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Abstract 

We report a Monte Carlo simulation study of length-scale dependent density fluctuations in 

cavities in the coarse-grained mW representation of water at ambient conditions. Specifically, we 

use a combination of test particle insertion and umbrella sampling techniques to examine the full 

range of water occupation states in spherical cavities up to 6.3 Å in radius in water. As has 

previously been observed, water density fluctuations are found to be effectively Gaussian in nature 

for atomic-scale cavities, but as the cavities get larger they exhibit a non-Gaussian “fat-tail” 

distribution for lower occupancy states. We introduce a new statistical thermodynamic approach 

to analyze non-Gaussian fluctuations based on the radial distribution of waters about cavities with 

varying numbers of waters within its boundaries. It is shown that the onset on these non-Gaussian 

fluctuations is a result of the formation of a bubble within the cavity as it is emptied that is 

accompanied by the adsorption of waters onto its interior surface. We revisit a theoretical 

framework we previously introduced to describe Gaussian fluctuations within cavities to now 

incorporate bubble formation by including surface tension contributions. This modified theory 

accurately describes density fluctuations within both atomic and meso-scale cavities. Moreover, 

the theory predicts the transition from Gaussian to non-Gaussian fluctuations at a specific cavity 

occupancy in excellent agreement with simulation observations. 
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1. Introduction 

Water plays a central role in self-assembly processes in aqueous solution, including detergent 

assembly into micelles, the folding of proteins, and the formation of larger biomolecular structures. 

The hydrophobic effect, the limited solubility of oily species in water, provides the impetus for the 

non-specific aggregation and assembly of the non-polar constituents of these molecules.1-3 The 

thermodynamic signatures of hydrophobically driven assembly, however, depend on the size and 

curvature of the aggregating moieties.4-6 On the molecular-scale, the dissolution of non-polar gases 

and alkanes in water at room temperature is enthalpically favorable but dominated by a large 

negative entropy that opposes hydration. As the size of the hydrophobic groups increases the roles 

of entropy and enthalpy are reversed and hydration is opposed by a dominate positive enthalpy 

and favored by a smaller positive entropy. This switch in the signatures of hydrophobic hydration 

are illustrated by the work of Li and Walker7 who observed from experiments of extending 

polymers into water using an atomic force microscope that the temperature dependence of the 

pulling force shifted from entropically towards enthalpically unfavored as the size of the non-polar 

side chains increased. These observations suggest changes in the hydration mechanism with non-

polar solute size. To gain insight into these processes many studies have focused on model solutes 

to isolate hydrophobic effects from competing interactions, like dispersion and electrostatic forces. 

Molecular simulations are well suited for this task since individual interactions can be turned off 

while retaining molecular realism. 

The standard approach to describe the hydration of non-polar solutes is to divide the process 

into two steps.8 First, an empty cavity the size and shape of the excluded volume of the solute is 

created in solution. Second, the attractive interactions between water and the solute placed within 

the cavity are turned on. For atomic-scale solutes the characteristic thermodynamics of 
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hydrophobic hydration (e.g., a large negative entropy of hydration) are embedded within the 

excluded volume contribution to the hydration process, while the attractive contribution can be 

treated perturbatively. As such, the focus of many studies of hydrophobic hydration have focused 

solely on the excluded volume, or cavity, contribution to the free energy. The free energy of 

solvating an empty cavity-like solute is directly related to the probability of finding an empty 

cavity the size and shape of the solute as  

 𝜇!"# = −𝑘$𝑇𝑙𝑛𝑝!, (1)	

where 𝑘$𝑇 is the product of Boltzmann’s constant and the absolute temperature, 𝑝! is the 

probability of finding an empty cavity devoid of water within the bulk solvent, and 𝜇!"# is the free 

energy of hydrating the empty cavity, i.e., its excess chemical potential of hydration. One approach 

to evaluate the excess chemical potential, scaled-particle theory (SPT), focuses on the process of 

growing empty spherical cavities in solution from nothing up to the desired radius.9 The original 

implementation of SPT only utilized water’s density and its effective hard sphere diameter to 

describe the hydration process.10, 11 In the early 1970s, however, Stillinger pointed out that this 

version of SPT does not account for the structure of liquid water and incorrectly predicts the 

temperature dependence of water’s liquid-vapor surface tension.12 He subsequently provided an 

empirically corrected SPT utilizing water’s experimental radial distribution function determined 

from X-ray scattering13, 14 and the known surface tension of water. Several years later, Ashbaugh 

and Pratt expanded Stillinger’s approach to incorporate many-body correlations into SPT by using 

multi-body information from molecular simulations.15-17 These theories helped illuminate the 

thermodynamic distinction between molecular-scale hydrophobic hydration, which is opposed by 

a dominant negative hydration entropy, and meso/macro-scale hydrophobic hydration, which is 

opposed by a dominant positive hydration enthalpy. The distinction between molecular-scale and 
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meso-scale hydration is described by a crossover length,4, 18, 19 which itself is temperature 

dependent.17 

In the mid-1990s, Hummer et al.20 provided and alternate view of cavity hydration following 

information theory, where, rather than focusing only on empty cavities, all possible occupancy 

states are considered, 𝑝% (𝑛 is the number of solvents within the cavity). They demonstrated for 

atomic-scale cavities the 𝑝% distribution is effectively Gaussian in water. While the mean number 

of solvent molecules in the cavity depends solely on the density of water and the solute’s volume, 

evaluation of the variance in the distribution requires knowledge of water’s radial distribution 

function. The information theory description of hydration was subsequently applied to analyze the 

thermodynamics of hydrophobic hydration,20, 21 the observation of entropy convergence at 

elevated temperatures,22 and the pressure induced denaturation of proteins.23 More recently, 

Ashbaugh, Vats, and Garde24 demonstrated that for state points far from the critical point, the 

solute-size dependence of the variance of the 𝑝% distribution could be approximated over all size 

scales using a simple analytical form, referred to as interpolated Gaussian fluctuation theory 

(IGFT). This theory only requires information on water’s density, compressibility, and effective 

diameter, but not its radial distribution function. IGFT was shown to accurately predict the 

characteristic thermodynamics of atomic-scale hydrophobic hydration up to 300°C. Moreover, this 

theory also predicted that in the supercooled regime, the hydration heat capacity could also reverse 

its sign from positive to negative in agreement with previous simulation observations.25-27  

Despite its success at addressing atomic-scale hydrophobic hydration, the Gaussian 

approximation for solvent density fluctuations breaks down as the solute radius increases much 

beyond that of xenon. This was perhaps first demonstrated by Huang and Chandler28 for the 

emptying of a Lennard-Jones liquid from cavities significantly larger than the solvent. Notably, 
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they observed that while the 𝑝% distribution is Gaussian for cavity occupancies near the mean, for 

cavities twice the solvent’s diameter and larger the distribution exhibits a “fat-tail” distribution 

with lower occupancies being more favorable than anticipated based on Gaussian predictions. 

They attributed this non-Gaussian tail to the onset of drying as the result of a bubble forming within 

the cavity as it is emptied. It has subsequently been demonstrated that the onset of non-Gaussian 

density fluctuations in water between the hydrophobic faces of biomolecules impacts their 

interactions with each other and interfaces.29, 30 Moreover, water density fluctuations within 

hydrophobic pockets can tilt so that they spontaneously dewet, favoring the binding of non-polar 

guests to these surfaces.31 

In a recent paper, Sinha et al.32 examined the process of hydrating large spherical and non-

spherical solutes in SPC/E water to determine the point at which water density fluctuations within 

solute cavities cross over from Gaussian to non-Gaussian behavior. In this analysis, we introduced 

a theoretical approach utilizing the known interfacial properties of water to describe the onset of 

bubble formation within the cavity to describe non-Gaussian density fluctuations. That theoretical 

approach, however, was introduced in a cursory manner and not fully developed. Here we revisit 

this problem to provide a clearer justification for the proposed changes in the mechanism of cavity 

emptying in solutions, reporting new molecular simulations and theoretical results for the process 

of emptying solute volumes in water to gain insights into the role of solvent density fluctuations 

in the thermodynamics of hydrophobic hydration. Water is modeled here using the coarse-grained 

mW model developed by Molinero.33 This model neglects water’s hydrogens, capturing the effect 

of directional hydrogen-bonding using a three-body potential proposed by Stillinger and Weber34 

that is shorter-ranged than more traditional representations of water, making it computationally 

more expedient. More importantly for the work reported here, it has been shown to capture many 
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of the peculiar thermodynamics of hydrophobic hydration.35 In this work, we use simulations to 

determine the free energies of removing individual waters from cavities of varying radius to 

generate a hard-sphere solutes in water, a model solute for understanding hydrophobic hydration. 

