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Very often for the same scientific question, there may exist different
techniques or experiments that measure the same numerical quantity. Histori-
cally, various methods have been developed to exploit the information within
each type of data independently. However, statistical data fusion methods
that could effectively integrate multisource data under a unified framework
are lacking. In this paper we propose a novel data fusion method, called B-
scaling, for integrating multisource data. Consider K measurements that are
generated from different sources but measure the same latent variable through
some linear or nonlinear ways. We seek to find a representation of the latent
variable, named B-mean, which captures the common information contained
in the K measurements while taking into account the nonlinear mappings
between them and the latent variable. We also establish the asymptotic prop-
erty of the B-mean and apply the proposed method to integrate multiple hi-
stone modifications and DNA methylation levels for characterizing epige-
nomic landscape. Both numerical and empirical studies show that B-scaling
is a powerful data fusion method with broad applications.

1. Introduction. Both the amount and variety of data have been increasing dramati-
cally in recent years from all fields of science, such as genomics, chemistry, geophysics, and
engineering. Even for the same scientific question, there may exist different techniques or
experiments that measure the same numerical quantity. Historically, various methods have
been developed to exploit the information within each type of data independently. How-
ever, the development of methods that could effectively integrate multisource data under a
unified framework is lagging behind (Ritchie et al. (2015)). In contrast, such multisource
data are abundant in practice. One motivating example is the Roadmap Epigenomics Project
(Bernstein et al. (2010)).

MOTIVATING EXAMPLE (Epigenetic data from the Roadmap Epigenomics Project). As
an emerging science, epigenomics is the study of the complete set of epigenetic modifica-
tions that regulate gene expressions (Bird (2007), Egger et al. (2004), Esteller (2008)). With
advanced sequencing technology, the Roadmap Epigenomics Project has provided a large
amount of epigenomic data of different types and structures to characterize the epigenomic
landscapes of primary human tissues and cells under different conditions or diseases (Amin
et al. (2015), Kundaje et al. (2015), Romanoski et al. (2015)). Chromatin immunoprecip-
itation (ChIP) and bisulfite treatment, for example, are two different techniques. They are
adopted to generate datasets of various types of histone modification levels and DNA methy-
lation levels (Figure 1), all of which are indicators of epigenetic activeness. Despite the avail-
ability of large amounts of data, there is still a lack of systematic understanding of how
epigenomic variations across genome relate to gene expression changes (Gomez-Cabrero
et al. (2014), Hamid et al. (2009), Ritchie et al. (2015)). To bridge this gap is the direct mo-
tivation of our data fusion method. We illustrated in Figure 1 the application of data fusion
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FIG. 1. Illustration of data fusion for epigenetic data from the Roadmap Epigenomics Project. As epigenetic
indicators, multiple histone modifications and DNA methylation levels (represented by the heights of the bars)
across the genome are measured from the experiments. To gain a systematic understanding of the epigenetic
landscape, we aim to fuse those measurements and construct an epigenetic index. Such an index is critical for
understanding the epigenetic regulation of gene expression systematically.

for epigenetic data. The goal is to fuse multiple histone modifications and DNA methylation
levels and develop an epigenetic index for characterizing epigenetic landscape.

Data fusion can have numerous meanings. In this paper we refer to the process of integrat-
ing information from multiple data sources as data fusion (Hall and Llinas (1997), Hall and
McMullen (2004), Khaleghi et al. (2013), Waltz, Llinas et al. (1990)). More specifically, we
focus on fusions at the data level. The primary motivation of data level fusion is to provide
key factors that would improve the interpretations and predictions of potential outcomes.
Researchers may be able to capture some pieces of the puzzle by a single-data-type study,
but data fusion approaches could help fit all pieces together. In the above example, epigenetic
modifications, such as histone modification and DNA methylation, jointly characterize epige-
netic variations across cell types and genome, especially in the promoter region immediately
upstream of where a gene’s transcription begins. Integrative analysis of these epigenetic fea-
tures would considerably improve the power of using epigenetic variation to explain gene
expressions. In addition, data fusion approaches could provide more efficient ways of study-
ing the statistical associations than an analysis that uses only a single data type. Finally, since
it is computationally intensive to deal with multiple large-scale datasets simultaneously, the
integrative analysis that allows data integration can help to ease computation intensity while,
at the same time, it preserves as much useful information of the original data as possible.

The integration of multiple data sources has been considered previously in the genomic
literature. A comprehensive review of this topic can be found in Ritchie et al. (2015) and
Ray, Liu and Fenyö (2017). The development has taken several paths. One may regard data
integration as a dimension reduction problem and try to find a lower dimensional represen-
tation of the multiple measurements. Principal component analysis (PCA), for example, is
one of the most widely used techniques which extracts linear relations that best explain the
correlated structure in the data. Following this line of thinking, Zang et al. (2016) proposed
a PCA-based approach for bias correction and data integration in high-dimensional genomic
data. Meng et al. (2016) also explored the use of dimension reduction techniques to integrate
multisource genomic data. The second approach resorts to nonnegative matrix factorization
to find meaningful and interpretable features in the data. This is the approach taken by Zhang
et al. (2011) to jointly analyze the microRNA (miRNA) and gene expression profiles. Zhang
et al. (2012) also employed a joint matrix factorization method to integrate multidimensional
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genomic data and identified subsets of messenger RNA (mRNAs), miRNAs, and methyla-
tion markers that exhibit similar patterns across different samples or types of measurements.
The third approach relies on model-based data integration. For example, Letunic et al. (2004)
developed a database for genomic data integration using the hidden Markov model which
provided extensive annotations for the domains in the genomic sequence. Ernst and Kellis
(2012) proposed an automated learning system for characterizing chromatin states which
used the multivariate hidden Markov model to learn chromatin-state assignment for each
genomic position from multiple sources of epigenetic data.

Due to the special features of multisource data, there are several challenges in integrating
them. First, the multisource data are often collected using different experimental techniques
and thus come in a wide variety of formats or data types. In the above case of characterizing
epigenomic landscape, histone modification levels are collected using the ChIP sequencing
(ChIP-seq) technique and recorded as continuous measurements, whereas DNA methylation
levels are collected using a bisulfite sequencing technique and range from 0 to 1. Second, the
multisource data are not necessarily the direct measurements of the same physical quantity,
even though they are all manifestations of a certain latent variable. For example, ChIP-seq
characterizes the epigenetic activity of the protein tails of histone at different amino acid po-
sitions, while whole genome bisulfite sequencing (WGBS) provides single-cytosine methy-
lation levels cross the whole genome. Third, the relationship between the multisource mea-
surements and the latent variable is often unknown. For these reasons it is difficult to apply
conventional methods, such as the PCA, to perform the integrative analysis.

