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ABSTRACT

The ability of climate models to capture extreme precipitation events is crucially important, but most of the
existing models contain significant biases for the simulation of extreme precipitation. To understand the causes of
these biases, we used five different cumulus parameterization schemes in the regional Climate-Weather Research
and Forecasting (CWRF) model to investigate its performance and biases in the simulation of extreme precipi-
tation events in China. In general, the ensemble cumulus parameterization (ECP) scheme was the most skillful in
reproducing the spatial distribution of the 95th percentile daily precipitation (P95) and the other four schemes
either overestimated (the Kain-Fritsch Eta and Tiedtke schemes) or underestimated (the Betts-Miller-Janjic and
New Simplified Arakawa-Schubert schemes) P95. Compared with the observational data, ECP scheme signifi-
cantly improved the simulation of extreme precipitation in China and had the highest correlation and the
smallest root-mean-square error in most areas and seasons. To clarify the underlying physical processes of P95
simulation biases, we established a regression model of extreme precipitation based on ECP scheme. This showed
that P95 in North China is mainly affected by moisture convergence, planetary boundary layer height and lifting
condensation level (relative importance 18-32%). In Central China, the vertical upward motion of water vapor,
sensible heat flux and planetary boundary layer height (relative importance 18-30%) are main factors associated
with P95. In South China, the vertical upward motion and horizontal transport of water vapor are predominant
(relative importance 26-37%). In addition, the net surface energy, surface and atmospheric radiation flux, total
precipitable water, convective available potential energy and cloud water path also have a high correlation with
P95 (the second most important factor; relative importance 14-31%). The influence of each factor on the
simulation of P95 is different when using different cumulus parameterization schemes and the interaction among
the different factors determines the ability of CWRF model to simulate extreme precipitation. These results
provide important references for future model evaluations and improvements.

1. Introduction

The annual variability of precipitation has also increased, mainly
because the overall rate of increase in extreme precipitation events is

The Sixth Assessment Report of the Intergovernmental Panel on faster than the average increase in precipitation, which brings chal-
Climate Change (IPCC ARG6) stated that extreme precipitation events lenges to the management of regional water resources (IPCC, 2021).
have increased in most regions with the observational data since 1950. According to the Clausius—Clapeyron equation, for each 1 °C of

* Corresponding author: College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
** Corresponding author at: National Climate Center, China Meteorological Administration, Beijing 100081, China.
E-mail addresses: wangmh0819@163.com (M. Wang), ligg@cma.gov.cn (Q. Li).

https://doi.org/10.1016/j.atmosres.2023.106636

Received 4 September 2022; Received in revised form 23 January 2023; Accepted 27 January 2023

Available online 31 January 2023
0169-8095/© 2023 Published by Elsevier B.V.


mailto:wangmh0819@163.com
mailto:liqq@cma.gov.cn
www.sciencedirect.com/science/journal/01698095
https://www.elsevier.com/locate/atmosres
https://doi.org/10.1016/j.atmosres.2023.106636
https://doi.org/10.1016/j.atmosres.2023.106636
https://doi.org/10.1016/j.atmosres.2023.106636
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosres.2023.106636&domain=pdf

S. Zhang et al.

warming, saturated air contains 7% more water vapor, which may lead
to an increase in extreme precipitation events if global warming con-
tinues unabated (Allen and Ingram, 2002). Both the frequency and in-
tensity of heavy precipitation have increased over China, which is a
region particularly vulnerable to extreme precipitation events. The
losses resulting from disasters related to heavy precipitation and
flooding in China present greater risks as a result of the influence of the
East Asian monsoon, the complex topography and large population. The
prediction of future changes in extreme precipitation is therefore crucial
for both policymakers and the general public and will allow the devel-
opment of comprehensive adaptation strategies (Zhang and Zhou,
2020).

The ability of climate models to simulate and predict extreme pre-
cipitation events is still challenging. Issues such as the quality of the
observations, our understanding of physical processes, model biases and
internal variability effects all contribute to the uncertainty in projected
changes of the regional climate and extreme weather events (Xie et al.,
2015; Li et al., 2022). Most models tend to overestimate light precipi-
tation events and underestimate the intensity of heavy precipitation
events (Dai, 2006; Sun et al., 2006). Li et al. (2010) found that many
low-resolution global models underestimate extreme precipitation by
~50%, especially during summer in East China. Xu et al. (2011) showed
that three coupled general circulation models had limited skills in
reproducing the interannual variation of extreme precipitation events in
the major river basins in East China. Gao et al. (2017) evaluated a high-
resolution regional climate model (RegCM4) in simulating heavy pre-
cipitation events in East China, which produced substantial un-
derestimates. However, Liang et al. (2019) demonstrated that the CWRF
model outperformed the RegCM4.6 model in reproducing extreme pre-
cipitation in China. Tripathi and Dominguez (2013) found that spatial
structure of the simulation of extreme precipitation by regional climate
models at a grid spacing of 10 km was clearer than that at a grid spacing
of 50 km in the southwestern US, but there were still large deviations.
Prein et al. (2017) indicated that even convection—permitting model
(CPM) at a grid spacing of 4 km still underestimates hourly extreme
precipitation by up to 30% in the central US during summer. Many
research methods have been used to alleviate the “drizzling problem” in
models (Xie et al., 2004), but it has been proven difficult to find a perfect
solution. The moist physical process performs poorly in most models and
will often stimulate wet convection. In nature, the convection inhibition
process allows the accumulation of atmospheric instability energy
before the beginning of strong convection (Sun et al., 2006).

Previous studies have shown that precipitation is very sensitive to
the selection of cumulus parameterization schemes (Huang et al., 2008;
Shen et al., 2014, 2016). Convection triggers, entrainment or detrain-
ment equations, closure assumptions and cloud models have been shown
to be important factors affecting convective precipitation. Although
many studies have discussed the sensitivity and mechanisms of extreme
precipitation events due to different physical representations, the sim-
ulations and underlying mechanisms of RCM cumulus parameterization
schemes over China are still limited. A series of alternative physical
parameterization schemes with consistent coupling for each major
physical process have been built into the regional Climate-Weather
Research and Forecasting (CWRF) model, including cumulus, micro-
physics, radiation, planetary boundary layer and surface processes
(Liang et al., 2012; Li et al., 2020). Zeng et al. (2008) made a 120-h real-
time ensemble forecast using eight parameterization combinations in
CWRF model and showed that it could produce a good forecast of pre-
cipitation in China. Sun and Liang (2020a) found that the simulation of
extreme precipitation in the US by CWRF model was significantly better
than the reanalysis results of the ERA-Interim (ERI) dataset (Dee et al.,
2011). In fact, the simulation results of various parameterization
schemes for all kinds of extreme precipitation events in different regions
are significantly different.

It is challenging for climate models to comprehensively capture the
characteristics of extreme precipitation events and to understand,
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simulate and predict these events. There is therefore an urgent need to
understand and overcome the deficiencies in these models and to
investigate the thermal and dynamic processes behind extreme precip-
itation events. Coumou and Rahmstorf (2012) suggested improving
models by increasing their spatial resolution, but it is equally important
to strengthen our understanding of the relevant nonlinear processes.
Wilcox and Donner (2007) pointed out that it is also crucial to change
the convective closure and trigger in the cumulus parameterization
formula. Li et al. (2012) showed that their improvements in the simu-
lation of heavy precipitation were mainly a result of the increase in the
cloud water path (CWP) and cloud condensation, which are either not
included or poorly expressed in conventional convection parameteri-
zation. Kang et al. (2015) suggested that the underestimation of extreme
precipitation frequency is due to the lack of representation of ice
microphysical processes related to heavy precipitation. Zhao and Xu
(2020) showed that it is difficult for models to accurately and explicitly
analyze entrainment, detrainment and vertical transport processes in the
convection process.

Most of the existing studies of extreme precipitation events have
focused on the changes and impacts of different parameterization
schemes in specific environments, whereas less work has been carried
out to explain the underlying physical processes of the model simulation
biases based on cumulus convection parameterization schemes. We
therefore examined the ability of CWRF model to simulate extreme
precipitation events in China using different cumulus parameterization
schemes, focusing on three key regions. This study investigates the
dependence of extreme precipitation on the different cumulus parame-
terization schemes and the complex correlation of the factors affecting
the biases in extreme precipitation. We established a regression model to
explore the underlying physical processes causing the biases in extreme
precipitation to provide a reference for further improvements in CWRF
model and its applications. The abbreviations of the large number of
climate variables used in this paper are summarized in Table S1.

2. Model, experiments, data and methods
2.1. Model and experiments

This study used the regional Climate-Weather Research and Fore-
casting (CWRF) model, which is a climate extension of the WRF model
v3.1.1 (Skamarock et al., 2008). The extension includes numerous im-
provements about the land-atmosphere-ocean, convection-micro-
physics, and cloud-aerosol-radiation interactions, as well as the system
consistency between the various modules (Liang et al., 2012). The CWRF
model has been systematically advanced as a climate extension to the
Weather Research and Forecasting model since 2002 by improving the
physical process schemes, integrating multiple parameterization
schemes and external forcing. The CWRF model not only combines the
most advanced conjunctive surface-subsurface processes with the real
surface distribution characteristics, but also couples a comprehensive
multi-layer upper ocean model and a detailed lake, ice, snow and sedi-
ment simulator. In addition, CWRF model integrates a set of alternative
parameterization schemes for each key physical process, which are
coupled among each component and maintain the greatest consistency.
The interaction of the cloud aerosol radiation ensemble system was
added to make the physical processes in CWRF model more realistic
(Liang et al., 2012).

We used an ensemble cumulus parameterization (ECP) scheme based
on the Grell and Dévényi (2002) framework in CWRF model. This
scheme not only shows an outstanding performance in the simulation of
summer precipitation in the coastal ocean of the US (Qiao and Liang,
2015, 2016, 2017), but also greatly improves the simulation of extreme
precipitation over land (Sun and Liang, 2020a, 2020b). The computa-
tional domain of CWRF model used in this study was based on the
Lambert conformal map projection centered at (35.18° N, 110° E) with a
total of 232 (latitude) x 172 (longitude) grid points at 30 km spacing.
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There were 36 vertical levels and the top of CWRF model was at 50 hPa.

