, 4 mi E Rio Frio, Puebla, Mexico 8 19.352327 -98.608858
MLZ 23077 El Venerable, 4 mi E Rio Frio, Puebla, Mexico 8 19.352327 -98.608858
MLZ 46829 El Venerable, 4 mi E Rio Frio, Puebla, Mexico 8 19.352327 -98.608858
MLZ 46851 El Venerable, 4 mi E Rio Frio, Puebla, Mexico 8 19.352327 -98.608858

MLZ = Moore Laboratory of Zoology, Occidental College; MVZ = Museum of Vertebrate Zoology, University of California, Berkeley.

match database and a consensus fasta file for the sample with
the greatest number of assembled loci, to serve as a pseu-
do-reference genome for mapping and calling SNPs for all
samples. This was sample MVZ:Bird:122216, from which we
recovered 4,756 UCE loci (mean among all samples = 4,480;
range = 3,954-4,756). The mean UCE contig length for this
pseudo-reference genome was 356 base pairs (bp), with a
range of 175-3,250 bp. We used bwa v.0.7.15 (Li & Durbin,
2009) to map cleaned reads for each sample to this pseu-
do-reference genome, and converted the resulting SAM files
to sorted BAM files using SAMzools v.1.3.1 (Li et al., 2009).
We then removed PCR duplicates using Picard v.2.20.4 (dis-
tributed with phyluce; Broad Institute, 2019) and realigned
each BAM file using Genome Analysis Tool Kit (GATK)
v.3.8.1 (McKenna et al., 2010). We used GATK to call hap-
lotypes from each BAM file as a gvcf file and then genotyped
each sample, outputting a single multi-sample gvcf file. We
extracted SNPs from this file, outputting a variant call format
(vcf) file, removing SNPs with the following parameters: <5
bps from any insertion or deletion, found in a cluster of three

or more SNPs within a 10 base pair window, SNP quality
score <30, SNP quality score divided by allele depth (QD) <5,
or strand bias >60.

We further filtered the resulting SNP dataset with a series
of quality metrics using a custom filtering and visualization
pipeline built using the R packages SNPfiltR (DeRaad, 2022)
and v¢fR (Knaus & Griinwald, 2017). These filters included
removing all SNPs with more than two alleles, coding all
heterozygous genotypes falling outside of a 0.25-0.75 allele
balance range as missing, and removing all SNPs with a
mean depth of coverage >100 (potential paralogs), in accor-
dance with best practices for filtering reduced representation
genomic datasets (O’Leary et al., 2018). We also visualized
sample clustering across a suite of possible missing data
thresholds to ensure that patterns of missing data were not
driving patterns of sample clustering. Based on these explor-
atory analyses, we implemented an optimized per-SNP com-
pleteness threshold of 75%. We also implemented a minor
allele count (MAC) cutoff across the entire dataset, removing
singletons (MAC < 2) which are more likely to result from
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sequencing error or DNA damage in historical samples. Post-
filtering, we retained 5,028 high-quality SNPs shared across
2,669 UCE loci.

While attempting to identify fixed differences between the
parental species, we discovered a putative UCE locus that
contained 12 fixed differences between the parental spe-
cies (populations 1 and 8). Using NCBI BLAST (Johnson
et al., 2008), the probe sequence for this UCE locus (locus
5216 from the UCE 5K probe set) maps with the highest
likelihood to chromosome 4 of the Taeniopygia guttata ref-
erence genome (98% coverage and 97.46% sequence iden-
tity). Yet the reference contig we assembled from this probe
maps with the highest likelihood to the mitochondrial scaf-
fold of the T. guttata reference genome (85% coverage and
88.6% sequence identity). This contig may reflect a struc-
tural rearrangement within the Pipilo lineage, but without a
high-quality, in-group reference genome, we were unable to
rule out mis-assembly. We, therefore, removed all SNPs map-
ping to this locus from downstream analyses, resulting in a
complete dataset of 5,004 SNPs shared across 32 samples,
with 2.6% overall missing data, and no individual sample
missing genotype calls at >6% of the retained SNPs. After
linkage filtering to only a single randomly selected SNP per
UCE locus, we retained a filtered, unlinked dataset contain-
ing 2,668 SNPs with 2.9% overall missing data. We subse-
quently BLASTed each remaining UCE locus with a fixed
SNP against the T. guttata reference genome, to ensure that
none of the nuclear fixed differences we identified between
the two species came from the mitochondrial genome.

To call mtDNA haplotypes, we assembled mitochondrial
genomes from bycatch in our raw UCE sequence data by map-
ping to a publicly available P. maculatus mitochondrial genome
(Genbank accession: FJ236291.1) using MITObim v.1.9.1
(Hahn et al., 2013). We manually extracted the ND2 gene
from the mitochondrial reference genome and aligned each
mitogenome to the reference ND2 sequence using Geneious
v.8.9.1 (Kearse et al., 2012). We also used Geneious to man-
ually recode obvious signs of mis-assembly or sequence error
(e.g., spurious SNPs before and after sequence gaps) as miss-
ing, calculate an uncorrected ND2 pairwise distance matrix,
and export the ND2 alignment as a nexus file. This nexus file
was used as input for PopART v.1.7 (Leigh & Bryant, 20135),
where we constructed a Median Joining Network, and color
coded each haplotype based on sampling locality.