To address the above issues, we propose a unified framework for integrating data from
multiple sources. Assume there exists a latent variable Y , to which the multisource mea-
surements, say W1, . . . ,WK , are related in some linear or nonlinear ways f 0

1 , . . . , f 0
K . That

is,

f 0
1 (W1) = Y, . . . , f 0

K(WK) = Y.(1)

We seek to find a representation of the latent variable that captures the common information
contained in f 0

1 (W1), . . . , f
0
K(WK), even when f 0

1 , . . . , f 0
K are unknown. In epigenetic data,

W1, . . . ,WK represent the histone modifications and DNA methylation levels collected from
multiple sources (Figure 1). We aim to find a representation, the epigenetic index, of the la-
tent variable Y . Intuitively, when f 0

1 , . . . , f 0
K are known functions, Y can be represented by

averaging f 0
1 (W1), . . . , f

0
K(WK), where each one itself is an estimate of Y . In practice, how-

ever, we can hardly know f 0
1 , . . . , f 0

K , let alone to estimate
∑K

k=1 f 0
k (Wk)/K . Instead, we

propose to find a set of transformation functions h1, . . . , hK such that the distance between
each transformation hk(Wk) (k = 1, . . . ,K) and their average

∑K
k=1 hk(Wk)/K is minimized.

Then, the solution to the above optimization problem provides a group of optimal transfor-
mations. Their average naturally can be used as a representation for the latent variable. In
other words, we intend to find a one-dimensional representation of the higher dimensional
data which is pertinent to a multidimensional scaling problem.

To solve the optimization problem, a technical aspect of our method is to use the basis
expansion. It enables the characterization of nonlinear transformations h1, . . . , hK and fur-
ther simplifies the optimization procedure. With basis expansion the optimal solution takes
a specific form which makes our method convenient and efficient to implement. To reflect
its relationship with multidimensional scaling and basis expansion, we name our method as
B-scaling and the one-dimensional representation as B-mean. The asymptotic property of
B-mean is also established to provide theoretical underpinnings for our proposed method.
To illustrate its empirical performance, we applied the B-scaling method to integrate mul-
tisource epigenetic data and established an epigenetic index (EI) across the genome using
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B-mean. The EI showed better explanations of the changes in gene expressions than any of
the data source.

The rest of the paper is organized as follows. In Section 2 we introduce the proposed
method for integrating multiple measurements. In Section 3 we develop the theoretical prop-
erties of the B-mean. Simulation studies and real data analysis are reported in Section 4 and
Section 5. Section 6 concludes the paper with a discussion. All the proofs are provided in
Appendix.

2. Model setup. In this section, we first consider the population version of the B-scaling
method and then generalize to its sample version. Assume that Y is a one-dimensional
random variable, which we do not observe. Instead, we observe K numbers, denoted by
W = (W1, . . . ,WK)T ∈ R

K , which measure Y in some linear or nonlinear ways. Our goal is
to extract Y from W . In the proposed framework, we assume that the latent variable Y and
W1, . . . ,WK are connected through some functions f 0

1 , . . . , f 0
K . Specifically, let W1, . . . ,WK

be K random variables and Hk be a Hilbert space of functions of Wk for k = 1, . . . ,K . We
assume there exist f 0

k ∈ Hk such that Y = f 0
k (Wk) for k = 1, . . . ,K .

To recover the transformations f 0
1 , . . . , f 0

K , we can use the fact that, if such transformations
do exist, then it must be true that

f 0
1 (W1) = · · · = f 0

K(WK) = Y.

Consequently, f 0
1 , . . . , f 0

K must satisfy the relation

E

[
K∑

k=1

(
f 0

k (Wk) − K−1
K∑

k=1

f 0
k (Wk)

)2]
= 0.

In other words, if H1, . . . ,HK are families of functions rich enough to contain f 0
1 , . . . , f 0

K ,
then (f 0

1 , . . . , f 0
K) should minimize

L(h1, . . . , hK) = E

[
K∑

k=1

(
hk(Wk) − K−1

K∑
k=1

hk(Wk)

)2]

among (h1, . . . , hK).
However, note that the function is minimized trivially by (h1, . . . , hK) = (0, . . . ,0) which

yields L(0, . . . ,0) = 0. To avoid this trivial solution, we assume that h1 �= 0, . . . , hK �= 0.
Furthermore, since the latent variable Y is unaffected by a multiplicative constant, we assume,
without loss of generality, ‖h1‖ = · · · = ‖hK‖ = 1. Based on these observations, we propose
the following optimization problem:

minimize L(h1, . . . , hK),

subject to: h1 ∈ H1, . . . , hK ∈ HK, ‖h1‖ = · · · = ‖hK‖ = 1.
(2)

REMARK 2.1. The ideas of B-scaling and the sigmoid neuron share some common char-
acteristics (Figure 2). A sigmoid neuron takes real-valued data as inputs, and the output func-
tion, known as the sigmoid function, is usually a nonlinear function. B-scaling also takes
multisource data as inputs. The output functions h1, . . . , hK are defined to be either linear or
nonlinear. Furthermore, both methods aim to learn the output functions through minimizing
their loss functions. However, B-scaling is performed in an unsupervised manner and allows
the output functions to have more general forms. To find those optimal transformations (out-
put functions), B-scaling utilizes the fact that they produce the same output values, which we
call as the fused measurement, while the optimization for a sigmoid neuron is implemented
in a supervised way.
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FIG. 2. B-scaling from the perspective of sigmoid neuron—the building block of deep neural network. For the
left panel, wik is the ith observation for kth measurement, and ŷi is the ith fused value for i = 1, . . . , n and
k = 1, . . . ,K .

REMARK 2.2 (B-scaling, measurement error model, and multidimensional scaling). De-
spite its appearance, this is not a measurement error problem (Carroll et al. (2006), Fuller
(2009)), because these measurements are not necessarily measuring the same physical quan-
tity. Instead, it is akin to a multidimensional scaling problem (Cox and Cox (2000), Kruskal
(1964), Torgerson (1952)): that is, we would like to find a one-dimensional representation
of higher dimensional data. However, different from multidimensional scaling, we are not
interested in preserving intervariable distances but rather making a connection among several
measurements, based on the fact that they are related to the same latent quantity. A technical
aspect of our method is the use of basis expansion. Thus, we call our method B-scaling, to
reflect its relationship with both multidimensional scaling and basis expansion.

Let (f1, . . . , fK) be the solution to the optimization problem (2). In the ideal situation,
where f 0

k ∈Hk for k = 1, . . . ,K , the objective function can be perfectly minimized to 0, and
this gives the unique optimizer (f1, . . . , fK) = (f 0

1 , . . . , f 0
K). In this case, any fk(Wk) can be

used as the representation of the latent variable Y . However, in practice we do not make such
a strong assumption and allow f 0

k to be outside of Hk . In this case we use the average of the
optimal solution (f1, . . . , fK) as a representation of the latent variable Y . This leads to the
notions of B-mean and B-variance, as defined below.

