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A B S T R A C T   

The ability of climate models to capture extreme precipitation events is crucially important, but most of the 
existing models contain significant biases for the simulation of extreme precipitation. To understand the causes of 
these biases, we used five different cumulus parameterization schemes in the regional Climate–Weather Research 
and Forecasting (CWRF) model to investigate its performance and biases in the simulation of extreme precipi
tation events in China. In general, the ensemble cumulus parameterization (ECP) scheme was the most skillful in 
reproducing the spatial distribution of the 95th percentile daily precipitation (P95) and the other four schemes 
either overestimated (the Kain-Fritsch Eta and Tiedtke schemes) or underestimated (the Betts-Miller-Janjic and 
New Simplified Arakawa-Schubert schemes) P95. Compared with the observational data, ECP scheme signifi
cantly improved the simulation of extreme precipitation in China and had the highest correlation and the 
smallest root-mean-square error in most areas and seasons. To clarify the underlying physical processes of P95 
simulation biases, we established a regression model of extreme precipitation based on ECP scheme. This showed 
that P95 in North China is mainly affected by moisture convergence, planetary boundary layer height and lifting 
condensation level (relative importance 18–32%). In Central China, the vertical upward motion of water vapor, 
sensible heat flux and planetary boundary layer height (relative importance 18–30%) are main factors associated 
with P95. In South China, the vertical upward motion and horizontal transport of water vapor are predominant 
(relative importance 26–37%). In addition, the net surface energy, surface and atmospheric radiation flux, total 
precipitable water, convective available potential energy and cloud water path also have a high correlation with 
P95 (the second most important factor; relative importance 14–31%). The influence of each factor on the 
simulation of P95 is different when using different cumulus parameterization schemes and the interaction among 
the different factors determines the ability of CWRF model to simulate extreme precipitation. These results 
provide important references for future model evaluations and improvements.   

1. Introduction 

The Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC AR6) stated that extreme precipitation events 
have increased in most regions with the observational data since 1950. 

The annual variability of precipitation has also increased, mainly 
because the overall rate of increase in extreme precipitation events is 
faster than the average increase in precipitation, which brings chal
lenges to the management of regional water resources (IPCC, 2021). 
According to the Clausius–Clapeyron equation, for each 1 ◦C of 
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warming, saturated air contains 7% more water vapor, which may lead 
to an increase in extreme precipitation events if global warming con
tinues unabated (Allen and Ingram, 2002). Both the frequency and in
tensity of heavy precipitation have increased over China, which is a 
region particularly vulnerable to extreme precipitation events. The 
losses resulting from disasters related to heavy precipitation and 
flooding in China present greater risks as a result of the influence of the 
East Asian monsoon, the complex topography and large population. The 
prediction of future changes in extreme precipitation is therefore crucial 
for both policymakers and the general public and will allow the devel
opment of comprehensive adaptation strategies (Zhang and Zhou, 
2020). 

The ability of climate models to simulate and predict extreme pre
cipitation events is still challenging. Issues such as the quality of the 
observations, our understanding of physical processes, model biases and 
internal variability effects all contribute to the uncertainty in projected 
changes of the regional climate and extreme weather events (Xie et al., 
2015; Li et al., 2022). Most models tend to overestimate light precipi
tation events and underestimate the intensity of heavy precipitation 
events (Dai, 2006; Sun et al., 2006). Li et al. (2010) found that many 
low-resolution global models underestimate extreme precipitation by 
~50%, especially during summer in East China. Xu et al. (2011) showed 
that three coupled general circulation models had limited skills in 
reproducing the interannual variation of extreme precipitation events in 
the major river basins in East China. Gao et al. (2017) evaluated a high- 
resolution regional climate model (RegCM4) in simulating heavy pre
cipitation events in East China, which produced substantial un
derestimates. However, Liang et al. (2019) demonstrated that the CWRF 
model outperformed the RegCM4.6 model in reproducing extreme pre
cipitation in China. Tripathi and Dominguez (2013) found that spatial 
structure of the simulation of extreme precipitation by regional climate 
models at a grid spacing of 10 km was clearer than that at a grid spacing 
of 50 km in the southwestern US, but there were still large deviations. 
Prein et al. (2017) indicated that even convection–permitting model 
(CPM) at a grid spacing of 4 km still underestimates hourly extreme 
precipitation by up to 30% in the central US during summer. Many 
research methods have been used to alleviate the “drizzling problem” in 
models (Xie et al., 2004), but it has been proven difficult to find a perfect 
solution. The moist physical process performs poorly in most models and 
will often stimulate wet convection. In nature, the convection inhibition 
process allows the accumulation of atmospheric instability energy 
before the beginning of strong convection (Sun et al., 2006). 

Previous studies have shown that precipitation is very sensitive to 
the selection of cumulus parameterization schemes (Huang et al., 2008; 
Shen et al., 2014, 2016). Convection triggers, entrainment or detrain
ment equations, closure assumptions and cloud models have been shown 
to be important factors affecting convective precipitation. Although 
many studies have discussed the sensitivity and mechanisms of extreme 
precipitation events due to different physical representations, the sim
ulations and underlying mechanisms of RCM cumulus parameterization 
schemes over China are still limited. A series of alternative physical 
parameterization schemes with consistent coupling for each major 
physical process have been built into the regional Climate–Weather 
Research and Forecasting (CWRF) model, including cumulus, micro
physics, radiation, planetary boundary layer and surface processes 
(Liang et al., 2012; Li et al., 2020). Zeng et al. (2008) made a 120-h real- 
time ensemble forecast using eight parameterization combinations in 
CWRF model and showed that it could produce a good forecast of pre
cipitation in China. Sun and Liang (2020a) found that the simulation of 
extreme precipitation in the US by CWRF model was significantly better 
than the reanalysis results of the ERA-Interim (ERI) dataset (Dee et al., 
2011). In fact, the simulation results of various parameterization 
schemes for all kinds of extreme precipitation events in different regions 
are significantly different. 

It is challenging for climate models to comprehensively capture the 
characteristics of extreme precipitation events and to understand, 

simulate and predict these events. There is therefore an urgent need to 
understand and overcome the deficiencies in these models and to 
investigate the thermal and dynamic processes behind extreme precip
itation events. Coumou and Rahmstorf (2012) suggested improving 
models by increasing their spatial resolution, but it is equally important 
to strengthen our understanding of the relevant nonlinear processes. 
Wilcox and Donner (2007) pointed out that it is also crucial to change 
the convective closure and trigger in the cumulus parameterization 
formula. Li et al. (2012) showed that their improvements in the simu
lation of heavy precipitation were mainly a result of the increase in the 
cloud water path (CWP) and cloud condensation, which are either not 
included or poorly expressed in conventional convection parameteri
zation. Kang et al. (2015) suggested that the underestimation of extreme 
precipitation frequency is due to the lack of representation of ice 
microphysical processes related to heavy precipitation. Zhao and Xu 
(2020) showed that it is difficult for models to accurately and explicitly 
analyze entrainment, detrainment and vertical transport processes in the 
convection process. 

Most of the existing studies of extreme precipitation events have 
focused on the changes and impacts of different parameterization 
schemes in specific environments, whereas less work has been carried 
out to explain the underlying physical processes of the model simulation 
biases based on cumulus convection parameterization schemes. We 
therefore examined the ability of CWRF model to simulate extreme 
precipitation events in China using different cumulus parameterization 
schemes, focusing on three key regions. This study investigates the 
dependence of extreme precipitation on the different cumulus parame
terization schemes and the complex correlation of the factors affecting 
the biases in extreme precipitation. We established a regression model to 
explore the underlying physical processes causing the biases in extreme 
precipitation to provide a reference for further improvements in CWRF 
model and its applications. The abbreviations of the large number of 
climate variables used in this paper are summarized in Table S1. 

2. Model, experiments, data and methods 

2.1. Model and experiments 

This study used the regional Climate-Weather Research and Fore
casting (CWRF) model, which is a climate extension of the WRF model 
v3.1.1 (Skamarock et al., 2008). The extension includes numerous im
provements about the land-atmosphere-ocean, convection-micro
physics, and cloud-aerosol-radiation interactions, as well as the system 
consistency between the various modules (Liang et al., 2012). The CWRF 
model has been systematically advanced as a climate extension to the 
Weather Research and Forecasting model since 2002 by improving the 
physical process schemes, integrating multiple parameterization 
schemes and external forcing. The CWRF model not only combines the 
most advanced conjunctive surface–subsurface processes with the real 
surface distribution characteristics, but also couples a comprehensive 
multi-layer upper ocean model and a detailed lake, ice, snow and sedi
ment simulator. In addition, CWRF model integrates a set of alternative 
parameterization schemes for each key physical process, which are 
coupled among each component and maintain the greatest consistency. 
The interaction of the cloud aerosol radiation ensemble system was 
added to make the physical processes in CWRF model more realistic 
(Liang et al., 2012). 

We used an ensemble cumulus parameterization (ECP) scheme based 
on the Grell and Dévényi (2002) framework in CWRF model. This 
scheme not only shows an outstanding performance in the simulation of 
summer precipitation in the coastal ocean of the US (Qiao and Liang, 
2015, 2016, 2017), but also greatly improves the simulation of extreme 
precipitation over land (Sun and Liang, 2020a, 2020b). The computa
tional domain of CWRF model used in this study was based on the 
Lambert conformal map projection centered at (35.18◦ N, 110◦ E) with a 
total of 232 (latitude) × 172 (longitude) grid points at 30 km spacing. 
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There were 36 vertical levels and the top of CWRF model was at 50 hPa. 
The simulations were driven by ERI reanalysis dataset as the initial 

and boundary fields. The simulation began on November 1, 1979 and 
ran continuously until the end of 2016. We therefore mainly evaluated 
the results from 1980 to 2016, a total of 37 years, and selected five 
cumulus parameterization schemes in CWRF model for comparative 
analysis: ECP (Liang et al., 2012; Qiao and Liang, 2015, 2016, 2017), 
Kain-Fritsch Eta (KFeta) (Kain and Fritsch, 1993; Kain, 2004), 
Betts–Miller–Janjic (BMJ) (Betts and Miller, 1986; Janjic, 1994), New 
Simplified Arakawa–Schubert (NSAS) (Han and Pan, 2011) and Tiedtke 
(Tiedtke, 1989; Nordeng, 1995) schemes. We then selected a better 
scheme suitable for simulating extreme precipitation in China and 
explored the underlying physical processes of the simulation biases. 
Table S2 summarizes the five cumulus parameterization schemes and 
gives the main differences in the closure assumptions and trigger 
functions. 