Genomic ancestry assignment

We used ADMIXTURE v.1.3.0 (Alexander et al., 2009) to
assign each individual proportionally into a predefined num-
ber of genomic clusters, using the filtered, unlinked set of
2,668 SNPs as input. We performed replicate runs varying
the number of clusters (K) from one to five and performing
fivefold cross-validation. We removed rare alleles, which are
known to affect inferences of population structure (Linck &
Battey, 2019), by iteratively increasing the minor-allele count
threshold required for an SNP to be included until cross-val-
idation analysis indicated that the optimal clustering scheme
switched from K = 1 to K = 2 (here, MAC > 10; 229 retained
SNPs). We retained ancestry scores (Q scores) for each indi-
vidual for downstream analysis.

Cline analysis

We used the R package HZAR (Derryberry et al., 2014) to
fit sigmoidal clines for each plumage trait, average phenotype
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score (across all six scored traits), genome-wide genetic ances-
try (O score), and mtDNA haplotype assignment for data
from historical specimens. The modern comparisons were
drawn from specimens collected between 2008 and 2009
(Kingston et al., 2014; Kingston et al., 2017). We generated
a single set of geographic transect distances by recording,
for both our historical transect and the modern transect col-
lected by Kingston et al. (2014), the exact distance to the point
nearest each sampling locality along a 688-km straight line
between the westernmost and easternmost sampling localities
(TVO1 & TVO08; Kingston et al., 2014). For each trait, we fit
three nested, commonly implemented sigmoidal cline models
(Barton & Hewitt, 1985; Brumfield et al., 2001) as in Royer et
al. (2020), including a two-parameter model (cline center and
cline width), a four-parameter model (cline center and width
plus minimum and maximum values estimated), and a six-pa-
rameter model (cline center and width, minimum and maxi-
mum values, plus the shape of each tail estimated). Each model
was fit using Markov Chain Monte Carlo (MCMC) with a
length of 1M iterations, sampling from the posterior distri-
bution every 100 iterations. We visualized the chain for each
parameter and each model to ensure that parameter estimates
achieved stationarity and retained the overall best-fit model
based on the lowest AIC score. We then plotted the best-fit
cline on top of the empirically observed mean population val-
ues for each trait and visualized the center of the cline for each
trait and its upper and lower 2-log likelihood bounds.

Genotype-phenotype analysis

To assess the strength of the association between genotype
and phenotype across this transect, we used R to plot the
genome-wide ancestry score of each sample against individual
trait values and calculate the sum of squared errors (SSE), or
the sum of squared residuals from a 1:1 prediction line, where
the given trait is perfectly predictive of the genomic ancestry
of the sample. We used this approach to quantify the power
of sampling locality and plumage to predict genomic ancestry
at the level of individual birds.

Population genetics

We inferred an unrooted phylogenetic network by first cal-
culating a pairwise genetic distance (Nei’s D; (Nei, 1972))
matrix between all samples using the R package StAMPP.
We then used this matrix as input for SplitsTree4 v4.15.1
(Huson & Bryant, 2006) to build a Neighbor-Net, which
effectively visualizes the genetic distance between individual
samples, and can reveal conflicting data patterns that are not
detectable under traditional phylogenetic inference (Bryant &
Moulton, 2004).

We performed a principal component analysis (PCA) on
the filtered 5,004 SNP dataset using the R package adegenet
(Jombart, 2008). We identified SNPs fixed for alternate alleles
between the two parental species (populations 1 and 8) using R
(R Core Team, 2019). Because only eight out of 5,004 filtered,
UCE-derived SNPs were fixed differences between parentals,
we relaxed this threshold to a frequency difference of >0.8. We
then used the 23 pseudodiagnostic SNPs as input for the R
package Introgress (Gompert & Buerkle, 2010) to calculate
a hybrid index and interspecific heterozygosity and plotted
these values as a triangle plot using the R package ggplot2
(Wickham, 2016). We note that our relatively small sample size
from each parental population (four individuals, eight alleles)
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is likely inflating the number of identified pseudodiagnostic
SNPs, further underscoring the genomic homogeneity of the
entire sampling transect. Additionally, we used the R package
StAMPP (Pembleton et al., 2013) to calculate pairwise F,
between sampling localities and plot pairwise F along with
pairwise fixed differences on a heatmap using ggplot2.

We used the R package rEEMSplots (Petkova et al., 2016)
to calculate the estimated effective migration surface (EEMS)
across the TMVB. We performed three replicate EEMS iter-
ations each time using our filtered 5,004 UCE-derived SNP
dataset as input, and varying the specified value for the
parameter “nDemes” across the values 100, 200, and 400.
We then visualized each EEMS iteration using rEEMSplots.
After visually determining that the number of specified demes
(nDemes) was not affecting the resulting migration surfaces,
we chose to present the simplest iteration (nDemes = 100). We
also used rEEMSplots to generate a scatterplot showing the
relationship between geographic and genetic distance for all
pairwise comparisons among sampling sites.