DEFINITION 2.3. Let f1, . . . , fK be the solution to the minimization problem (2). Let

μB(W1, . . . ,WK) = K−1
K∑

k=1

fk(Wk),

VB(W1, . . . ,WK) = K−1
K∑

k=1

[
fk(Wk) − μB(W1, . . . ,WK)

]2
.

We called them B-scaling mean and B-scaling variance, of W1, . . . ,WK , respectively, or B-
mean and B-variance for short.

REMARK 2.4 (B-mean as a representation). Note that the B-mean is a random variable,
and its definition does not depend on the assumption that the true transformations f 0

k ∈ Hk

for all k = 1, . . . ,K . Thus, we have the following two scenarios: Scenario 1. When f 0
1 ∈
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H1, . . . , f
0
K ∈ HK , VB(W1, . . . ,WK) is zero, and the unique optimizer f 0

1 (W1), . . . , f
0
K(WK)

are equal to the B-mean almost surely. The B-mean thus, naturally, becomes a representation
of Y up to a multiplicative constant. Scenario 2. In a more general case, when some f 0

k /∈ Hk ,
the distance between B-mean and the latent variable Y is largely determined by the extent to
which f 0

k deviates from Hk . Since we do not make any assumption about the latent variable
Y and allow f 0

k to be outside Hk , the B-mean, as defined here, is only a representation of the
latent variable Y to the best of our knowledge of observed measurements W1, . . . ,WK .

We call B-mean the fused measurement and W1, . . . ,WK surrogate measurements. We
have to emphasize that we do not intend to estimate the latent measurement Y . Instead, we
are interested in extracting common information contained in mutisource data. Similar to the
concept of principal component, B-mean is another type of representation of the data such
that its distance with all K transformations is minimized. In the rest of the paper, we focus
on discussing the properties of B-mean.

For the choice of H1, . . . ,HK , we propose the clans of spline functions, as stated by the
condition below. It is convenient to express functions in S(m, t(k)) in terms of spline basis.

CONDITION 2.5. For each k = 1, . . . ,K , let t (k) be the set {(t(k)
0 , . . . , t

(k)
k0

) : 0 = t
(k)
0 <

· · · < t
(k)
k0

= 1}. Let S(m, t(k)) be the set of spline functions of order m (m ≥ 1) with knots

t (k). That is, for m = 1,S(m, t(k)) is the set of step functions with jumps at the knots; for
m = 2,3, . . .,

S
(
m, t(k)) = {

s ∈ Cm−2[0,1] : s(x) is a polynomial of degree

(m − 1) on each subinterval
[
t
(k)
i , t

(k)
i+1

]}
,

where Cq[0,1] is the clan of functions on [0,1] with continuous qth derivative. We assume
Hk = S(m, t(k)).

For any fixed m and t (k), let {N(k)
1,m(x), . . . ,N

(k)
�,m(x)} be the basis of S(m, t(k)), where � =

k0 + m − 1 is the number of basis functions in S(m, t(k)). For any hk(x) ∈ S(m, t(k)), there
exits Ak ∈ R

� such that hk(x) = AT
k Nk(x), where Nk(x) = (N

(k)
1,m(x), . . . ,N

(k)
�,m(x))T ∈ R

�.
By Condition 2.5, for k = 1, . . . ,K ,

hk(Wk) = AT
k Nk(Wk).

The objective function in (2) can then be written in matrix as

E

[
K∑

k=1

(
AT

k Nk(Wk) − K−1
K∑

k=1

AT
k Nk(Wk)

)2]
, A1, . . . ,AK ∈R

�.(3)

Let A = (AT
1 , . . . ,AT

K)T , N = diag(N1(W1), . . . ,NK(WK)), 1 = (1,1, . . . ,1)T ∈ R
K , and

Q = I − 11T /K . Then, the objective function L(A1, . . . ,AK) can be rewritten as

L(A) = E
∥∥NT A − K−111T

N
T A

∥∥2 = AT E
(
NQN

T )
A.

Thus, at the population level, optimization (2) amounts to solving the following generalized
eigenvalue problem:

minimize AT E
(
NQN

T )
A,

subject to: AT var(N1/K)A = 1.
(4)

Let � = E(NQN
T ) and � = var(N1/K), the above generalized eigenvalue problem yields

the following explicit expression of the B-mean.
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Algorithm 1 B-scaling Algorithm
1. Rescale {wi1, . . . ,wiK}ni=1 such that they are all defined on [0,1]. For kth measurement
{wik}ni=1 (k = 1, . . . ,K), generate � spline functions of order m. Denote the spline functions

as N
(k)
1,m(x), . . . ,N

(k)
�,m(x).

2. Evaluate the spline functions at each data point of the K measurements, resulting in

N1(wi1) =

⎛
⎜⎜⎝

N
(1)
1,m(wi1)

...

N
(1)
�,m(wi1)

⎞
⎟⎟⎠ , . . . ,NK(wiK) =

⎛
⎜⎜⎝

N
(K)
1,m (wiK)

...

N
(K)
�,m (wiK)

⎞
⎟⎟⎠ , i = 1, . . . , n.

Let Ni = diag(N1(wi1), . . . ,NK(wiK)). Calculate �n and �n by equation (5).
3. Find the eigenvector of �

−1/2
n �n�

−1/2
n corresponding to its smallest eigenvalue, denoted

as b̂. Output â = �
−1/2
n b̂.

4. Estimate the B-mean at the data points (wi1, . . . ,wiK) by μ̂B(wi1, . . . ,wiK) = âT
Ni1/K

for i = 1, . . . , n.

THEOREM 2.6. The B-mean of W1, . . . ,WK has the form of

μB(W1, . . . ,WK) = aT
N1/K,

where a = �−1/2b, and b is the eigenvector of �−1/2��−1/2 corresponding to its smallest
eigenvalue.

At the sample level, assume that we observe i.i.d. samples wi = (wi1, . . . ,wiK)T , i =
1, . . . , n which measures the i.i.d. latent variable yi in some linear or nonlinear ways. We use
the sample-level counterpart of μB(W1, . . . ,WK) in Theorem 2.6 to estimate the B-mean.
Specifically, let

Ni = diag
(
N1(wi1), . . . ,NK(wiK)

)
,

�n = n−1
n∑

i=1

NiQN
T
i ,

�n = n−1
n∑

i=1

(
Ni1− n−1

n∑
i=1

Ni1

)(
Ni1− n−1

n∑
i=1

Ni1

)T

/K2.

(5)

The estimate of μB(wi1, . . . ,wiK) is

μ̂B(wi1, . . . ,wiK) = âT
Ni1/K,

where â = �
−1/2
n b̂, and b̂ is the eigenvector of �

−1/2
n �n�

−1/2
n corresponding to its smallest

eigenvalue. In Algorithm 1 we show an algorithm for computing the B-mean based on the
data (wi1, . . . ,wiK), i = 1, . . . , n.