2.2. Data 

We used observational data as the reference for model evaluation. 
These observational data consisted of a set of daily gridded analysis 
precipitation and temperature at 2 m (T2m) values of CN05.1 dataset 
(Wu and Gao, 2013). The CN05.1 grid data is derived by interpolating 
observation data of 2416 stations in mainland China, which has a res
olution of 0.25◦ × 0.25◦ and has been commonly used in studying 
extreme precipitation over China (Wu et al., 2015; Wang et al., 2021). 
We also used the ERI reanalysis data, which assimilated the satellite- 
retrieved total column water vapor as a pseudo-observation of rainfall 
in 4D-Var. The ERI data is widely used because it provides one of the best 
proxies of global gridded observed precipitation spatiotemporal varia
tions (Dee et al., 2011; http://apps.ecmwf.int/datasets/). The precipi
tation of ERI data provides a reference for CWRF model downscaling 
skill enhancement due to its driving circulation. In addition, ERI data 
also implements a variant version of Tiedtke cumulus scheme (Bechtold 
et al., 2008), which is different from that used in CWRF model. 

The National Aeronautical and Space Administration (NASA) 
Modern-Era Retrospective Analysis for Research and Applications 
version 2 (MERRA-2) dataset is regarded as a good substitute for 
observational atmospheric circulation parameters (Rienecker et al., 
2011; Molod et al., 2015; Collow et al., 2016; Coy et al., 2016; Reichle 
et al., 2017; Sun and Liang, 2020b). Previous studies showed that the 
MERRA-2 reanalysis dataset can well describe the spatiotemporal dis
tribution of precipitation and evolution of the dust aerosols in East Asia 
(Chen et al., 2019; Zhang, 2019; Yao et al., 2020). Therefore, we used 
the MERRA-2 reanalysis (including consistent surface and atmospheric 
conditions) as the reference rather than the driving ERI data (for inde
pendence), nor the surface observations (which is disconnected from the 
circulation). This choice is made for insightful physical understanding, 
which requires a coupled climate system perspective. 

Precipitation and other surface variables of the MERRA-2 data at a 
horizontal resolution of (0.5◦ × 0.625◦) (https://disc.gsfc.nasa.gov/) 
were used in our study as a reference proxy for the observational cir
culation characteristics. Table 1 shows the observational data for the 
reference as the ground truth, which includes: PR and T2 m from the 
CN05.1 dataset; CWP from the National Oceanic and Atmospheric 
Administration (NOAA) Advanced Very High Resolution Radiometer 
(AVHRR) (https://wui.cmsaf.eu/); and SWD, RSW, OLR and CRE from 
the long-term NASA/World Climate Research Programme Global Energy 
and Water Exchanges Surface Radiation Budget (GEWEX-SRB) Inte
grated Product Release 4.0 (https://gewex-srb.larc.nasa.gov/). The 
observational and reanalysis data were all interpolated onto the same 
grid as the CWRF model of 30 km to facilitate comparison. The inter
polation method used here is the inverse distance weighting, which is 
commonly used for climate model evaluation (Li, 2011; Gan et al., 
2015). Although the results may differ due to using different interpo
lation methods, such differences are small (Sun and Liang, 2020a). 

2.3. Methods 

We used the 95th percentile daily precipitation (P95) recommended 
by the World Meteorological Organization (WMO) to calculate the 
extreme precipitation index and analyze the climate characteristics of 
extreme precipitation in different regions and seasons. The P95 is a good 
indicator that can display key information about the sample distribution 
without being distorted by abnormal values (Fan et al., 1994). To in
crease the reliability of P95, we also took into account the number of 
rainy days (NRD) and the daily rainfall intensity (DRI). 

We used Taylor diagrams (Taylor, 2001) and the equitable threat 
score (ETS) (Gandin and Murphy, 1992) to systematically evaluate the 
performance of CWRF model simulations. The ETS represents the ratio 
of the number of events that occur and are simulated correctly to the 
total number of events after removing random contingencies. The for
mulas are as follows: 

ETS =
(H − Hr)

(H + M + F − Hr)
(1)  

Hr =
(H + M) × (H + F)

H + M + F + D
(2)  

where H is the number of correct precipitation simulations; M is the 
number of observations, but not simulations; F is the number of simu
lations, but not observations; D is the situation that there is no precip
itation in the observations and simulations; and Hr is the number of 
possible correct simulations under random conditions. The range of the 
values of ETS is −1/3 to 1. A zero or negative value of ETS means no 
simulation skill. 

We adopted the concept of component-based analysis to obtain a 
physical understanding of extreme precipitation simulation biases (Sun 
and Liang, 2020b), that is, to take into consideration of the meteoro
logical processes by which the basic ingredients are brought together 
(Doswell et al., 1996). The basic elements required for extreme precip
itation events include sufficient supply of water vapor, ascending mo
tion, and precipitation efficiency. These elements may be satisfied in a 
weather system dominated by deep moist convection. We use variables 
of RCT, TPW, CAPE, CIN, and W700 to represent the above three basic 
ingredients. For a deeper understanding of convection-cloud-radiation 
processes, other relevant variables that may affect extreme precipita
tion are examined, such as MC, ET, CWP, LFC, LCL, SWD, SH, NSE, 
PBLH, FCL, FCH, T2M, Q2M, OLR, RSW, CRE, and V850. We first listed 
the 22 factors that may affect P95 using the component-based method, 
and then quantitatively analyzed their relationships using the method of 
all subsets regression (Wasserman and Sudjianto, 1994; Lumley and 
Miller, 2017) to obtain a concise and effective the multivariable 
regression models (Alexopoulos, 2010). The multivariable regression 
model takes the matrix form as: 

Table 1 
Observation data used in this study.  

Variables Available 
time 

Sources 

Precipitation (PR) 1980–2016 CN05.1(Wu and Gao, 2013) 
2 m air temperature (T2M) 1980–2016 
Cloud water path (liquid plus 

ice) (CWP) 
1987–2016 AVHRR(Advanced Very High- 

Resolution Radiometer,Karlsson 
et al., 2017) 

Shortwave downwelling at 
surface (SWD) 

1984–2010 GEWEX-SRB Integrated Product 
(Rel-4)(NASA/LARC/SD/ASDC, 
2021) Reflecting solar radiation at 

top of atmosphere all/clear 
(RSW) 

1984–2010 

Outgoing longwave radiation 
all/clear (OLR) 

1988–2009 

Cloud radiative effect (CRE) 1988–2009  
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Y = XB + Ξ (3)  

or in detail as: 
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(4)  

where Y is the n matrix of the predicted value of P95; X is the n × (1 + q) 
matrix of the variables that may affect P95 (including RCT, TPW, CAPE, 
CIN, W700, MC, ET, CWP, LFC, LCL, SWD, SH, NSE, PBLH, FCL, FCH, 
T2M, Q2M, OLR, RSW, CRE, and V850); B is the (q + 1) matrix of the 
regression coefficients; Ξ is the n matrix of the regression model residual 
error. Table S1 summarizes the abbreviations and definitions of these 22 
factors. The correlations were considered as statistically significant if 
they passed Student’s t-test at the 95% confidence level. 

3. Results 

3.1. Distribution of seasonal average and extreme precipitation in China 

Fig. 1 compares the spatial distribution of the seasonal average 
precipitation over a 37-year period (1980–2016) in observations, ERI 
reanalysis data and simulations (from the control experiment of CWRF 
model using ECP scheme). Winter (Fig. 1a, e, i) is a dry season in China 
when the total precipitation is <5 mm/day, mainly distributed in the 
Yangtze and Pearl River basins to the east of 110◦ E. The ERI data and 
CWRF model capture this feature well, but ERI data (CWRF model) 
systematically underestimates (overestimates) the precipitation in
tensity in this region. 

In spring (Fig. 1b, f, j), the observational data show two centers of 
precipitation south of the Yangtze River and north of the Pearl River. 
The ERI data and CWRF model capture these centers well, although 
CWRF model slightly overestimates the precipitation. The CWRF model 
also overestimates the precipitation near the Changbai Mountains in 
northeast China (see Fig.S1), where the observed precipitation is <2 
mm/day. 

In summer (Fig. 1c, g, k), the observational data show two rain bands 
in the Yangtze River basin and across South China, whereas the rain 
band structures in ERI data are smoother and wider than those in the 
observations. By contrast, CWRF model shows the fine structures of the 
two rain bands, but one rain band along the Yangtze River basin is weak, 
whereas the other rain band in the coastal areas of South China is strong. 
The CWRF model generally underestimates precipitation over the area 
between the two rain bands. The summer rainfall over the Greater 
Hinggan Mountains, the Lesser Hinggan Mountains and the Changbai 
Mountains (see Fig.S1) of the Northeast Plain is intense. The ERI data 
reproduces this feature well, whereas CWRF model slightly over
estimates the rainfall. Liang et al. (2019) reported that the intensity of 
precipitation over mountains is underestimated by the observational 
data because there are few observational stations in these areas, with 
most stations located at low altitudes. 

Autumn (Fig. 1d, h, l) is the transitional season between the summer 
and winter monsoons in China. The observational data show that pre
cipitation is distributed evenly and there is a weak center of precipita
tion in the Yangtze River basin. The CWRF model captures these 
characteristics better than ERI data, but underestimates the intensity of 
precipitation. The simulation of the seasonal average precipitation 
shows the added value of the more comprehensive physical configura
tion and higher resolution of CWRF model, which captures finer char
acteristics of the regional precipitation in China than ERI data. 

