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Abstract

We report a Monte Carlo simulation study of length-scale dependent density fluctuations in
cavities in the coarse-grained mW representation of water at ambient conditions. Specifically, we
use a combination of test particle insertion and umbrella sampling techniques to examine the full
range of water occupation states in spherical cavities up to 6.3 A in radius in water. As has
previously been observed, water density fluctuations are found to be effectively Gaussian in nature
for atomic-scale cavities, but as the cavities get larger they exhibit a non-Gaussian “fat-tail”
distribution for lower occupancy states. We introduce a new statistical thermodynamic approach
to analyze non-Gaussian fluctuations based on the radial distribution of waters about cavities with
varying numbers of waters within its boundaries. It is shown that the onset on these non-Gaussian
fluctuations is a result of the formation of a bubble within the cavity as it is emptied that is
accompanied by the adsorption of waters onto its interior surface. We revisit a theoretical
framework we previously introduced to describe Gaussian fluctuations within cavities to now
incorporate bubble formation by including surface tension contributions. This modified theory
accurately describes density fluctuations within both atomic and meso-scale cavities. Moreover,
the theory predicts the transition from Gaussian to non-Gaussian fluctuations at a specific cavity

occupancy in excellent agreement with simulation observations.
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1. Introduction

Water plays a central role in self-assembly processes in aqueous solution, including detergent
assembly into micelles, the folding of proteins, and the formation of larger biomolecular structures.
The hydrophobic effect, the limited solubility of oily species in water, provides the impetus for the
non-specific aggregation and assembly of the non-polar constituents of these molecules.!” The
thermodynamic signatures of hydrophobically driven assembly, however, depend on the size and
curvature of the aggregating moieties.*® On the molecular-scale, the dissolution of non-polar gases
and alkanes in water at room temperature is enthalpically favorable but dominated by a large
negative entropy that opposes hydration. As the size of the hydrophobic groups increases the roles
of entropy and enthalpy are reversed and hydration is opposed by a dominate positive enthalpy
and favored by a smaller positive entropy. This switch in the signatures of hydrophobic hydration
are illustrated by the work of Li and Walker” who observed from experiments of extending
polymers into water using an atomic force microscope that the temperature dependence of the
pulling force shifted from entropically towards enthalpically unfavored as the size of the non-polar
side chains increased. These observations suggest changes in the hydration mechanism with non-
polar solute size. To gain insight into these processes many studies have focused on model solutes
to isolate hydrophobic effects from competing interactions, like dispersion and electrostatic forces.
Molecular simulations are well suited for this task since individual interactions can be turned off
while retaining molecular realism.

The standard approach to describe the hydration of non-polar solutes is to divide the process
into two steps.® First, an empty cavity the size and shape of the excluded volume of the solute is
created in solution. Second, the attractive interactions between water and the solute placed within

the cavity are turned on. For atomic-scale solutes the characteristic thermodynamics of



hydrophobic hydration (e.g., a large negative entropy of hydration) are embedded within the
excluded volume contribution to the hydration process, while the attractive contribution can be
treated perturbatively. As such, the focus of many studies of hydrophobic hydration have focused
solely on the excluded volume, or cavity, contribution to the free energy. The free energy of
solvating an empty cavity-like solute is directly related to the probability of finding an empty
cavity the size and shape of the solute as

ue* = —kpTlnp, ey
where kgT is the product of Boltzmann’s constant and the absolute temperature, p, is the
probability of finding an empty cavity devoid of water within the bulk solvent, and ug* is the free
energy of hydrating the empty cavity, i.e., its excess chemical potential of hydration. One approach
to evaluate the excess chemical potential, scaled-particle theory (SPT), focuses on the process of
growing empty spherical cavities in solution from nothing up to the desired radius.’ The original
implementation of SPT only utilized water’s density and its effective hard sphere diameter to
describe the hydration process.'® ! In the early 1970s, however, Stillinger pointed out that this
version of SPT does not account for the structure of liquid water and incorrectly predicts the
temperature dependence of water’s liquid-vapor surface tension.!? He subsequently provided an
empirically corrected SPT utilizing water’s experimental radial distribution function determined

from X-ray scattering!® !4

and the known surface tension of water. Several years later, Ashbaugh
and Pratt expanded Stillinger’s approach to incorporate many-body correlations into SPT by using
multi-body information from molecular simulations.!>!” These theories helped illuminate the
thermodynamic distinction between molecular-scale hydrophobic hydration, which is opposed by

a dominant negative hydration entropy, and meso/macro-scale hydrophobic hydration, which is

opposed by a dominant positive hydration enthalpy. The distinction between molecular-scale and



meso-scale hydration is described by a crossover length,% '8 1 which itself is temperature
dependent.!’