3. Theoretical properties. In this section we study the asymptotic property of the
B-mean. Recall that the B-mean at (wi1, . . . ,wiK) is estimated by μ̂B(wi1, . . . ,wiK) =
âT

Ni1/K , where â = �
−1/2
n b̂ and b̂ is the eigenvector of �

−1/2
n �n�

−1/2
n corresponding to

its smallest eigenvalue. To show the asymptotic distribution of the B-mean, we first show that
both b̂ and â are asymptotically normally distributed. To simplify presentation, we introduce
the following notations. Let λmax(·) and λmin(·) denote the maximum and minimum eigen-
values/singular values of a matrix, respectively. Let M1 ⊗ M2 denote the Kronecker product
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of two matrices M1 and M2. Let M+ denote the pseudo-inverse of a matrix M . Let
D−→ de-

note in distribution convergence and
P−→ in probability convergence. We make the following

assumptions.

CONDITION 3.1. Without loss of generality, we assume that {wi1, . . . ,wiK}ni=1 are i.i.d.
random variables in [0,1]. Moreover, we assume that each wik has a finite 4(m − 1)th mo-
ment.

CONDITION 3.2. 0 < λmin(�) ≤ λmax(�) < ∞.

The finite 4(m−1)th moment assumption in Condition 3.1 guarantees that, when the basis
{N1(x), . . . ,NK(x)} are of mth order, the random sequence n−1 ∑n

i=1 ×
N

k1
�1,m

(wik1)N
k2
�2,m

(wik2) has an asymptotic normal distribution, and it is true for all k1, k2 =
1 . . . ,K and �1, �2 = 1, . . . , �. The asymptotic properties of �n and �n thus follow. Con-
dition 3.2 ensures that no N

(k1)
�1,m

(wik1) has a dominate variance or is linearly dependent on

N
(k2)
�2,m

(wik2) for k1 �= k2 and �1 �= �2. It also implies the existence of �−1. In the following

we denote �−1/2��−1/2 by R, �
−1/2
n �n�

−1/2
n by Rn, and N1/K by Z. With Conditions

3.1 and 3.2, we have the following asymptotic distribution for Rn.

THEOREM 3.3. Under Conditions 3.1–3.2, we have
√

n
[
vec(Rn − R)

] D−→ N(0,�R),(6)

where

�R = (
�1 �2

)(
�11 �12
�21 �22

)(
�T

1
�T

2

)

and

�1 = −(
�− 1

2 � ⊗ I + I ⊗ �− 1
2 �

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1
,

�2 = (
�− 1

2 ⊗ �− 1
2
)
,

�11 = E
{[
Z⊗Z− E(Z⊗Z) − (

Z− E(Z)
) ⊗ E(Z) − E(Z) ⊗ (

Z− E(Z)
)]

× [
Z⊗Z− E(Z⊗Z) − (

Z− E(Z)
) ⊗ E(Z) − E(Z) ⊗ (

Z− E(Z)
)]T }

,

�21 = E
{[

(N⊗N)vec(Q) − E(N⊗N)vec(Q)
]

× [
Z⊗Z− E(Z⊗Z) − (

Z− E(Z)
) ⊗ E(Z) − E(Z) ⊗ (

Z− E(Z)
)]T }

,

�22 = E
{[

(N⊗N)vec(Q) − E(N⊗N)vec(Q)
][

(N⊗N)vec(Q) − E(N⊗N)vec(Q)
]T }

.

In the rest of the paper, we write the matrix(
�11 �12
�21 �22

)

in Theorem 3.3 as �. To further investigate the properties of the eigenvectors of Rn, we need
the following condition.

CONDITION 3.4. Assume that matrix R ∈ R
K�×K� has distinct eigenvalues, denoted as

d1, . . . , dr , such that d1 > · · · > dr > 0, where r = K�.
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Condition 3.4 requires that the eigenvalues of R are separable which is to guarantee that the
eigenvectors are uniquely defined. To conclude, we transform the minimization problem (2)
to the generalized eigenvalue problem (4) with Condition 2.5, and the optimal solution to (4)
is the eigenvector corresponding to the smallest eigenvalue of the matrix R = �−1/2��−1/2.
When Conditions 3.2 and 3.2 are further satisfied, the matrix R is invertible and has separable
eigenvalues which ensures the uniquely defined eigenvectors. Thus, there exists a unique
solution to the minimization problem (2), given Conditions 2.5, 3.2, and 3.4. The next lemma
gives the asymptotic distributions of â and b̂.

LEMMA 3.5. Under Conditions 3.1–3.4, we have

√
n(b̂− b)

D−→ N
(
0, (Mb1,Mb2)�(Mb1,Mb2)

T )
,

where � is defined in Theorem 3.3,

Mb1 = −[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 � ⊗ I + I ⊗ �− 1

2 �
)(

� ⊗ �
1
2 + �

1
2 ⊗ �

)−1
,

Mb2 = [
bT ⊗ V (drI − 	)+V T ](

�− 1
2 ⊗ �− 1

2
)

with 	 being the diagonal matrix diag(d1, . . . , dr), and V being a matrix whose columns are
eigenvectors of R. The asymptotic distribution of â is given by

√
n(â − a)

D−→ N
(
0, (Ma1,Ma2)�(Ma1,Ma2)

T )
,

where

Ma1 = −(
bT ⊗ I

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1

− �− 1
2
[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 � ⊗ I + I ⊗ �− 1

2 �
)(

� ⊗ �
1
2 + �

1
2 ⊗ �

)−1
,

Ma2 = �− 1
2
[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 ⊗ �− 1

2
)
.

As showed in Lemma 3.5,
√

n(â − a) is asymptotically normally distributed. Notice that
for a given new observation, denoted as (w̃1, . . . , w̃K), its B-mean estimate is represented
by an average of NT

1 (w̃1)â1, . . . ,NT
K(w̃K)âK , where NT

1 (w̃1), . . . ,NT
K(w̃K) are the values of

basis functions evaluated at (w̃1, . . . , w̃K). With Lemma 3.5 we show in Theorem 3.6 that the
B-mean estimate follows asymptotic normal distribution.

THEOREM 3.6. Suppose that Conditions 3.1 through 3.4 are satisfied. For a given new
observation w̃ = (w̃1, . . . , w̃K)T , let μB(w̃) be the B-mean at w̃, and let μ̂B(w̃) be the B-
mean estimate. Then, as n → ∞,

√
n
[
μ̂B(w̃) − μB(w̃)

] D−→ N
(
0, σ 2

μ

)
,(7)

where

σ 2
μ = N(w̃)T (Ma1,Ma2)�(Ma1,Ma2)

T N(w̃)/K2

with N(w̃) being (NT
1 (w̃1), . . . ,NT

K(w̃K))T .
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4. Simulation studies. We have conducted comprehensive simulation studies to inves-
tigate the empirical performance of the proposed B-mean for representing the underlying la-
tent variable. In the first example we discussed some implementation issues of the B-scaling
method. In the second example we examined the performance of the B-mean by comparing
with that of principal components (PCs) and multidimensional scaling (MDS). Their perfor-
mances were evaluated by their correlations with the latent measurement. For principal com-
ponent analysis we reported the maximum correlations that all the PCs can achieve (PCmax).
For multidimensional scaling we choose to map all the data points to a one-dimensional
space.