Fig. 2 shows the distributions of the seasonal average NRD during the 
time period 1980–2016. In all seasons, CWRF model captures a finer 

Fig. 1. (a, e, i) Winter, (b, f, j) spring, (c, g, k) summer and (d, h, l) autumn average precipitation (units: mm/day) of (a–d) observations, (e–h) ERI reanalysis dataset 
and (i–l) CWRF simulation with ECP scheme during the time period 1980–2016. 
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structure of the distribution of NRD in the observations than ERI data, 
especially in southwest China. In winter (Fig. 2a, e, i), both ERI data and 
CWRF model show the peak values of NRD between the Yangtze and 
Pearl River basins, but the center of the maximum value shifts to the 
southwest relative to the observations. In spring (Fig. 2b, f, j), CWRF 
model reproduces more of the characteristics of the spatial pattern of 
NRD than ERI data, but the location of the large-value center shifts to the 
west. In summer (Fig. 2c, g, k), ERI data generally overestimates NRD in 
the southern Yellow River basin. Sun and Liang (2020a) reported that 
ERI data compensated for weak precipitation intensities by simulating 
more rainy days to produce a more reasonable total precipitation, a 
typical “drizzling problem” in GCMs, but that CWRF model could 
effectively reduce this overestimation. By contrast, CWRF model over
estimates NRD in Guangdong and Guangxi and underestimates NRD on 
the Yunnan–Guizhou Plateau and the southern foothills of the Qing
hai–Tibetan Plateau. The CWRF model has a greater uncertainty in 
simulations of precipitation in southwest China because the resolution is 
too low to accurately describe the steep terrain in this region. In autumn 
(Fig. 2d, h, l), ERI data overestimate NRD in the southeastern Qing
hai–Tibetan Plateau, whereas CWRF model has a relatively high simu
lation skill. The CWRF model therefore has a stronger ability to simulate 
NRD, which improves ERI simulation of NRD in China. 

Fig. 3 shows the spatial distributions of the seasonal average extreme 
precipitation (P95) in observations, ERI data and CWRF simulation. The 
CWRF model outperforms ERI data in all seasons in North and South 
China and in the mid- to lower reaches of the Yangtze River. The ERI 
data clearly underestimate the peak value of P95, especially in the 
coastal areas of South China. The CWRF model produces more details of 
the spatial distribution of P95, so it could truly capture any changes. In 
winter (Fig. 3a, e, i), CWRF model accurately describes the magnitude 
and range of P95, whereas ERI data significantly underestimate the peak 
value of P95. In spring (Fig. 3b, f, j), the observations show that P95 

decreases from southeast to northwest. The ERI data underestimate P95 
in the coastal areas south of the Yangtze River, whereas CWRF model 
captures this characteristic. In summer (Fig. 3c, g, k), there is heavy 
precipitation (>30 mm/day) in a large part of East China, with 
maximum precipitation (>40 mm/day) in the Yangtze River basin. The 
ERI data systematically underestimate P95, especially in southeast 
China, and roughly capture the center of P95 along the Yangtze River, 
although the center shifts to the south. The CWRF model reproduces the 
central position and size of P95 rain bands along the Yangtze and Pearl 
River basins. The rain bands over the three mountain ranges (the Greater 
and Lesser Hinggan Mountains and the Changbai Mountains) in the 
Northeast Plain simulated by CWRF model are stronger than in obser
vations. Because the observation stations are sparsely distributed, the 
distributions of precipitation presented by CN05.1 observational data 
have little reference significance. 

The distributions of P95 in autumn (Fig. 3d, h, l) are similar to those 
in summer, but with a weaker intensity. The observations show that the 
maximum along the Yangtze River is close to 25 mm/day, which is also 
visible and more dispersed in CWRF simulation, but decreases in ERI 
data. Another characteristic is the heavy rain band in the coastal area of 
South China; CWRF model distinguishes the increase in precipitation 
caused by coastal sea breezes better than ERI data (Liang et al., 2019). 

3.2. Sensitivity of extreme precipitation simulation to cumulus 
parameterization 

Clearly, regional differences exist in the changes of extreme precip
itation across China due to monsoons and geographical environment. 
Referring to Liang et al. (2019) for the classification of distinct climate 
regimes, we selected three key regions: North, Central and South China, 
where extreme precipitation events are significant, especially in summer 
(Fig. 3a, b, c, d). Over these regions, observations are more reliable due 

Fig. 2. (a, e, i) Winter, (b, f, j) spring, (c, g, k) summer and (d, h, l) autumn average NRD (units: days) in (a–d) observations, (e–h) ERI reanalysis dataset and (i–l) 
CWRF simulation with ECP scheme during the time period 1980–2016. 
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to dense monitoring sites and small topographic influences; also, the 
CWRF well captures the observed extreme precipitation characteristics, 
both of which provide creditability for understanding regional pro
cesses. Hence the advantage of CWRF model may be that the results 
improve the physical parameterizations of the model at high resolution 
(Sun and Liang, 2020a). This downscaling skill provides a unique op
portunity to explore the sensitivity of P95 simulation to the various 
cumulus parameterization schemes in CWRF model. This paper mainly 
discusses the regions of North, Central and South China and compares 
P95 simulation effects of five of the cumulus parameterization schemes 
in CWRF model in detail. 

Fig. 4 compares the spatial distributions of the seasonal average P95 
biases of ERI data and CWRF simulations with the different cumulus 
parameterization schemes. In winter (Fig. 4a, e, i, m, q, u), the simula
tion biases of the cumulus parameterization schemes are small, apart 
from BMJ scheme, which substantially underestimates P95 bias in 
Central China to the east of 110◦ E. In spring (Fig. 4b, f, j, n, r, v), the 
underestimated area of BMJ scheme expands further and KFeta and 
Tiedtke schemes overestimate P95 biases in Central China. The ERI data 
and NSAS schemes are unable to simulate the maximum rain band of 
P95 along the coastline of South China. By contrast, in winter and 
spring, P95 intensity simulated by CWRF model with ECP scheme is the 
closest to observations. 

In summer (Fig. 4c, g, k, o, s, w), Tiedtke scheme overestimates P95 
in North China by >20 mm/day and KFeta scheme overestimates P95 in 
Central China to the east of 110◦ E by >20 mm/day. However, Tiedtke 
scheme improves P95 overestimation of KFeta scheme in South China. 
The ERI data and BMJ scheme substantially underestimate P95 by 5–10 
mm/day in the coastal areas of North China and the mid- to lower 
reaches of the Yangtze and Pearl River basins. By contrast, the bias 
distributions of P95 simulated by ECP and NSAS schemes are similar. In 
Central and South China, the negative bias range (−15 to −5 mm/day) 

of NSAS scheme is smaller than that of ECP scheme. In autumn (Fig. 4d, 
h, l, p, t, x), the distributions of bias are similar to those in summer, but 
the range and magnitude of the biases are smaller than those in summer. 

These results show that ECP scheme generally reproduces the dis
tribution of observed P95. The ECP scheme is developed from the Grell-3 
ensemble cumulus parameterization (G3; Grell and Dévényi, 2002) with 
many improvements including the selection and weighting of closure 
assumptions that are specific of land or oceans. Using the assumptions of 
the land moisture convergence closure and oceanic large-scale cloud 
base vertical velocity (Qiao and Liang, 2015, 2016, 2017), it can deal 
with comparisons between ocean and land more comprehensively and 
generates sufficient convective activity, which helps to capture the 
occurrence of extreme precipitation events and greatly improves the 
deficiencies in ERI simulations. 

Fig. 5 compares the spatial distributions of the seasonal average 
biases of NRD in ERI data and CWRF simulations with different cumulus 
parameterization schemes. In winter and spring, all the schemes over
estimate NRD by 10–25 days in North China to the east of 110◦ E. In 
addition, the negative NRD bias of Tiedtke scheme is the largest of all 
schemes in North China and the coastal areas of South China in spring. 
The BMJ scheme overestimates NRD by 5–10 days in North China. In 
summer (Fig. 5c, g, k, o, s, w), Tiedtke scheme substantially un
derestimates NRD in North, Central and South China, and, in particular, 
underestimates NRD by >35 days in the coastal areas of Central and 
South China. The BMJ scheme substantially underestimates NRD in the 
Yangtze River basin, which is consistent with the result that the simu
lated P95 has a large negative bias. The performance of KFeta and NSAS 
schemes are similar, especially in coastal areas, with an underestimation 
of NRD by 5–10 days. The ECP scheme has a small negative bias in 
Central China and a positive bias of 5–10 days in North and South China. 
Interestingly, only ERI data significantly overestimate NRD by 5–15 
days in North, Central and South China. In autumn (Fig. 5d, h, l, p, t, x), 

Fig. 3. (a, e, i) Winter, (b, f, j) spring, (c, g, k) summer and (d, h, l) autumn average P95 (units: mm/day) of (a–d) observations, (e–h) ERI reanalysis data and (i–l) 
CWRF simulation with ECP scheme during the time period 1980–2016. Shading represents P95; yellow curves represent the geographical location of North China 
(NC), Central China (CC) and South China (SC). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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ERI data and the CWRF simulations of all schemes perform good in these 
three regions, with only small biases. 

The daily precipitation intensity (DRI) biases of ERI reanalysis data 
and CWRF simulations with different cumulus parameterization 
schemes (see Fig. S2) are highly correlated with P95 biases (Fig. 4) in all 

seasons. We calculated the spatial pattern correlation coefficient (PCC) 
between DRI biases and P95 biases in China (Table 2). The correlations 
in all seasons apart from winter are all >0.92 and the annual average 
correlation coefficients of all schemes are >0.93. The high correlation 
between DRI biases and P95 biases indicate that the underestimations of 

Fig. 4. (a, e, i, m, q, u) Winter, (b, f, j, n, r, v) spring, (c, g, k, o, s, w) summer and (d, h, i, p, t, x) autumn average P95 daily precipitation biases (units: mm/day) of 
(a–d) the ERI reanalysis data and the CWRF simulations using the (e–h) ECP, (i–l) KFeta, (m–p) BMJ, (q–t) Tiedtke and (u–x) NSAS cumulus parameterization 
schemes during the time period 1980–2016. 
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extreme precipitation occur as a result of the systematic decrease in the 
precipitation intensity, whereas the overestimations of extreme precip
itation occur as a result of the systematic increase in precipitation in
tensity. This explains the important relationship between extreme 
precipitation and precipitation intensity, especially the simulation 

results of KFeta and BMJ schemes. 
Based on the simulated P95 biases, we divided the cumulus schemes 

into three broad types. The first type includes KFeta and Tiedtke 
schemes, which substantially overestimate P95 in the three regions. The 
second type produces a significant underestimation in three regions (e. 

Fig. 5. (a, e, i, m, q, u) Winter, (b, f, j, n, r, v) spring, (c, g, k, o, s, w) summer and (d, h, i, p, t, x) autumn average NRD (units: days) biases of (a–d) the ERI reanalysis 
data and the CWRF simulations using the (e–h) ECP, (i–l) KFeta, (m–p) BMJ, (q–t) Tiedtke and (u–x) NSAS cumulus parameterization schemes during the time 
period 1980–2016. 
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g., BMJ scheme). The third type of cumulus parameterization scheme 
overestimates P95 in North China and underestimates P95 in Central 
and South China (e.g., ECP and NSAS schemes). 