A new statistical mechanical approach is developed to evaluate the work of emptying the cavities 

based on the structure of water about partially filled and empty cavities, thereby providing new 

insights into the emptying process. In the final part of the paper, we extend IGFT to incorporate 

non-Gaussian fluctuations that result from interfacial effects that arise as the solute grows in size. 

 

2. Theory 

2.1. Water Partitioning Between a Cavity Interior and the Bulk Solvent. While the empty cavity 

(𝑛 = 0) is most relevant for evaluation of the solvation free energy of a hard sphere solute as 

embodied by eq. (1), as shown below the intermediate	𝑛 provide significant information on the 

mechanism by which the volume is emptied. In particular, this chemical potential for creating an 

empty cavity can be readily extended to consider the process of finding a cavity with 𝑛 water in it 

as 𝜇%"# = −𝑘$𝑇𝑙𝑛𝑝%. The process of removing solvent molecules from a cavity to create a hard-

sphere solute can be broken down into a series of steps where the solvent molecules are removed 

one-by-one from the volume. In this section we consider the emptying process to construct a 

description of hard sphere solvation based on the packing of solvent molecules both inside and 

outside the cavity. 

To begin, we consider the thermodynamic equilibrium between waters inside and outside a 

cavity in solution. The canonical partition function of a system of 𝑁 total water molecules with 𝑛 

waters confined within the boundaries of the cavity, 𝜐, and 𝑁 − 𝑛 waters outside the cavity is 

 𝑄&,% = -(
!(*+()"#!-$!%

"

%!(&+%)!/&"
. /

∫ ∫ 123	(+56")((#))"#! 7𝒓"#!)! 7𝒓!

(!(*+()"#!
0  
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 = 𝑄&,%97 𝑄&,%"# , (2) 

where 𝑉 is the total system volume, Λ is the thermal de Broglie wavelength, 𝑞9%: is the internal 

partition function for an individual water molecule associated with vibrational and rotational 

degrees of freedom, 𝑈& is the system potential energy, 𝒓 is the position vector of an individual 

molecule, and 𝛽 = 1/𝑘$𝑇. Orientational degrees of freedom are neglected in the integral above, 

but this does not change the results of this analysis. The terms in the first set of square brackets 

correspond to the ideal gas contribution to the partition function, 𝑄&,%97 , while the set of square 

brackets corresponds to the excess contribution to the partition function, 𝑄&,%"# , resulting from 

intermolecular interactions. The ratio of probabilities of observing 𝑛 + 1 and 𝑛 molecules within 

the cavity is related to the ratio of their partition functions as 

 ;!+,
;!

= <",!+,
<",!

= <",!+,
$.

<",!
$.

<",!+,
/0

<",!
/0 . (3) 

In the thermodynamic limit (𝑁 → ∞ and 𝑉 → ∞) the ratio of the ideal gas partition functions is 

 <",!+,
$.

<",!
$. = =(

%>?
, (4) 

where 𝜌 = 𝑁/𝑉 is the total solvent number density. The ratio of the excess partition functions is 

 <",!+,
/0

<",!
/0 = =*+(

(
>
∫ ∫ 123	(+56")((#))"#! 7𝒓"#!#,)! 7𝒓!+,

∫ ∫ 123	(+56")((#))"#! 7𝒓"#!)! 7𝒓!
. (5) 

This ratio can be re-expressed as 

 <",!+,
/0

<",!
/0 = <",!+,

/0

<"#,,!
/0

<"#,,!
/0

<",!
/0  (6a) 

 = =*+(
(
>
∫ ∫ 123	(+56")((#))"#!#, 7𝒓"#!#,)!+, 7𝒓!+,

∫ ∫ 123	(+56"#,)((#))"#!#, 7𝒓"#!#,)! 7𝒓!

∫ ∫ 123	(+56"#,)((#))"#!#, 7𝒓"#!#,)! 7𝒓!

∫ ∫ 123	(+56")((#))"#! 7𝒓"#!)! 7𝒓!
 (6b) 

The energy of the 𝑁 molecule system can be divided into 𝑁 − 1 and 1 molecules as 

 𝑈& = 𝑈&+? + Δ𝑈&. (7) 
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It follows that the first ratio of integrals in eq. (6b) can be expressed as 

 
∫ ∫ 123(+56")((#))"#!#, 7𝒓"#!#,)!+, 7𝒓!+,

( ∫ ∫ 123(+56"#,)((#))"#!#, 7𝒓"#!#,)! 7𝒓!
 

 =
∫ ∫ 123	(+5@6")123	(+56"#,)((#))"#!#, 7𝒓"#!#,)!+, 7𝒓!+,

( ∫ ∫ 123	(+56"#,)((#))"#!#, 7𝒓"#!#,)! 7𝒓!
 

 = 〈exp	(−𝛽Δ𝑈&)〉9%, (8) 

which corresponds to the Boltzmann weighting of the mean excess chemical potential of a particle 

randomly inserted into the cavity. Similarly, the second ratio of integrals in eq. (6c) can be 

expressed as 

 
∫ ∫ 123	(+56")((#))"#! 7𝒓"#!)! 7𝒓!

(*+() ∫ ∫ 123	(+56"#,)((#))"#! 7𝒓"#!#,)! 7𝒓!
 

 =
∫ ∫ 123	(+5@6")123	(+56"+?)((#))"#! 7𝒓"#!)! 7𝒓!

(*+() ∫ ∫ 123	(+56"#,)((#))"#!#, 7𝒓"#!#,)! 7𝒓!
 

 = 〈exp	(−𝛽Δ𝑈&)〉AB:, (9) 

which corresponds to the Boltzmann weighting of the mean excess chemical potential of a particle 

randomly inserted outside the cavity. Given that the volume of the solvent outside of the cavity is 

infinitely greater than that inside the cavity, this is simply the excess chemical potential of the bulk 

solvent. The ratio of cavity occupation probabilities is subsequently 

 ;!+,
;!

= =(
(%>?)

〈123	(+5@6")〉$!
〈123	(+5@6")〉12%

  (10) 

While the averages in eqs. (8) – (10) are technically for the addition of a water molecule to a system 

of 𝑁 − 1 waters, in the thermodynamic limit this indistinguishable for the averages of an 𝑁 water 

system. 

While eq. (10) could be evaluated from simulation following standard particle insertion 

techniques, this expression can be more readily evaluated from the occupancy dependent radial 
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distribution functions (RDFs) between the cavity and the solvent, 𝑔%(𝑟). This collection of RDFs 

corresponds to the local solvent density as a function of distance from the center of a cavity with 

𝑛 waters residing within it. Associated with each RDF is a function 𝑦%(𝑟), also referred to as a 

cavity correlation function, that corresponds to the Boltzmann weighting of the potential-of-mean 

force associated with bringing a solvent particle from a position infinitely far away to a distance 𝑟 

from the center of the cavity with	𝑛 molecules constrained to reside inside. The cavity correlation 

function is determined following test particle insertion as 

 𝑦%(𝑟) =
∫ ∫ 123	[+5@6"(F)]123	(+56"#,)((#))"#!#, 7𝒓"#!#,)! 7𝒓!