EXAMPLE 1. The selection of basis function, its order, and the knots are key issues in
implementing the B-scaling algorithm. In practice, we choose the natural spline of order
m = 4. The flexibility of a spline then mainly lies in the selection of knots. We let knots be
the quantiles of (w1k, . . . ,wnk) for k = 1, . . . ,K . In this paper we focus on the B-scaling
method itself and choose the same values of m and k0 for all K different measurements.
Then, for different k = 1, . . . ,K , the flexibility of fitting splines only lies in the difference of
their quantiles. For further studies we can embed into our algorithm the data-driven methods
for fitting splines (He, Shen and Shen (2001), Yuan, Chen and Zhou (2013)).

In this example we demonstrate how the number of knots impacts the behavior of the
B-scaling method. To generate multiple nonlinear functions automatically, we consider the
Logit function

g(x) = 1

1 + exp[20(x − 0.5)]
and let (wi1, . . . ,wiK) measure yi in nonlinear ways, wik = ∑H

t=1 skZktδtg(yi + εik) for
i = 1, . . . , n and k = 1, . . . ,K . We generated yi from U(0,1) as the latent measurement and
the errors εik from N(0,0.1). In addition, sk is a scale parameter generated from U(−10,10),
Zkt from uniform distribution U(−√

3,
√

3), and δt = (−1)t+1t−ν/2. Parameters ν and H

were set to 2 and 5, respectively. Let n = 1000,2000,3000, K = 10,20,30, and k0 vary
from 11 to 25. The performances of B-scaling mean were evaluated by its correlation with
yi . As illustrated in Figure 3, under different scenarios the estimated B-means maintained
high correlations with yi , as we vary the number of knots. In practice, we recommend to
utilize the B-variance to select a proper number of knots. That is, we propose to choose
the number of knots that generates a smaller B-variance. Intuitively, a proper number of
knots would result in a better estimation of the K transformations f1, . . . , fK and further
a smaller B-variance among f1(W1), . . . , fK(WK). We have implemented this method for
selecting the number of knots in simulation studies. In the Supplementary Material (Liu et
al. (2022)) we further discussed the possibility of combining the plot of B-variance and the
associated eigensystem to determine the number of knots (Supplementary Material, Figure
S1) for future studies.We also reported the computation time of B-scaling in Figure 4. It only
takes seconds to calculate the B-mean when the sample size and the number of measurements
are relatively small (Figure 4, left panel). As the sample size n, number of measurements
K , and the number of knots increase, the computation time of B-scaling tends to increase
(Figure 4).

EXAMPLE 2. In this example we investigated the performances of the B-mean for rep-
resenting the latent variable. We generated yi as the latent measurement under two scenar-
ios: (1) uniform distribution U(0,1) and (2) normal distribution N(0,1). The K observed
measurements (wi1, . . . ,wiK) as for i = 1, . . . , n were simulated using the same model in
Example 1. Let n = (500,700,1000,2000,3000) and K = (7,10,20,30). We generated 100
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FIG. 3. Boxplots of the correlations between the latent variable yi and estimated B-means.

datasets for each combination of n and K . To evaluate the performances of the B-mean and
PCs, their correlations with yi in each simulation are reported. The quantities

ρmax = max
k

∣∣Corr(wik, yi)
∣∣, ρ̄0 = K−1

K∑
k=1

∣∣Corr(wik, yi)
∣∣

are also recorded. Figure 5 displays the boxplots of the correlations between the latent vari-
able yi and the aforementioned estimates based on 100 simulation runs. The performances of
ρmax and ρ̄0 illustrate that wiks have relatively high correlations with yi on average. For prin-
cipal component analysis we reported the maximum correlations that all the PCs can achieve.
However, since the PC is a linear combination of the observed measurements (wi1, . . . ,wiK),
its correlation with yi thus heavily depends on whether wik is linearly correlated with yi . In
all scenarios the B-mean has the highest correlation on average with the latent variable yi .

EXAMPLE 3. To show the performance of the B-scaling method when g functions have
different structures, we consider

g(x) = 1

1 + exp[20(x − 0.5)] and gt (x) = log
(|t/x|)

and let (wi1, . . . ,wiK) measure yi in nonlinear ways, where wik = ∑H
t=1 skZktδtg(yi + εik)

for k = 1, . . . , �K/2� and wik = ∑H
t=1 skZktδtgt (yi + εik) for k = �K/2� + 1, . . . ,K . Other

FIG. 4. The computation time of B-scaling method with varying n,K , and the number of knots. The error bar
represents one standard deviation away from the mean.
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FIG. 5. Boxplots of the correlations between the latent variable yi and the aforementioned estimates in Ex-
ample 2. The latent variable is generated from uniform distribution U(0,1) (upper panel) and standard normal
distribution N(0,1) (lower panel).

settings are the same as Example 2. In all scenarios, B-scaling method outperforms its com-
petitors (Figure 6). We further increased the variance of εik to 0.3 and generated data pairs
with the same settings in Examples 2 and 3, respectively. The average correlation ρ̄0 then
decreased to a value around 0.65 in the uniform setting (Supplementary Material Figure S2,
A and C) and around 0.4 in the normal setting (Supplementary Material Figure S2, B and
D). Our method still achieved averaged correlations around 0.9 and 0.7 under each setting,
respectively.

5. Application: Epigenetic index (EI). Epigenetic modifications, such as DNA methy-
lation and histone modifications, play an important role in regulating gene expression and nu-
merous cellular processes (Portela and Esteller (2010)). The modifications target on genetic

FIG. 6. Performance comparisons between B-mean and its competitors in Example 3. The latent variable is gen-
erated from uniform distribution U(0,1) (upper panel) and standard normal distribution N(0,1) (lower panel).
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TABLE 1
Model performance (adjusted R2) for different methods

Predictor B-mean PCmax MDS Single All

Adj.R2 0.321 0.214 0.126 0.242 0.304

materials in cells and regulate the biological processes without altering the DNA sequence.
Recently, next generation high-throughput sequencing technologies have been adopted to
characterize the epigenomic landscapes of primary human tissues and cells (Reuter, Spacek
and Snyder (2015)). The resulting datasets, for instance, the Roadmap Epigenomics database,
have provided information on various types of histone modifications and DNA methylation
levels across the genome. The integration of these different measures of epigenetic informa-
tion, also known as the construction of chromatin state maps (Ernst and Kellis (2012)), for
different tissues and cell types under varied conditions can help researchers understand bio-
logical processes, such as morphogenesis, cell differentiation, and tumorigenesis (Feinberg,
Koldobskiy and Göndör (2016), Sheaffer et al. (2014)). In this application the epigenetic ac-
tiveness is latent and cannot be measured directly. We intend to integrate various types of
histone modifications and DNA methylation levels to infer epigenetic activeness across the
genome.