The PCC and standard deviation of extreme precipitation (P95) in the 
ERI reanalysis data and CWRF simulation relative to observations are 
calculated for North, Central and South China using Taylor (2001) di
agrams (Fig. 6). The azimuth represents the PCC between the observa
tions and simulations and the polar radius represents the standard 
deviation of the observations and simulations. In North China (Fig. 6a, d, 
g, j), the correlation coefficient between the ERI reanalysis data and the 
observational P95 in summer is lowest (0.42) and the standard deviation 
is substantially underestimated (0.35). The correlations in other seasons 
(0.92 in winter, 0.8 in spring and 0.7 in autumn) are higher than in 
summer, but the standard deviations are still significantly under
estimated (0.6–0.8). In winter, the PCCs of P95 between the CWRF 
simulations and the observations are very close (0.85–0.92) and the 
standard deviations are underestimated (0.60–0.95); the standard de
viation of Tiedtke scheme is the closest to 1.0. In spring, the PCCs 
(0.63–0.78) between the simulated and observed P95 are lower than 
that (0.8) between ERI data and the observations; the correlation of 
NSAS scheme is the highest (0.78) and that of BMJ scheme is the lowest 
(0.6). In particular, ECP scheme shows the smallest fluctuation in P95 
simulation bias (0.84). In summer, the CWRF simulation performance 
for P95 is higher than that of ERI data. The simulation effect of KFeta 
scheme is the best, with the highest PCC (0.82), followed by ECP scheme 
(0.73). The bias fluctuation is smallest for the simulation (1.02–1.04). 
KFeta scheme performs the best in autumn. However, Tiedtke scheme 
substantially overestimates the standard deviations in summer (1.4) and 
autumn (1.5). 

In Central China (Fig. 6b, e, h, k), the PCCs between the simulation of 
P95 using ECP, KFeta and Tiedtke schemes and the observations in 
winter are as high as 0.95 (0.95, 0.95 and 0.96, respectively), although 
the smallest simulation bias fluctuation is for ECP scheme (1.04). The 
PCC of P95 between ECP scheme and observations reaches a maximum 
in spring (0.9), summer (0.65) and autumn (0.68), but overestimates the 
standard deviations in summer (1.5) and autumn (1.3). In spring, KFeta 
and Tiedtke schemes better simulate the spatial pattern of P95 (PCC 
0.89), but produce large standard deviations of 1.4 and 1.65, respec
tively. In summer, KFeta and Tiedtke schemes also substantially over
estimate P95 biases in Central China (Fig. 4) and they have abnormally 
high standard deviations, even beyond the scope of the Taylor diagram. 
In autumn, the simulation skill of KFeta scheme is similar to that of ECP 
scheme; they almost coincide in the Taylor diagram. By contrast, BMJ 
scheme has the poorest skill in all seasons in Central China, with the 
lowest correlation, especially in summer. In Central China, ECP scheme 
has the best performance in simulating the spatial pattern of P95 in 
winter and spring. 

In South China (Fig. 6c, f, i, l), the simulated P95 distributions of 
CWRF model with various cumulus schemes are better than ERI data in 
all seasons. In winter, KFeta scheme has the highest PCC (0.85) and the 
standard deviation is the closest to 1.0. In spring, ECP scheme gives the 
best simulation of P95. Although the standard deviation (1.4) is rela
tively large, the PCC is the highest (0.82). The PCCs of the simulations 
with KFeta, BMJ and NSAS schemes are <0.7 (ranging from 0.2 to 0.6). 
In summer, the simulations of KFeta and Tiedtke schemes are beyond the 

range of the diagram as outliers and the standard deviation (1.8) of P95 
simulated by ECP scheme is large, similar to the situation in Central 
China. BMJ scheme has the highest PCC (0.68) and the smallest standard 
deviation (1.2) in summer, but it substantially underestimates the 
magnitude of P95 in South China (Fig. 4). It is hard to convince that the 
result of the univariate simulation P95 of BMJ scheme is better than 
other schemes, which is probably the appearance of some wrong syn
thesis of BMJ scheme. BMJ scheme has a better simulation skill than the 
other schemes in summer, but requires a lot of simulations and com
parisons with multiple variables in addition to P95. In autumn, the PCCs 
between the simulated P95 of ECP and KFeta schemes and the obser
vations are 0.77 and 0.70, respectively, but the standard deviation of 
ECP scheme (1.4) is higher than that of KFeta (1.1) scheme. NSAS 
scheme gives a poor simulation of P95 in summer and autumn. 

We used ETS to examine the simulation performance for P95. Based 
on the range of observed P95 in each season, ETS is calculated using the 
number of times that the simulation value hits or misses the range of 
observed values. Fig. 7 compares ETS at a bin interval of 1.0 mm/day for 
the 37-year average P95 distribution in each season between the ERI 
reanalysis data and the CWRF simulations with various cumulus 
schemes in North, Central and South China. In general, the ETS values of 
both ERI data and CWRF model in the cold seasons (winter and spring) 
are higher than those in the warm seasons (summer and autumn), which 
indicates that it is more complex and difficult to simulate extreme pre
cipitation in the warm seasons. 

In North China (Fig. 7a, d, g, j), ERI data and CWRF model only 
capture the ETS of light rain ≥1.5 mm/day in winter, which may be 
limited by the description of the observational reference data. The ETS 
of light rain (1.5–10 mm/day) is lowest in ECP scheme and the 
maximum score is only 0.5. The maximum ETS of ERI data and the other 
schemes are >0.7 and the maximum ETS of ERI data for a daily pre
cipitation of 9 mm/day reached 0.9. The ETS of BMJ scheme is low in 
spring, but the ETS of ERI data and other schemes for moderate rain 
(10–20 mm/day) in spring is 0.5. In summer, the ETS of ERI data is 
better than those of CWRF simulations in the range 12–25 mm/day. By 
contrast, when the daily precipitation is >25 mm/day, the ETS of ERI 
data is almost zero. ECP scheme significantly improves P95 simulation, 
with an ETS >0.6, significantly higher than the other schemes. The ETS 
of ECP is the highest (about 0.4) in the daily precipitation range 7–13 
mm/day in autumn, but the score is lower than that for ERI data in the 
range 13–20 mm/day. Apart from ECP scheme, ETS is usually low when 
CWRF model uses other cumulus parameterization schemes. 

In Central China (Fig. 7b, e, h, k), the values of ETS are highest in 
winter (up to 0.8) and lowest in summer (up to 0.2), which highlights 
the difficulty of simulating extreme events in summer. In winter, the ETS 
(>0.7) of all the schemes, apart from BMJ scheme, for the whole P95 
range is higher than those of ERI data. In particular, the ability of the 
low-resolution ERI data to capture low-level light rains (2.0–10 mm/ 
day) is lower than that of the high-resolution CWRF model. The ETS of 
ECP scheme is the highest (about 0.8) in the daily precipitation range 
5–17 mm/day. 

ECP scheme shows high skills in simulating daily precipitation >25 
mm/day in spring, summer and autumn, with ETS values of 0.7, 0.2 and 
0.3, respectively. KFeta and Tiedtke schemes substantially overestimate 
P95 in Central China (Fig. 4), but it can be seen from Fig. 7 that these 
two schemes improve the simulation of light and moderate rain <25 
mm/day from spring to autumn. After replacing ECP scheme with KFeta 
and Tiedtke schemes, CWRF simulation systematically improves ETS in 
spring, summer and autumn, respectively, up to 0.6, 0.1 and 0.5. In 
summer and autumn, the CWRF cumulus parameterization schemes 
mostly have high simulation scores with precipitation >25 mm/day, but 
ERI data have completely missed this and have almost no score. BMJ 
scheme substantially underestimates P95 in Central China (Fig. 4), so 
ETS in all seasons is the lowest and there is almost no simulation skill in 
summer (ETS close to 0). 

In South China (Fig. 7c, f, i, l), over the entire P95 range, the 

Table 2 
Spatial pattern correlation coefficients between DRI biases and P95 biases over 
China during the time period 1980–2016.  

Season Scheme 

ERI ECP KFeta BMJ Tiedtke NSAS 

DJF 0.89 0.89 0.90 0.93 0.89 0.90 
MAM 0.95 0.95 0.97 0.97 0.96 0.95 
JJA 0.95 0.93 0.97 0.95 0.92 0.95 
SON 0.92 0.95 0.96 0.95 0.94 0.96  
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Fig. 6. Taylor diagram of the pattern statistics comparing the overall performance among ERI data and all CWRF cumulus parameterization schemes in simulating 
the seasonally averaged geographical distribution of P95 during the time period 1980–2016 over (a, d, g, j) North China, (b, e, h, k) Central China and (c, f, i, l) South 
China in (a, b, c) winter, (d, e, f) spring, (g, h, i) summer and (j, k, l) autumn. The azimuth and radius represent the PCC and the standard deviation with the 
observations, respectively. REF (OBS) marks the perfect score with a unit correlation and deviation. Poorly performing outliers are off the chart. 
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Fig. 7. The ETS of the 1980–2016 seasonally averaged P95 for ERI data and CWRF model with various cumulus parameterization schemes over (a, d, g, j) North 
China, (b, e, h, k) Central China and (v, f, i, l) South China in (a, b, c) winter, (d, e, f) spring, (g, h, i) summer and (j, k, l) autumn. The x-axis represents the P95 
threshold at a bin interval of 1 mm/day; the y-axis represents ETS values. 