We used pixy v.1.2.6 (Korunes & Samuk, 2021) to calculate
nucleotide diversity (Pi) of each sampling locality in sliding win-
dows from an all-sites vcf file, which incorporates information
from invariant sites. Incorporating invariant sites allows for a
more accurate estimation of Pi that is more robust to missing
data and more comparable across sequencing approaches. We
followed pixy best practices for calculating genome-wide Pi by
summing the pairwise genotype differences and dividing that
by the sum of count comparisons for each sampling locality.
We then calculated the proportion of heterozygous sites across
all 5,004 filtered SNPs (i.e., heterozygosity) in each sample
using R. We plotted heterozygosity per sample and Pi per sam-
pling locality together on a single dot chart using ggploz2.

We used R to classify each of the 5,004 filtered nuclear
SNPs into three classes—fixed, private, and shared—for each
of the three identified lineages (populations 1 and 2, popu-
lations 3 and 4, and populations 5-8). We classified an SNP
as fixed if a single allele was homozygous in all individuals
and the allele did not occur in any other lineage. We classi-
fied an SNP as private if the lineage possessed a unique allele,
but also shared the alternate allele with other lineages at a
frequency >0. Finally, we classified an SNP as shared if both
alleles present in the lineage also occurred in another lineage.
We visualized these three classes of SNPs as bar charts for
each sampling locality using ggploz2.

Species tree reconstruction

To reconstruct a species tree using sampling localities as tips,
we used SNAPP implemented via BEAST2 v2.6.4 (Bouckaert
et al., 2014), using our 2,668 unlinked SNP dataset as input.
For each replicate, we randomly downsampled each sampling
locality to a single sample and ran an MCMC chain with
length 5M, discarding the first S00K iterations as burn-in,
and storing every 1,000th iteration. Using Tracer (Rambaut et
al., 2018), we found that only one of our three replicates was
able to achieve stationarity and an effective sample size >200
for all estimated parameters, so only the results from this rep-
licate are presented here. We visualized all post-burn-in trees
from the posterior distribution of this replicate on a single
background using DensiTree (Bouckaert et al., 2014).

Demographic modeling

We used the R package delimitR (Smith & Carstens, 2020),
a wrapper for fastsimcoal2 v26 (Excoffier et al., 2021), to
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compare how well a series of demographic models could
describe the evolutionary history of these populations. We
used easySFS (github.com/isaacovercast/easySFS) to build
a multispecies site frequency spectrum (mSFS) from our
unlinked SNP dataset containing 2,668 UCE-derived SNPs,
while assigning samples to three lineages from the SNAPP
tree and PCA (sampling localities 1 and 2, 3 and 4, and 5-8).
We used fastsimcoal2 to simulate 10K replicates each for 10
possible demographic models including up to three distinct
species and up to two instances of secondary contact, with
sampling localities assigned to the following prespecified
guide tree based on the species tree reconstructions: ((1-2,
3-4) 5-8). Because of our limited knowledge of the specific
demographic histories of these populations, we roughly fol-
lowed the default wide and flat priors for these simulations
to minimize the effects of model misspecification. Specifically,
we set a population size prior for each species at 10K-1M, a
divergence time prior at 10K-100K generations for the first
divergence and 100K-500K for the second divergence, and
a prior on the proportion of individuals migrating between
species under a migration model at 0.005-0.000005. We then
converted our mSFS into a binned SFS specifying six distinct
allele frequency classes and built a random forest (RF) clas-
sifier with 5K individual decision trees using the R package
abcerf (Pudlo et al., 2016). We calculated the out-of-bag error
rate for our RF classifier to quantify our power to discrim-
inate among the 10 simulated demographic models, and
finally had each of the 5K individual decision trees of the RF
classifier vote for which simulated model was most likely to
have produced our empirical SFS.

Environmental associations

We downloaded all iNaturalist records of Pipilo in the
TMVB and filtered for research-grade observations with-
out location masking. We manually clumped these records
around the eight locations from the historical transect. For
each GPS location, we extracted environmental data from
the 19 WorldClim layers describing temperature and rainfall,
as well as elevation and five habitat variables: canopy height,
gscat (a measure of surface roughness), tree cover (%), NDVI
(greenness), and standard deviation of NDVI (greenness sea-
sonality). We conducted PCA to reduce the dimensionality
of the data and explored environmental variation across the
transect sites.

Results

Mitochondrial and genomic ancestry

An alignment of the mtDNA gene ND2 revealed two highly
divergent mitochondrial haplotypes separated by 4.8%
uncorrected p-distance, corresponding to the two parental
species (Figure 1B). Parental haplotypes were mostly fixed
between populations 1 and 2 and 3-8, except for one Spotted
Towhee haplotype found in population 2.