∫ ∫ 123[+5@6"(H)]123	(+56")((#))"#!#, 7𝒓"#!#,)! 7𝒓!
<"#,,!
/0

<"#,,!
/0  

 = 〈123	(+5@6"(F))〉
〈123	(+5@6"(H))〉

. (11) 

The numerator corresponds to the Boltzmann weighting of the excess chemical potential for of a 

water at a distance 𝑟 from the center of the cavity, while the denominator corresponds to the 

Boltzmann weighting of the excess chemical potential for a water infinitely far away from the 

center of the cavity, which is equal to the bulk chemical potential in eq. (9) (i.e., 

〈exp	(−𝛽Δ𝑈&(∞))〉 = 〈exp	(−𝛽Δ𝑈&)〉AB:. For separations outside the cavity, 𝑦%(𝑟 > 𝑅) 

corresponds to the RDF between the solvent and cavity with 𝑛 molecules within it (i.e., 

𝑦%(𝑟 > 𝑅) = 𝑔%(𝑟 > 𝑅)). For distances inside the cavity, 𝑛 + 1 molecules now reside within its 

boundary. While it is tempting to equate 𝑦%(𝑟 ≤ 𝑅) with 𝑔%>?(𝑟 ≤ 𝑅), normalization of the radial 

distribution function negates this equality. Specifically, within the cavity the radial distribution 

function obeys the condition 

 ∫ 𝜌𝑔%>?(𝑟)4𝜋𝑟I𝑑𝑟
J
! = 𝑛 + 1. (12) 
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This suggests, as we shall see below, that the RDF changes discontinuously across the cavity’s 

boundary, while 𝑦%(𝑟) is expected to be a continuous function. We propose that 𝑦%(𝑟) is related 

to the radial distribution functions as 

 𝑦%(𝑟) = Q𝐾%𝑔%>?
(𝑟) 𝑟 ≤ 𝑅

𝑔%(𝑟) 𝑟 > 𝑅, (13) 

where 𝐾% is a constant that ensures 𝑦%(𝑟) is continuous across the cavity’s boundary. The question 

follows, what is 𝐾%?  

Following from eq. (12), the average value of 𝑔%>?(𝑟) inside the spherical cavity (𝑟 ≤ 𝑅) is 

 〈𝑔%>?(𝑟)〉FKJ =
%>?
=(
. (14) 

It follows from eq. (13) that the average value of 𝑦%(𝑟) inside the cavity is 

 〈𝑦%(𝑟)〉FKJ = 𝐾%
(%>?)
=(
. (15) 

Following eq. (11), the average value of 𝑦%(𝑟) inside the cavity is also 

 〈𝑦%(𝑟)〉FKJ =
?
(
∫ 〈123	(+5@6"(F))〉LMF37F
4
5

〈123	(+5@6")〉12%.
 (16) 

The mean value of the integral in the numerator over the cavity interior is 

 ∫ 〈123	(+5@6"(F))〉LMF37F
4
5

(
= 〈exp	(−𝛽Δ𝑈&)〉9%. (17) 

Combining eqs. (10), (16), and (17) it follows that  

 〈𝑦%(𝑟)〉FKJ =
〈123	(+5@6")〉$!
〈123	(+5@6")〉12%

= ;!+,
;!

(%>?)
=(
. (18) 

Comparing eqs. (15) and (18) we find the desired result that 

 𝐾% =
;!+,
;!
. (19) 

Thus, the discontinuous change in the solvent RDF across the boundary of the cavity can be related 

to the work associated with adding a solvent molecule into the cavity already containing 𝑛 

molecules. 
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The derivations above provide a route to determining 𝑝% from molecular simulations, simply 

from the distribution of solvent molecules about a cavity. Specifically, a cavity may be included 

within a simulation box to evaluate the 𝑔%(𝑟) distributions. The resulting 𝐾%’s can be determined 

by enforcing continuity between 𝑔%(𝑟) and 𝑔%>?(𝑟) at 𝑅 to determine 𝑦%(𝑟). In practice, over a 

small range near the boundary, −ln𝑦%(𝑟) can be approximated by a quadratic polynomial. As such 

we fit the function 

 𝑓(𝑟) = 𝛼I(𝑟 − 𝑅)I + 𝛼?(𝑟 − 𝑅) + 𝛼! − Θ(𝑅 − 𝑟)ln𝐾%, (20) 

simultaneously to −ln𝑔%>?(𝑟) for 𝑟 < 𝑅 and −ln𝑔%(𝑟) for 𝑟 ≥ 𝑅. Here	Θ(𝑥) is the Heaviside 

function, and 𝛼!, 𝛼?, 𝛼I, and ln𝐾% are fitting constants. This fitting is performed over only a 

limited range of 𝑅	 ± 1 Å, beyond which the quadratic approximation becomes increasingly 

inaccurate. Over this limited fitting range, the potential-of-mean force is −𝑘$𝑇ln𝑦%(𝑟) =

𝛼I(𝑟 − 𝑅)I + 𝛼?(𝑟 − 𝑅) + 𝛼!. Once the set of 𝐾%’s across all potential cavity occupation states 

is determined, the full 𝑝% distribution is given as 

 𝑝% = \
?
O

𝑛 = 0
∏ Q$
!#,
$65
O

𝑛 > 0
, (21a) 

where 

 Ξ = 1 + ∑ `∏ 𝐾R9+?
RS! bH

9S? . (21b) 

While the cavity does exhibit correlations with the solvent that depend on 𝑛, on average the cavity 

itself has no correlations with the solvent. As such the average RDF between the cavity and solvent 

is expected to be  

 ∑ 𝑝%𝑔%(𝑟)H
%S! = 1 (22) 

over all separations from inside to outside the cavity, reflecting the passive nature of the cavity. 
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To demonstrate the validity of this approach for obtaining the solvent occupancy distribution 

within a cavity, we consider the ideal gas for which the 𝑝% is known analytically. In the ideal gas 

where no interactions between molecules are felt, the cavity correlation function between a gas 

particle and a cavity with 𝑛 particles within its interior is  

 𝑦%(𝑟) = 1. (23) 

As a result of the normalization condition inside the cavity (eq. (14)), however, the 𝑛 dependent 

RDFs are given as 

 𝑔%(𝑟) = c
%
=(

𝑟 ≤ 𝑅
1 𝑟 > 𝑅

 (24) 

Comparing eqs. (18), (23), and (24), it follows that 

 𝐾% =
=(
%>?
. (25) 

Substituting eq. (25) into eq. (21), we obtain 

 Ξ = 1 + ∑ =∏ =(
R>?

9+?
RS! >H

9S? = 1 + ∑ (=()$

9!
H
9S? = exp	(𝜌𝜐), (26a) 

and 

 𝑝% = =∏ =(
R>?

%+?
RS! > exp(−𝜌𝜐) = (=()!

%!
exp(−𝜌𝜐). (26b) 

This is the Poisson distribution, the expected probability distribution for a cavity in an ideal gas. 

Further, averaging the 𝑛 dependent RDFs within the cavity (𝑟 ≤ 𝑅) yields 

 ∑ 𝑔%(𝑟 ≤ 𝑅)𝑝%H
%S! = ∑ %

=(
H
%S!

(=()!

%!
exp(−𝜌𝜐) = exp(−𝜌𝜐)∑ (=()!#,

(%+?)!
H
%S?  

 = exp(−𝜌𝜐)∑ (=()!

%!
H
%S! = exp(−𝜌𝜐) exp(𝜌𝜐) = 1. (27) 

Since the Poisson distribution is normalized, it follows that the average of the radial distribution 

functions outside the cavity is 1 as well. The average of the cavity radial distribution functions in 

the ideal gas subsequently obey eq. (22). 
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2.2. Interpolated Gaussian Fluctuation Theory. Here we highlight the key equations 

underlying the IGFT description of solvent occupation probabilities in atomic-size cavities in 

water. A more complete development of this theory can be found in ref. 24. Following information 

theory utilizing only information on the second moment of solvent density fluctations,20 the solvent 

occupancy probability distribution within an atomic-sized cavity is expected to be Gaussian in 

nature. Assuming over this size range 𝑛 can be approximated as a continuous variable that spans 

from -∞ to ∞, the probability of observing 𝑛 solvent molecules within the cavity can be expressed 

using the normalized Gaussian distribtuon21, 22 

 𝑝% ≈
?

√IMU3
𝑒𝑥𝑝 f− (%+〈%〉)3

IU3
g = ?