S. Zhang et al.                                                                                                                                                                                                                                   



Atmospheric Research 285 (2023) 106636

12

simulation skills of CWRF model with all cumulus schemes are signifi
cantly better than those of ERI data. The ETS of ERI data is almost zero in 
all seasons apart from winter. In the cold seasons (winter and spring), 
Tiedtke and KFeta schemes score higher (>0.4) over the entire P95 
range and ECP scheme falls behind these two schemes. However, 
Tiedtke and KFeta schemes perform poorly in the warm seasons and 
their ETS is ≤0.2. In summer, the ETS of ECP scheme reaches 0.4 (40–50 
mm/day), which is higher than other schemes and ERI data. In autumn, 
ECP scheme has a high score for daily precipitation of 25–35 mm/day, 
but this decreases above 35 mm/day. The simulation skill of BMJ 
scheme only has a high ETS (maximum 0.4) within the range 25–45 
mm/day in autumn. NSAS scheme has the lowest ETS in all seasons in 
South China. It is >0.1 in winter, but the simulation skills in other 

seasons are very poor (<0.1). 
Five cumulus parameterization schemes produce large CWRF dis

crepancies in simulating extreme precipitation characteristics over three 
regions. In general, the ECP scheme simulates more realistic extreme 
precipitation characteristics over all three regions than the other 
schemes. The ECP combines five major closures with various weights 
separating land and ocean to more reasonably determine the cloud base 
mass flux (Qiao and Liang, 2015, 2016, 2017). The KFeta and Tiedtke 
schemes both generate excessive extreme precipitation as they adopt the 
closure that assumes the total convective available potential energy 
(CAPE) is completely exhausted for rainout. The BMJ and NSAS schemes 
are based on the quasi-equilibrium closure assumption. While the BMJ 
scheme substantially underestimates extreme precipitation, the NSAS 

Fig. 8. Time series of seasonally averaged P95 over (a, d, g, j) North China, (b, e, h, k) Central China and (c, f, i, l) South China in observations (OBS), reanalysis data 
(ERI and MERRA-2) and simulation (CWRF model with ECP, KFeta, BMJ, Tiedtke, and NSAS cumulus parameterization schemes) for (a–c) winter, (d–f) spring, (g–i) 
summer, and (j–l) autumn for the time period 1980–2016. 
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scheme performs better because it incorporates improved trigger func
tions to produce more convection in large-scale convergence regions and 
less convection in subsidence regions (Han and Pan, 2011). 

3.3. Dependence of P95 simulation on cumulus parameterization 

Our analyses show that CWRF model significantly improves the 
simulation of the spatial distributions of P95 in China compared with 
ERI data. We explored the underlying physical processes of the cumulus 
parameterization scheme for CWRF model to simulate P95 by 
comparing the long-term integration of CWRF model with ERI data. 
Referring to the research methods of Sun and Liang (2020b), we used 
MERRA-2 reanalysis dataset as a reference, which may help to improve 
our understanding of the physical processes of the simulated P95 
departures. 

Fig. 8 compares the interannual variation of P95 in North, Central 
and South China in all four seasons in the time period 1980–2016 for 
observations, MERRA-2, ERI and CWRF simulations of varying cumulus 
schemes. Fig. 9 shows their temporal correlation coefficient (TCC) and 
root-mean-square error (RMSE) compared with the observational data. 
In North China (Fig. 8a, d, g, j and Fig. 9a), ECP and NSAS schemes 
depict the interannual variation of P95 with relatively high TCCs (0.74 
and 0.72 in winter; 0.78 and 0.82 in spring) and small RMSEs (0.82 and 
0.95 in winter; 2.13 and 1.77 in spring). The ERI data represent P95 
most realistically, with the highest TCCs (0.94 and 0.96) and the 
smallest RMSEs (0.75 and 1.20) in winter and spring, respectively. In 
summer and autumn, the interannual variation of P95 in MERRA-2 
dataset has the highest TCCs (0.93 and 0.90, respectively), followed 
by ERI data (0.82 and 0.80, respectively), whereas the RMSEs (6.37 and 
4.33, respectively) of MERRA-2 dataset are slightly higher than those of 
ERI data (5.14 and 2.86, respectively) as a result of the overestimation of 
P95 magnitude in MERRA-2 dataset. The TCCs of the CWRF-simulated 
P95 are not as good as those of ERI data in summer and autumn. 
KFeta scheme in summer and BMJ scheme in autumn have the highest 
TCCs (0.82 and 0.58, respectively) for the simulation of the interannual 
variation of P95, but the RMSEs (8.82 and 5.79, respectively) are large 
as a result of the serious overestimation of the interannual variation of 
P95 by KFeta scheme and its underestimation by BMJ scheme. In sum
mary, the various cumulus parameterization schemes of CWRF model 
cannot simulate the interannual variation of P95 in North China well 
and require further improvement. 

In Central China (Fig. 8b, e, h, k and Fig. 9b), except in autumn, the 
TCCs of ERI data are higher than those of MERRA-2 dataset and CWRF 
model in winter (0.96), spring (0.80) and summer (0.81), whereas 
MERRA-2 dataset has the highest TCC (0.76) in autumn. In winter and 
spring, ECP and NSAS schemes have good skills in simulating the 
interannual variations of P95 and considerable TCCs (0.79 and 0.81, 
respectively, in winter; 0.65 and 0.64, respectively, in spring) and 
RMSEs (1.37 and 1.63, respectively, in winter; 2.58 and 2.42, 

respectively, in spring). By contrast, ERI data produce a large RMSE 
(10.03) in summer, which is related to its systematic underestimation. 
Although KFeta and Tiedtke schemes better reproduce the interannual 
variation of the observed P95, there are serious overestimations, 
resulting in large RMSEs (16.20 and 15.46, respectively). The interan
nual variation of P95 simulated by ECP and NSAS schemes in autumn 
are similar, but ECP scheme underestimates extreme precipitation more 
seriously than NSAS scheme, resulting in relatively large RMSEs (4.96 
and 3.22, respectively). BMJ scheme poorly simulates the interannual 
variation of P95 in all seasons in Central China and produces a large 
RMSE as a result of its systematic underestimation, especially in summer 
and autumn, with a TCC of roughly zero. 

In South China (Fig. 8c, f, i, l and Fig. 9c), Tiedtke scheme gives the 
best simulation of the interannual variation of P95 in winter, with the 
highest TCC (0.91) and the smallest RMSE (2.52). In spring, the inter
annual variations of P95 simulated by ECP and KFeta schemes are 
equivalent (TCCs of 0.67 and 0.65, respectively) and are better than the 
other cumulus schemes. However, as a result of the influence of sys
tematic underestimation, ECP scheme produces a larger RMSE (6.19) 
than KFeta scheme (5.05). In summer, MERRA-2 dataset gives the best 
reproduction of the interannual variation of the observed P95, with the 
highest TCC (0.7) and the lowest RMSE (3.72). The various cumulus 
schemes of CWRF model find it difficult to capture the interannual 
variation of P95 in summer, with serious overestimations or un
derestimations. In autumn, MERRA-2 dataset is more skillful than ERI 
data in simulating the interannual variation of P95 because ERI data 
gives a large underestimation and a false upward trend. Because the 
influence of assimilation on atmospheric feedback is limited by the 
measurements of precipitation, MERRA-2 dataset is more reliable than 
ERI data. 

In general, the performance of all the cumulus parameterization 
schemes in CWRF model vary considerably over North, Central and 
South China. ECP scheme has the highest TCCs and lowest RMSEs in 
most seasons and regions, although NSAS scheme has slightly higher 
TCCs and smaller RMSEs in spring and summer in North China and in 
summer and autumn in Central China. BMJ scheme has the poorest 
performance, with a large underestimation. The simulation skills of 
KFeta and Tiedtke schemes are high in winter and spring in all three 
regions, but are low in summer and autumn. Overall, ECP scheme ranks 
as the best, NSAS scheme the second, and KFeta and Tiedtke schemes are 
third and fourth, respectively. BMJ scheme performs the poorest in 
reproducing the interannual variation of the observed P95. These results 
also confirm that the cumulus parameterization schemes play an 
important part in not only the spatial distribution of extreme precipi
tation, but also the regional mean characteristics of the interannual 
variation. 

Fig. 9. TCC (scaled upward on the left) and root-mean-square error (RMSE; scaled downward on the right) of seasonally averaged P95 over (a) North China, (b) 
Central China and (c) South China in reanalysis data (ERI and MERRA-2) and simulation (CWRF model with ECP, KFeta, BMJ, Tiedtke, and NSAS cumulus 
parameterization schemes) for the time period 1980–2016. 
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3.4. Analysis of simulation biases in the extreme precipitation 

Although it is not easy for climate models to reproduce the inter
annual variation of the observed P95, it is both crucial and challenging 
to trace the underlying physical processes for the success or failure of 
models to improve model skills in the future. We selected ECP scheme, 
which is good at simulating the interannual variation of P95 in China, 
and then analyzed the relationship between P95 biases and the key 
components of PL, PC, SWD, RSW, OLR, CRE, CWP and T2m. 

We found the date of P95 event in every season of a particular year in 
each grid square and then calculated the biases of the simulated pre
cipitation and their relevant variables from the corresponding obser
vations on this date in each grid square. We first averaged these biases 
over North, Central and South China to obtain the time series of the 
interannual variations in every season and then calculated the TCCs 
between P95 biases and the relevant variable biases. The number of 
CWP, SWD, RSW, OLR and CRE observed samples are 30, 27, 27, 22 and 
22 years, respectively, and the sample number of the remaining 

Fig. 10. Correlations of composite (CWRF using ECP scheme) P95 biases (blue) and departures (red) with fields that have observational data (DRI, NRD, SWD, RSW, 
OLR, CRE, CWP, and T2m) and P95 departures correlations with the rainfall components (PL and PC) in (a, d, g, j) North China, (b, e, h, k) Central China and (c, f, i, l) 
South China in (a–c) winter, (d–f) spring, (g–i) summer, and (j–l) autumn. If the significance reaches 95% confidence level, the bar is labeled with a number equal to 
the correlation coefficient times 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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variables are all 37 years. In addition, the correlation relationships be
tween P95 biases and the seasonal average values of DRI and NRD biases 
are also discussed. 

Fig. 10 compares P95 biases and departures correlations with DRI, 
NRD, PL, PC, SWD, RSW, OLR, CRE, CWP and T2 m in four seasons. 
Because the date of P95 event in MERRA-2 dataset is different from that 
in observations, Fig. 10 compares the correlations based on the biases 
between the simulations and observations (blue column) and the de
partures between the simulations and MERRA-2 dataset (red column). 
The numbers marked on the figure indicate that the significance of the 
TCC passes the 95% confidence level. 

In North China (Fig. 10a, d, g, j), there is a high correlation between 
P95 and DRI biases—that is, the TCC is the highest in summer (0.96), 
followed by autumn (0.93), spring (0.90) and winter (0.58). The TCCs 
between P95 and DRI departures of the simulation and MERRA-2 dataset 
also have a similar correlation (0.96 in summer, 0.93 in autumn, 0.93 in 
spring and 0.59 in winter). If the seasonal average precipitation intensity 
simulated by a model is strong (weak), then the P95 extreme precipi
tation produced by the model is also strong (weak). The TCC between 
P95 and NRD biases from the simulations and observations is only sig
nificant in winter (0.57). However, the TCCs between P95 and NRD 
departures from the simulation and MERRA-2 dataset significantly in
crease from spring to winter (0.30, 0.32, 0.46 and 0.64, respectively). 
Therefore, when a greater NRD are simulated, the model tends to 
overestimate P95, which is particularly obvious in North China. The 
TCCs between P95 and the PL departures is high and significant from 
spring to winter (0.60, 0.45, 0.48 and 0.67, respectively). By contrast, 
the TCCs between P95 and PC departures are not significant in all sea
sons. This means that P95 departures (from CWRF simulation and 
MERRA-2 dataset) in North China are less affected by the convective 
precipitation departures and more affected by the large-scale precipi
tation departures. 