We used the human liver cancer cell line data (The ENCODE Project Consortium (2012)).
The data consists of the information of six types of histone modifications and whole genome
DNA methylation levels measured by ChIP-seq and WGBS, respectively. These six his-
tone modifications, that is, methylation and acetylation to histone proteins H3 at different
amino acid positions, include H3K9ac, H3K27ac, H3K4me1, H3K4me2, H3K9me3, and
H3K27me3. We used the values of fold change over control for histone modifications and
DNA methylation levels on the promoter region, that is, 1000 base pairs upstream or down-
stream of where a gene’s transcription begins. After filtering the genes with zero histone
modification and DNA methylation levels, we selected 4293 genes. In summary, the kth ob-
served measurement wik here represents kth epigenetic modification level of promoter region
for ith gene, where k = 1, . . . ,7, and i = 1, . . . ,4293. We aim to integrate these seven epige-
netic modifications to infer the latent epigenetic activeness yi . The proposed method, PCA,
and MDS were applied to the dataset. To compare the performances of these methods, we
considered the following linear regression model and investigated to what extent the fused
chromatin EI calculated by these two methods could explain the gene expression levels:

log(gi) = α0 + α1xi + εi,(8)

where gi is the expression level (reads per kilobase million, RPKM) for gene i, i =
1, . . .4293, and xi is the fused EI values corresponding to ith gene. The adjusted R2s of
the model (8) for B-mean, PCmax, MDS were 0.321, 0.214, and 0.126, respectively, and the
full model with all the predictors, that is, six histone modifications and DNA methylation, had
adjusted R2 of 0.304 (Table 1). In addition, the maximum R2 was 0.242 if we only included
one of these seven predictors in the model. The B-mean achieves the highest R2, indicating
that the EI fused using B-scaling approach can explain better the changes in gene expression.
Since we used the whole genome data and gene expression was influenced by many other
factors, the R2 around 0.3 was expected (Yuan et al. (2006)).

To further verify the performance of the proposed method, we performed the gene ontol-
ogy analysis. Through Livercome database (Lee et al. (2011)), a database for liver cancer
genes, we downloaded 3660 cancer-related genes. Among these cancer genes, 768 genes
were shown in our selected gene list of size 4293. We then divided our gene list into 10
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FIG. 7. The relationship between the number of liver cancer-related genes and quantiles of B-mean (left panel)
or PCmax (right panel) values. The y-axis is the number of liver cancer-related genes, and the x-axis is the
corresponding quantiles. The solid blue lines are fitted using the simple linear regression.

subsets based on 10 quantiles, which were equally spaced from zero to one hundred, of B-
mean or PC values. As PCmax outperforms MDS, we only compared the proposed method
with PCmax. In Figure 7 we showed how the number of cancer-related genes from Livercome
database in each subset changed as the B-mean (left panel) or PCmax (right panel) values
increased. The proposed method showed clear advantage over PCmax. When the B-mean val-
ues grew, the number of cancer-related genes also increased. This indicated that we could
find more cancer-related genes when the genes had higher B-mean values, that is, higher EI.
The Pearson correlation coefficients in Figure 7 also indicated that the B-mean values and the
number of liver cancer genes had a stronger linear trend, compared to the PCA approach.

6. Discussion. The B-scaling approach provides a flexible framework for integrating
multisource data. It adopts a basis expansion step to approximate the nonlinear transforma-
tions of W1, . . . ,WK , and an optimization step to search for a one-dimensional surrogate
of those measurements. The basis expansion step enables the characterization of nonlinear
transformations, while the optimization step, borrowing strength from the PCA approach, is
both convenient and efficient to implement. As a trade-off, the B-scaling approach imposes
a few assumptions to ensure its efficiency and effectiveness in data fusion. In this approach
we only consider a fixed number of basis, order, and number of knots, as stated in Condi-
tion 2.5. Condition 2.5 is only a working assumption. It simplifies the optimization process
and yields a nice and simple optimal solution, although such an assumption is restrictive. It is
possible to relax Condition 2.5 and allow the number of knots to grow with the sample size.
The asymptotic properties of B-mean then may depend on the order between the number of
knots and the sample size. Another way to make the method fully nonparametric is to impose
penalties to the functions h1, . . . , hK . The objective function thus becomes

L(h1, . . . , hK) = E

[
K∑

k=1

(
hk(Wk) − K−1

K∑
k=1

hk(Wk)

)2]
+ λ

K∑
k=1

∫
h′′

k(x)2 dx,
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which may further be simplified to have the following quadratic form:

L(h1, . . . , hK) = AT [
E

(
NQN

T ) + λD
]
A,

where D is a block diagonal matrix with kth diagonal element be Dk , and Dk is a �-by-
� kernel matrix that measures the roughness of hk . For any given smoothing parameter λ,
this optimization problem becomes an eigenvalue problem. These ideas deserve to be fur-
ther explored in future studies. Regarding the number of knots, it should depend on both the
sample size and the true transformations between the latent variable and the observed mea-
surements. With larger sample size and more complex transformations, we recommend to use
more knots. While the suggestion for the number of knots in our manuscript is only a naive
recommendation, it works well under various scenarios. In this paper we propose to choose
the number of knots with a smaller B-variance.

The robustness of the B-scaling method is another issue. If one of the K measurements
severely deviates from the true measurement, it would have an impact on the minimization
process. We could use the following ideas to improve the robustness of the B-scaling method.
First, the B-variance can be used to identify a potential poor measurement, because removing
it would result in a dramatic decreasing in the B-variance. Thus, if we are able to obtain the
information about the accuracy of each measurement, we may put weights on the measure-
ments accordingly to down weight poor measurements. The objective function can then be
set as E[∑K

k=1 δk(hk(Wk) − K−1 ∑K
k=1 hk(Wk))

2], where δk is the weight for measurement
k. Second, to make this optimization process more robust, we could also change the L2-norm
to L1-norm in the objective function which deserves further investigation.

Regarding the type of transformation functions, we choose to treat the monotone transfor-
mations as a special case for the B-scaling method rather than explicitly imposing it as a con-
straint. If the transformation for Wk is indeed monotone, then the optimal procedure would
pick up this information automatically. Since the B-scaling method is based on a minimiza-
tion problem that is transformed into an eigenvalue problem, imposing an extra constraint
would disrupt this simplicity and add significant complexity to the computation with only
limited benefit and efficiency. For a more refined version of B-scaling, one might impose
some inequality constraints on the spline coefficients to control the trend of the transforma-
tions.