In the mid-1990s, Hummer et al.?° provided and alternate view of cavity hydration following
information theory, where, rather than focusing only on empty cavities, all possible occupancy
states are considered, p,, (n is the number of solvents within the cavity). They demonstrated for
atomic-scale cavities the p,, distribution is effectively Gaussian in water. While the mean number
of solvent molecules in the cavity depends solely on the density of water and the solute’s volume,
evaluation of the variance in the distribution requires knowledge of water’s radial distribution
function. The information theory description of hydration was subsequently applied to analyze the
thermodynamics of hydrophobic hydration,?* 2! the observation of entropy convergence at

2 and the pressure induced denaturation of proteins.”> More recently,

elevated temperatures,’
Ashbaugh, Vats, and Garde®* demonstrated that for state points far from the critical point, the
solute-size dependence of the variance of the p,, distribution could be approximated over all size
scales using a simple analytical form, referred to as interpolated Gaussian fluctuation theory
(IGFT). This theory only requires information on water’s density, compressibility, and effective
diameter, but not its radial distribution function. IGFT was shown to accurately predict the
characteristic thermodynamics of atomic-scale hydrophobic hydration up to 300°C. Moreover, this
theory also predicted that in the supercooled regime, the hydration heat capacity could also reverse
its sign from positive to negative in agreement with previous simulation observations.?>-?’
Despite its success at addressing atomic-scale hydrophobic hydration, the Gaussian
approximation for solvent density fluctuations breaks down as the solute radius increases much

beyond that of xenon. This was perhaps first demonstrated by Huang and Chandler®® for the

emptying of a Lennard-Jones liquid from cavities significantly larger than the solvent. Notably,



they observed that while the p,, distribution is Gaussian for cavity occupancies near the mean, for
cavities twice the solvent’s diameter and larger the distribution exhibits a “fat-tail” distribution
with lower occupancies being more favorable than anticipated based on Gaussian predictions.
They attributed this non-Gaussian tail to the onset of drying as the result of a bubble forming within
the cavity as it is emptied. It has subsequently been demonstrated that the onset of non-Gaussian
density fluctuations in water between the hydrophobic faces of biomolecules impacts their
interactions with each other and interfaces.?® 3 Moreover, water density fluctuations within
hydrophobic pockets can tilt so that they spontaneously dewet, favoring the binding of non-polar
guests to these surfaces.’!

In a recent paper, Sinha et al.>? examined the process of hydrating large spherical and non-
spherical solutes in SPC/E water to determine the point at which water density fluctuations within
solute cavities cross over from Gaussian to non-Gaussian behavior. In this analysis, we introduced
a theoretical approach utilizing the known interfacial properties of water to describe the onset of
bubble formation within the cavity to describe non-Gaussian density fluctuations. That theoretical
approach, however, was introduced in a cursory manner and not fully developed. Here we revisit
this problem to provide a clearer justification for the proposed changes in the mechanism of cavity
emptying in solutions, reporting new molecular simulations and theoretical results for the process
of emptying solute volumes in water to gain insights into the role of solvent density fluctuations
in the thermodynamics of hydrophobic hydration. Water is modeled here using the coarse-grained
mW model developed by Molinero.?* This model neglects water’s hydrogens, capturing the effect
of directional hydrogen-bonding using a three-body potential proposed by Stillinger and Weber**
that is shorter-ranged than more traditional representations of water, making it computationally

more expedient. More importantly for the work reported here, it has been shown to capture many



of the peculiar thermodynamics of hydrophobic hydration.* In this work, we use simulations to
determine the free energies of removing individual waters from cavities of varying radius to
generate a hard-sphere solutes in water, a model solute for understanding hydrophobic hydration.
A new statistical mechanical approach is developed to evaluate the work of emptying the cavities
based on the structure of water about partially filled and empty cavities, thereby providing new
insights into the emptying process. In the final part of the paper, we extend IGFT to incorporate

non-Gaussian fluctuations that result from interfacial effects that arise as the solute grows in size.

2. Theory

2.1. Water Partitioning Between a Cavity Interior and the Bulk Solvent. While the empty cavity
(n = 0) is most relevant for evaluation of the solvation free energy of a hard sphere solute as
embodied by eq. (1), as shown below the intermediate n provide significant information on the
mechanism by which the volume is emptied. In particular, this chemical potential for creating an
empty cavity can be readily extended to consider the process of finding a cavity with n water in it
as uy* = —kgTlnp,. The process of removing solvent molecules from a cavity to create a hard-
sphere solute can be broken down into a series of steps where the solvent molecules are removed
one-by-one from the volume. In this section we consider the emptying process to construct a
description of hard sphere solvation based on the packing of solvent molecules both inside and
outside the cavity.