VIM〈%〉W
𝑒𝑥𝑝 f− (%+〈%〉)3

I〈%〉W
g, (28) 

where 〈𝑛〉 = 𝜌𝜐 is the mean number of solvent molecules within the cavity, 𝜎I is the variance of 

the distribution, and 𝜒 = 𝜎I/〈𝑛〉 is the normalized variance. The excess chemical potential 

associated with creating a cavity with 𝑛 solvent molecules within its boundaries is subsequently  

 𝛽𝜇%"# = −𝑙𝑛𝑝% =
(%+〈%〉)3

I〈%〉W
+ ?

I
𝑙𝑛(2𝜋〈𝑛〉𝜒). (29a) 

It follows that the hydration free energy of the empty cavity is 

 𝛽𝜇!"# = −𝑙𝑛𝑝! =
〈%〉
IW
+ ?

I
𝑙𝑛(2𝜋〈𝑛〉𝜒). (29b) 

While clearly an approximation, this description of atomic scale solvation has been successfully 

applied to describe hard sphere solvation in water over a wide range of temperatures.22, 36 

While 〈𝑛〉 is simply determined from the bulk solvent density and the solute volume, 𝜒 is 

determined from a more complex integral over the solvent-solvent RDF and is not analytical. 

Nevertheless, considering the microscopic and macroscopic limits on the 𝜒 integral, Ashbaugh, 
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Vats, and Garde24 proposed an interpolative analytical approximation for 𝜒 in spherical cavities as 

a function of their radius 

 𝜒(𝑅) = k
1 − 𝜂 = IJ

777
>
X

𝑅 < 𝑑YY/2

𝑘$𝑇𝜌𝜅Z +
(X+[\+X]8Z=^9)

I
=777
IJ
> − (?+L\+]8Z=^9)

I
=777
IJ
>
X

𝑅 ≥ 𝑑YY/2
, (30) 

where 𝜅Z is water’s isothermal compressibility, 𝑑YY is water’s effective diameter, and 𝜂 =

𝜋𝜌𝑑YYX /6 is the solvent packing fraction. The expressions eqs. (28) to (30) are collectively referred 

to as IGFT. This framework was shown to provide an excellent description of the hydration of 

hard cavities in water over a wide temperature range and even predicted the unanticipated reversal 

in the temperature dependence of hydrophobic hydration thermodynamics in the deeply 

supercooled regime. Interestingly, eq. (30) largely relies only on water’s macroscopic equation-

of-state while the structure of water is embodied only within 𝑑YY (assumed here to be 2.65 Å). 

This diameter has been found to be effectively independent of temperature.24, 25 In previous studies, 

however, non-Gaussian fluctuations were found to become more significant as the size of the 

solute grows.28, 32, 37 As such, IGFT is expected to become increasingly inaccurate for meso-scale 

and larger solute volumes. 

 

3. Molecular Simulations 

Monte Carlo (MC) simulations38 of mW water33 with a single cavity in solution were 

conducted in the isothermal-isobaric ensemble. The temperature and pressure were set to 25°C and 

1 atm, respectively. Spherical cavity radii of 2.5 Å to 6.3 Å in 0.2 Å increments were considered. 

For cavity radii up to 4.1 Å, simulations were conducted with 700 waters, while 1000 waters were 

considered for the larger solutes. The cavity in principle has no interactions with water, serving to 

sample solvent density fluctuations within its boundaries. For large volumes, however, the rarity 
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of large density fluctuations ensure that empty or nearly empty cavities are never observed. To 

sample large scale density fluctuations we applied a biasing harmonic umbrella potential39 to 

restrict the range of cavity occupancies observed during the simulation 

 𝜑B_`(𝑛) = 𝑘!(𝑛 − 𝑛!)I. (31) 

Here 𝑘! is the spring constant and 𝑛! is the occupancy for which the umbrella potential is a 

minimum. The value of 𝑛! was adjusted from 0 to values well above 〈𝑛〉 in increments of ∆𝑛! = 

2 to ensure sampling of the full range of relevant occupancy states. The spring constant was 

adjusted to sample occupancy states ±3 on either side of 𝑛! to ensure overlapping fluctuations 

between simulations with consecutive values of 𝑛!. As such, 𝑘! took on values from 2.5 kJ/mol 

up to 9 kJ/mol depending on 𝑛!, with larger 𝑘! values needed as the cavity is emptied. The full 𝑝% 

distribution was reconstructed using the weighted histogram analysis method.40, 41 At least 106 MC 

passes (where 1 MC pass corresponds to 1 attempted move on each water molecule) were 

performed for equilibration at each value of 𝑛!, followed by 2.5×107 passes for evaluation of 

thermodynamic averages. Volume moves were performed every 5 MC passes. The water and 

cavity displacements were modified to ensure acceptance of 30% of moves, while the total 

simulation volume displacement was similarly modified to ensure acceptance of 30% of attempted 

changes. 

In addition to simulations of an explicit cavity in water, we also performed MC simulations of 

pure mW water at 25°C and 1 atm. The cubic simulation cell contained 700 water molecules. In 

addition to gathering information on the pure water properties (e.g., density and compressibility), 

we evaluated the excess chemical potentials of atomic-sized solutes using Widom test particle 

insertion.42, 43 105 random test particle insertion attempts were made every tenth MC pass. 106 MC 
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passes were conducted for equilibration, followed by 108 MC passes for the evaluation of 

thermodynamic averages. 

 

4. Results and Discussion 

4.1 Density Fluctuations within a Spherical Cavity. Figure 1 illustrates the Gaussian nature of 

solvent density fluctuations within atomic-scale cavities up to 3.7 Å in radius in mW water at 25°C 

and 1 atm. Specifically, when the probability of observing 𝑛 water molecules within the cavity, 

𝑝%, is plotted on a logarithmic scale as a function of 𝑛, we find that the distributions effectively 

assume a parabolic form consistent with a Gaussian distribution. The simulation results are in 

excellent agreement with the distributions predicted by IGFT, lending confidence to the fidelity of 

the theory for describing small-scale solute hydration. 

The accuracy of the Gaussian description can be further probed by plotting ln𝐾% (=

ln(𝑝%>?/𝑝%)) versus 𝑛 (Figure 2). The expectation is that if the density fluctuations are Gaussian 

(i.e., ln𝑝% = 𝑎𝑛I + 𝑏𝑛 + 𝑐, where 𝑎, 𝑏, and 𝑐 are constants) then ln𝐾% will be a linear function 

of 𝑛 (i.e., ln𝐾% = 2𝑎𝑛 + 𝑎 + 𝑏). While IGFT predicts this linear dependence by construction, the 

simulation results exhibit deviations from linearity with increasing solute size. The simulation 

results for each cavity considered in Figure 2 exhibit linear behavior for occupation numbers close 

to the mean (〈𝑛〉 = 𝜌𝜐 = 1.3, 3.4, and 7.1 for the 2.1 Å, 2.9 Å, and 3.7 Å radius cavities, 

respectively), indicative of Gaussian-like fluctuations near the mean of the distribution that are 

well described by IGFT. For more extreme fluctuations away from 〈𝑛〉, however, this does not 

necessarily hold. Notably for the 3.7 Å radius sphere, the simulations exhibit a slight positive 

deviation from linearity for 𝑛 = 2 and 3, followed by a drop below the linear prediction for 𝑛 = 0 

and 1. Analogous behavior can be observed for the 2.9 Å radius sphere as well, although not as 
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dramatic as for the larger volume. The 2.1 Å radius cavity, on the other hand, is accurately 

described by the Gaussian prediction. For these atomic-scale volumes, however, the combination 

of positive and negative deviations from linearity for ln𝐾% are largely compensatory, such that the 

Gaussian predictions for the probability of observing an empty sphere, i.e., 	𝑝!, are reasonably 

accurate up to 3.7 Å (Figure 1). 

The deviations from Gaussian fluctuations are more significant with increasing cavity size. 

The occupation probabilities for the 4.3 Å, 5.3 Å, and 6.3 Å radius cavities shown in Figure 3 are 

parabolic on a logarithmic scale near the maxima in these distributions, and hence are Gaussian 

close to 〈𝑛〉. As 𝑛 decreases, however, the probability distributions for each of these volumes 

exhibit markedly greater probabilities for observing nearly empty cavities than anticipated based 

on Gaussian fluctuations. As such, the free energy cost associated with observing an empty 

mesoscopic-sized cavity would be much lower than predicted following a Gaussian description. 