The simulations were driven by ERI reanalysis dataset as the initial
and boundary fields. The simulation began on November 1, 1979 and
ran continuously until the end of 2016. We therefore mainly evaluated
the results from 1980 to 2016, a total of 37 years, and selected five
cumulus parameterization schemes in CWRF model for comparative
analysis: ECP (Liang et al., 2012; Qiao and Liang, 2015, 2016, 2017),
Kain-Fritsch Eta (KFeta) (Kain and Fritsch, 1993; Kain, 2004),
Betts—Miller-Janjic (BMJ) (Betts and Miller, 1986; Janjic, 1994), New
Simplified Arakawa-Schubert (NSAS) (Han and Pan, 2011) and Tiedtke
(Tiedtke, 1989; Nordeng, 1995) schemes. We then selected a better
scheme suitable for simulating extreme precipitation in China and
explored the underlying physical processes of the simulation biases.
Table S2 summarizes the five cumulus parameterization schemes and
gives the main differences in the closure assumptions and trigger
functions.

2.2. Data

We used observational data as the reference for model evaluation.
These observational data consisted of a set of daily gridded analysis
precipitation and temperature at 2 m (T2m) values of CN05.1 dataset
(Wu and Gao, 2013). The CNO05.1 grid data is derived by interpolating
observation data of 2416 stations in mainland China, which has a res-
olution of 0.25° x 0.25° and has been commonly used in studying
extreme precipitation over China (Wu et al., 2015; Wang et al., 2021).
We also used the ERI reanalysis data, which assimilated the satellite-
retrieved total column water vapor as a pseudo-observation of rainfall
in 4D-Var. The ERI data is widely used because it provides one of the best
proxies of global gridded observed precipitation spatiotemporal varia-
tions (Dee et al., 2011; http://apps.ecmwf.int/datasets/). The precipi-
tation of ERI data provides a reference for CWRF model downscaling
skill enhancement due to its driving circulation. In addition, ERI data
also implements a variant version of Tiedtke cumulus scheme (Bechtold
et al., 2008), which is different from that used in CWRF model.

The National Aeronautical and Space Administration (NASA)
Modern-Era Retrospective Analysis for Research and Applications
version 2 (MERRA-2) dataset is regarded as a good substitute for
observational atmospheric circulation parameters (Rienecker et al.,
2011; Molod et al., 2015; Collow et al., 2016; Coy et al., 2016; Reichle
et al., 2017; Sun and Liang, 2020b). Previous studies showed that the
MERRA-2 reanalysis dataset can well describe the spatiotemporal dis-
tribution of precipitation and evolution of the dust aerosols in East Asia
(Chen et al., 2019; Zhang, 2019; Yao et al., 2020). Therefore, we used
the MERRA-2 reanalysis (including consistent surface and atmospheric
conditions) as the reference rather than the driving ERI data (for inde-
pendence), nor the surface observations (which is disconnected from the
circulation). This choice is made for insightful physical understanding,
which requires a coupled climate system perspective.

Precipitation and other surface variables of the MERRA-2 data at a
horizontal resolution of (0.5° x 0.625°) (https://disc.gsfc.nasa.gov/)
were used in our study as a reference proxy for the observational cir-
culation characteristics. Table 1 shows the observational data for the
reference as the ground truth, which includes: PR and T2 m from the
CNO5.1 dataset; CWP from the National Oceanic and Atmospheric
Administration (NOAA) Advanced Very High Resolution Radiometer
(AVHRR) (https://wui.cmsaf.eu/); and SWD, RSW, OLR and CRE from
the long-term NASA/World Climate Research Programme Global Energy
and Water Exchanges Surface Radiation Budget (GEWEX-SRB) Inte-
grated Product Release 4.0 (https://gewex-srb.larc.nasa.gov/). The
observational and reanalysis data were all interpolated onto the same
grid as the CWRF model of 30 km to facilitate comparison. The inter-
polation method used here is the inverse distance weighting, which is
commonly used for climate model evaluation (Li, 2011; Gan et al.,
2015). Although the results may differ due to using different interpo-
lation methods, such differences are small (Sun and Liang, 2020a).

Atmospheric Research 285 (2023) 106636

Table 1
Observation data used in this study.
Variables Available Sources
time
Precipitation (PR) 1980-2016 CNO05.1(Wu and Gao, 2013)
2 m air temperature (T2M) 1980-2016
Cloud water path (liquid plus 1987-2016 AVHRR(Advanced Very High-
ice) (CWP) Resolution Radiometer,Karlsson
et al., 2017)
Shortwave downwelling at 1984-2010 GEWEX-SRB Integrated Product

surface (SWD)
Reflecting solar radiation at
top of atmosphere all/clear

(Rel-4)(NASA/LARC/SD/ASDC,
1984-2010 2021)

(RSW)

Outgoing longwave radiation 1988-2009
all/clear (OLR)

Cloud radiative effect (CRE) 1988-2009

2.3. Methods

We used the 95th percentile daily precipitation (P95) recommended
by the World Meteorological Organization (WMO) to calculate the
extreme precipitation index and analyze the climate characteristics of
extreme precipitation in different regions and seasons. The P95 is a good
indicator that can display key information about the sample distribution
without being distorted by abnormal values (Fan et al., 1994). To in-
crease the reliability of P95, we also took into account the number of
rainy days (NRD) and the daily rainfall intensity (DRI).

We used Taylor diagrams (Taylor, 2001) and the equitable threat
score (ETS) (Gandin and Murphy, 1992) to systematically evaluate the
performance of CWRF model simulations. The ETS represents the ratio
of the number of events that occur and are simulated correctly to the
total number of events after removing random contingencies. The for-
mulas are as follows:

_ (H_Hr)
S =M r—m) M
g = HAEM) < (H+F) @

H+M+F+D

where H is the number of correct precipitation simulations; M is the
number of observations, but not simulations; F is the number of simu-
lations, but not observations; D is the situation that there is no precip-
itation in the observations and simulations; and H, is the number of
possible correct simulations under random conditions. The range of the
values of ETS is —1/3 to 1. A zero or negative value of ETS means no
simulation skill.

We adopted the concept of component-based analysis to obtain a
physical understanding of extreme precipitation simulation biases (Sun
and Liang, 2020b), that is, to take into consideration of the meteoro-
logical processes by which the basic ingredients are brought together
(Doswell et al., 1996). The basic elements required for extreme precip-
itation events include sufficient supply of water vapor, ascending mo-
tion, and precipitation efficiency. These elements may be satisfied in a
weather system dominated by deep moist convection. We use variables
of RCT, TPW, CAPE, CIN, and W700 to represent the above three basic
ingredients. For a deeper understanding of convection-cloud-radiation
processes, other relevant variables that may affect extreme precipita-
tion are examined, such as MC, ET, CWP, LFC, LCL, SWD, SH, NSE,
PBLH, FCL, FCH, T2M, Q2M, OLR, RSW, CRE, and V850. We first listed
the 22 factors that may affect P95 using the component-based method,
and then quantitatively analyzed their relationships using the method of
all subsets regression (Wasserman and Sudjianto, 1994; Lumley and
Miller, 2017) to obtain a concise and effective the multivariable
regression models (Alexopoulos, 2010). The multivariable regression
model takes the matrix form as:


http://apps.ecmwf.int/datasets/
https://disc.gsfc.nasa.gov/
https://wui.cmsaf.eu/
https://gewex-srb.larc.nasa.gov/
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or in detail as:

1 xyy X12+*X1q

Y1 bo €]
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where Y is the n matrix of the predicted value of P95; X is then x (1 + q)
matrix of the variables that may affect P95 (including RCT, TPW, CAPE,
CIN, W700, MC, ET, CWP, LFC, LCL, SWD, SH, NSE, PBLH, FCL, FCH,
T2M, Q2M, OLR, RSW, CRE, and V850); B is the (q + 1) matrix of the
regression coefficients; = is the n matrix of the regression model residual
error. Table S1 summarizes the abbreviations and definitions of these 22
factors. The correlations were considered as statistically significant if
they passed Student’s t-test at the 95% confidence level.

3. Results
3.1. Distribution of seasonal average and extreme precipitation in China

Fig. 1 compares the spatial distribution of the seasonal average
precipitation over a 37-year period (1980-2016) in observations, ERI
reanalysis data and simulations (from the control experiment of CWRF
model using ECP scheme). Winter (Fig. 1a, e, i) is a dry season in China
when the total precipitation is <5 mm/day, mainly distributed in the
Yangtze and Pearl River basins to the east of 110° E. The ERI data and
CWRF model capture this feature well, but ERI data (CWRF model)
systematically underestimates (overestimates) the precipitation in-
tensity in this region.

DJF
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In spring (Fig. 1b, f, j), the observational data show two centers of
precipitation south of the Yangtze River and north of the Pearl River.
The ERI data and CWRF model capture these centers well, although
CWRF model slightly overestimates the precipitation. The CWRF model
also overestimates the precipitation near the Changbai Mountains in
northeast China (see Fig.S1), where the observed precipitation is <2
mm/day.

In summer (Fig. 1c, g, k), the observational data show two rain bands
in the Yangtze River basin and across South China, whereas the rain
band structures in ERI data are smoother and wider than those in the
observations. By contrast, CWRF model shows the fine structures of the
two rain bands, but one rain band along the Yangtze River basin is weak,
whereas the other rain band in the coastal areas of South China is strong.
The CWRF model generally underestimates precipitation over the area
between the two rain bands. The summer rainfall over the Greater
Hinggan Mountains, the Lesser Hinggan Mountains and the Changbai
Mountains (see Fig.S1) of the Northeast Plain is intense. The ERI data
reproduces this feature well, whereas CWRF model slightly over-
estimates the rainfall. Liang et al. (2019) reported that the intensity of
precipitation over mountains is underestimated by the observational
data because there are few observational stations in these areas, with
most stations located at low altitudes.

Autumn (Fig. 1d, h, 1) is the transitional season between the summer
and winter monsoons in China. The observational data show that pre-
cipitation is distributed evenly and there is a weak center of precipita-
tion in the Yangtze River basin. The CWRF model captures these
characteristics better than ERI data, but underestimates the intensity of
precipitation. The simulation of the seasonal average precipitation
shows the added value of the more comprehensive physical configura-
tion and higher resolution of CWRF model, which captures finer char-
acteristics of the regional precipitation in China than ERI data.