To begin, we consider the thermodynamic equilibrium between waters inside and outside a
cavity in solution. The canonical partition function of a system of N total water molecules with n

waters confined within the boundaries of the cavity, v, and N — n waters outside the cavity is

0 _ [vrv-n)V gl Jon f(V_U)N—n exp (-BUN)drNar™
Nn ™ ni(v-n)iasN vn(V-p)N-n
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where V is the total system volume, A is the thermal de Broglie wavelength, q;,,; is the internal
partition function for an individual water molecule associated with vibrational and rotational
degrees of freedom, Uy is the system potential energy, r is the position vector of an individual
molecule, and f = 1/kgT. Orientational degrees of freedom are neglected in the integral above,
but this does not change the results of this analysis. The terms in the first set of square brackets
correspond to the ideal gas contribution to the partition function, Q,"\,‘fn, while the set of square
brackets corresponds to the excess contribution to the partition function, Qg%,, resulting from

intermolecular interactions. The ratio of probabilities of observing n + 1 and n molecules within

the cavity is related to the ratio of their partition functions as

id ex
Pn+1 _ QNn+1 _ ONn+1 ONn+1 (3)
Pn QNn Qll\ll?n Qfl),cn '

In the thermodynamic limit (N = oo and V — o0) the ratio of the ideal gas partition functions is

id
QN n+1 _ pv 4
id - s ( )
QN,n n+1

where p = N/V is the total solvent number density. The ratio of the excess partition functions is

Q]?]J_Cn+1 _ (V—U fvn f(V_U)N—n exp (_BUN)drN_n_ldrn+1 (5)
QNn Jyn Sy _yyN-n exp (~BUN)ATN~Tdr™
This ratio can be re-expressed as
Qex Qex Qex_
N;r;.:—l — IZ),Cn-f-l Ne;,n (6a)
QN,n QN—1,n QN,n
_ (V_u) Jyn+1 Sy _yyN-n-1exp (=BUN)YATN 1 ar™ [ [, N-n-1€xp (-BUN-1)dr" " dr" (6b)
v fvn f(V_U)N—n—l exp (~BUN-1)drN-""1drn fvn f(V_U)N—n exp (-BUN)drN~"drn
The energy of the N molecule system can be divided into N — 1 and 1 molecules as
UN=UN—1+AUN* (7)



It follows that the first ratio of integrals in eq. (6b) can be expressed as

Jyn+1 f(V—u)N—"—l exp(—BUN)drN "= 1arn+l

v fyn Jiy_yyN-n-1exp(-BUN—_1)drN """ 1dr"

Jyn+1 Joy_yyN-n—1€xp (~BAUN)exp (—BUy—_1)drN " 1arn+1
_ (V-v)

v fyn fy_yyN-n-1€Xp (~BUN—1)drN-""Tdrn
= (exp (=BAUN))in, (®)
which corresponds to the Boltzmann weighting of the mean excess chemical potential of a particle
randomly inserted into the cavity. Similarly, the second ratio of integrals in eq. (6¢) can be

expressed as

fvn f(V_U)N—n €xp (_ﬁUN)drN_ndrn

V-v) fvn f(V_U)N—n exp (-BUy-1)drN-""1arn

_ Jyn Sy _yyN-nexp (-pAUN)exp (-fUN-1)drV "ar™

(V=) [yn fiy_yyN-n—1€xp (-BUN-1)drN-""1dr™

= (exp (—BAUN)out> )
which corresponds to the Boltzmann weighting of the mean excess chemical potential of a particle
randomly inserted outside the cavity. Given that the volume of the solvent outside of the cavity is
infinitely greater than that inside the cavity, this is simply the excess chemical potential of the bulk

solvent. The ratio of cavity occupation probabilities is subsequently

Pn+1 — pv (exp (_BAUN))I:TL (10)
Pn (n+1) (exp (-BAUN))out

While the averages in egs. (8) — (10) are technically for the addition of a water molecule to a system
of N — 1 waters, in the thermodynamic limit this indistinguishable for the averages of an N water
system.