The TCC between P95 and the SWD biases is only significant and 
negative (−0.44) in summer. The TCC between P95 and the SWD de
partures from the simulation and MERRA-2 dataset also captures this 
feature (−0.43). The positive TCC between P95 and RSW biases is sig
nificant in summer (0.38), whereas the positive correlations of the de
partures are significant in both winter and summer (0.36 and 0.46, 
respectively). The P95 and OLR biases are significantly negatively 
correlated in winter, spring and autumn (−0.34, −0.36 and − 0.82, 
respectively). The P95 and OLR departures from the simulation and 
MERRA-2 dataset are only significantly negatively correlated in winter, 
summer and autumn (−0.38, −0.36 and − 0.47, respectively). The 
positive TCC between P95 and CRE biases is only significant in autumn 
(0.64) and the TCC (0.38) between P95 and CRE departures is weaker 
than the result of the simulations and observations. The correlation 
between P95 and CWP biases is only strong in summer (0.60). For the 
P95 and CWP departures, there is also a significantly positive correlation 
in summer (0.55). The negative TCC between P95 and T2 m biases is 
only significant in autumn (−0.42), whereas the correlations between 
P95 and T2 m departures are significant in winter, summer and autumn 
(−0.46, −0.34 and − 0.49, respectively). The TCCs between CWRF 
simulation and MERRA-2 dataset in North China reproduce well the sign 
and magnitude of the TCCs between the simulations and observations. 

In Central China (Fig. 10b, e, h, k), there are high TCCs between P95 
and DRI biases from spring to winter (0.88, 0.94, 0.87 and 0.88, 
respectively) and the correlations between P95 and DRI departures also 
show the same results (0.92, 0.96, 0.91 and 0.90, respectively). The 
TCCs between P95 and NRD biases are not significant in all seasons; they 
are almost zero in autumn and winter. However, the positive TCCs be
tween P95 and NRD departures are significant in winter and spring (0.59 
and 0.42, respectively). In addition, the TCCs between P95 and PL de
partures are high and significant from spring to winter (0.61, 0.59, 0.42 
and 0.64, respectively). By contrast, the TCC between P95 and PC de
partures is not significant in any season. The negative TCCs between P95 
and OLR biases are only significant in winter and spring (−0.45 and −

0.42, respectively), whereas different results are obtained for CWRF 
simulation and MERRA-2 reanalysis dataset. The TCCs between P95 and 
CWP biases are significant in spring and summer (0.54 and 0.60, 
respectively) and the correlation between P95 and CWP departures is 
only significant in summer (0.59). Furthermore, the TCCs across P95 
with SWD, RSW, CRE and T2 m biases and departures are not significant 
in any season (except for −0.51 in autumn). Some of the biases and 
departures correlations even show the opposite signs in winter, spring 
and autumn. Considering the influence of satellite product estimations, 
the small number of available samples of observation data, the wide 
regional areas and complex climate systems, there are large un
certainties, which result in large differences between the correlations of 
biases and departures in Central China. 

In South China (Fig. 10c, f, i, l), the correlations between P95 and 
DRI biases are still high from spring to winter (0.91, 0.93, 0.89 and 0.82, 
respectively). The correlations of the departures are also strong (0.98, 
0.97, 0.91 and 0.92, respectively). The TCCs between P95 and PL de
partures in all seasons (0.70, 0.63, 0.54 and 0.40, respectively) are 
higher than those in North and Central China. The P95 and PC de
partures are significantly positively correlated in spring, summer and 
autumn (0.52, 0.57 and 0.56, respectively). There are negative TCCs 
between P95 and SWD biases in spring and summer (−0.40 and − 0.50, 
respectively), whereas the corresponding negative TCCs between and 
SWD departures strengthen significantly in summer and autumn (−0.55 
and − 0.55, respectively). Positive TCCs between P95 and RSW biases 
occur in spring and summer (0.48 and 0.43, respectively), whereas the 
correlations between their departures are in summer and autumn (0.51 
and 0.45, respectively). The correlations between the P95 and the OLR 
biases are negative in spring, summer and winter (−0.34, −0.51 and −
0.38, respectively), whereas the corresponding correlations of their 
departures are only significant in summer and autumn (−0.60 and −

0.41, respectively). The TCCs between the departures capture the TCCs 
between the biases from the simulations and observations in summer 
well. The results are fairly consistent, but are slightly different in spring 
and autumn. The TCCs between P95 and T2 m biases are only negative 
in spring and summer (−0.39 and − 0.46, respectively), but the corre
lations of the departures from the simulation and MERRA-2 dataset are 
not significant in any season. 

We have shown that the correlations between the departures from 
the simulation and MERRA-2 dataset can reproduce the correlations 
between the biases of the key variables (DRI, NRD, PL, PC, SWD, RSW, 
OLR, CRE, CWP and T2m), especially in summer. The P95 departures are 
less affected by the convective precipitation departures, but are more 
affected by the large-scale precipitation (PL) departures in different re
gions. The relative contribution of convective precipitation (PC) to 
extreme precipitation may not be important, which also shows that there 
are other physical processes that have an important role in extreme 
precipitation events. 

To understand the physical processes that affect P95 biases more 
comprehensively, we first established the consistency of P95 biases and 
departure correlations with the fields they resembled most closely. We 
then analyzed the correlations between the departures based on all the 
fields (SH, NSE, ET, MC, TPW, Q2m, W700, V850, FCL, FCH, RCT, CAPE, 
CIN, PBLH, LCL and LFC) from the simulation and MERRA-2 dataset. As 
a result of the lack of daily observational data for the atmospheric cir
culation, we use the 37-year samples from MERRA-2 dataset for this 
discussion. 

Fig. 11 compares the seasonal correlation coefficients between P95 
and all relevant field departures in North China. In winter (Fig. 11a, 
upper left triangle), the P95 departures have significant positive corre
lations with the CWP, RSW and W700 departures of 0.42, 0.32 and 0.42, 
respectively, and are negatively correlated with the OLR (−0.37) and 
TPW (−0.34) departures. In spring (Fig. 11a, lower right triangle), there 
are only significant positive correlations across P95 with ET (0.39) and 
W700 (0.37) departures. In summer (Fig. 11b, upper left triangle), there 
are positive correlations between P95 and MC (0.66), W700 (0.48), RSW 
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(0.42), CRE (0.32), CWP (0.40) and FCL (0.57) departures and negative 
correlations between P95 and SWD (−0.41), SH (−0.45), OLR (−0.32), 
RCT (−0.43), T2 m (−0.34) and CAPE (−0.32) departures. In autumn 
(Fig. 11b, lower right triangle), the P95 and MC (0.52), W700 (0.41), 
RSW (0.38) and CRE (0.41) departures are significantly positive corre
lated, whereas P95 and SWD (−0.36), SH (−0.38), RCT (−0.43), T2 m 
(−0.49), CIN (−0.42), PBLH (−0.58) and LFC (−0.45) departures are 

significantly negative correlated. W700 is the common significant pos
itive correlation factor for P95 departures in all seasons and RSW is the 
common significant correlation factor in summer, autumn and winter. 

In Central China, positive correlations are found between P95 and ET 
(0.34), MC (0.42), W700 (0.59), CWP (0.36) and FCL (0.49) departures 
in winter (Fig. 12a, upper triangle left). The P95 departures are signif
icantly negative correlated with the SH (−0.47) and TPW (−0.41) 

Fig. 11. Correlation coefficients between P95 and relevant variable departures (CWRF using ECP scheme) in North China in (a) winter (upper-left triangle) and 
spring (lower-right triangle) and in (b) summer (upper-left triangle) and autumn (lower-right triangle). The abscissa, ordinate and diagonal indicate P95 and each 
relevant variable. The correlation coefficient is multiplied by 100 and shown as shading. If the significance reaches 95% confidence level, the integer is marked on the 
corresponding box. 

Fig. 12. Same as Fig. 11, but for Central China.  
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departures. In spring (Fig. 12a, lower triangle right), the P95 departures 
have significant positive correlations with the ET (0.38), FCL (0.34) and 
CIN (0.36) departures and negative correlations with the SH (−0.43), 
NSE (−0.45), TPW (−0.36) and CRE (−0.37) departures. In summer 
(Fig. 12b, upper triangle left), the P95 departures are significantly 
positively correlated with MC (0.59), W700 (0.57), FCL (0.41) and CIN 
(0.36) departures and significantly negatively correlated with SWD 
(−0.41), NSE (−0.50) and RCT (−0.52) departures. In autumn (Fig. 12b, 
lower triangle right), positive correlations are found between P95 and 
MC (0.36) and CIN (0.36) departures and negative correlations between 
P95 and SH (−0.49) and V850 (−0.33) departures. The SH is the com
mon significant negative correlation factor for P95 departures in 
autumn, winter and spring. The MC is the common significant positive 
correlation factor for P95 departures in summer, autumn and winter. 
The CIN in spring, summer and FCL in winter, spring and summer are 
common high correlation factors. 

In South China, the P95 departures are positively correlated with MC 
(0.43), V850 (0.43) and RSW (0.36) in winter (Fig. 13a, upper triangle 
left), whereas they are significantly negatively correlated with the SWD 
(−0.37) and SH (−0.42). In spring (Fig. 13a, lower triangle right), the 
P95 departures have significant positive correlations with MC (0.83), 
W700 (0.83), CAPE (0.42), LCL (0.33) and LFC (0.42) departures and 
negative correlations with the Q2 m (−0.35), V850 (−0.45) and RCT 
(−0.57) departures. In summer (Fig. 13b, upper triangle left), there are 
positive correlations of P95 departures with MC (0.62), TPW (0.32), Q2 
m (0.32), W700 (0.58), RSW (0.43) and CWP (0.41) departures, but 
negative correlations of P95 departures with SWD (−0.48), SH (−0.42), 
NSE (−0.50), OLR (−0.53), ET (−0.42) and RCT (−0.33) departures. In 
autumn (Fig. 13b, lower triangle right), the P95 departures are posi
tively correlated with MC (0.75), W700 (0.59), RSW (0.44) and FCL 
(0.48) departures, but negatively correlated with the SWD (−0.53), SH 
(−0.49) and OLR (−0.47) departures. The MC is the common significant 
positive correlation factor for P95 departures in all seasons, whereas 
W700 is the common significant positive correlation factor in spring, 
summer and autumn. RSW, SWD and SH have common effects on P95 
departures in summer, autumn and winter. 