Fig. 2 shows the distributions of the seasonal average NRD during the
time period 1980-2016. In all seasons, CWRF model captures a finer
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Fig. 1. (a, e, i) Winter, (b, f, j) spring, (c, g, k) summer and (d, h, 1) autumn average precipitation (units: mm/day) of (a-d) observations, (e-h) ERI reanalysis dataset

and (i-1) CWRF simulation with ECP scheme during the time period 1980-2016.
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Fig. 2. (a, e, i) Winter, (b, f, j) spring, (c, g, k) summer and (d, h, 1) autumn average NRD (units: days) in (a-d) observations, (e-h) ERI reanalysis dataset and (i-1)

CWRF simulation with ECP scheme during the time period 1980-2016.

structure of the distribution of NRD in the observations than ERI data,
especially in southwest China. In winter (Fig. 2a, e, i), both ERI data and
CWRF model show the peak values of NRD between the Yangtze and
Pearl River basins, but the center of the maximum value shifts to the
southwest relative to the observations. In spring (Fig. 2b, f, j), CWRF
model reproduces more of the characteristics of the spatial pattern of
NRD than ERI data, but the location of the large-value center shifts to the
west. In summer (Fig. 2c, g, k), ERI data generally overestimates NRD in
the southern Yellow River basin. Sun and Liang (2020a) reported that
ERI data compensated for weak precipitation intensities by simulating
more rainy days to produce a more reasonable total precipitation, a
typical “drizzling problem” in GCMs, but that CWRF model could
effectively reduce this overestimation. By contrast, CWRF model over-
estimates NRD in Guangdong and Guangxi and underestimates NRD on
the Yunnan-Guizhou Plateau and the southern foothills of the Qing-
hai-Tibetan Plateau. The CWRF model has a greater uncertainty in
simulations of precipitation in southwest China because the resolution is
too low to accurately describe the steep terrain in this region. In autumn
(Fig. 2d, h, 1), ERI data overestimate NRD in the southeastern Qing-
hai-Tibetan Plateau, whereas CWRF model has a relatively high simu-
lation skill. The CWRF model therefore has a stronger ability to simulate
NRD, which improves ERI simulation of NRD in China.

Fig. 3 shows the spatial distributions of the seasonal average extreme
precipitation (P95) in observations, ERI data and CWRF simulation. The
CWRF model outperforms ERI data in all seasons in North and South
China and in the mid- to lower reaches of the Yangtze River. The ERI
data clearly underestimate the peak value of P95, especially in the
coastal areas of South China. The CWRF model produces more details of
the spatial distribution of P95, so it could truly capture any changes. In
winter (Fig. 3a, e, i), CWRF model accurately describes the magnitude
and range of P95, whereas ERI data significantly underestimate the peak
value of P95. In spring (Fig. 3b, f, j), the observations show that P95

decreases from southeast to northwest. The ERI data underestimate P95
in the coastal areas south of the Yangtze River, whereas CWRF model
captures this characteristic. In summer (Fig. 3c, g, k), there is heavy
precipitation (>30 mm/day) in a large part of East China, with
maximum precipitation (>40 mm/day) in the Yangtze River basin. The
ERI data systematically underestimate P95, especially in southeast
China, and roughly capture the center of P95 along the Yangtze River,
although the center shifts to the south. The CWRF model reproduces the
central position and size of P95 rain bands along the Yangtze and Pearl
River basins. The rain bands over the three mountain ranges (the Greater
and Lesser Hinggan Mountains and the Changbai Mountains) in the
Northeast Plain simulated by CWRF model are stronger than in obser-
vations. Because the observation stations are sparsely distributed, the
distributions of precipitation presented by CN05.1 observational data
have little reference significance.

The distributions of P95 in autumn (Fig. 3d, h, 1) are similar to those
in summer, but with a weaker intensity. The observations show that the
maximum along the Yangtze River is close to 25 mm/day, which is also
visible and more dispersed in CWRF simulation, but decreases in ERI
data. Another characteristic is the heavy rain band in the coastal area of
South China; CWRF model distinguishes the increase in precipitation
caused by coastal sea breezes better than ERI data (Liang et al., 2019).

3.2. Sensitivity of extreme precipitation simulation to cumulus
parameterization

Clearly, regional differences exist in the changes of extreme precip-
itation across China due to monsoons and geographical environment.
Referring to Liang et al. (2019) for the classification of distinct climate
regimes, we selected three key regions: North, Central and South China,
where extreme precipitation events are significant, especially in summer
(Fig. 3a, b, ¢, d). Over these regions, observations are more reliable due
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Fig. 3. (a, e, i) Winter, (b, f, j) spring, (c, g, k) summer and (d, h, 1) autumn average P95 (units: mm/day) of (a—d) observations, (e-h) ERI reanalysis data and (i-1)
CWRF simulation with ECP scheme during the time period 1980-2016. Shading represents P95; yellow curves represent the geographical location of North China
(NCQ), Central China (CC) and South China (SC). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

to dense monitoring sites and small topographic influences; also, the
CWRF well captures the observed extreme precipitation characteristics,
both of which provide creditability for understanding regional pro-
cesses. Hence the advantage of CWRF model may be that the results
improve the physical parameterizations of the model at high resolution
(Sun and Liang, 2020a). This downscaling skill provides a unique op-
portunity to explore the sensitivity of P95 simulation to the various
cumulus parameterization schemes in CWRF model. This paper mainly
discusses the regions of North, Central and South China and compares
P95 simulation effects of five of the cumulus parameterization schemes
in CWRF model in detail.

Fig. 4 compares the spatial distributions of the seasonal average P95
biases of ERI data and CWRF simulations with the different cumulus
parameterization schemes. In winter (Fig. 4a, e, i, m, q, u), the simula-
tion biases of the cumulus parameterization schemes are small, apart
from BMJ scheme, which substantially underestimates P95 bias in
Central China to the east of 110° E. In spring (Fig. 4b, f, j, n, r, v), the
underestimated area of BMJ scheme expands further and KFeta and
Tiedtke schemes overestimate P95 biases in Central China. The ERI data
and NSAS schemes are unable to simulate the maximum rain band of
P95 along the coastline of South China. By contrast, in winter and
spring, P95 intensity simulated by CWRF model with ECP scheme is the
closest to observations.

In summer (Fig. 4c, g, k, o, s, w), Tiedtke scheme overestimates P95
in North China by >20 mm/day and KFeta scheme overestimates P95 in
Central China to the east of 110° E by >20 mm/day. However, Tiedtke
scheme improves P95 overestimation of KFeta scheme in South China.
The ERI data and BMJ scheme substantially underestimate P95 by 5-10
mm/day in the coastal areas of North China and the mid- to lower
reaches of the Yangtze and Pearl River basins. By contrast, the bias
distributions of P95 simulated by ECP and NSAS schemes are similar. In
Central and South China, the negative bias range (—15 to —5 mm/day)

of NSAS scheme is smaller than that of ECP scheme. In autumn (Fig. 4d,
h, 1, p, t, x), the distributions of bias are similar to those in summer, but
the range and magnitude of the biases are smaller than those in summer.

These results show that ECP scheme generally reproduces the dis-
tribution of observed P95. The ECP scheme is developed from the Grell-3
ensemble cumulus parameterization (G3; Grell and Dévényi, 2002) with
many improvements including the selection and weighting of closure
assumptions that are specific of land or oceans. Using the assumptions of
the land moisture convergence closure and oceanic large-scale cloud
base vertical velocity (Qiao and Liang, 2015, 2016, 2017), it can deal
with comparisons between ocean and land more comprehensively and
generates sufficient convective activity, which helps to capture the
occurrence of extreme precipitation events and greatly improves the
deficiencies in ERI simulations.

Fig. 5 compares the spatial distributions of the seasonal average
biases of NRD in ERI data and CWRF simulations with different cumulus
parameterization schemes. In winter and spring, all the schemes over-
estimate NRD by 10-25 days in North China to the east of 110° E. In
addition, the negative NRD bias of Tiedtke scheme is the largest of all
schemes in North China and the coastal areas of South China in spring.
The BMJ scheme overestimates NRD by 5-10 days in North China. In
summer (Fig. 5¢, g, k, o, s, w), Tiedtke scheme substantially un-
derestimates NRD in North, Central and South China, and, in particular,
underestimates NRD by >35 days in the coastal areas of Central and
South China. The BMJ scheme substantially underestimates NRD in the
Yangtze River basin, which is consistent with the result that the simu-
lated P95 has a large negative bias. The performance of KFeta and NSAS
schemes are similar, especially in coastal areas, with an underestimation
of NRD by 5-10 days. The ECP scheme has a small negative bias in
Central China and a positive bias of 5-10 days in North and South China.
Interestingly, only ERI data significantly overestimate NRD by 5-15
days in North, Central and South China. In autumn (Fig. 5d, h, 1, p, t, %),
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(a—d) the ERI reanalysis data and the CWRF simulations using the (e-h) ECP, (i-1) KFeta, (m—p) BMJ, (g-t) Tiedtke and (u—x) NSAS cumulus parameterization

schemes during the time period 1980-2016.

ERI data and the CWRF simulations of all schemes perform good in these
three regions, with only small biases.

The daily precipitation intensity (DRI) biases of ERI reanalysis data
and CWRF simulations with different cumulus parameterization
schemes (see Fig. S2) are highly correlated with P95 biases (Fig. 4) in all

seasons. We calculated the spatial pattern correlation coefficient (PCC)
between DRI biases and P95 biases in China (Table 2). The correlations
in all seasons apart from winter are all >0.92 and the annual average
correlation coefficients of all schemes are >0.93. The high correlation
between DRI biases and P95 biases indicate that the underestimations of
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extreme precipitation occur as a result of the systematic decrease in the
precipitation intensity, whereas the overestimations of extreme precip-
itation occur as a result of the systematic increase in precipitation in-
tensity. This explains the important relationship between extreme
precipitation and precipitation intensity, especially the simulation

15°N

0'E

5

results of KFeta and BMJ schemes.
Based on the simulated P95 biases, we divided the cumulus schemes

30 35

into three broad types. The first type includes KFeta and Tiedtke
schemes, which substantially overestimate P95 in the three regions. The
second type produces a significant underestimation in three regions (e.
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Table 2
Spatial pattern correlation coefficients between DRI biases and P95 biases over
China during the time period 1980-2016.

Season Scheme

ERI ECP KFeta BMJ Tiedtke NSAS
DJF 0.89 0.89 0.90 0.93 0.89 0.90
MAM 0.95 0.95 0.97 0.97 0.96 0.95
JJA 0.95 0.93 0.97 0.95 0.92 0.95
SON 0.92 0.95 0.96 0.95 0.94 0.96

g., BMJ scheme). The third type of cumulus parameterization scheme
overestimates P95 in North China and underestimates P95 in Central
and South China (e.g., ECP and NSAS schemes).