While eq. (10) could be evaluated from simulation following standard particle insertion

techniques, this expression can be more readily evaluated from the occupancy dependent radial
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distribution functions (RDFs) between the cavity and the solvent, g,, (7). This collection of RDFs
corresponds to the local solvent density as a function of distance from the center of a cavity with
n waters residing within it. Associated with each RDF is a function y,, (7), also referred to as a
cavity correlation function, that corresponds to the Boltzmann weighting of the potential-of-mean
force associated with bringing a solvent particle from a position infinitely far away to a distance r
from the center of the cavity with n molecules constrained to reside inside. The cavity correlation

function is determined following test particle insertion as

Jon Sy —yyN-n-1€xp [-BAUN(N)]exp (-BUN-1)drN " ar™ of% |

Jyn Sy —yyN-n-1€xp[~BAUN()lexp (~BUN)ArN=""1drn QF=1n

Yu(r) =

(exp (=BAUN(r)))
= . 11
(exp (=BAUN())) (1)

The numerator corresponds to the Boltzmann weighting of the excess chemical potential for of a
water at a distance r from the center of the cavity, while the denominator corresponds to the
Boltzmann weighting of the excess chemical potential for a water infinitely far away from the
center of the cavity, which is equal to the bulk chemical potential in eq. (9) (i.e.,
(exp (—BAUy())) = (exp (—BAUN))py:- For separations outside the cavity, y,(r > R)
corresponds to the RDF between the solvent and cavity with n molecules within it (i.e.,
Yn(r > R) = g,(r > R)). For distances inside the cavity, n + 1 molecules now reside within its
boundary. While it is tempting to equate y,,(r < R) with g,,,,(r < R), normalization of the radial
distribution function negates this equality. Specifically, within the cavity the radial distribution

function obeys the condition

fOR PGni1(T)amr2dr =n + 1. (12)
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This suggests, as we shall see below, that the RDF changes discontinuously across the cavity’s
boundary, while y, (r) is expected to be a continuous function. We propose that y,, (r) is related
to the radial distribution functions as

Kngn+1(r) r<R

gn () r>R (13)

yn(r) = {

where K, is a constant that ensures y,, (r) is continuous across the cavity’s boundary. The question
follows, what is K,?

Following from eq. (12), the average value of g, (r) inside the spherical cavity (r < R) is

n+1

(Gne1(Mhrr = — (14)

pU

It follows from eq. (13) that the average value of y, () inside the cavity is

(n+1)

<yn(r)>rSR = Kn pU . (15)

Following eq. (11), the average value of y, (r) inside the cavity is also

1 ff(exp (—=BAUN(T)))anr?dr

(yn (r)>rsR - (exp (=BAUN))out- (16)

The mean value of the integral in the numerator over the cavity interior is

5 {exp (~BAUN (r))4mr?ar
v

= (exp (=BAUN))in. (17)

Combining egs. (10), (16), and (17) it follows that

(exp (—BAUN))in Pni1 (n+1)
p = = 3 1
O sk = o oaUN Do~ Pr o (18)

Comparing eqgs. (15) and (18) we find the desired result that

K, = ”Z—: (19)

Thus, the discontinuous change in the solvent RDF across the boundary of the cavity can be related
to the work associated with adding a solvent molecule into the cavity already containing n

molecules.
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The derivations above provide a route to determining p,, from molecular simulations, simply
from the distribution of solvent molecules about a cavity. Specifically, a cavity may be included
within a simulation box to evaluate the g, (1) distributions. The resulting K;,’s can be determined
by enforcing continuity between g,,(r) and g,,1(r) at R to determine y,, (). In practice, over a
small range near the boundary, —Iny,, () can be approximated by a quadratic polynomial. As such
we fit the function

f(r)=a,(r—R)?*+a;(r —R) + ag — O(R — r)Ink,,, (20)
simultaneously to —Ing,,,,(r) for r < R and —Ing, (r) for r > R. Here O(x) is the Heaviside
function, and a,, a;, a,, and InK,, are fitting constants. This fitting is performed over only a
limited range of R + 1 A, beyond which the quadratic approximation becomes increasingly
inaccurate. Over this limited fitting range, the potential-of-mean force is —kgTlny,(r) =
a,(r —R)? + a;(r — R) + a,. Once the set of K,,’s across all potential cavity occupation states

is determined, the full p,, distribution is given as

% n=_0
Pn = {pn-1g. , (21a)
=== n>0
where
E=1+32,(I55K). (21b)

While the cavity does exhibit correlations with the solvent that depend on n, on average the cavity
itself has no correlations with the solvent. As such the average RDF between the cavity and solvent
is expected to be