This deviation from the Gaussian prediction corresponds to the fat-tail distribution associated with 

drying phenomena in the context of hydrophobic phenomena.28, 29 

The breakdown of the Gaussian description for larger volumes is further scrutinized in the plot 

of ln𝐾% versus 𝑛 in Figure 4. As above, near the mean occupation number (〈𝑛〉 = 11.1, 20.8, and 

34.9 for the 4.3 Å, 5.3 Å, and 6.3 Å spheres, respectively) the simulation results are linear and well 

described by IGFT. As 𝑛 gets smaller, however, each of these cavities exhibit a dramatic break 

from linearity. The location of this break depends on the size of the sphere. To a first 

approximation, ln𝐾% from 𝑛 = 0 to the break from linearity is (very) roughly constant and equal 

to ~2.5, although there is an 𝑛 dependence in this regime. A conclusion that can been drawn is that 

the crossover from Gaussian to non-Gaussian density fluctuations is not gradual but rather exhibits 

a marked change as 𝑛 drops, suggestive of a transition in the cavity emptying mechanism. 
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The differences in the emptying process of the atomic and meso-scale cavities is readily 

observed when we consider the hydration free energies of the empty cavities (Figure 5). Up to 

solutes ~3.7 Å in radius, the hydration free energy is well described by IGFT within ~1 𝑘$𝑇. This 

range of solute sizes is coincident with the range of solute sizes for which we reliably observe 

empty solute cavities in water by test particle insertion. The hydration free energies of solutes 

larger that 3.7 Å determined using umbrella sampling, however, are markedly lower than what is 

predicted by IGFT. Indeed, for the 6.3 Å radius solute IGFT predicts a hydration free energy 64 

𝑘$𝑇 greater than, or nearly twice, the simulation result. Not accounting for non-Gaussian density 

fluctuations as the solute size increases subsequently leads to increasingly inaccurate predictions 

of solute hydration free energies. 

 

4.2 Structural Characterization of Cavity Emptying. Insight into the cavity emptying 

mechanism can be gained by examining the 𝑛 dependent RDFs between the cavity and water. In 

Figure 6 we report 𝑔%(𝑟) for 𝑛 = 0, 1, 35, and 45 waters within the 6.3 Å cavity, representative of 

occupancies from empty to well above 〈𝑛〉 (RDFs across all cavity occupancy states are reported 

in Figure S1 in the Supporting Information). The RDF for the empty volume (𝑔!(𝑟), Figure 6a) 

corresponds to the RDF between a hard sphere solute and the solvent. Water clearly packs around 

the 6.3 Å hard solute, with a contact peak approximately 60% greater than the bulk solvent density. 

This contact density is comparable to that observed for similarly sized hard sphere solutes in 

multiple different representations of water.15, 16, 44 The RDF between water and a cavity with one 

water molecule within the solute (𝑔?(𝑟), Figure 6b) is nearly the same as that for the empty volume 

for separations outside the cavity. As anticipated in section 2.1 above, the water density changes 

discontinuously across the cavity boundary. Within the cavity we find the lone water tends to 
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adsorb onto the inner surface of the cavity, indicated by the red arrow pointing to the inner packing 

peak. This water presumably attaches itself to the inner surface to gain attractive interactions with 

the waters outside the volume that it no longer finds within the emptied solute. The lower value of 

the packing density of water against the inner wall compared to that against the outer wall indicates 

that water entry into the cavity is favorable. Similar results are observed for cavities with 𝑛 < 〈𝑛〉, 

as seen in Figures S1c – S1ai in the Supporting Information. 

When the cavity contains approximately a number of waters close to the mean value (𝑔Xa(𝑟), 

Figure 6c) the RDF is practically featureless and nearly equal to 1 across all separations, both 

inside and outside the cavity. This observation reflects that when averaged overall occupancy 

states the RDF between the cavity and water is 1 (eq. (22)) and that the occupancy states closest 

to 〈𝑛〉 comprise the dominant contribution to this average. Since the RDF is essentially uniform, it 

is anticipated that there is little to no barrier for water entry or exit from the cavity when the contact 

density inside and outside are nearly equal. 

Finally, when the cavity occupancy is significantly greater than that expected by the bulk 

density the waters within the volume are expected to pack more like they would in a high pressure 

solid than in a liquid at ambient conditions. When the cavity contains 45 waters the density inside 

the volume is 29% greater than the bulk. In this case the RDF between the cavity and water 

(𝑔La(𝑟), Figure 6d) exhibits significant structuring. Inside the volume, the waters pack into 

approximately two bands as indicated by the two peaks in the RDF for 𝑟 < 6.3 Å. The dominant 

peak inside the cavity is the one pressed against the inner surface. The waters outside the volume, 

on the other hand, appear to be repelled from its outer surface. This reflects the fact that the waters 

inside the volume are so tightly packed against the inner wall they largely present their excluded 

volumes to the external waters, resulting in the observed depletion. The net result of this is that the 
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density of water pressed against the inner wall is greater than that against the outer wall, forming 

a barrier for water entry into the cavity. Similar results are observed for cavities with 𝑛 > 〈𝑛〉, as 

seen in Figures S1ak – S1as in the Supporting Information. 

The segregation of the solvent molecule to the inner surface of the cavity as it is emptied can 

be quantified by considering the radius-of-gyration of the collection of waters inside that volume 

(Figure 7), evaluated as 

 𝑅bI(𝑛) =
∫ F:b!(F)7F
4
5

∫ F3b!(F)7F
4
5

. (32) 

For the case of the 6.3 Å cavity, 𝑅b exhibits a non-monotonic dependence on 𝑛 (Figure 7a). 

Beginning near 〈𝑛〉 (= 34.9 for the 6.3 Å cavity), 𝑅b decreases with decreasing 〈𝑛〉 before reaching 

a minimum at 𝑛 = 22. This nearly coincides with the observed deviation from Gaussian behavior 

of ln𝐾% in Figure 4. This indicates from 𝑛 = 35 to 22 the waters within the cavity are segregating 

towards its middle. For values of 𝑛 less than 22, however, this trend reverses and 𝑅b increases as 

water molecules are removed from the cavity (Figure 7a). This effect is such that 𝑅b for the volume 

with only 1 water molecule in it is greater than that observed near 〈𝑛〉, let alone for the largest 

occupancy state considered. The suggests over this range of occupancies the water molecules 

adsorb onto the inner surface of the cavity as it is emptied, facilitating the formation of a bubble 

within the cavity. 

Given that the deviations from Gaussian-like behavior are more pronounced for larger cavities 

(e.g., Figures 2 and 4), it stands to reason that the non-monotonic dependence of 𝑅b on 𝑛 will 

likewise be more pronounced as well. To facilitate comparison of 𝑅b across different sized cavities, 

we use the normalized variables 𝑛/〈𝑛〉, corresponding to the fractional water occupancy, and 

𝑅b/`𝑅u3/5b, where 	𝑅u3/5 is the radius-of-gyration normalized of a sphere with a uniform 
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density of water inside (i.e., eq. (32) with 𝑔%(𝑟) = 1). In Figure 7b we compare solvent 𝑅b’s for 

spheres 3.3 Å, 4.3 Å, 5.3 Å, and 6.3 Å in radius. For occupancies greater than that for which the 

minimum in 𝑅b is observed, each of these cavities appear to follow a universal dependence on 𝑛 

using the normalized variables. The values of 𝑛/〈𝑛〉 for which 𝑅b is minimized, on the other hand, 

depends on the size of the cavity. For the 3.3 Å volume the minimum occurs when 𝑛 = 2, or 

𝑛/〈𝑛〉 ≈ 0.40. As the volume gets bigger, the value of 𝑛/〈𝑛〉 for which 𝑅b is minimized shifts to 

even larger values, occurring near 𝑛/〈𝑛〉 ≈ 0.63 for the 6.3 Å volume. This indicates that on the 

basis of 𝑛/〈𝑛〉, the range of fractional occupancy states for which a bubble is stable within the 

cavity grows as the cavity size increases. 