The PCC and standard deviation of extreme precipitation (P95) in the
ERI reanalysis data and CWRF simulation relative to observations are
calculated for North, Central and South China using Taylor (2001) di-
agrams (Fig. 6). The azimuth represents the PCC between the observa-
tions and simulations and the polar radius represents the standard
deviation of the observations and simulations. In North China (Fig. 6a, d,
g, j), the correlation coefficient between the ERI reanalysis data and the
observational P95 in summer is lowest (0.42) and the standard deviation
is substantially underestimated (0.35). The correlations in other seasons
(0.92 in winter, 0.8 in spring and 0.7 in autumn) are higher than in
summer, but the standard deviations are still significantly under-
estimated (0.6-0.8). In winter, the PCCs of P95 between the CWRF
simulations and the observations are very close (0.85-0.92) and the
standard deviations are underestimated (0.60-0.95); the standard de-
viation of Tiedtke scheme is the closest to 1.0. In spring, the PCCs
(0.63-0.78) between the simulated and observed P95 are lower than
that (0.8) between ERI data and the observations; the correlation of
NSAS scheme is the highest (0.78) and that of BMJ scheme is the lowest
(0.6). In particular, ECP scheme shows the smallest fluctuation in P95
simulation bias (0.84). In summer, the CWRF simulation performance
for P95 is higher than that of ERI data. The simulation effect of KFeta
scheme is the best, with the highest PCC (0.82), followed by ECP scheme
(0.73). The bias fluctuation is smallest for the simulation (1.02-1.04).
KFeta scheme performs the best in autumn. However, Tiedtke scheme
substantially overestimates the standard deviations in summer (1.4) and
autumn (1.5).

In Central China (Fig. 6b, e, h, k), the PCCs between the simulation of
P95 using ECP, KFeta and Tiedtke schemes and the observations in
winter are as high as 0.95 (0.95, 0.95 and 0.96, respectively), although
the smallest simulation bias fluctuation is for ECP scheme (1.04). The
PCC of P95 between ECP scheme and observations reaches a maximum
in spring (0.9), summer (0.65) and autumn (0.68), but overestimates the
standard deviations in summer (1.5) and autumn (1.3). In spring, KFeta
and Tiedtke schemes better simulate the spatial pattern of P95 (PCC
0.89), but produce large standard deviations of 1.4 and 1.65, respec-
tively. In summer, KFeta and Tiedtke schemes also substantially over-
estimate P95 biases in Central China (Fig. 4) and they have abnormally
high standard deviations, even beyond the scope of the Taylor diagram.
In autumn, the simulation skill of KFeta scheme is similar to that of ECP
scheme; they almost coincide in the Taylor diagram. By contrast, BMJ
scheme has the poorest skill in all seasons in Central China, with the
lowest correlation, especially in summer. In Central China, ECP scheme
has the best performance in simulating the spatial pattern of P95 in
winter and spring.

In South China (Fig. 6c, f, i, 1), the simulated P95 distributions of
CWRF model with various cumulus schemes are better than ERI data in
all seasons. In winter, KFeta scheme has the highest PCC (0.85) and the
standard deviation is the closest to 1.0. In spring, ECP scheme gives the
best simulation of P95. Although the standard deviation (1.4) is rela-
tively large, the PCC is the highest (0.82). The PCCs of the simulations
with KFeta, BMJ and NSAS schemes are <0.7 (ranging from 0.2 to 0.6).
In summer, the simulations of KFeta and Tiedtke schemes are beyond the
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range of the diagram as outliers and the standard deviation (1.8) of P95
simulated by ECP scheme is large, similar to the situation in Central
China. BMJ scheme has the highest PCC (0.68) and the smallest standard
deviation (1.2) in summer, but it substantially underestimates the
magnitude of P95 in South China (Fig. 4). It is hard to convince that the
result of the univariate simulation P95 of BMJ scheme is better than
other schemes, which is probably the appearance of some wrong syn-
thesis of BMJ scheme. BMJ scheme has a better simulation skill than the
other schemes in summer, but requires a lot of simulations and com-
parisons with multiple variables in addition to P95. In autumn, the PCCs
between the simulated P95 of ECP and KFeta schemes and the obser-
vations are 0.77 and 0.70, respectively, but the standard deviation of
ECP scheme (1.4) is higher than that of KFeta (1.1) scheme. NSAS
scheme gives a poor simulation of P95 in summer and autumn.

We used ETS to examine the simulation performance for P95. Based
on the range of observed P95 in each season, ETS is calculated using the
number of times that the simulation value hits or misses the range of
observed values. Fig. 7 compares ETS at a bin interval of 1.0 mm/day for
the 37-year average P95 distribution in each season between the ERI
reanalysis data and the CWRF simulations with various cumulus
schemes in North, Central and South China. In general, the ETS values of
both ERI data and CWRF model in the cold seasons (winter and spring)
are higher than those in the warm seasons (summer and autumn), which
indicates that it is more complex and difficult to simulate extreme pre-
cipitation in the warm seasons.

In North China (Fig. 7a, d, g, j), ERI data and CWRF model only
capture the ETS of light rain >1.5 mm/day in winter, which may be
limited by the description of the observational reference data. The ETS
of light rain (1.5-10 mm/day) is lowest in ECP scheme and the
maximum score is only 0.5. The maximum ETS of ERI data and the other
schemes are >0.7 and the maximum ETS of ERI data for a daily pre-
cipitation of 9 mm/day reached 0.9. The ETS of BMJ scheme is low in
spring, but the ETS of ERI data and other schemes for moderate rain
(10-20 mm/day) in spring is 0.5. In summer, the ETS of ERI data is
better than those of CWRF simulations in the range 12-25 mm/day. By
contrast, when the daily precipitation is >25 mm/day, the ETS of ERI
data is almost zero. ECP scheme significantly improves P95 simulation,
with an ETS >0.6, significantly higher than the other schemes. The ETS
of ECP is the highest (about 0.4) in the daily precipitation range 7-13
mm/day in autumn, but the score is lower than that for ERI data in the
range 13-20 mm/day. Apart from ECP scheme, ETS is usually low when
CWRF model uses other cumulus parameterization schemes.

In Central China (Fig. 7b, e, h, k), the values of ETS are highest in
winter (up to 0.8) and lowest in summer (up to 0.2), which highlights
the difficulty of simulating extreme events in summer. In winter, the ETS
(>0.7) of all the schemes, apart from BMJ scheme, for the whole P95
range is higher than those of ERI data. In particular, the ability of the
low-resolution ERI data to capture low-level light rains (2.0-10 mm/
day) is lower than that of the high-resolution CWRF model. The ETS of
ECP scheme is the highest (about 0.8) in the daily precipitation range
5-17 mm/day.

ECP scheme shows high skills in simulating daily precipitation >25
mm/day in spring, summer and autumn, with ETS values of 0.7, 0.2 and
0.3, respectively. KFeta and Tiedtke schemes substantially overestimate
P95 in Central China (Fig. 4), but it can be seen from Fig. 7 that these
two schemes improve the simulation of light and moderate rain <25
mm/day from spring to autumn. After replacing ECP scheme with KFeta
and Tiedtke schemes, CWRF simulation systematically improves ETS in
spring, summer and autumn, respectively, up to 0.6, 0.1 and 0.5. In
summer and autumn, the CWRF cumulus parameterization schemes
mostly have high simulation scores with precipitation >25 mm/day, but
ERI data have completely missed this and have almost no score. BMJ
scheme substantially underestimates P95 in Central China (Fig. 4), so
ETS in all seasons is the lowest and there is almost no simulation skill in
summer (ETS close to 0).

In South China (Fig. 7c, f, i, 1), over the entire P95 range, the
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simulation skills of CWRF model with all cumulus schemes are signifi-
cantly better than those of ERI data. The ETS of ERI data is almost zero in
all seasons apart from winter. In the cold seasons (winter and spring),
Tiedtke and KFeta schemes score higher (>0.4) over the entire P95
range and ECP scheme falls behind these two schemes. However,
Tiedtke and KFeta schemes perform poorly in the warm seasons and
their ETS is <0.2. In summer, the ETS of ECP scheme reaches 0.4 (40-50
mm/day), which is higher than other schemes and ERI data. In autumn,
ECP scheme has a high score for daily precipitation of 25-35 mm/day,
but this decreases above 35 mm/day. The simulation skill of BMJ
scheme only has a high ETS (maximum 0.4) within the range 25-45
mm/day in autumn. NSAS scheme has the lowest ETS in all seasons in
South China. It is >0.1 in winter, but the simulation skills in other
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seasons are very poor (<0.1).

Five cumulus parameterization schemes produce large CWRF dis-
crepancies in simulating extreme precipitation characteristics over three
regions. In general, the ECP scheme simulates more realistic extreme
precipitation characteristics over all three regions than the other
schemes. The ECP combines five major closures with various weights
separating land and ocean to more reasonably determine the cloud base
mass flux (Qiao and Liang, 2015, 2016, 2017). The KFeta and Tiedtke
schemes both generate excessive extreme precipitation as they adopt the
closure that assumes the total convective available potential energy
(CAPE) is completely exhausted for rainout. The BMJ and NSAS schemes
are based on the quasi-equilibrium closure assumption. While the BMJ
scheme substantially underestimates extreme precipitation, the NSAS
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Fig. 8. Time series of seasonally averaged P95 over (a, d, g, j) North China, (b, e, h, k) Central China and (c, f, i, 1) South China in observations (OBS), reanalysis data
(ERI and MERRA-2) and simulation (CWRF model with ECP, KFeta, BMJ, Tiedtke, and NSAS cumulus parameterization schemes) for (a-c) winter, (d-f) spring, (g-i)

summer, and (j-1) autumn for the time period 1980-2016.
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scheme performs better because it incorporates improved trigger func-
tions to produce more convection in large-scale convergence regions and
less convection in subsidence regions (Han and Pan, 2011).

3.3. Dependence of P95 simulation on cumulus parameterization

Our analyses show that CWRF model significantly improves the
simulation of the spatial distributions of P95 in China compared with
ERI data. We explored the underlying physical processes of the cumulus
parameterization scheme for CWRF model to simulate P95 by
comparing the long-term integration of CWRF model with ERI data.
Referring to the research methods of Sun and Liang (2020b), we used
MERRA-2 reanalysis dataset as a reference, which may help to improve
our understanding of the physical processes of the simulated P95
departures.