Currently, we only considered Wk (k = 1, . . . ,K) as a univariate random variable and pro-
posed using the B-scaling mean as a representation of the K different measurements. When
it comes to integrating vector-valued samples, we could generalize Wk to be a p-dimensional
random vector, meaning that p features for each subject are observed in measurement k.
Correspondingly, we may reformulate the objective function as

L(h1, . . . , hK) = E

[
K∑

k=1

∥∥∥∥∥hk(Wk) − K−1
K∑

k=1

hk(Wk)

∥∥∥∥∥
2

2

]
,

where Wk = (Wk1, . . . ,Wkp)T ∈R
p and each hk is a multivariate smooth function. The mul-

tivariate smooth function can be constructed through tensor product smoothing. For instance,
if p = 3, then hk can be represented as

hk(Wk) = ∑
ij l

βij lB1i (Wk1)B2j (Wk2)B3l(Wk3),

where the βijl are coefficients and B1i (Wk1), B2j (Wk2), and B3l(Wk3) are the basis functions.
The objective function can be further simplified to have a quadratic form. Such a generaliza-
tion is an interesting topic for future investigation.

In summary, we believe that the B-scaling method has a broad and important impact on
applications in many areas. To facilitate the method development in this direction, we im-
plemented the B-scaling algorithm using programming language R and which is available in
Supplement B.
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APPENDIX: PROOF

In this Appendix we prove the asymptotic results in Section 3. We rely on what is known
as the von Mises expansion to perform this task. For a comprehensive treatment on this topic,
see Fernholz (2012). The same approach was used in Li and Wang (2007); see also Li (2018).

Let D be the clan of all distributions of W . Let Fn be the empirical distribution of W , and
let F0 be the true distribution of W . Let M be a metric space. In our context, we take M to
be the class of all matrices of given dimensions. A matrix-valued statistical functional is a
mapping T : D →M. When we use the statistic T (Fn) to estimate the parameter T (F0), we
have the following asymptotic result: if T (F ) is Fréchet Differentiable at F0, then

T (Fn) = T (F0) + EnT
∗ + op

(
n− 1

2
)
,(9)

where T ∗ is the influence function of T (Fn) satisfying ET ∗ = 0. Moreover, the variance
matrix of vec(T ∗) has finite entries. The expansion (9) is called the first-order von Mises
expansion of T (Fn). By the Central Limit Theorem and Slutzky’s theorem, we have

√
n
[
vec

(
T (Fn)

) − vec
(
T (F0)

)] D−→ N
(
0,var

[
vec

(
T ∗)])

.

The influence function of a statistical functional is defined as follows. Let w be a point in
the support of the random vector W . Let δw be the Dirac measure at w. Then, the influence
function of T (Fn) is defined as the derivative

T ∗ = d

dε
T

[
(1 − ε)F0 + εδw

]|ε=0.(10)

The statistics in Section 3, such as the Rn in Theorem 3.3 and μ̂B(w̃) in Theorem 3.6, are
all special cases of statistical functionals, and their asymptotic distributions can all be derived
in this unified fashion.

A.1. Influence functions of �n,�n and �
− 1

2
n . PROOF. The influence function of �n

is simple: recall that �n = En(NQN
T ). So we have the following expansion:

�n = � + En

(
NQN

T − �
)
.

The influence function of �n is simply

�∗ = NQN
T − �.(11)

We now derive the influence function of �n. Recall that

�n = varn(N1/K)

= En

[
N

(
11T /K2)

N
T ] − En(N1/K)En

(
1T

N
T /K

)
.

To calculate the influence function of �n, let Gε = (1 − ε)F0 + εδw and

�(ε) =
∫

N
(
11T /K2)

N
T dGε −

∫
(N1/K)dGε

∫ (
1T

N
T /K

)
dGε.

Because d
dε

Gε|ε=0 = δw − F0, we have

d�(ε)

dε

∣∣∣∣
ε=0

=
∫

N
(
11T /K2)

N
T d(δw − F0)

−
[∫

(N1/K)d(δw − F0)

]
E

(
1T

N
T /K

)

− E(N1/K)

[∫ (
1T

N
T /K

)
d(δw − F0)

]
.
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Thus, the influence function for �n is

�∗ =N
(
11T /K2)

N
T − E

[
N

(
11T /K2)

N
T ]

− [
N1/K − E(N1/K)

]
E

(
1T

N
T /K

)
− E(N1/K)

[
1T

N
T /K − E

(
1T

N
T /K

)]
.

(12)

Finally, we derive the influence function of �
− 1

2
n . Since for all ε > 0, �− 1

2 (ε)�(ε) ×
�− 1

2 (ε) = I , we have (
�− 1

2
)∗

�
1
2 + �− 1

2 �∗�− 1
2 + �

1
2
(
�− 1

2
)∗ = 0.

Hence, (
�

1
2 ⊗ I

)
vec

[(
�− 1

2
)∗] + (

I ⊗ �
1
2
)

vec
[(

�− 1
2
)∗] = −(

�− 1
2 ⊗ �− 1

2
)

vec
(
�∗)

which implies

vec
[(

�− 1
2
)∗] = −(

�
1
2 ⊗ I + I ⊗ �

1
2
)−1(

�− 1
2 ⊗ �− 1

2
)

vec
(
�∗)

= −(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1 vec
(
�∗)

.

(13)
�

A.2. Proof of Theorem 3.3.

PROOF. Since Rn = �
− 1

2
n �n�

− 1
2

n , we have

R(ε) = �− 1
2 (ε)�(ε)�− 1

2 (ε).

Differentiate both sides of this equation with respect to ε, and then evaluate the derivatives at
ε = 0 to obtain

R∗ = (
�− 1

2
)∗

��− 1
2 + �− 1

2 �∗�− 1
2 + �− 1

2 �
(
�− 1

2
)∗

.

Hence,

vec
(
R∗) = (

�− 1
2 � ⊗ I

)
vec

[(
�− 1

2
)∗] + (

�− 1
2 ⊗ �− 1

2
)

vec
(
�∗)

+ (
I ⊗ �− 1

2 �
)

vec
[(

�− 1
2
)∗]

= (
�− 1

2 � ⊗ I + I ⊗ �− 1
2 �

)
vec

[(
�− 1

2
)∗] + (

�− 1
2 ⊗ �− 1

2
)

vec
(
�∗)

= −(
�− 1

2 � ⊗ I + I ⊗ �− 1
2 �

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1 vec
(
�∗)

+ (
�− 1

2 ⊗ �− 1
2
)

vec
(
�∗)

= (�1,�2)

(
vec

(
�∗)

vec
(
�∗)) ,

(14)

where �1 = −(�− 1
2 � ⊗ I + I ⊗ �− 1

2 �)(� ⊗ �
1
2 + �

1
2 ⊗ �)−1 and �2 = (�− 1

2 ⊗ �− 1
2 ).