ADMIXTURE analyses revealed that when low-frequency
variants are removed (SNPs with MAC <10), the optimal
number of genetic clusters is K = 2, with genomic ancestry (Q
score) changing gradually along the transect and individuals
within a site having similar ancestry prediction (Figure 1C).
Under K = 3, six of eight individuals at sites 3 and 4 in the
middle of the transect show greater than 50% assignment to
a distinct third cluster, with three of these individuals having
100% assignment to this cluster.
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Cline analysis

The plumage scores of 32 genomics-associated historical spec-
imens were broadly representative of a larger sample of 73 his-
torical specimens collected from the same sites (Supplementary
Table S1). Cline centers for autosomal genomic ancestry and
overall plumage score occurred in the center of the transect
between populations 4 and 35, significantly offset from the
mtDNA cline center, which was located about 250 km to the
west, closer to the Collared Towhee side (Figure 2A). When
plumage traits were disaggregated, individual traits showed
significant variation in their cline centers (Figure 2B). Throat
color aligned with the west-shifted cline center for mtDNA,
whereas back color, back spots, and tail spots were shifted
about 100 km east of the average phenotypic cline center.
Meanwhile, flank color and pileum (brown cap) found their
cline centers near the population averages. Cline centers were
consistently stable over a 70-year period, with all measured
traits displaying overlapping 2 log-likelihood ranges when
comparing the historical and modern transects (Figure 2).

Phenotype-genotype associations

In addition to comparing clines at the level of the whole
gradient, we also analyzed the strength of the association
between phenotype and genotype at the level of the individ-
ual bird. Location on the transect is more tightly correlated
with genomic ancestry than any phenotypic measurement
(SSE = 0.67, Figure 3). Additionally, the average pheno-
type (the score for all six plumage characteristics summed)
is more tightly correlated with the genomic ancestry of a
given sample (SSE = 0.99) than any individual plumage trait
(min SSE = 1.43). Both back color (SSE = 5.55) and throat
color (SSE = 4.04) stand out for being highly decoupled
from the genomic ancestry of individual birds throughout
the transect.
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Population genetics

To better understand the population dynamics within the
hybrid zone, we employed a suite of descriptive popula-
tion genetic approaches. A key revelation from plotting
ancestry against heterozygosity was that, within the cen-
tral populations (3 and 4), there are no parental types or
recent backcrosses, but instead a homogenized population
of genomically intermediate birds (Figure 4C). Additionally,
a distance-based, unrooted phylogenetic network generated
from all 5,004 nuclear-filtered SNPs supports three lineages,
with the geographically intermediate lineage (populations 3
and 4) connecting populations 1 and 2 and populations 5-8
(Figure 4A). Despite short internal branches on this network,
reflecting the low overall divergence, microgeographic struc-
ture is apparent among sampling localities, with individu-
als from nearly every sampling locality clustering together.
Similarly, a PCA reveals three distinct genomic clusters,
where populations 3 and 4 are again identified as interme-
diate, but discrete populations (Figure 4B). F estimated
between parental ends of this cline using all UCE-derived
SNPs = 0.12, recapitulating the finding of limited differen-
tiation across this cline by Kingston et al. (2017), who esti-
mated F, = 0.101 between parental ends using thousands of
GBS loci. F_, estimates also reveal low overall levels of diver-
gence between sampling sites (mean pairwise F . = 0.06), and
nearly undetectable levels of differentiation between neigh-
boring sampling localities (mean pairwise F.. = 0.03; Figure
4D). Out of 5,004 UCE-derived SNPs, only eight are fixed
for different alleles between the geographical extremes of the
transect.

The estimated effective migration surface shows two
distinct decreases in effective migration (i.e., gene flow)
west of population 3 and east of population 4 (Figure 5A),
despite identifying no significant deviations from an isola-
tion-by-distance model (Figure 5B). This migration surface
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Figure 2. Geographic clines showing the transition of (A) genetic and (B) phenotypic characters across the TMVB gradient. Barplots above each cline
correspond to the cline center estimate for the given trait, with a black vertical dash indicating the point estimate, and the extent of the colored bar
illustrating the two log-likelihood confidence interval. The mean value of each modeled trait for each sampling locality is shown with a corresponding

colorcoded shape icon.
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also revealed a slight increase in effective migration rate
among populations 5-8, which are located within a rela-
tively continuous swath of suitable montane habitat. A lin-
ear regression shows that >80% of the variance in pairwise
genetic dissimilarity between sampling localities can be
explained by a positive, linear relationship with pairwise
geographic distance (Figure 5B).

Contrary to the elevated heterozygosity expected in the
middle of a cline under a two-species tension-zone model, we
found little variation in heterozygosity and genetic diversity
between sampling localities across the transect (Figure 5C).
A visualization of the number of shared, private, and fixed
alleles in each of the three genomically distinct populations
reveals that nearly all SNP variation is shared between mul-
tiple populations along the transect, and there are no fixed
variants between populations (Figure 5D). The presence of
private alleles in the admixed population (sampling localities
3 and 4) may indicate a degree of genetic isolation, although
this result must be interpreted with caution considering our
limited sample size.

Phylogenetic analysis

The SNAPP species tree (Figure 6A) placed the eight sam-
pling localities into three recently diverged lineages corre-
sponding to the three discrete genomic clusters identified
via population genetic approaches; sampling localities 1
and 2 (Collared Towhee), localities 5-8 (Spotted Towhee),
and a third lineage, which is sister to Collared Towhee,
made up of sampling localities 3 and 4 from the center of
the transect. The 4,500 overlaid trees sampled from the
posterior distribution of species trees reveal some uncer-
tainty in the phylogenetic relationships among these three
lineages.