Fig. 8 compares the interannual variation of P95 in North, Central
and South China in all four seasons in the time period 1980-2016 for
observations, MERRA-2, ERI and CWRF simulations of varying cumulus
schemes. Fig. 9 shows their temporal correlation coefficient (TCC) and
root-mean-square error (RMSE) compared with the observational data.
In North China (Fig. 8a, d, g, j and Fig. 9a), ECP and NSAS schemes
depict the interannual variation of P95 with relatively high TCCs (0.74
and 0.72 in winter; 0.78 and 0.82 in spring) and small RMSEs (0.82 and
0.95 in winter; 2.13 and 1.77 in spring). The ERI data represent P95
most realistically, with the highest TCCs (0.94 and 0.96) and the
smallest RMSEs (0.75 and 1.20) in winter and spring, respectively. In
summer and autumn, the interannual variation of P95 in MERRA-2
dataset has the highest TCCs (0.93 and 0.90, respectively), followed
by ERI data (0.82 and 0.80, respectively), whereas the RMSEs (6.37 and
4.33, respectively) of MERRA-2 dataset are slightly higher than those of
ERI data (5.14 and 2.86, respectively) as a result of the overestimation of
P95 magnitude in MERRA-2 dataset. The TCCs of the CWRF-simulated
P95 are not as good as those of ERI data in summer and autumn.
KFeta scheme in summer and BMJ scheme in autumn have the highest
TCCs (0.82 and 0.58, respectively) for the simulation of the interannual
variation of P95, but the RMSEs (8.82 and 5.79, respectively) are large
as a result of the serious overestimation of the interannual variation of
P95 by KFeta scheme and its underestimation by BMJ scheme. In sum-
mary, the various cumulus parameterization schemes of CWRF model
cannot simulate the interannual variation of P95 in North China well
and require further improvement.

In Central China (Fig. 8b, e, h, k and Fig. 9b), except in autumn, the
TCCs of ERI data are higher than those of MERRA-2 dataset and CWRF
model in winter (0.96), spring (0.80) and summer (0.81), whereas
MERRA-2 dataset has the highest TCC (0.76) in autumn. In winter and
spring, ECP and NSAS schemes have good skills in simulating the
interannual variations of P95 and considerable TCCs (0.79 and 0.81,
respectively, in winter; 0.65 and 0.64, respectively, in spring) and
RMSEs (1.37 and 1.63, respectively, in winter; 2.58 and 2.42,
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respectively, in spring). By contrast, ERI data produce a large RMSE
(10.03) in summer, which is related to its systematic underestimation.
Although KFeta and Tiedtke schemes better reproduce the interannual
variation of the observed P95, there are serious overestimations,
resulting in large RMSEs (16.20 and 15.46, respectively). The interan-
nual variation of P95 simulated by ECP and NSAS schemes in autumn
are similar, but ECP scheme underestimates extreme precipitation more
seriously than NSAS scheme, resulting in relatively large RMSEs (4.96
and 3.22, respectively). BMJ scheme poorly simulates the interannual
variation of P95 in all seasons in Central China and produces a large
RMSE as a result of its systematic underestimation, especially in summer
and autumn, with a TCC of roughly zero.

In South China (Fig. 8¢, f, i, 1 and Fig. 9¢), Tiedtke scheme gives the
best simulation of the interannual variation of P95 in winter, with the
highest TCC (0.91) and the smallest RMSE (2.52). In spring, the inter-
annual variations of P95 simulated by ECP and KFeta schemes are
equivalent (TCCs of 0.67 and 0.65, respectively) and are better than the
other cumulus schemes. However, as a result of the influence of sys-
tematic underestimation, ECP scheme produces a larger RMSE (6.19)
than KFeta scheme (5.05). In summer, MERRA-2 dataset gives the best
reproduction of the interannual variation of the observed P95, with the
highest TCC (0.7) and the lowest RMSE (3.72). The various cumulus
schemes of CWRF model find it difficult to capture the interannual
variation of P95 in summer, with serious overestimations or un-
derestimations. In autumn, MERRA-2 dataset is more skillful than ERI
data in simulating the interannual variation of P95 because ERI data
gives a large underestimation and a false upward trend. Because the
influence of assimilation on atmospheric feedback is limited by the
measurements of precipitation, MERRA-2 dataset is more reliable than
ERI data.

In general, the performance of all the cumulus parameterization
schemes in CWRF model vary considerably over North, Central and
South China. ECP scheme has the highest TCCs and lowest RMSEs in
most seasons and regions, although NSAS scheme has slightly higher
TCCs and smaller RMSEs in spring and summer in North China and in
summer and autumn in Central China. BMJ scheme has the poorest
performance, with a large underestimation. The simulation skills of
KFeta and Tiedtke schemes are high in winter and spring in all three
regions, but are low in summer and autumn. Overall, ECP scheme ranks
as the best, NSAS scheme the second, and KFeta and Tiedtke schemes are
third and fourth, respectively. BMJ scheme performs the poorest in
reproducing the interannual variation of the observed P95. These results
also confirm that the cumulus parameterization schemes play an
important part in not only the spatial distribution of extreme precipi-
tation, but also the regional mean characteristics of the interannual
variation.

(a) (b} (c)
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Fig. 9. TCC (scaled upward on the left) and root-mean-square error (RMSE; scaled downward on the right) of seasonally averaged P95 over (a) North China, (b)
Central China and (c) South China in reanalysis data (ERI and MERRA-2) and simulation (CWRF model with ECP, KFeta, BMJ, Tiedtke, and NSAS cumulus

parameterization schemes) for the time period 1980-2016.
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3.4. Analysis of simulation biases in the extreme precipitation

Although it is not easy for climate models to reproduce the inter-
annual variation of the observed P95, it is both crucial and challenging
to trace the underlying physical processes for the success or failure of
models to improve model skills in the future. We selected ECP scheme,
which is good at simulating the interannual variation of P95 in China,
and then analyzed the relationship between P95 biases and the key
components of PL, PC, SWD, RSW, OLR, CRE, CWP and T2m.

Atmospheric Research 285 (2023) 106636

We found the date of P95 event in every season of a particular year in
each grid square and then calculated the biases of the simulated pre-
cipitation and their relevant variables from the corresponding obser-
vations on this date in each grid square. We first averaged these biases
over North, Central and South China to obtain the time series of the
interannual variations in every season and then calculated the TCCs
between P95 biases and the relevant variable biases. The number of
CWP, SWD, RSW, OLR and CRE observed samples are 30, 27, 27, 22 and
22 years, respectively, and the sample number of the remaining

North China(NC) Central China(CC) South China(SC)
a b S c
0.9 @ 09 (b) 09 ©
o B 3
0s - 33 0.6 2 0.6
© = ~
(] g b (]
W 03 03 03
w
O o4 0 0
03 03 03
".8 © o Lo
-06 ’ ¥ -06 v -0.6
] T 1 ] T L} ] ] ) I ] T T ] ] I 1 L} L} ] T T L} ) T ] L} T ] ]
DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M
@
d bl f
09 (d) 09 - ®
8 ~
- - o @©
06 06 el 2 5
S 03+ 03
<
= o4 0
0.3 — 0.3 - s
@ 7 ]
-06 S 06 ¥ ‘
T T 1 T T T T T T T T T T T T T T T T ] T T T T T T T T T T
DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M
&8 B h i
09 4 (N (W (i)
[+:] oo 8
0.6 0 © 06 = 2 0.6 - B @0
o = ol o
«
< 031 B 03 0.3
<
= o4 0
0.3 - 03 03
2]
-0.6 = ¥ ' -06 5 0.6 b i
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M
p— :
oo > K |
. W] .. ® | ] O
g ©w w
- @ - - ] 0
06 e @ 06 o 06 3 9
Z 03 - 03 03
]
0 o 0
0.3 - 03 03
T
06 ? 06 06 8 !
I 1 I ] ) ] ?l ] T I ] I I I I ] 1 1 I I T 1 I ) ] ] ] ) ] I
DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M DRI NRD PL PC SWDRSW OLR CRE CWP T2M

mmmm—  bias(CWRF-OBS)

I departure(CWRF-MERRA-2)

Fig. 10. Correlations of composite (CWRF using ECP scheme) P95 biases (blue) and departures (red) with fields that have observational data (DRI, NRD, SWD, RSW,
OLR, CRE, CWP, and T2m) and P95 departures correlations with the rainfall components (PL and PC) in (a, d, g, j) North China, (b, e, h, k) Central China and (c, f, i, 1)
South China in (a-c) winter, (d-f) spring, (g-i) summer, and (j-1) autumn. If the significance reaches 95% confidence level, the bar is labeled with a number equal to
the correlation coefficient times 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

14



S. Zhang et al.

variables are all 37 years. In addition, the correlation relationships be-
tween P95 biases and the seasonal average values of DRI and NRD biases
are also discussed.

Fig. 10 compares P95 biases and departures correlations with DRI,
NRD, PL, PC, SWD, RSW, OLR, CRE, CWP and T2 m in four seasons.
Because the date of P95 event in MERRA-2 dataset is different from that
in observations, Fig. 10 compares the correlations based on the biases
between the simulations and observations (blue column) and the de-
partures between the simulations and MERRA-2 dataset (red column).
The numbers marked on the figure indicate that the significance of the
TCC passes the 95% confidence level.

In North China (Fig. 10a, d, g, j), there is a high correlation between
P95 and DRI biases—that is, the TCC is the highest in summer (0.96),
followed by autumn (0.93), spring (0.90) and winter (0.58). The TCCs
between P95 and DRI departures of the simulation and MERRA-2 dataset
also have a similar correlation (0.96 in summer, 0.93 in autumn, 0.93 in
spring and 0.59 in winter). If the seasonal average precipitation intensity
simulated by a model is strong (weak), then the P95 extreme precipi-
tation produced by the model is also strong (weak). The TCC between
P95 and NRD biases from the simulations and observations is only sig-
nificant in winter (0.57). However, the TCCs between P95 and NRD
departures from the simulation and MERRA-2 dataset significantly in-
crease from spring to winter (0.30, 0.32, 0.46 and 0.64, respectively).
Therefore, when a greater NRD are simulated, the model tends to
overestimate P95, which is particularly obvious in North China. The
TCCs between P95 and the PL departures is high and significant from
spring to winter (0.60, 0.45, 0.48 and 0.67, respectively). By contrast,
the TCCs between P95 and PC departures are not significant in all sea-
sons. This means that P95 departures (from CWRF simulation and
MERRA-2 dataset) in North China are less affected by the convective
precipitation departures and more affected by the large-scale precipi-
tation departures.