It follows that
√

n
[
vec(Rn) − vec(R)

] D−→ N(0,�R),

where

�R = (�1,�2)

(
E

[
vec

(
�∗)

vecT (
�∗)]

E
[
vec

(
�∗)

vecT (
�∗)]

E
[
vec

(
�∗)

vecT (
�∗)]

E
[
vec

(
�∗)

vecT (
�∗)]

)(
�T

1
�T

2

)
.
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We now compute the moments E[vec(�∗)vecT (�∗)],E[vec(�∗)vecT (�∗)],E[vec(�∗)×
vecT (�∗)]. Let Z = N1/K . Then, by (12), �∗ = ZZ

T − E(ZZT ) − [Z − E(Z)]E(ZT ) −
E(Z)[Z − E(Z)]T . It follows that vec(�∗) = Z ⊗ Z − E(Z ⊗ Z) − [Z − E(Z)] ⊗ E(Z) −
E(Z) ⊗ [Z− E(Z)]. Hence,

E
[
vec

(
�∗)

vecT (
�∗)]

= E
{[
Z⊗Z− E(Z⊗Z) − (

Z− E(Z)
) ⊗ E(Z) − E(Z) ⊗ (

Z− E(Z)
)]

× [
Z⊗Z− E(Z⊗Z) − (

Z− E(Z)
) ⊗ E(Z) − E(Z) ⊗ (

Z− E(Z)
)]T }

.

Next, by (11), �∗ = NQN
T − E(NQN

T ). It follows that vec(�∗) = (N ⊗ N)vec(Q) −
E[(N⊗N)vec(Q)]. Hence,

E
[
vec

(
�∗)

vecT (
�∗)]

= E
{[

(N⊗N)vec(Q) − E
[
(N⊗N)vec(Q)

]]
× [

Z⊗Z− E(Z⊗Z) − [
Z− E(Z)

] ⊗ E(Z) − E(Z) ⊗ [
Z− E(Z)

]]T }
.

Finally, by (11) again, we have

E
[
vec

(
�∗)

vecT (
�∗)] = E

{[
(N⊗N)vec(Q) − E

[
(N⊗N)vec(Q)

]]
× [

(N⊗N)vec(Q) − E
[
(N⊗N)vec(Q)

]]T }
.

This completes the proof. �

A.3. Proof of Lemma 3.5. Before proving Lemma 3.5, we introduce the following no-
tations. Let r = K�, and assume matrices R and Rn have eigenvalue decompositions,

R = V 	V T , Rn = Vn	nV
T
n ,(15)

where V = (v1, . . . ,vr ) ∈ R
r×r and 	 = diag(d1, . . . , dr) ∈ R

r×r , Vn = (vn,1, . . . ,vn,r ) ∈
R

r×r and 	n = diag(dn,1, . . . , dn,r ) ∈ R
r×r . Since b and b̂ are eigenvectors of R and Rn

corresponding to their smallest eigenvalues, we have b = vr and b̂ = vn,r . The following
lemma is similar but slightly stronger than the assertion 3 of Theorem 3.1.8 of Kollo and von
Rosen (2005). The proof is also similar to that given in Kollo and von Rosen (2005) and is
omitted.

LEMMA A.1. Suppose R and Rn have eigenvalue decomposition (15), and satisfy√
nvec(Rn − R)

D−→ N(0,�R) as well as Condition 3.4. Then,

vn,i = vi + [
vT
i ⊗ V (diI − 	)+V T ]

En vec
(
R∗) + op

(
n− 1

2
)
,

where (·)+ is the Moore–Penrose inverse.

PROOF OF LEMMA 3.5. Since b̂ and b are the r th eigenvectors of Rn and R, respectively,
the influence function of b̂ is, by Lemma A.1,

b∗ = [
bT ⊗ V (drI − 	)+V T ]

vec
(
R∗) ≡ �3 vec

(
R∗)

.

Substitute (14) into the right-hand side, to obtain

b∗ = (�3�1,�3�2)

(
vec

(
�∗)

vec
(
�∗)) .(16)
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Hence,
√

n(b̂ − b)
D−→ N(0,�b), where �b = (�3�1,�3�2)�(�3�1,�3�2)

T . The ex-
plicit form of �3�1 is

−[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 � ⊗ I + I ⊗ �− 1

2 �
)(

� ⊗ �
1
2 + �

1
2 ⊗ �

)−1
,

and the explicit form of �3�2 is
[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 ⊗ �− 1

2
)
.

This proves the first part of the lemma.

Now, we turn to the asymptotic distribution of â. Since â = �
− 1

2
n b̂, the influence function

of â is

a∗ = (
�− 1

2
)∗b+ �− 1

2b∗ = (
bT ⊗ I

)
vec

[(
�− 1

2
)∗] + �− 1

2b∗.

Substitute (13) and (16) into the right-hand side to obtain

a∗ = −(
bT ⊗ I

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1 vec
(
�∗) + �− 1

2 �3�1 vec
(
�∗)

+ �− 1
2 �3�2 vec

(
�∗)

= [−(
bT ⊗ I

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1 + �− 1
2 �3�1

]
vec

(
�∗)

+ �− 1
2 �3�2 vec

(
�∗)

≡ �4 vec
(
�∗) + �5 vec

(
�∗)

.

It follows that
√

n(â − a)
D−→ N(0,�a), where �a = (�4,�5)�(�4,�5)

T , with � being
given in Theorem 3.3. We now derive the explicit forms of �4 and �5. By definition,

�4 = −(
bT ⊗ I

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1 + �− 1
2 �3�1

= −(
bT ⊗ I

)(
� ⊗ �

1
2 + �

1
2 ⊗ �

)−1

− �− 1
2
[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 � ⊗ I + I ⊗ �− 1

2 �
)(

� ⊗ �
1
2 + �

1
2 ⊗ �

)−1
.

Also,

�5 = �− 1
2
[
bT ⊗ V (drI − 	)+V T ](

�− 1
2 ⊗ �− 1

2
)
.

The proof is completed. �

A.4. Proof of Theorem 3.6. PROOF. Recall that μ̂B(w̃) = âT
N(w̃)1/K , where N(w̃)

is the nonrandom matrix

diag
(
N1(w̃1), . . . ,NK(w̃K)

)
.

Hence,
√

n[μ̂B(w̃) − μB(w̃)] = (â − a)T N(w̃)1/K . By the asymptotic distribution of â in
Lemma 3.5, we have

√
n
[
μ̂B(w̃) − μB(w̃)

] D−→ N
(
0, σ 2

μ

)
,(17)

where σ 2
μ = 1T

N
T (w̃)(Ma1,Ma2)�(Ma1,Ma2)

T
N(w̃)1/K2, Ma1 = �4, and Ma2 = �5.

The vector N(w̃)1 is simply N(w̃), defined in Theorem 3.6. �
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Supplement A (DOI: 10.1214/21-AOAS1537SUPPA; .pdf). We discuss the implementa-
tion issues of the B-scaling method and report results from additional simulation studies.

Supplement B (DOI: 10.1214/21-AOAS1537SUPPB; .zip). We implemented the B-
scaling algorithm using R. An example is available on GitHub.
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