Demographic modeling

The best-supported demographic model describing this
sampling transect was a three-species model with multiple
gene flow edges (Figure 6B), where each of the three lin-
eages described above is assigned to a distinct species (pos-
terior probability = 0.75). The high out-of-bag error rates
(i.e., model misspecification rate in the training dataset)
observed for many of the models we simulated indicates
that we have limited power to discriminate between highly
similar demographic scenarios, yet three-species models
(with various degrees of gene flow) consistently outper-
formed one- or two-species models despite penalization of
each additional parameter added beyond the one-species
base model.

Niche analysis

Climate, habitat, and elevation data collected from around
the sampling locations indicate niche differences along the
gradient (Figure 7). Spotted Towhees in the eastern part
of the gradient are at the highest average elevation, fol-
lowed by Collared Towhees in the west. The center of the
gradient, where most of the phenotypic and genetic transi-
tions occur, is at the lowest elevation. PCA revealed several
important axes of variation that explain climatic differ-
ences across the gradient (Supplementary Table S2). PC4,
which describes differences in rainfall seasonality, showed
a sharp transition within hybrid population 3, coinciding
with cline centers in throat color and mtDNA. Individuals
west of Mt. Tancitaro (populations 1, 2, and part of pop-
ulation 3) are found in habitats with a summer monsoon
rainfall schedule and greater seasonality in rainfall and
vegetation greenness.
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Discussion

“I think that the most logical interpretation of this gradient
population series is to consider it to represent an elongate
hybrid zone, the geographically limited segments of which
have attained a certain degree of stability and differ from
one another by the same amount, as do typical geographic
races of one species.”

Charles G. Sibley (1950)

Many hybrid zones have been described as tension zones, where
pure parental species disperse along a unidirectional cline and
hybridize in the center to form Fls, which are selected against
(Slatkin, 1973; Barton & Hewitt, 1985). Our genetic results con-
firm that the classic hybrid zone between the Collared Towhee
(P. ocai) and Spotted Towhee (P. maculatus) is not a tension zone.
Instead, introgression across a broad area—what Sibley (1950)
called an “elongate hybrid zone”—has erased nearly all fixed

autosomal differences between the two ends of the cline. Only
8 of 5,000 autosomal SNPs are fixed (F_, = 0.12). Meanwhile,
mtDNA haplotypes for the two species differ at a median of 51
sites over 1,040 bp of ND2 (Figure 1B), translating to 4.8%
divergence—likely over two million years of evolutionary isola-
tion before secondary contact. The towhee gradient, therefore,
may be similar to some other hybridizing bird species where the
genes controlling plumage differences account for much of the
existing autosomal genomic differentiation (Poelstra et al., 2014;
Toews et al., 2016; Wang et al., 2020).

Sibley (1950) speculated that contact between the two
species might have been initiated by human-mediated hab-
itat change in the TMVB, an area of significant human
settlement since pre-Columbian times. Our historical
comparison, however, shows that the hybrid zone has not
changed substantially over the course of 70 years. There
is remarkable concordance between historic and modern
clines centers for phenotypic traits and genetic markers

€20 Iudy 1| U0 1senB AQ 1/€4969/258/€/LL/R191E/NI0AS/ W00 dNO"DIWSpEo.//:SA]IY WO} POPEOJUMOQ



Evolution (2023), Vol. 77, No. 3

o log(m)

Elevation

=1 unsuitable
<5,500 ft.

= marginal

2 . 5,500 - 7,000 .
suitable

> 7,000 ft.

861

B 0.07
o (]
£
& 0.06 - N
= 2
& R? =0.804 5 ®
€ 005 .
8 o °
oo
= 0.04
= o
E °
@ 0,03 o o ©
"C o oo
J
S =}
=
0.02
g °e
(=]
© e o o °©
001 4
o
I 1 | I 1
100 200 300 400 500

Great circle distance between demes (km)

157
Co < ® -0.00225 D

0.14+ o
> & O ®
£ 43l @) -0.00200 30001
%ow .: © o ©© © 2 g .
& 0.12- o~ ivat
8 3 % o espomEie -
e _— 9|6 * $ % 8 * 10001

o @® [000150
0.09{ _ : : ; L : - Bhe—r ; :
1 2 3 4 5 6 7 1-2 3-4 5-8

sampling locality

populations

Figure 5. (A) Estimated effective migration surface plotted geographically, with shading indicating regions deviating from a null model of IBD (i.e.,

log(m) = 0). (B) Scatter plot between geographic and genetic distance for all pairwise comparisons between sampling localities. The R? value indicates
the proportion of variation in genetic dissimilarity between sampling localities predicted by the geographic distance between sampling localities. (C)
Heterozygosity of each individual and the nucleotide diversity (population-wide Pi value indicated by an asterisk) of each sampling locality. (D) Number of
fixed, private, and shared alleles present in each of the three identified lineages from Figure 6.