The TCC between P95 and the SWD biases is only significant and
negative (—0.44) in summer. The TCC between P95 and the SWD de-
partures from the simulation and MERRA-2 dataset also captures this
feature (—0.43). The positive TCC between P95 and RSW biases is sig-
nificant in summer (0.38), whereas the positive correlations of the de-
partures are significant in both winter and summer (0.36 and 0.46,
respectively). The P95 and OLR biases are significantly negatively
correlated in winter, spring and autumn (—0.34, —0.36 and — 0.82,
respectively). The P95 and OLR departures from the simulation and
MERRA-2 dataset are only significantly negatively correlated in winter,
summer and autumn (—0.38, —0.36 and — 0.47, respectively). The
positive TCC between P95 and CRE biases is only significant in autumn
(0.64) and the TCC (0.38) between P95 and CRE departures is weaker
than the result of the simulations and observations. The correlation
between P95 and CWP biases is only strong in summer (0.60). For the
P95 and CWP departures, there is also a significantly positive correlation
in summer (0.55). The negative TCC between P95 and T2 m biases is
only significant in autumn (—0.42), whereas the correlations between
P95 and T2 m departures are significant in winter, summer and autumn
(—0.46, —0.34 and — 0.49, respectively). The TCCs between CWRF
simulation and MERRA-2 dataset in North China reproduce well the sign
and magnitude of the TCCs between the simulations and observations.

In Central China (Fig. 10b, e, h, k), there are high TCCs between P95
and DRI biases from spring to winter (0.88, 0.94, 0.87 and 0.88,
respectively) and the correlations between P95 and DRI departures also
show the same results (0.92, 0.96, 0.91 and 0.90, respectively). The
TCCs between P95 and NRD biases are not significant in all seasons; they
are almost zero in autumn and winter. However, the positive TCCs be-
tween P95 and NRD departures are significant in winter and spring (0.59
and 0.42, respectively). In addition, the TCCs between P95 and PL de-
partures are high and significant from spring to winter (0.61, 0.59, 0.42
and 0.64, respectively). By contrast, the TCC between P95 and PC de-
partures is not significant in any season. The negative TCCs between P95
and OLR biases are only significant in winter and spring (—0.45 and —
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0.42, respectively), whereas different results are obtained for CWRF
simulation and MERRA-2 reanalysis dataset. The TCCs between P95 and
CWP biases are significant in spring and summer (0.54 and 0.60,
respectively) and the correlation between P95 and CWP departures is
only significant in summer (0.59). Furthermore, the TCCs across P95
with SWD, RSW, CRE and T2 m biases and departures are not significant
in any season (except for —0.51 in autumn). Some of the biases and
departures correlations even show the opposite signs in winter, spring
and autumn. Considering the influence of satellite product estimations,
the small number of available samples of observation data, the wide
regional areas and complex climate systems, there are large un-
certainties, which result in large differences between the correlations of
biases and departures in Central China.

In South China (Fig. 10c, f, i, 1), the correlations between P95 and
DRI biases are still high from spring to winter (0.91, 0.93, 0.89 and 0.82,
respectively). The correlations of the departures are also strong (0.98,
0.97, 0.91 and 0.92, respectively). The TCCs between P95 and PL de-
partures in all seasons (0.70, 0.63, 0.54 and 0.40, respectively) are
higher than those in North and Central China. The P95 and PC de-
partures are significantly positively correlated in spring, summer and
autumn (0.52, 0.57 and 0.56, respectively). There are negative TCCs
between P95 and SWD biases in spring and summer (—0.40 and — 0.50,
respectively), whereas the corresponding negative TCCs between and
SWD departures strengthen significantly in summer and autumn (—0.55
and — 0.55, respectively). Positive TCCs between P95 and RSW biases
occur in spring and summer (0.48 and 0.43, respectively), whereas the
correlations between their departures are in summer and autumn (0.51
and 0.45, respectively). The correlations between the P95 and the OLR
biases are negative in spring, summer and winter (—0.34, —0.51 and —
0.38, respectively), whereas the corresponding correlations of their
departures are only significant in summer and autumn (—0.60 and —
0.41, respectively). The TCCs between the departures capture the TCCs
between the biases from the simulations and observations in summer
well. The results are fairly consistent, but are slightly different in spring
and autumn. The TCCs between P95 and T2 m biases are only negative
in spring and summer (—0.39 and — 0.46, respectively), but the corre-
lations of the departures from the simulation and MERRA-2 dataset are
not significant in any season.

We have shown that the correlations between the departures from
the simulation and MERRA-2 dataset can reproduce the correlations
between the biases of the key variables (DRI, NRD, PL, PC, SWD, RSW,
OLR, CRE, CWP and T2m), especially in summer. The P95 departures are
less affected by the convective precipitation departures, but are more
affected by the large-scale precipitation (PL) departures in different re-
gions. The relative contribution of convective precipitation (PC) to
extreme precipitation may not be important, which also shows that there
are other physical processes that have an important role in extreme
precipitation events.

To understand the physical processes that affect P95 biases more
comprehensively, we first established the consistency of P95 biases and
departure correlations with the fields they resembled most closely. We
then analyzed the correlations between the departures based on all the
fields (SH, NSE, ET, MC, TPW, Q2m, W700, V850, FCL, FCH, RCT, CAPE,
CIN, PBLH, LCL and LFC) from the simulation and MERRA-2 dataset. As
a result of the lack of daily observational data for the atmospheric cir-
culation, we use the 37-year samples from MERRA-2 dataset for this
discussion.

Fig. 11 compares the seasonal correlation coefficients between P95
and all relevant field departures in North China. In winter (Fig. 11a,
upper left triangle), the P95 departures have significant positive corre-
lations with the CWP, RSW and W700 departures of 0.42, 0.32 and 0.42,
respectively, and are negatively correlated with the OLR (—0.37) and
TPW (—0.34) departures. In spring (Fig. 11a, lower right triangle), there
are only significant positive correlations across P95 with ET (0.39) and
W700 (0.37) departures. In summer (Fig. 11b, upper left triangle), there
are positive correlations between P95 and MC (0.66), W700 (0.48), RSW
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Fig. 11. Correlation coefficients between P95 and relevant variable departures (CWRF using ECP scheme) in North China in (a) winter (upper-left triangle) and
spring (lower-right triangle) and in (b) summer (upper-left triangle) and autumn (lower-right triangle). The abscissa, ordinate and diagonal indicate P95 and each
relevant variable. The correlation coefficient is multiplied by 100 and shown as shading. If the significance reaches 95% confidence level, the integer is marked on the
corresponding box.

(0.42), CRE (0.32), CWP (0.40) and FCL (0.57) departures and negative
correlations between P95 and SWD (—0.41), SH (—0.45), OLR (-0.32),
RCT (—0.43), T2 m (—0.34) and CAPE (—0.32) departures. In autumn
(Fig. 11b, lower right triangle), the P95 and MC (0.52), W700 (0.41),
RSW (0.38) and CRE (0.41) departures are significantly positive corre-
lated, whereas P95 and SWD (—0.36), SH (—0.38), RCT (—0.43), T2 m
(—0.49), CIN (—0.42), PBLH (—0.58) and LFC (—0.45) departures are

LFC
LCL
PBLH
CIN
CAPE
T2M
RCT
FCH
FCL
cwp
CRE
RSW
V850

DJF

Q2M
TPW
MC
ET
OLR
NSE
SH
sSwD
Pg5

(a)Central China DJF/MAM

-33 LFC
m 35 52 2 2 35 LoL
4 39 20 wu [@Bla [w PBLH 44
s a7 s a4 CIN 33
7 3 2 @ . CAPE 44
41 . -44 -34 ™™™ 55 37
w48 40 RCT E] o
8 45 s o [& FCH
o 34 le2| FeL 35
36 52 39 a7 (52| cwp. %2 42
2 a5 a3 |45 a4 cRE 41 48 4
| ERROES IR rswlfll] s 5 46 54
39 veso 51 38 4 54
B G i -
am |88 w0 [&] a5
41 43 43 TPW 35 43. % 47 36
a2 we (48] . 35 40
3 35 er s ) 42 4
~alle - =
45] NSE 2 @
47 E sH Y 38 5
swo s [80780] 46 40 53 oo [JIER] < ¢ [es] (o7 s2.
Pos 43 45 38 36 a7 u %
BEs83uefiEEs e R 5498
MAM

T |
~100 -90 -80 ~70 -60 -50 ~40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100

JUA

significantly negative correlated. W700 is the common significant pos-
itive correlation factor for P95 departures in all seasons and RSW is the
common significant correlation factor in summer, autumn and winter.
In Central China, positive correlations are found between P95 and ET
(0.34), MC (0.42), W700 (0.59), CWP (0.36) and FCL (0.49) departures
in winter (Fig. 12a, upper triangle left). The P95 departures are signif-
icantly negative correlated with the SH (—0.47) and TPW (—0.41)
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Fig. 12. Same as Fig. 11, but for Central China.
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departures. In spring (Fig. 12a, lower triangle right), the P95 departures
have significant positive correlations with the ET (0.38), FCL (0.34) and
CIN (0.36) departures and negative correlations with the SH (—0.43),
NSE (—0.45), TPW (—0.36) and CRE (—0.37) departures. In summer
(Fig. 12b, upper triangle left), the P95 departures are significantly
positively correlated with MC (0.59), W700 (0.57), FCL (0.41) and CIN
(0.36) departures and significantly negatively correlated with SWD
(—0.41), NSE (—0.50) and RCT (—0.52) departures. In autumn (Fig. 12b,
lower triangle right), positive correlations are found between P95 and
MC (0.36) and CIN (0.36) departures and negative correlations between
P95 and SH (—0.49) and V850 (—0.33) departures. The SH is the com-
mon significant negative correlation factor for P95 departures in
autumn, winter and spring. The MC is the common significant positive
correlation factor for P95 departures in summer, autumn and winter.
The CIN in spring, summer and FCL in winter, spring and summer are
common high correlation factors.