The knitting together of internal and external portions of the RDFs to determine the cavity 

correlation functions, 𝑦%(𝑟), for the 6.3 Å sphere is illustrated in Figure 8. Shifting −ln𝑔?(𝑟 < 6.3 

Å) down by 3.5 to meet −ln𝑔!(𝑟 > 6.3 Å) at contact yields a smooth result for −ln𝑦!(𝑟) across 

all separations (Figure 8a). The resulting downward shift corresponds to a −𝑘$𝑇ln𝐾! = -3.5 𝑘$𝑇 

drop in the free energy for adding a single water molecule to an empty cavity. This free energy 

drop reflects the observed lower value of 𝑔?(𝑅+) at contact with the inner surface of the cavity 

(Figure 6b) compared to the great value of 𝑔?(𝑅>) at contact with the outer surface (Figure 6a). 

Alternately, shifting −ln𝑔La(𝑟 < 6.3 Å) up by 2.1 to meet −ln𝑔LL(𝑟 > 6.3 Å) at contact yields a 

smooth result for −ln𝑦LL(𝑟) across all separations (Figure 8b). So, in difference to adding a water 

molecule to an empty cavity in water, adding a water to an overly packed volume results in an 

unfavorable −𝑘$𝑇ln𝐾LL = 2.1 𝑘$𝑇 free energy increase. This, likewise is reflected by differences 

in the packing of water against the inner surface versus depletion of waters from the outer surface 

of the cavity for overly packed states (e.g., Figure 6d). 
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In Figure 9a we compare values of ln𝐾% determined by umbrella sampling against that 

determined from knitting together the cavity RDFs for the 6.3 Å cavity (Similarly good results for 

the 3.3 Å, 4.3 Å, and 5.3 Å cavities are reported in Figure S2 in the Supporting Information). The 

agreement between these two approaches is excellent, such that the 𝑝% distributions determined by 

either technique are indistinguishable (Figure 9a inset). In Figure 9b we show simulation snapshots 

of slices through the 6.3 Å cavity at 𝑛 values of 35, 30, 25, 20, 15, 10, 5, and 0. In the Gaussian 

regime (𝑛 = 35, 30, and 25), the water molecules inside the cavity appear, to a first approximation, 

uniformly spread across the cavity. A small bubble appears in the lower lefthand side of the 𝑛 = 

20 simulation snapshot, just below the water occupancy level for which ln𝐾% breaks from the 

Gaussian prediction. As 𝑛 decreases further the bubble within the cavity grows even larger until it 

is completely empty (𝑛 = 0). For the 𝑛 = 15, 10, and 5 states, the water molecules within the 

cavity clearly adsorb to the inner surface of the cavity, largely a result of their attraction to the 

waters in the bulk solvent and consistent with the observed growth of 𝑅b as the cavity is emptied 

(Figure 7a).  

 

4.3 Theoretical Accounting of Non-Gaussian Density Fluctuations. Here we develop a 

theoretical framework to modify IGFT to account for non-Gaussian contributions in the 

description of solvent density fluctuation within a cavity. Following the observations made above, 

we expect the onset of non-Gaussian fluctuations to occur over a narrow range of cavity 

occupancies (e.g., Figure 4), followed by the formation of an empty bubble within the cavity as 

more waters are removed (e.g., Figure 9). Within the bubble the remaining waters are adsorbed 

onto the inner surface of the cavity. These observations form the basis for our extension of the 

thermodynamic description of cavity emptying. 
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In the Gaussian fluctuation regime, IGFT predicts that the free energy difference associated 

with removing a water molecule from a cavity is  

 𝛽(𝜇%"# − 𝜇%>?"# ) = ln =;!+,
;!
> ≈ c de ;!

c%
= (〈%〉+%)

〈%〉W
. (33) 

Note that ln(𝑝%>?/𝑝%) = ln𝐾% is at best an approximation for the derivative of 𝑝% at 𝑛 + 1/2, 

since the derivative in this expression assumes 𝑛 is continuous rather than discrete. The derivation 

provided here assumes 𝑛 is a continuous variable as in the development of IGFT above. This 

assumption, however, does not impact the outcome of the present derivation. 

For large fluctuations that sufficiently reduce the density within the cavity we hypothesize that 

a single bubble is nucleated within its boundary. In this case, the thermodynamics of reducing the 

solvent occupation number is governed by the work against the bulk pressure and the interfacial 

tension of the bubble. Assuming the bubble can be treated as a spherical void in the cavity carved 

out from the solvent, the volume and radius of the empty bubble within cavity are 

 𝑉 B``f" =
〈%〉+%
=
 (34) 

and 

 𝑅`B``f" = = X
LM=

>
?/X

(〈𝑛〉 − 𝑛)?/X. (35) 

The surface upon which the interfacial tension acts is not necessarily determined by 𝑅`B``f", but 

rather at an effective radius given as  

 𝑅"hh"i:9j" = 𝑅`B``f" + Δ𝑅 = = X
LM=

>
?/X

x(〈𝑛〉 − 𝑛)?/X + 𝛿z, (36) 

where Δ𝑅 = (3/4𝜋𝜌)?/X𝛿 is the difference between the effective and actual bubble radii, and is 

qualitatively similar to a Tolman length.45 The resulting effective surface area of the bubble is 

 𝐴"hh"i:9j" = =X[M
=3
>
?/X

x(〈𝑛〉 − 𝑛)?/X + 𝛿zI, (37) 
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The free energy associated with creating a cavity with 𝑛 waters and a bubble within its bounds is 

subsequently determined by the work against the pressure and surface tension as 

 𝛽𝜇%"# = 𝑍(〈𝑛〉 − 𝑛) + 𝛽𝛾 =X[M
=3
>
?/X

x(〈𝑛〉 − 𝑛)?/X + 𝛿zI + 𝜀, (38) 

where 𝑍 = 𝛽𝑃/𝜌 is the compressibility factor, 𝛾 is the surface tension of the bubble interface 

(assumed here to be the vapor/liquid surface tension), and 𝜀 is a constant that ensures continuity 

of the free energy between the Gaussian and non-Gaussian regimes. As above, the work associated 

with removing a single water molecule from the cavity is 

 𝛽(𝜇%"# − 𝜇%>?"# ) ≈ −𝛽 ck!/0

c%
= 𝑍 + 𝛽𝛾 =XIM

X=3
>
?/X (〈%〉+%),/&>l

(〈%〉+%)3/&
. (39) 

We propose that a bubble is nucleated inside the cavity when the free energy of removing a 

water molecule following eq. (39), the bubble growth path, is equal to that determined following 

eq. (33), the Gaussian fluctuation path. For states with occupancies less than this transition point, 

the free energies for removing waters from the cavity following eq. (39) are lower than that 

determined by eq. (33). The emptying of the cavity subsequently follows the path for removing 

water that is lowest in free energy. The occupation number at which the bubble is nucleated, 𝑛∗, is 

determined by equating eqs. (33) and (39) 

 (〈%〉+%∗)
〈%〉W

= 𝑍 + 𝛽𝛾 =XIM
X=3
>
?/X (〈%〉+%∗),/&>l

(〈%〉+%∗)3/&
. (40) 

A general solution of this expression requires numerical solution of a quintic equation. 

Nevertheless, an accurate approximate solution can be derived. Assuming pressure contributions 

are negligible (𝑍 ≈ 0), an excellent approximation near atmospheric pressure, and 𝛿 = 0 we find 

 𝑛∗ = 〈𝑛〉 − (𝛽𝛾〈𝑛〉𝜒)X/L =XIM
X=3
>
?/L
. (41) 

Expanding the solution of eq. (40) in 𝑍 and 𝛿 to second order we find  
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 𝑛∗ = 〈𝑛〉 − (𝛽𝛾〈𝑛〉𝜒)
&
: =XIM

X=3
>
,
: − X(5n〈%〉W)
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3
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3

XIM
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𝑍I + X〈%〉W
?[(5n〈%〉W),/:

=XIM
X=3
>
?/?I

𝛿𝑍 (42) 

For small values of 𝑍 and 𝛿, as those found here, use of eq. (42) is simpler than numerical solution 

of eq. (40). Indeed, use of the terms linear in 𝑍 and 𝛿 yields results for the free energy (below) that 

are practically indistinguishable from the numerical solution of 𝑛∗. Considering the linear terms in 

eq. (42), it is apparent that 𝑛∗ is always less than 〈𝑛〉. It is possible to find negative values of 𝑛∗ 

from eqs. (40) and (42). In this case no bubble is nucleated within the cavity and density 

fluctuations are Gaussian over the full range of solvent occupancies. 