(Figure 2), especially considering that the estimates stem
largely from different specimens measured by different
observers. Among the few studies that have assessed tem-
poral change to hybrid zones using historical genomics of
museum specimens, hybrid zone movement (Carling &
Zuckerberg, 2011; Leaché et al., 2017; Ryan et al., 2018;
Taylor et al., 2014) has been more commonly documented
than stability (Wang et al., 2019). Buggs (2007) also out-
lined numerous case studies of hybrid zone movement over
historical time periods. While it is possible that the towhee
clines might have shifted at finer scales than our sampling
was able to detect (our sites averaged 80 km apart), this
is nonetheless significant stability for a region marked by
human impacts and suggests this hybrid zone has broadly
achieved an equilibrium state.

If secondary contact between these species is not recent,
then it was likely brought about by habitat fluctuations
during the Pleistocene or Holocene, perhaps as recently as
1,000 years before present (BP), which marks the last major
climatic perturbation—a drying event that affected habitat
across the TMVB (Metcalfe et al., 2000). Paleoecological data
from the region, including a pollen core from the heart of
the hybrid zone at Lake Patzcuaro, Michoacan, support the
continuous and abundant presence of pine forest in the region
dating back to 44,000 years BP (Watts & Bradbury, 1982).
A synthetic review of the paleoclimate of the TMVB around
the last glacial maximum (LGM) points to the expansion of

a pine-fir assemblage to lower elevation (Caballero et al.,
2010), meaning secondary contact could date to the LGM,
if not before. Future investigations using whole-genome data
could test these hypotheses by estimating the timing of initial
contact using the size of recombination blocks in hybrid birds
(Griffiths & Marjoram, 1996).

While the exact timing of secondary contact remains to be
clarified, it seems plausible that, during the LGM, gene flow
between Collared Towhees and Spotted Towhees was more
extensive across the TMVB. During subsequent warming,
montane forests moved upslope and shrunk, creating the cur-
rent patchwork of sky-island forests (Caballero et al., 2010).
In one of these forested sky islands in Michoacan, a hybrid
lineage, including population samples 3 and 4, appears to
have attained a degree of evolutionary isolation (Figures 4B
and 6). Thus, while certain aspects of the towhee gradient can
be understood and analyzed as a cline (Figure 2), it can also
be described as an elongated region of continuous hybridiza-
tion (Figure 5B), or as three recently diverged lineages with
ongoing gene flow (Figure 6A). Beyond the question of how
one might layer a taxonomy over this variation, which we
discuss later, the towhee system represents an empirical exam-
ple of the potential for hybrid zones, through vicariance, to
spawn novel variation (Barton et al., 1983; Guiller et al.,
1996; Soltis, 2013) and incipient lineages of hybrid origin
(Hamilton et al., 2013; Lamichhaney et al., 2018; Seehausen,
2004).
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Figure 6. (A) Cloudogram of 4,500 trees sampled from the posterior distribution of species trees with posterior probabilities (pp) at each node. Nodes
with less than 0.60 pp were collapsed. Towhee illustrations by Alex Warnick. (B) Relative support for each of the ten demographic models that were
tested for their ability to describe the evolutionary history of P ocaiand P maculatus populations along the TMVB. “Votes" indicates the percentage

of random forest decision trees voting for a given model as most likely to have generated the observed data, while “class. error” indicates the
classification error, i.e., frequency of misclassification of the given model under simulated conditions, and “pp” indicates the posterior probability of the

most supported model.

Differential introgression: coincident clines in
mtDNA and a putative sexual signal

One of the striking features of the towhee gradient is the dif-
ference in cline centers—i.e., cline shifts—across traits and
markers. Cline shifts result from differential introgression of
traits and genetic markers. Although cline shifts can result

from genetic drift depending on the conditions (Polechova &
Barton, 2011), they are predicted under natural selection and
therefore provide a rationale for preliminary investigations of
the potential adaptive significance of the introgressing traits
(Hofman & Szymura, 2007; Jaarola et al., 1997; Lipshutz
et al., 2019; Parsons et al., 1993). Across the towhee hybrid
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cline centers for mtDNA and throat color.

zone, when genomic markers and phenotypic traits are aver-
aged, cline centers fall in the middle of the transect, between
populations 4 and 5, coincident with the deepest split in the
species tree. But these averages belie significant discordance
among traits (Figure 2). The cline centers for throat color
and mtDNA are shifted ~250 km west toward the Collared
Towhee side of the cline and feature sharp transitions, sug-
gesting selection against hybrids. Another group of traits—
back color, back spotting, and tail spotting—are shifted ~100
km east toward the Spotted Towhee side of the gradient.
Meanwhile, cap color (pileum) and flank color find their cline
centers near the averages for total plumage score and genomic
ancestry. These population-level patterns are recapitulated at
the level of the individual, where linked genetic and pheno-
typic data show that an individual’s throat color and back
color are poor predictors of genomic ancestry (Figure 3).
Cline shifts seem especially common in sexually-selected
signals (Baldassarre et al., 2014; While et al., 2015) or
dominance-associated traits (Lipshutz et al., 2019), and the
strongly-shifted and coincident clines between throat color
and mtDNA could suggest a common mechanism. Both cline