In South China, the P95 departures are positively correlated with MC
(0.43), V850 (0.43) and RSW (0.36) in winter (Fig. 13a, upper triangle
left), whereas they are significantly negatively correlated with the SWD
(—0.37) and SH (—0.42). In spring (Fig. 13a, lower triangle right), the
P95 departures have significant positive correlations with MC (0.83),
W700 (0.83), CAPE (0.42), LCL (0.33) and LFC (0.42) departures and
negative correlations with the Q2 m (—0.35), V850 (—0.45) and RCT
(—0.57) departures. In summer (Fig. 13b, upper triangle left), there are
positive correlations of P95 departures with MC (0.62), TPW (0.32), Q2
m (0.32), W700 (0.58), RSW (0.43) and CWP (0.41) departures, but
negative correlations of P95 departures with SWD (—0.48), SH (—0.42),
NSE (—0.50), OLR (—0.53), ET (—0.42) and RCT (—0.33) departures. In
autumn (Fig. 13b, lower triangle right), the P95 departures are posi-
tively correlated with MC (0.75), W700 (0.59), RSW (0.44) and FCL
(0.48) departures, but negatively correlated with the SWD (—0.53), SH
(—0.49) and OLR (—0.47) departures. The MC is the common significant
positive correlation factor for P95 departures in all seasons, whereas
W700 is the common significant positive correlation factor in spring,
summer and autumn. RSW, SWD and SH have common effects on P95
departures in summer, autumn and winter.

From these analyses, it can be seen that the SH significantly affects
P95 departures and the SWD provides an energy source for the sensible
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heat. The NSE represents the net radiation flux minus the surface heat
(the latent heat plus the sensible heat) flux, which also includes the SWD
and SH effects. Figs. 11-13 also reflect the high correlations among
them. The ET is an important part of the water cycle. An insufficient
(excessive) supply of water vapor could directly result in the underes-
timation (overestimation) of P95 in different regions. Their impacts on
extreme precipitation strongly depend on the region and season. The ET
and MC ensure a sufficient supply of water vapor, mainly measured by
the TPW. There are also close relationships among the OLR, RSW and
CRE. Deeper cumulus clouds produce less OLR, so the deeper the optical
depth of the cloud, the more the RSW, resulting in a strong CRE, which
cools the Earth’s atmospheric system. An underestimation of deep
convection may reduce the simulated amount of extreme precipitation.

Compared with PC, the ratio of convective precipitation to total
precipitation (RCT), as an alternative to precipitation efficiency, has
more complex impacts on the simulation P95 and its role is uneven in
different regions and seasons. A large SWD can cause a warm T2m, much
SH, a wet Q2 m and a high PBLH in spring and summer. In addition, a
warm T2 m affects the reduction in FCL and FCH, thus affecting the
changes in the OLR, RSW and CRE. However, the correlations among
these variables weaken in magnitude in autumn and winter. With sea-
sonal changes, the regional precipitation process system changes and the
role of the surface-atmosphere-cloud-radiation interactions change
significantly. Other relevant variables in North, Central and South China
are also strongly related, especially the PBLH in summer. The larger
SWD and sensible heat lead to a higher PBLH, a higher cumulus base
(less FCL) and a smaller cloud depth (less FCH). Figs. 11-13 also show
more complex relationships among all fields, which require more
advanced machine learning technologies and methods to clarify and to
determine the most reasonable mechanism behind P95 simulation
departures.

3.5. Underlying physical processes of extreme precipitation simulation
biases

Extreme precipitation is caused by complex changes in the climate

system in different regions. Based on our analysis, it is clear that there is
a strong correlation among all fields. We first fitted all the possible
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Fig. 13. Same as Fig. 11, but for South China.
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combinations of the 22 preselected variables and then selected the
regression model based on the following three principles: it only con-
tains significant variable factors; the total explained variance (R?) is the
largest, and the Akaike information criterion is the smallest. Akaike
information criterion (AIC) was proposed by Akaike (1974) to measure
the goodness of fit of a statistical model. It is grounded in the concept of
entropy, offering a relative measure of the lost information when a given
model is used to describe reality and can be weighed against the pre-
cision and complexity of the model. In general, the smaller the AIC
value, the better the model performance. According to the recommen-
dation of Burnham and Anderson (2004), other competition models are
not considered since the AIC differences of our selected models from the
minimum reference are >10. In this way, all possible models are tested
and an optimum set of variables is screened out.

Table 3 shows the main factors and performance indicators relevant
to P95 departures in the regression models established for North, Central
and South China. By comparing the relative importance of each factor in
different regression models, we find that the first and second factors that
contribute the most to the selected model are the same, so the under-
lying impact on P95 departures can be discussed simply. Table 3 shows
that most of the regression models can explain changes in P95 de-
partures of >74% (total explained variance R% > 74%), except for North
China in winter, Central China in autumn and South China in winter.
The simulation results are explained according to the relative impor-
tance (RI) of the first and second factors.

In North China, the PBLH and RSW departures are the first and
second most important factors affecting P95 departures in winter. They
can explain 52.38% of the influence on P95 departures. A lower PBLH
and greater RSW lead to larger P95 departures. In spring, more water
from surface evapotranspiration (RI = 18.72%) and a stronger W700 (RI
= 16.03%) have leading roles in P95 departures. In summer, the P95
departure is dominated by the positive direct effect of the MC departure,
the relative importance of which reaches 32.24%, where a stronger MC
produces more extreme precipitation. The SH is the second important
factor affecting P95 departure (RI = 23.01%). The more extreme the
precipitation, the more heat it consumes. In autumn, the LCL (RI =
26.87%) and PBLH (RI = 17.55%) departures are the first and second
most important factors, respectively, determining P95 departures. The
combination of a lower LCL and PBLH results in large P95 departures,
with a total relative importance of 44.42%.

In Central China, the W700 (RI = 25.66%) and TPW (RI = 20.47%)
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departures are the first and second most important factors, respectively,
determining P95 departures. Strong ascending movement and a low
TPW lead to large amounts of extreme precipitation in winter. In spring,
the P95 departures are determined by two energy effects: the SH (RI =
30.26%) and the NSE (RI = 21.63%) departures. The total relative
importance of the two factors reaches 51.89%. A large amount of sen-
sible heat is released into the atmosphere and combines with the surplus
NSE for the consumption of precipitation, which results in a reduction in
P95 departures. By contrast, the P95 departure are mainly affected by
two opposite factors: a positive MC (RI = 27.12%) and a negative CAPE
(RI = 17.64%) departures in summer. Strong MC and low CAPE de-
partures lead to large P95 departures. In autumn, the regression model
only can explain 66% (total explained variance) of the changes in P95
departures. The PBLH (RI = 18.39%) and CWP (RI = 14.70%) de-
partures are the first and second important factors, respectively, deter-
mining P95 departures.

In South China, the regression models in spring, summer and autumn
can explain >80% of the changes in P95 departures, but the model in
winter has a poor interpretation effect with a total explained variance of
only 63% due to the influence of other independent variables and sys-
tematic and random errors. In winter, strong V850 (RI = 26.72%) and
MC (RI = 19.37%) departures lead to large P95 departures and the total
relative importance reaches 46.09%. In spring, the P95 departures are
dominated by a positive effect of the W700 (RI = 36.28%) and MC (RI =
31.52%) departures. The relative importance of the two factors reaches
a total of 67.80%. A continuous supply of water vapor supply leads to
large amounts of extreme precipitation. In summer, the SWD (RI =
22.10%) and RSW (RI = 19.14%) have negative impacts on P95 de-
partures, whereas a weaker energy supply and less reflected shortwave
radiation at the top of atmosphere result in larger amounts of extreme
precipitation. In autumn, the P95 departures are determined by two
opposite direct effects: positive MC (RI = 37.11%) and negative SWD
(RI = 22.96%) departures. A strong moisture convergence departure
causes a large P95 departure and a large supply of surface energy de-
creases some of the impact on P95 departures.

The selection of the cumulus parameterization scheme therefore af-
fects the relative importance of each factor in P95 biases and has an
important role through the interactions among various factors in
different regions and seasons. This determines the simulation ability of
CWRF model for extreme precipitation in China.

Table 3
Main factors and indicators relevant to P95 departures in North, Central and South China. The symbol “— indicates the factor has a negative role.
Domain Season  Main factors and signs Total explained variance Akaike information First and second factors (relative
(R2) criterion importance)
North China DJF SWD, SH, NSE, RSW, FCH, —T2M, —PBLH, LCL 0.67 83.1 PBLH RSW (23.77%)
(28.61%)
MAM —NSE, OLR, ET, W700, —CRE, CWP, —FCH, RCT, —T2M, 0.78 74.3 ET (18.72%) W700
—CAPE (16.03%)
JJIA SWD, —SH, MC, —Q2M, V850, —RCT, CIN 0.74 74.3 MC (32.24%) SH (23.01%)
SON SWD, —TPW, Q2M, CRE, CWP, FCH, —T2M, —CAPE, 0.80 68.5 LCL (26.87%) PBLH
—PBLH, —LCL (17.55%)
Central DJF SWD, —NSE, OLR, MC, —TPW, W700, CRE, CWP, —RCT, 0.75 76.3 W700 TPW
China —T2M (25.66%) (20.47%)
MAM —SH, —NSE, —ET, MC, —TPW, —RSW, —LFC 0.76 70.5 SH NSE
(30.26%) (21.63%)
JJIA —ET, MC, —V850, —CRE, —T2M, —CAPE, —PBLH, LCL 0.84 57.0 MC CAPE
(27.12%) (17.64%)
SON OLR, ET, Q2M, RSW, —CRE, —CWP, —FCL, —T2M, 0.66 88.5 PBLH CWP
—CAPE, PBLH (18.39%) (14.70%)
South China DJF —OLR, MC, W700, V850, —FCL, —RCT, —CAPE, —LFC 0.63 87.1 V850 MC
(26.72%) (19.37%)
MAM —SH, ET, MC, Q2M, W700, —V850, —RCT, PBLH, LCL 0.88 44.7 W700 MC
(36.28%) (31.52%)
JJIA —SWD, —V850, —RSW, —CRE, CWP, —FCL, —RCT, PBLH 0.83 57.5 SWD RSW
(22.10%) (19.14%)
SON —SWD, MC, —V850, —CRE, —FCL, FCH, IN, —LFC 0.84 57.1 MC SWD
(37.11%) (22.96%)
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4. Conclusion and discussion

We used CWRF model to analyze simulations of extreme precipita-
tion in China from 1980 to 2016 and focused on the sensitivity and
dependence of extreme precipitation events on different cumulus
parameterization schemes in the three key regions of North, Central and
South China. By comparing ERI data and five cumulus parameterization
schemes in CWRF model in simulations of extreme precipitation events,
we selected ECP scheme, which has a relatively good simulation effect,
to investigate the underlying physical processes explaining how the
cumulus parameterization scheme determines the ability of CWRF
model to simulate extreme precipitation events in China.