Ensuring that eq. (29a) continuously joins with eq. (38) at 𝑛∗ to determine 𝜀, the free energy 

of finding 𝑛 waters in the cavity is 

 𝛽𝜇%"# =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑍(𝑛∗ − 𝑛)

+𝛽𝛾 =X[M
=3
>
?/X

Ñx(〈𝑛〉 − 𝑛)?/X + 𝛿zI − x(〈𝑛〉 − 𝑛∗)?/X + 𝛿zIÖ 𝑛 < 𝑛∗

+ (%∗+〈%〉)3
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+ ?

I
𝑙𝑛(2𝜋〈𝑛〉𝜒)
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I〈%〉W
+ ?

I
𝑙𝑛(2𝜋〈𝑛〉𝜒) 𝑛 ≥ 𝑛∗

,  (43) 

Since 𝑛∗ typically is two or more standard deviations less than 〈𝑛〉, normalization of the 

𝑝%(= exp(−𝛽𝜇%"#)) distribution is well approximated by the normalization of the underlying 

Gaussian distribution. As such, eq. (43) is effectively already normalized. The free energy of 

creating an empty cavity (𝑛 = 0) is subsequently 

 𝛽𝜇!"# =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑍𝑛∗

+𝛽𝛾 =X[M
=3
>
?/X

Ñx〈𝑛〉?/X + 𝛿zI − x(〈𝑛〉 − 𝑛∗)?/X + 𝛿zIÖ 𝑛∗ > 0

+ (%∗+〈%〉)3

I〈%〉W
+ ?

I
𝑙𝑛(2𝜋〈𝑛〉𝜒)

〈%〉
IW
+ ?

I
𝑙𝑛(2𝜋〈𝑛〉𝜒) 𝑛∗ ≤ 0

. (44) 
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We refer to this theory as the augmented fluctuation theory (AFT). 

We note that AFT draws inspiration from the description of non-Gaussian fluctuations 

proposed by Huang and Chandler.28 The main differences with their proposal and the present 

derivation are that we introduce a Tolman-like length to the description of interfacial contributions 

(eq. (37)), identify the cavity occupancy at which the solvent density fluctuations transition from 

Gaussian to non-Gaussian (eq. (40)), and neglect contributions from the volume accessible to the 

bubble within the cavity. The first reason we neglect the volume accessibility contribution is it 

predicts a divergent hydration free energy for the empty cavity since it assigns a zero probability 

of observing an empty cavity, i.e., 𝑝! = 0, due to the reduction of the accessible volume to zero 

when the bubble volume matches the cavity volume. Secondly, we hypothesize that the bubble 

becomes pinned to the center of the cavity as 𝑛 approaches zero, as seen in Figure 9. The reason 

for this pinning is because, for smaller values of 𝑛 either the bubble of volume (〈𝑛〉 − 𝑛)/𝜌 resides 

entirely within the cavity or a larger bubble that is off center overlaps the cavity so that 𝑛 solvent 

molecules on one side of the bubble remain in the cavity. Since the probability of observing 

bubbles even larger than (〈𝑛〉 − 𝑛)/𝜌 becomes negligibly small as the bubble grows, the most 

likely outcome is that the bubble contained within the cavity is pinned near its center as its 

occupancy approaches zero. 

 

4.4 Comparison of AFT with Molecular Simulation. We fit AFT to the simulation results for 

𝛽𝜇!"# obtained from simulation using umbrella sampling over the range 2.5 Å to 6.3 Å (Figure 5). 

This fitting was conducted using the simulation temperature, pressure, and density of pure mW 

water. Molinero et al. report a value of 66.0 dyne/cm at 300 K. We subsequently estimate a surface 

tension of 66.3 dyne/cm at 298.15 K for our fitting using the experimental temperature dependence 



 
 

29 

of the surface tension of water to correct for the slight temperature difference. The fitted value of 

𝛿 was 0.83, corresponding to a radial increment of Δ𝑅 = 1.6 Å. We compare the fitted predictions 

of AFT for the chemical potential of a hard sphere solute in mW water as a function of the solute 

size against that determined from simulation using umbrella sampling in Figure 5. AFT provides 

a significantly improved description of the chemical potential over IGFT with quantitative 

accuracy over the range of solute sizes examined here, giving us confidence in the physics 

incorporated into the theory. 

In Figure 3 we compare of simulation results for 𝑝% against the predictions of AFT for the 4.3 

Å, 5.3, Å, and 6.3 Å cavities. Overall, the predictions of AFT are improved against that using 

IGFT. Notably, AFT accurately captures the fat tail of these distributions. We do observe some 

differences between the simulations and theory in the case of the 6.3 Å sphere. These differences 

are clearer if we consider the ln𝐾% distributions for these cavities (Figure 4). Most significantly, 

AFT accurately captures the break in 𝐾% associated with the transition from the Gaussian to non-

Gaussian regime below 𝑛∗. For cavity occupancies below 𝑛∗, however, AFT captures the 𝑛 

dependence of ln𝐾% only semi-quantitatively. In particular, the simulation results observe a 

shallow minimum in ln𝐾% at intermediate values of 𝑛 between 0 and 𝑛∗, while AFT only predicts 

on weak monotonic increase in ln𝐾% with 𝑛 over this range. We hypothesize that the non-

monotonic dependence of ln𝐾% over this range is the result of capillary fluctuations at the boundary 

of the cavity making it harder to remove those final water molecules from the volume, although 

we have not confirmed this. Nevertheless, AFT accurately threads between the simulation results 

such that the comparison with simulation in Figure 3 is significantly improved. 

In Figure 10 we compare the predictions of 𝑛∗ by AFT as a function of the cavity radius against 

that determined from simulation. We estimated 𝑛∗ from our simulation results two different ways. 
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The first way, we determined the value of 𝑛 at which ln𝐾% exhibits a peak, shifted up by 1/2 to 

better compare the simulation results with the derivative of ln 𝑝% used to evaluate the transition 

point in AFT (eq. (40)). The second way we used to evaluate 𝑛∗ from simulation was to determine 

the value of 𝑛 at which 𝑅b is a minimum (Figure 7). As can be seen in Figure 10, AFT accurately 

captures the size dependence of 𝑛∗, especially as the cavity volume grows. This comparison does 

breakdown for the smallest volumes considered, which is not unexpected given that AFT assumes 

a continuum treatment of thermodynamics even down to atomic scales. In addition, the agreement 

between the 𝑛∗ values determined using either 𝐾% or 𝑅b is quite good, although the 𝑅b estimate 

tends to be slightly larger. This provides strong evidence that the growth in 𝑅b as the occupation 

number decreases is directly linked to the onset of non-Gaussian fluctuations in the cavity. 

 

5. Conclusions. 

In this paper we presented a molecular simulation study of the emptying of atomic- and meso-

scale cavities in water to get a mechanistic understanding of this process and its relationship to the 

thermodynamics of hydrophobic hydration. As found in previous studies, we demonstrated for 

sufficiently large enough volumes, the nature of the solvent density fluctuations within a solute 

cavity transitions from Gaussian to non-Gaussian. The non-Gaussian wing of the distribution as 

the volume empties is significantly more probable than would be expected if the density 

fluctuations were normally distributed, which has previously been referred to as a fat-tail 

distribution. A structural analysis of the waters contained within the cavity finds that the 

occurrence of a fat-tail in the distribution is accompanied with the formation of a bubble within 

the cavity. A statistical thermodynamic analysis of solvent packing on either side of the boundary 

between the cavity’s interior and the bulk solvent demonstrated that the formation of the bubble 
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results in the net adsorption of water onto the cavity’s inner surface, reducing the penalty for 

removing waters from the cavity thereby fattening the distribution. 