centers fall just west of population 3, meaning that the break
occurs between the Collared Towhee lineage and the hybrid
lineage. This pattern supports two possibilities involving sex-
ual selection. The mitonuclear incompatibility hypothesis for
sexual selection by female choice posits that females use plum-
age as a proxy for mitonuclear compatibility (Hill & Johnson,
2013), providing a potential mechanism for linked introgres-
sion of plumage traits and mtDNA. Even without mitonuclear
compatibility, however, if female Collared Towhees prefer
white-throated males, then selection against hybrid throat
types would create a narrow cline in throat color, which would
become linked to the mtDNA cline due to the matrilineal
inheritance of mtDNA. Haldane’s Rule has been proposed as a
possible mechanism for narrow cline widths in mtDNA com-
pared to other markers in birds (Carling & Brumfield, 2008;
Gowen et al., 2014), but is a less compelling explanation here
because of the general lack of postmating isolation. Genetic
drift should not be ruled out, however, as clines can shift sto-
chastically with low population sizes (Barton, 1979), espe-
cially if the cline is old (Jofre & Rosenthal, 2021) or occurs
across a patchy landscape (Sequeira et al., 2022).
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In other systems with clines shifts in sexually-selected traits,
field studies have confirmed the universal female preference
for one trait (Baldassarre & Webster, 2013; McDonald et
al., 2001; Stein & Uy, 2006), leading to unidirectional intro-
gression (Baldassarre et al., 2014; Brumfield et al., 2001).
However, this might not be the case in the towhee system.
Assortative mating for throat color is a possibility, and white
throats might also be better seen and therefore adaptive in
the low-light micro-niches favored by Collared Towhees.
Field studies of mate preferences could help clarify whether
the sexual selection is acting on throat color. Additionally,
whole-genome analysis could help test for the role of drift and
identify the loci involved in throat color and whether they
show signatures of selection or mitonuclear associations (e.g.,
Wang et al., 2021a).

Green back color presents another potentially adaptive
cline shift, albeit in the opposite direction, this time of a
Collared Towhee trait introgressing far into the phenotypic
background of Spotted Towhees. In fact, back color never
reaches its full parental black Spotted Towhee appearance
even at the far eastern end of our sampled cline. Could green
back color be adaptive for camouflage? This hypothesis is dif-
ficult to test absent field studies. However, it has been noted
that the TMVB Spotted Towhees occur in fir forest at signifi-
cantly higher elevation compared to conspecific populations
throughout the rest of the species range (Rising, 2020)—hab-
itat that is typically more associated with Collared Towhees.
The elevational differences across the gradient are likewise
intriguing (Figure 7B), with the Spotted Towhee side of the
gradient at a higher elevation than the Collared Towhee side,
and the hybrid lineage at the lowest elevation. Future investi-
gations into the specific genes encoding traits like back color
and associations with elevation, as well as specific tests for the
roles of selection and drift, will be crucial to testing adaptive
introgression in this system (e.g., Kozak et al., 2021).

A hidden environmental break marks a key
transition in genetics and phenotype

“Only 50 miles west of Patzcuaro, without an intervening
barrier, the Tancitaro and Patamban birds show a still clos-
er approach to ocai....”

Sibley (1950)

The formation of hybrid zones can occur due to rapid envi-
ronmental transitions that bring two species into close prox-
imity (Endler, 1977), or they might trace back to expansions
from glacial refugia (Swenson & Howard, 2005), with the
hybrid zone forming wherever the expanding range margins
happen to meet and then moving based on additional factors.
In the towhees, habitat variation had not been carefully stud-
ied to understand whether clinal transitions in traits or genes
are associated with environmental turnover. Sibley described
some habitat differences across the gradient, but also placed
emphasis on geographic barriers, like the Rio Tuxpan. He
puzzled over the transition of phenotypes in the western part
of the gradient, near the hybrid lineage, where there were no
obvious vicariance barriers. Kingston et al. (2014) created a
connectivity map that suggested habitat connections in the
eastern part of the gradient (populations 5-8), and more
patchiness in the center of the gradient around the hybrid
lineage, both patterns supported by our genomic results.
However, this analysis was based on holistic climate-based
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niche models, and it was not clear which climate variables or
habitat features might be driving the patterns.

Our transect approach to assessing environmental change
uncovered a major, and previously overlooked, environmen-
tal transition in western Michoacdn, which coincides with
turnover in throat color and mtDNA (Figure 7). From Mount
Tancitaro to the west, core Collared Towhee habitat has a
heavy summer rainfall schedule and less variation in vege-
tation greenness. This transition, and especially the marked
influence of Mount Tancitaro, western Mexico’s second high-
est peak, on the climate of the region and its rainfall, has been
noted in older botanical works (Leavenworth, 1946), but has
not been associated with animal niches to our knowledge.