(1) The CWRF model using the ECP scheme performs better than the
ERI on spatial distribution and temporal variation of seasonally
averaged general precipitation and extreme precipitation.
Although there are 5-10 mm/day extreme precipitation biases of
interannual variation in the CWRF, it can better represent the
location and intensity of two rain bands in the Yangtze River
basin and across South China, and it has <2 mm/day and 5-10
day biases of the observed interannual variation of seasonally
averaged precipitation and NRD, respectively. In particular, the
CWREF is more consistent with the monthly variation of precipi-
tation, NRD and P95 over China, which the ERI systematically
overestimates. This gives better results than ERI data, showing a
large improvement with added value in mountainous and coastal
areas. The different cumulus parameterization schemes vary
substantially in their model biases and skill scores in different
regions and seasons. The P95 biases of ECP scheme are lowest in
North China and this scheme gives the best performance with the
highest ETS score in summer. KFeta scheme captures the spatial
pattern of P95 and produces a higher PCC and smaller standard
deviation than ECP scheme, and with an ETS followed ECP
scheme. In Central China, the spatial distribution of P95 simu-
lated by CWRF model with ECP and NSAS schemes in all seasons
are the most realistic. ECP scheme gives an excellent performance
in the simulation, with the highest PCC and ETS (except in
autumn) among the five cumulus schemes. KFeta and Tiedtke
schemes substantially overestimate P95 in all seasons, whereas
BMJ scheme substantially underestimates P95 and lacks simula-
tion skills. ECP scheme perfectly reproduces the heavy rain band
in coastal areas of South China, especially in summer. However,
ECP scheme has the highest ETS in this region, although it
significantly underestimates the extreme precipitation. Although
KFeta and Tiedtke schemes overestimate the magnitude of P95,
they have high ETS values in winter and spring. Some cumulus
schemes capture extreme precipitation under forcing by mixed
weather systems and convective systems. For example, although
KFeta scheme cannot capture the spatial pattern very well, its
simulations of P95 in South China in spring and autumn are good.
NSAS scheme overestimates a large range of NRDs in Central
China in spring and autumn, but its simulation of P95 is better
than that using ECP scheme. ECP scheme can be cooperated with
other physical parameterization schemes (e.g., radiation, micro-
physics and aerosol optical depth) to further improve the simu-
lation skills of CWRF model.

The choice of cumulus parameterization scheme has a significant
impact on the simulation of extreme precipitation, not only the
climatological average spatial distributions, but also the region-
ally averaged interannual variation. The ERI reanalysis data
substantially underestimates the interannual variation of P95,
whereas ECP scheme gives quite good simulation of the inter-
annual variation of P95 in most seasons over North, Central and
South China (the highest TCC and smallest RMSE). NSAS scheme
ranks second, followed by KFeta, Tiedtke and BMJ schemes. For
the ECP scheme, we computed the correlation coefficients of the

(2)
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departures between P95 and relevant variables (including DRI,
NRD, SWD, SH, NSE, OLR, ET, MC, TPW, Q2m, W700, V850,
RSW, CRE, CWP, FCL, FCH, RCT, T2m, CAPE, CIN, PBLH, LCL
and LFC). Our results show that, except for a low correlation in
Central China, the correlations of the differences between the
simulations and MERRA-2 dataset reproduce well the magnitudes
and signs of the bias correlations between the simulations and
observations in most seasons over both North and South China.
The MERRA-2 dataset is therefore a good choice for use as
reference data in the absence of observational circulation data.
We also found significant correlations between P95 departures
and the departures of the 22 relevant variables. The correlation
coefficients varied from —0.96 to 0.90 in different regions and
seasons and some variables were interdependent, which pro-
moted or offset the formation of extreme precipitation.

Based on the complex relationships between P95 departures and
the 22 relevant variable departures in the simulation using the
ECP scheme, we selected the optimum model using the all-subsets
regression method to quantify their relative importance to P95
departures and tried to determine the first and second factors
contributing the most to P95 departures. In North China, the P95
departures are mainly affected by the PBLH and RSW departures
in winter (total RI = 52.38%), the ET and W700 departures in
spring (total RI = 34.75%), the MC and SH departures in summer
(total RI = 55.25%), and the LCL and PBLH departures in autumn
(total RI = 44.42%). In Central China, the P95 departures are
dominated by the W700 and TPW departures in winter (total RI
= 46.13%), the SH and NSE departures in spring (total RI =
34.75%), the MC and CAPE departures in summer (total RI =
44.76%), and the PBLH and CWP departures in autumn (total RI
= 33.09%). In South China, the P95 departures are influenced by
the V850 and MC departures in winter (total RI = 46.09%), the
W700 and MC departures in spring (total RI = 67.80%), the SWD
and RSW departures in summer (total RI = 41.24%), and the MC
and SWD departures in autumn (total RI = 60.07%). Of the 12
regression models, the listed relative importance of the first and
second factors (occurring times) are MC (5), PBLH (3), W700 (3),
SH (2), RSW (2), ET (1), LCL (1), TPW (1), SWD (1), NSE (1),
V850 (1), CAPE (1) and CWP (1). Their relative importance and
relevance to P95 largely depend on the regions and seasons.

3

—

We investigated the influence of different cumulus parameterization
schemes in CWRF model on the simulations of extreme precipitation
over China. Our analyses showed that there are many differences and
similarities of precipitation simulations between the US and China when
using the five cumulus parameterization schemes. Compared with the
results of Sun and Liang (2020a, 2020b), we found that the control
experiment of the CWRF model corresponds to the ECP scheme run,
which better represents the seasonal average P95 in the US than in
China. And the ECP scheme reproduces the extreme precipitation events
and their peaks near the coastline in the US and China due to its various
weights and different closure options between land and ocean, but
precipitation is overestimated in both China and the US. Except for a
long and narrow rain band along the coastline, the ECP scheme un-
derestimates P95 of a large range in eastern China. The KFeta scheme
produces reasonable P95 and relatively small biases in the US, while it
substantially overestimates P95 between the Yangtze River and Pearl
River basins. The Tiedtke scheme has opposite simulation biases of P95
in the US and China. And the Tiedtke scheme performances abnormally,
which yields substantially large spatial variability both in the US and
China. The ability of the NSAS scheme to capture extreme precipitation
in China is higher than that in the US.

For interannual variation of seasonal P95, the ECP scheme slightly
underestimates P95 magnitude and variability in China, compared to its
overestimates in the US. The ECP scheme best simulates P95 interannual
variation among all the schemes, both in the US and China, with the
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highest TCC and smallest RMSE. The departures of the Tiedtke scheme
from the interannual variation of P95 in the US are not as large as those
in China. Except for South China, the NSAS scheme is equivalent to the
ECP scheme in China but worse in the US, which has a notably lower
correlation and larger RMSE. The BMJ scheme fails totally to simulate
the extreme precipitation characteristics both in the US and China.
Except for the impacts of different monsoon systems in the US and
China, the sensibility of different cumulus schemes to P95 under mixed
synoptic and topography forcing may lead to large differences in
simulating extreme precipitation. In addition, we noticed that the CWRF
still has a significantly enhanced ability to capture extreme precipitation
after combining the ECP cumulus scheme with other physical schemes.
Therefore, through the comparison of different cumulus schemes used in
the US and China, we obtain some preliminary conclusions that provide
a reference for selecting cumulus parameterization schemes in regional
climate models. The version used in this study does not represent the
best performance of the CWRF in China; and we can examine an
ensemble of physics configurations to further improve the skill of the
CWREF in China.

As stated above , different regions and seasons have different re-
sponses to the simulation of extreme precipitation events with different
cumulus parameterization schemes. Future regional climate simulations
should focus more on the development of more realistic physical pro-
cesses. The choice of cumulus parameterization scheme affects the
relative importance of various factors to the simulation of P95 and
produces a marked effect through the interactions among them, further
influencing the performance of CWRF model in simulating extreme
precipitation in China.

In this study, the model resolution is 30 km. Cumulus parametriza-
tion schemes are often designed to describe indiscernibility process due
to grid size when the size is >10 km. With the improvement of resolu-
tion, the model can explicitly express some convective processes when
the grid is smaller than 4 km or close to the diameter of the convective
system, and the cumulus parameterization process is closed (Arakawa
and Jung, 2011). However, there is a “gray zone” of cumulus convection
parameterization scheme when the resolution is between 4 and 10 km.
The closure assumptions of cumulus convection parameterization are no
longer applicable; and the model can only partially express the con-
vection process (Hong and Dudhia, 2012). The performance of cumulus
convective parameterization scheme under different resolution and its
application in the “gray zone” need to be further studied in the future.

The regression models established in this study are relatively simple
and only roughly discuss the influence of various factors on P95 simu-
lation departures. In fact, the 22 factors selected by referring to the
research of Sun and Liang (2020b) are not independent and there are
strong correlations among them (Figs. 11—13). However, using these
highly correlated factors as predictors to establish regression models
would lead to multicollinearity. The regression model might be unstable
because of the repeated calculation of specific factors or overfitting. Sun
and Liang (2020b) designed a structural equation regression model,
which not only solved the problem of multicollinearity, but also reduced
the dimensions by constructing four potential factors so that the causal
relationship behind the simulation departures could be better explained.
Hundreds of millions of alternative combinations of the structural
equation regression models for P95 simulation departures can be suc-
cessfully established in different regions and seasons. However, this
requires not only machine learning by supercomputers, but also super-
computers with a huge storage capacity to optimize the filter and to
determine the unique and optimum structural equation regression
model for each region and season within certain constraints.

We compare the sensitivity of different cumulus parameterization
schemes to extreme precipitation, and identify which schemes can best
capture extreme precipitation processes in Figs. 4-9. P95 results from
the complex climate system as a whole and its model bias mechanisms
are extremely challenging to understand. Sun and Liang (2020b)
recognized this challenge, and used structural equation regression
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model for supercomputing diagnosis. The underlying physical processes
will definitely depend on the system coupling of all physics parame-
terizations and dynamics’ representations. As such, this study focuses on
a single cumulus parameterization, choosing the high performer ECP
scheme as the first priority to explore the underlying physical processes.
Exploring other cumulus schemes will take more time and should be
done in the future.
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