From these analyses, it can be seen that the SH significantly affects 
P95 departures and the SWD provides an energy source for the sensible 

heat. The NSE represents the net radiation flux minus the surface heat 
(the latent heat plus the sensible heat) flux, which also includes the SWD 
and SH effects. Figs. 11–13 also reflect the high correlations among 
them. The ET is an important part of the water cycle. An insufficient 
(excessive) supply of water vapor could directly result in the underes
timation (overestimation) of P95 in different regions. Their impacts on 
extreme precipitation strongly depend on the region and season. The ET 
and MC ensure a sufficient supply of water vapor, mainly measured by 
the TPW. There are also close relationships among the OLR, RSW and 
CRE. Deeper cumulus clouds produce less OLR, so the deeper the optical 
depth of the cloud, the more the RSW, resulting in a strong CRE, which 
cools the Earth’s atmospheric system. An underestimation of deep 
convection may reduce the simulated amount of extreme precipitation. 

Compared with PC, the ratio of convective precipitation to total 
precipitation (RCT), as an alternative to precipitation efficiency, has 
more complex impacts on the simulation P95 and its role is uneven in 
different regions and seasons. A large SWD can cause a warm T2m, much 
SH, a wet Q2 m and a high PBLH in spring and summer. In addition, a 
warm T2 m affects the reduction in FCL and FCH, thus affecting the 
changes in the OLR, RSW and CRE. However, the correlations among 
these variables weaken in magnitude in autumn and winter. With sea
sonal changes, the regional precipitation process system changes and the 
role of the surface–atmosphere–cloud–radiation interactions change 
significantly. Other relevant variables in North, Central and South China 
are also strongly related, especially the PBLH in summer. The larger 
SWD and sensible heat lead to a higher PBLH, a higher cumulus base 
(less FCL) and a smaller cloud depth (less FCH). Figs. 11–13 also show 
more complex relationships among all fields, which require more 
advanced machine learning technologies and methods to clarify and to 
determine the most reasonable mechanism behind P95 simulation 
departures. 

3.5. Underlying physical processes of extreme precipitation simulation 
biases 

Extreme precipitation is caused by complex changes in the climate 
system in different regions. Based on our analysis, it is clear that there is 
a strong correlation among all fields. We first fitted all the possible 

Fig. 13. Same as Fig. 11, but for South China.  
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combinations of the 22 preselected variables and then selected the 
regression model based on the following three principles: it only con
tains significant variable factors; the total explained variance (R2) is the 
largest, and the Akaike information criterion is the smallest. Akaike 
information criterion (AIC) was proposed by Akaike (1974) to measure 
the goodness of fit of a statistical model. It is grounded in the concept of 
entropy, offering a relative measure of the lost information when a given 
model is used to describe reality and can be weighed against the pre
cision and complexity of the model. In general, the smaller the AIC 
value, the better the model performance. According to the recommen
dation of Burnham and Anderson (2004), other competition models are 
not considered since the AIC differences of our selected models from the 
minimum reference are >10. In this way, all possible models are tested 
and an optimum set of variables is screened out. 

Table 3 shows the main factors and performance indicators relevant 
to P95 departures in the regression models established for North, Central 
and South China. By comparing the relative importance of each factor in 
different regression models, we find that the first and second factors that 
contribute the most to the selected model are the same, so the under
lying impact on P95 departures can be discussed simply. Table 3 shows 
that most of the regression models can explain changes in P95 de
partures of >74% (total explained variance R2 > 74%), except for North 
China in winter, Central China in autumn and South China in winter. 
The simulation results are explained according to the relative impor
tance (RI) of the first and second factors. 

In North China, the PBLH and RSW departures are the first and 
second most important factors affecting P95 departures in winter. They 
can explain 52.38% of the influence on P95 departures. A lower PBLH 
and greater RSW lead to larger P95 departures. In spring, more water 
from surface evapotranspiration (RI = 18.72%) and a stronger W700 (RI 
= 16.03%) have leading roles in P95 departures. In summer, the P95 
departure is dominated by the positive direct effect of the MC departure, 
the relative importance of which reaches 32.24%, where a stronger MC 
produces more extreme precipitation. The SH is the second important 
factor affecting P95 departure (RI = 23.01%). The more extreme the 
precipitation, the more heat it consumes. In autumn, the LCL (RI =

26.87%) and PBLH (RI = 17.55%) departures are the first and second 
most important factors, respectively, determining P95 departures. The 
combination of a lower LCL and PBLH results in large P95 departures, 
with a total relative importance of 44.42%. 

In Central China, the W700 (RI = 25.66%) and TPW (RI = 20.47%) 

departures are the first and second most important factors, respectively, 
determining P95 departures. Strong ascending movement and a low 
TPW lead to large amounts of extreme precipitation in winter. In spring, 
the P95 departures are determined by two energy effects: the SH (RI =
30.26%) and the NSE (RI = 21.63%) departures. The total relative 
importance of the two factors reaches 51.89%. A large amount of sen
sible heat is released into the atmosphere and combines with the surplus 
NSE for the consumption of precipitation, which results in a reduction in 
P95 departures. By contrast, the P95 departure are mainly affected by 
two opposite factors: a positive MC (RI = 27.12%) and a negative CAPE 
(RI = 17.64%) departures in summer. Strong MC and low CAPE de
partures lead to large P95 departures. In autumn, the regression model 
only can explain 66% (total explained variance) of the changes in P95 
departures. The PBLH (RI = 18.39%) and CWP (RI = 14.70%) de
partures are the first and second important factors, respectively, deter
mining P95 departures. 

In South China, the regression models in spring, summer and autumn 
can explain >80% of the changes in P95 departures, but the model in 
winter has a poor interpretation effect with a total explained variance of 
only 63% due to the influence of other independent variables and sys
tematic and random errors. In winter, strong V850 (RI = 26.72%) and 
MC (RI = 19.37%) departures lead to large P95 departures and the total 
relative importance reaches 46.09%. In spring, the P95 departures are 
dominated by a positive effect of the W700 (RI = 36.28%) and MC (RI =
31.52%) departures. The relative importance of the two factors reaches 
a total of 67.80%. A continuous supply of water vapor supply leads to 
large amounts of extreme precipitation. In summer, the SWD (RI =

22.10%) and RSW (RI = 19.14%) have negative impacts on P95 de
partures, whereas a weaker energy supply and less reflected shortwave 
radiation at the top of atmosphere result in larger amounts of extreme 
precipitation. In autumn, the P95 departures are determined by two 
opposite direct effects: positive MC (RI = 37.11%) and negative SWD 
(RI = 22.96%) departures. A strong moisture convergence departure 
causes a large P95 departure and a large supply of surface energy de
creases some of the impact on P95 departures. 

The selection of the cumulus parameterization scheme therefore af
fects the relative importance of each factor in P95 biases and has an 
important role through the interactions among various factors in 
different regions and seasons. This determines the simulation ability of 
CWRF model for extreme precipitation in China. 

Table 3 
Main factors and indicators relevant to P95 departures in North, Central and South China. The symbol “−” indicates the factor has a negative role.  

Domain Season Main factors and signs Total explained variance 
(R2) 

Akaike information 
criterion 

First and second factors (relative 
importance) 

North China DJF SWD, SH, NSE, RSW, FCH, −T2M, −PBLH, LCL 0.67 83.1 PBLH 
(28.61%) 

RSW (23.77%) 

MAM −NSE, OLR, ET, W700, −CRE, CWP, −FCH, RCT, −T2M, 
−CAPE 

0.78 74.3 ET (18.72%) W700 
(16.03%) 

JJA SWD, −SH, MC, −Q2M, V850, −RCT, CIN 0.74 74.3 MC (32.24%) SH (23.01%) 
SON SWD, −TPW, Q2M, CRE, CWP, FCH, −T2M, −CAPE, 

−PBLH, −LCL 
0.80 68.5 LCL (26.87%) PBLH 

(17.55%) 
Central 

China 
DJF SWD, −NSE, OLR, MC, −TPW, W700, CRE, CWP, −RCT, 

−T2M 
0.75 76.3 W700 

(25.66%) 
TPW 
(20.47%) 

MAM −SH, −NSE, −ET, MC, −TPW, −RSW, −LFC 0.76 70.5 SH 
(30.26%) 

NSE 
(21.63%) 

JJA −ET, MC, −V850, −CRE, −T2M, −CAPE, −PBLH, LCL 0.84 57.0 MC 
(27.12%) 

CAPE 
(17.64%) 

SON OLR, ET, Q2M, RSW, −CRE, −CWP, −FCL, −T2M, 
−CAPE, PBLH 

0.66 88.5 PBLH 
(18.39%) 

CWP 
(14.70%) 

South China DJF −OLR, MC, W700, V850, −FCL, −RCT, −CAPE, −LFC 0.63 87.1 V850 
(26.72%) 

MC 
(19.37%) 

MAM −SH, ET, MC, Q2M, W700, −V850, −RCT, PBLH, LCL 0.88 44.7 W700 
(36.28%) 

MC 
(31.52%) 

JJA −SWD, −V850, −RSW, −CRE, CWP, −FCL, −RCT, PBLH 0.83 57.5 SWD 
(22.10%) 

RSW 
(19.14%) 

SON −SWD, MC, −V850, −CRE, −FCL, FCH, IN, −LFC 0.84 57.1 MC 
(37.11%) 

SWD 
(22.96%)  
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4. Conclusion and discussion 

We used CWRF model to analyze simulations of extreme precipita
tion in China from 1980 to 2016 and focused on the sensitivity and 
dependence of extreme precipitation events on different cumulus 
parameterization schemes in the three key regions of North, Central and 
South China. By comparing ERI data and five cumulus parameterization 
schemes in CWRF model in simulations of extreme precipitation events, 
we selected ECP scheme, which has a relatively good simulation effect, 
to investigate the underlying physical processes explaining how the 
cumulus parameterization scheme determines the ability of CWRF 
model to simulate extreme precipitation events in China.  