What influence these environmental features might have on
the towhees is not clear, but rainfall schedules could influence
the time of breeding, with temporal mismatch acting as a bar-
rier to gene flow. Population 3, lying close to sharp transi-
tions in throat color, mtDNA, and this niche axis, likely holds
many clues to understanding the towhee gradient (Figure
7C). Importantly, turnover in traits and markers can become
associated with environmental barriers without the barriers
necessarily being the cause of initial divergence (Bierne et
al., 2011). More fine-scale sampling across this environmen-
tal break, combined with quantitative associations between
environmental characteristics and genomic markers (e.g.,
Alvarado et al., 2022), could help test for a causative role of
ecological factors in the formation and maintenance of the
gradient.

Hybrid zone or hybrid lineage?

While our results provide the most comprehensive systematic
data set collected to date in this system, we echo more than 70
years of research indicating that this system presents a partic-
ularly challenging situation for Linnean taxonomy. If there is
a species-level break in the gradient, our genomic results sup-
port Sibley’s original assessment that it is best located between
populations 4 and 5, with populations to the east (5-8) con-
sidered Spotted Towhees, though marked by introgression.
The Olive-backed Towhee recognized by some authorities can
be aligned with these populations (5-8) and the subspecies
P. m. macronyx. The bigger taxonomic question involves the
hybrid lineage formed by populations 3 and 4. This lineage has
Spotted Towhee mtDNA, but is closer to Collared Towhee in
autosomal ancestry. Given present knowledge, we would call
these populations hybrids or assign them to Collared Towhee,
matching the dominant genomic ancestry and the majority
of phenotypic traits. The black throat color of this hybrid
lineage, matching the Spotted Towhee, could be governed by
a single locus (as in the ASIP gene in Vermivora warblers;
Baiz et al., 2020), and the Spotted Towhee mtDNA haplot-
pye, inherited as a single locus, could be subject to stochastic
events (Ballard & Whitlock, 2004). It is humbling to recog-
nize that many of the novel genomic patterns we document
here simply bear out Sibley’s (1950) taxonomic recommenda-
tions, which he seemed to dismiss as a mere “nomenclatural
convenience,” following decades of careful field observations
and study of museum specimens.

Beyond taxonomy is the equally difficult-to-resolve question
of the evolutionary history and trajectory of this towhee gradi-
ent. One of the more striking conclusions of our study is how
the gradient can be simultaneously interpreted under a one-pop-
ulation isolation-by-distance model, a two-population classical
hybrid zone model, and a three-lineage model with gene flow,
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underscoring the continuum between clinal variation across
a hybrid zone and hybrid lineage formation (Ottenburghs,
2018)—and perhaps eventual hybrid speciation (Nieto Feliner
et al., 2020), although this would require the establishment of
reproductive barriers. Hybrid speciation is debated, with some
reserving the term for allopolyploid hybrid speciation, where
hybridization triggers instantaneous reproductive isolation in
daughter lineages (Grant, 1981; Schumer et al., 2014). To use
the term hybrid speciation here requires the inclusion of homo-
ploid hybrid speciation events, where a lineage of hybrid ori-
gin gradually evolves reproductive isolating mechanisms from
parental species following an initial admixture pulse (Abbott et
al., 2013; Mallet, 2007; Feliner et al., 2017).

While the hybrid lineage we identified currently meets few of
the criteria required for species recognition, the situation of an
elongated hybrid zone and vicariance offers the potential for
future hybrid speciation under natural conditions. At the very
least, the hybrid lineage contains novel phenotypic combina-
tions and unique genetic variants, adding to results from other
studies that hybrid populations can harbor evolutionary nov-
elty (Barton et al., 1983; Schilthuizen & Gittenberger, 1994). If
homoploid hybrid speciation can proceed in sympatry (Olave
et al., 2022), then allopatric cases must be even more common,
yet they have rarely been documented. An allopatric mode of
homoploid hybrid speciation may be overlooked in contem-
porary genomic research because complex biogeographic sce-
narios are difficult to reconstruct in hindsight compared to
allopolyploid speciation events, which leave clear karyotypic
and genomic signatures in daughter hybrid species (Barley et
al., 2022), or sympatric cases, where the parental and daughter
species are still living side-by-side. The towhee system offers
a special opportunity to study how homoploid hybrid spe-
ciation might begin in nature, because rather than relying on
the fraught process of historical biogeographic reconstruction,
we are offered a chance to observe an incipient hybrid lineage
evolving in relative geographic isolation in real-time.

As hybridization is studied in detail with phenotypic and
genomic analysis, it has become clear that gene flow is both
a ubiquitous and generative force in evolution (Jiggins et al.,
2008; Lamichhaney et al., 2018; Selz & Seehausen, 2019;
Wang et al., 2021b). Here, integrative data from genom-
ics, phenotype, and environment show that Sibley’s classic
hybrid zone, in addition to generating a gradient of forms
between two species, has also led to an isolated hybrid pop-
ulation. While cline analyses will continue to be useful for
understanding hybrid zones, our study highlights the poten-
tial of admixture and directional introgression followed by
vicariance to set the stage for the generation of novel forms.
Increased genomic data, denser geographic sampling, and
more sophisticated demographic analyses will continue to
expand our understanding of the continuum between hybrid
zones and hybrid lineages and the role hybridization plays in
driving large-scale patterns of biodiversity.
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