The finding that the formation of a bubble within the cavity occurs over a narrow range of 

occupancy states led us to propose an empirical correction to a theory we previously developed to 

account for Gaussian solvent density fluctuations within solute cavities, IGFT. This augmented 

fluctuation theory, or AFT, accounts for the formation of a bubble by smoothly joining IGFT with 

a macroscopic thermodynamic description of a bubble’s interface at the transition occupancy. AFT 

successfully describes the free energies of hard sphere solute hydration over a much broader range 

of solute size scales that IGFT, capturing the fat-tail distribution and predicting the cavity 

occupancies at which the bubble forms. We note that while we only considered solutes up to 6.3 

Å in radius in a coarse-grained representation of water, we previously reported simulations of a 

more realistic description of water with solutes up to 18 Å in radius where it was demonstrated 

that a nascent version of AFT accurately describes bubble formation in this system.32 This lends 

confidence in the accuracy of the theory presented here over a wide range of cavity sizes. 

The statistical thermodynamic framework introduced here connecting the 𝑝% distribution to 

solvent packing both inside and outside a solute cavity provides both a new route for evaluating 

solvent density fluctuations within the volume and for interpreting their origin. We demonstrated 

here that the transition from Gaussian to non-Gaussian like behavior in the emptying of a cavity is 

accompanied with the adsorption of water molecules inside the volume onto the inner surface of 

the cavity. As a result of this adsorption and accompanying bubble formation, the penalty for 

removing waters from the cavity is significantly lower than that would be anticipated assuming 

Gaussian fluctuations. Within the context of this statistical thermodynamic framework, it is 

worthwhile to consider other reasons large density fluctuations can deviate from Gaussian 
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behavior. Notably, simulations of alternate solvents that include dense hard spheres,46-48 an 

isotropic model reproducing water’s RDF,49 the Jagla model,50 and a water-like model with 

weakened hydrogen-bonds50 found that solvent density fluctuations within cavities appear 

Gaussian near 〈𝑛〉, but exhibit significantly suppressed occupation probabilities as 𝑛 → 0. This 

would be indicated by large positive deviations from the linear Gaussian response on a ln𝐾% plot, 

in difference to the negative deviations observed here. Compared to water these solvents are more 

repulsive to one another. For example, the isotropic water model noted above has a pressure of 

7500 bar at 1 g/cm3 at 25°C.49 Rather than adsorb onto the inner surface of the cavity to gain 

attractive interactions with the bulk solvent, we anticipate these repulsive solvents would be 

pushed from the inner surface to positions deeper inside the cavity. As such, we would expect the 

inner surface adsorption peak observed in Figure 6b to migrate towards the center of the cavity 

with only a minimal contact density at the inner surface. This would establish a more significant 

barrier for removing those solvent molecules from the cavity, suppressing larger density 

fluctuations in accord with the simulation observations. 

The present theory does not account for contributions like capillary fluctuations at the bubble 

interface that can make it harder to fully empty the cavity. In addition, for non-spherical volumes 

additional contributions associated with Gaussian curvature and higher order corrections may also 

have to be accounted for.51 Nevertheless, we expect the present description will still capture the 

onset of non-Gaussian solvent density fluctuations even in the case of non-spherical cavities since 

we expect the initial bubble will be spherical, only adopting its final non-spherical shape as the 

cavity is emptied. 
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Figure Captions 

Figure 1. Water occupational probability distributions, 𝑝%, within cavities 2.1 Å, 2.5 Å, 2.9 Å, 3.3 

Å, and 3.7 Å in radius at 25°C and 1 atm. Simulation results determined by umbrella sampling are 

compared against the predictions of IGFT using symbols defined in the figure legend. The 

simulation errors are smaller than the figure symbols. 

 

Figure 2. Differential change in the water occupational probability, ln𝐾% = ln(𝑝%>?/𝑝%) for the 

2.1 Å, 2.9 Å, and 3.7 Å radius cavities at 25°C and 1 atm. Simulation results determined by 

umbrella sampling are compared against the predictions of IGFT using symbols defined in the 

figure legend. The simulation errors are smaller than the figure symbols. 

 

Figure 3. Water occupational probability distributions, 𝑝%, within cavities 4.3 Å, 5.3 Å, and 6.3 Å 

in radius at 25°C and 1 atm. Simulation results determined by umbrella sampling are compared 

against the predictions of IGFT and AFT using symbol defined in the figure legend. The simulation 

errors are smaller than the figure symbols. 

 

Figure 4. Differential change in the water occupational probability, ln𝐾% = ln(𝑝%>?/𝑝%) for the 

4.3 Å, 5.3 Å, and 6.3 Å radius cavities at 25°C and 1 atm. Simulation results determined by 

umbrella sampling are compared against the predictions of IGFT and AFT using symbol defined 

in the figure legend.  The simulation errors are smaller than the figure symbols. 

 

Figure 5. Excess chemical potentials of hard sphere solutes (i.e., empty cavities) in water as a 

function of their radius at 25 °C and 1 atm. Simulation results determined by test particle insertion 
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and umbrella sampling are compared against the predictions of IGFT (eq. (29b)) and AFT (eq. 

(44)) using the symbols defined in the figure legend. Simulation errors are smaller than the figure 

symbols. 

 

Figure 6. Cavity/water radial distribution functions, 𝑔%(𝑟), for water occupancies of a) 𝑛 = 0, b) 

𝑛 = 1, c) 𝑛 = 35, and a) 𝑛 = 45 for the 6.3 Å cavity. The blue and red circles in these figures 

indicates the outer and inner cavity surface contact values of each radial distribution function. The 

red arrow in b indicates the adsorption peak for one water molecule on the inner surface of the 

cavity. 

 

Figure 7. Radius-of-gyration of waters within a cavity as a function of 𝑛 as evaluated by eq. (32) 

at 25°C and 1 atm determined from simulation. a) Results for the 6.3 Å radius spherical cavity. b) 

Results for the 3.3 Å, 4.3 Å, 5.3 Å, and 6.3 Å radius cavities. The radii-of-gyration in b are 

normalized by the radius-of-gyration of a uniform sphere (𝑅b/(𝑅u3/5)), while the occupation 

numbers are normalized by the mean solvent occupation number (𝑛/〈𝑛〉). 

 

Figure 8. Construction of the cavity correlation function, 𝑦%(𝑟), from the 𝑔%(𝑟 ≥ 𝑅) and 

𝑔%>?(𝑟 < 𝑅) radial distribution functions for the 6.3 Å radius cavity with a) 𝑛 = 0, and b) 𝑛 = 

44. The red arrows indicate the direction which −ln𝑔%>?(𝑟 < 𝑅) is shifted to meet −ln𝑔%(𝑟 ≥ 𝑅) 

at 𝑅. 

 

Figure 9. a) Differential change in the mW water occupational probability, ln𝐾% = ln(𝑝%>?/𝑝%), 

, as a function of 𝑛 for 6.3 Å radius volumes at 25°C and 1 atm. The solid line indicates the results 
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determined using umbrella sampling, while the points indicate results determined from the cavity 

radial distribution functions fitted to eq. (20). The red arrows indicate the cavity occupancies 

shown in the simulation snapshots in b. The inset figure shows the 𝑝% distribution function 

determined using umbrella sampling and from the cavity radial distribution functions following 

eq. (21). The error bars are smaller than the figure symbols. b) Simulation snapshots of the 6.3 Å 

cavity taken at cavity occupancies of 𝑛 = 35, 30, 25, 20, 15, 10, 5, and 0. These snapshots are 

taken from a 4 Å thick slice through the center of the solute cavity to more clearly observe the 

waters inside. The cavity boundary is indicated by the black dashed circle. The waters outside and 

inside the cavity are colored red and cyan, respectively. The black dot in the middle of the figure 

indicates the center of the cavity. These images were rendered using VMD.52 

 

Figure 10. The critical bubble nucleation occupancy, 𝑛∗, as a function of the cavity radius. Results 

are reported from the simulations obtained by determination of the peak in ln𝐾% (e.g., Figure 4), 

from the minima in the solvent radii-of-gyration (e.g., Figure 7), and AFT following eq. (42). The 

difference between the 𝑛∗ predictions using eqs. (40) and (42) are negligible. The figure symbols 

are defined in the legend. 
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