(1) The CWRF model using the ECP scheme performs better than the 
ERI on spatial distribution and temporal variation of seasonally 
averaged general precipitation and extreme precipitation. 
Although there are 5–10 mm/day extreme precipitation biases of 
interannual variation in the CWRF, it can better represent the 
location and intensity of two rain bands in the Yangtze River 
basin and across South China, and it has <2 mm/day and 5–10 
day biases of the observed interannual variation of seasonally 
averaged precipitation and NRD, respectively. In particular, the 
CWRF is more consistent with the monthly variation of precipi
tation, NRD and P95 over China, which the ERI systematically 
overestimates. This gives better results than ERI data, showing a 
large improvement with added value in mountainous and coastal 
areas. The different cumulus parameterization schemes vary 
substantially in their model biases and skill scores in different 
regions and seasons. The P95 biases of ECP scheme are lowest in 
North China and this scheme gives the best performance with the 
highest ETS score in summer. KFeta scheme captures the spatial 
pattern of P95 and produces a higher PCC and smaller standard 
deviation than ECP scheme, and with an ETS followed ECP 
scheme. In Central China, the spatial distribution of P95 simu
lated by CWRF model with ECP and NSAS schemes in all seasons 
are the most realistic. ECP scheme gives an excellent performance 
in the simulation, with the highest PCC and ETS (except in 
autumn) among the five cumulus schemes. KFeta and Tiedtke 
schemes substantially overestimate P95 in all seasons, whereas 
BMJ scheme substantially underestimates P95 and lacks simula
tion skills. ECP scheme perfectly reproduces the heavy rain band 
in coastal areas of South China, especially in summer. However, 
ECP scheme has the highest ETS in this region, although it 
significantly underestimates the extreme precipitation. Although 
KFeta and Tiedtke schemes overestimate the magnitude of P95, 
they have high ETS values in winter and spring. Some cumulus 
schemes capture extreme precipitation under forcing by mixed 
weather systems and convective systems. For example, although 
KFeta scheme cannot capture the spatial pattern very well, its 
simulations of P95 in South China in spring and autumn are good. 
NSAS scheme overestimates a large range of NRDs in Central 
China in spring and autumn, but its simulation of P95 is better 
than that using ECP scheme. ECP scheme can be cooperated with 
other physical parameterization schemes (e.g., radiation, micro
physics and aerosol optical depth) to further improve the simu
lation skills of CWRF model.  

(2) The choice of cumulus parameterization scheme has a significant 
impact on the simulation of extreme precipitation, not only the 
climatological average spatial distributions, but also the region
ally averaged interannual variation. The ERI reanalysis data 
substantially underestimates the interannual variation of P95, 
whereas ECP scheme gives quite good simulation of the inter
annual variation of P95 in most seasons over North, Central and 
South China (the highest TCC and smallest RMSE). NSAS scheme 
ranks second, followed by KFeta, Tiedtke and BMJ schemes. For 
the ECP scheme, we computed the correlation coefficients of the 

departures between P95 and relevant variables (including DRI, 
NRD, SWD, SH, NSE, OLR, ET, MC, TPW, Q2m, W700, V850, 
RSW, CRE, CWP, FCL, FCH, RCT, T2m, CAPE, CIN, PBLH, LCL 
and LFC). Our results show that, except for a low correlation in 
Central China, the correlations of the differences between the 
simulations and MERRA-2 dataset reproduce well the magnitudes 
and signs of the bias correlations between the simulations and 
observations in most seasons over both North and South China. 
The MERRA-2 dataset is therefore a good choice for use as 
reference data in the absence of observational circulation data. 
We also found significant correlations between P95 departures 
and the departures of the 22 relevant variables. The correlation 
coefficients varied from −0.96 to 0.90 in different regions and 
seasons and some variables were interdependent, which pro
moted or offset the formation of extreme precipitation.  

(3) Based on the complex relationships between P95 departures and 
the 22 relevant variable departures in the simulation using the 
ECP scheme, we selected the optimum model using the all-subsets 
regression method to quantify their relative importance to P95 
departures and tried to determine the first and second factors 
contributing the most to P95 departures. In North China, the P95 
departures are mainly affected by the PBLH and RSW departures 
in winter (total RI = 52.38%), the ET and W700 departures in 
spring (total RI = 34.75%), the MC and SH departures in summer 
(total RI = 55.25%), and the LCL and PBLH departures in autumn 
(total RI = 44.42%). In Central China, the P95 departures are 
dominated by the W700 and TPW departures in winter (total RI 
= 46.13%), the SH and NSE departures in spring (total RI =

34.75%), the MC and CAPE departures in summer (total RI =

44.76%), and the PBLH and CWP departures in autumn (total RI 
= 33.09%). In South China, the P95 departures are influenced by 
the V850 and MC departures in winter (total RI = 46.09%), the 
W700 and MC departures in spring (total RI = 67.80%), the SWD 
and RSW departures in summer (total RI = 41.24%), and the MC 
and SWD departures in autumn (total RI = 60.07%). Of the 12 
regression models, the listed relative importance of the first and 
second factors (occurring times) are MC (5), PBLH (3), W700 (3), 
SH (2), RSW (2), ET (1), LCL (1), TPW (1), SWD (1), NSE (1), 
V850 (1), CAPE (1) and CWP (1). Their relative importance and 
relevance to P95 largely depend on the regions and seasons. 

We investigated the influence of different cumulus parameterization 
schemes in CWRF model on the simulations of extreme precipitation 
over China. Our analyses showed that there are many differences and 
similarities of precipitation simulations between the US and China when 
using the five cumulus parameterization schemes. Compared with the 
results of Sun and Liang (2020a, 2020b), we found that the control 
experiment of the CWRF model corresponds to the ECP scheme run, 
which better represents the seasonal average P95 in the US than in 
China. And the ECP scheme reproduces the extreme precipitation events 
and their peaks near the coastline in the US and China due to its various 
weights and different closure options between land and ocean, but 
precipitation is overestimated in both China and the US. Except for a 
long and narrow rain band along the coastline, the ECP scheme un
derestimates P95 of a large range in eastern China. The KFeta scheme 
produces reasonable P95 and relatively small biases in the US, while it 
substantially overestimates P95 between the Yangtze River and Pearl 
River basins. The Tiedtke scheme has opposite simulation biases of P95 
in the US and China. And the Tiedtke scheme performances abnormally, 
which yields substantially large spatial variability both in the US and 
China. The ability of the NSAS scheme to capture extreme precipitation 
in China is higher than that in the US. 

For interannual variation of seasonal P95, the ECP scheme slightly 
underestimates P95 magnitude and variability in China, compared to its 
overestimates in the US. The ECP scheme best simulates P95 interannual 
variation among all the schemes, both in the US and China, with the 
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highest TCC and smallest RMSE. The departures of the Tiedtke scheme 
from the interannual variation of P95 in the US are not as large as those 
in China. Except for South China, the NSAS scheme is equivalent to the 
ECP scheme in China but worse in the US, which has a notably lower 
correlation and larger RMSE. The BMJ scheme fails totally to simulate 
the extreme precipitation characteristics both in the US and China. 
Except for the impacts of different monsoon systems in the US and 
China, the sensibility of different cumulus schemes to P95 under mixed 
synoptic and topography forcing may lead to large differences in 
simulating extreme precipitation. In addition, we noticed that the CWRF 
still has a significantly enhanced ability to capture extreme precipitation 
after combining the ECP cumulus scheme with other physical schemes. 
Therefore, through the comparison of different cumulus schemes used in 
the US and China, we obtain some preliminary conclusions that provide 
a reference for selecting cumulus parameterization schemes in regional 
climate models. The version used in this study does not represent the 
best performance of the CWRF in China; and we can examine an 
ensemble of physics configurations to further improve the skill of the 
CWRF in China. 

As stated above，different regions and seasons have different re
sponses to the simulation of extreme precipitation events with different 
cumulus parameterization schemes. Future regional climate simulations 
should focus more on the development of more realistic physical pro
cesses. The choice of cumulus parameterization scheme affects the 
relative importance of various factors to the simulation of P95 and 
produces a marked effect through the interactions among them, further 
influencing the performance of CWRF model in simulating extreme 
precipitation in China. 

In this study, the model resolution is 30 km. Cumulus parametriza
tion schemes are often designed to describe indiscernibility process due 
to grid size when the size is >10 km. With the improvement of resolu
tion, the model can explicitly express some convective processes when 
the grid is smaller than 4 km or close to the diameter of the convective 
system, and the cumulus parameterization process is closed (Arakawa 
and Jung, 2011). However, there is a “gray zone” of cumulus convection 
parameterization scheme when the resolution is between 4 and 10 km. 
The closure assumptions of cumulus convection parameterization are no 
longer applicable; and the model can only partially express the con
vection process (Hong and Dudhia, 2012). The performance of cumulus 
convective parameterization scheme under different resolution and its 
application in the “gray zone” need to be further studied in the future. 

The regression models established in this study are relatively simple 
and only roughly discuss the influence of various factors on P95 simu
lation departures. In fact, the 22 factors selected by referring to the 
research of Sun and Liang (2020b) are not independent and there are 
strong correlations among them (Figs. 11−13). However, using these 
highly correlated factors as predictors to establish regression models 
would lead to multicollinearity. The regression model might be unstable 
because of the repeated calculation of specific factors or overfitting. Sun 
and Liang (2020b) designed a structural equation regression model, 
which not only solved the problem of multicollinearity, but also reduced 
the dimensions by constructing four potential factors so that the causal 
relationship behind the simulation departures could be better explained. 
Hundreds of millions of alternative combinations of the structural 
equation regression models for P95 simulation departures can be suc
cessfully established in different regions and seasons. However, this 
requires not only machine learning by supercomputers, but also super
computers with a huge storage capacity to optimize the filter and to 
determine the unique and optimum structural equation regression 
model for each region and season within certain constraints. 

We compare the sensitivity of different cumulus parameterization 
schemes to extreme precipitation, and identify which schemes can best 
capture extreme precipitation processes in Figs. 4–9. P95 results from 
the complex climate system as a whole and its model bias mechanisms 
are extremely challenging to understand. Sun and Liang (2020b) 
recognized this challenge, and used structural equation regression 

model for supercomputing diagnosis. The underlying physical processes 
will definitely depend on the system coupling of all physics parame
terizations and dynamics’ representations. As such, this study focuses on 
a single cumulus parameterization, choosing the high performer ECP 
scheme as the first priority to explore the underlying physical processes. 
Exploring other cumulus schemes will take more time and should be 
done in the future. 
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