Zn=0Pngn(r) =1 (22)

over all separations from inside to outside the cavity, reflecting the passive nature of the cavity.
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To demonstrate the validity of this approach for obtaining the solvent occupancy distribution
within a cavity, we consider the ideal gas for which the p,, is known analytically. In the ideal gas
where no interactions between molecules are felt, the cavity correlation function between a gas
particle and a cavity with n particles within its interior is

() = 1. (23)
As a result of the normalization condition inside the cavity (eq. (14)), however, the n dependent

RDFs are given as

n
— r<R
gn(r) = {pv (24)
1 r>R
Comparing egs. (18), (23), and (24), it follows that
— PY
Ky =——. (25)
Substituting eq. (25) into eq. (21), we obtain
2= 1+32, (T2 2) = 1+ 32,22 = exp (ov), (262)
and
— n—1_PY
Pn = ( j=0 +1) exp(—pv) = eXp( pv). (26b)

This is the Poisson distribution, the expected probability distribution for a cavity in an ideal gas.

Further, averaging the n dependent RDFs within the cavity (r < R) yields

(pv)" !

(n—-1)!

5 0 Gn(r < R)pp = B0 L2 exp(—pv) = exp(—pv) 2,

pv n!

= exp(—pv) X2, L2 m = exp(—pv) exp(pv) = 1. (27)
Since the Poisson distribution is normalized, it follows that the average of the radial distribution
functions outside the cavity is 1 as well. The average of the cavity radial distribution functions in

the ideal gas subsequently obey eq. (22).
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2.2. Interpolated Gaussian Fluctuation Theory. Here we highlight the key equations
underlying the IGFT description of solvent occupation probabilities in atomic-size cavities in
water. A more complete development of this theory can be found in ref. 2. Following information
theory utilizing only information on the second moment of solvent density fluctations,? the solvent
occupancy probability distribution within an atomic-sized cavity is expected to be Gaussian in
nature. Assuming over this size range n can be approximated as a continuous variable that spans
from -oo to oo, the probability of observing n solvent molecules within the cavity can be expressed

using the normalized Gaussian distribtuon?!- 22

Pu exp [- S0 (28)

1 ex [ (n- (n))z]
2mo? p \/27T(Tl) 2(n)x
where (n) = pv is the mean number of solvent molecules within the cavity, o2 is the variance of
the distribution, and y = ¢2/(n) is the normalized variance. The excess chemical potential

associated with creating a cavity with n solvent molecules within its boundaries is subsequently

(n—(n)*

= + - ln(Zn(n))() (29a)

Bugt = —Inp, =
It follows that the hydration free energy of the empty cavity is
Bugt = —lnpy = T+ 5 In2r(n)y). (290)

While clearly an approximation, this description of atomic scale solvation has been successfully
applied to describe hard sphere solvation in water over a wide range of temperatures.?? 3
While (n) is simply determined from the bulk solvent density and the solute volume, y is

determined from a more complex integral over the solvent-solvent RDF and is not analytical.

Nevertheless, considering the microscopic and macroscopic limits on the y integral, Ashbaugh,
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Vats, and Garde** proposed an interpolative analytical approximation for y in spherical cavities as

a function of their radius

3

; 1-1n (%) R<d,,/2 "

X( ) B (3—6n-3kpTpkr) (dww (1-4n—kpTpkr) (dww 3 ’ ( )
kpTpicr + 2 (ZR)_ 2 (ZR) R=dyy/2

where k; is water’s isothermal compressibility, d,,,, is water’s effective diameter, and n =
mpd3,, /6 is the solvent packing fraction. The expressions egs. (28) to (30) are collectively referred
to as IGFT. This framework was shown to provide an excellent description of the hydration of
hard cavities in water over a wide temperature range and even predicted the unanticipated reversal
in the temperature dependence of hydrophobic hydration thermodynamics in the deeply
supercooled regime. Interestingly, eq. (30) largely relies only on water’s macroscopic equation-
of-state while the structure of water is embodied only within d,,,, (assumed here to be 2.65 A).
This diameter has been found to be effectively independent of temperature.?* 23 In previous studies,
however, non-Gaussian fluctuations were found to become more significant as the size of the
solute grows.?® 3237 As such, IGFT is expected to become increasingly inaccurate for meso-scale

and larger solute volumes.

3. Molecular Simulations

Monte Carlo (MC) simulations*® of mW water’> with a single cavity in solution were
conducted in the isothermal-isobaric ensemble. The temperature and pressure were set to 25°C and
1 atm, respectively. Spherical cavity radii of 2.5 A to 6.3 A in 0.2 A increments were considered.
For cavity radii up to 4.1 A, simulations were conducted with 700 waters, while 1000 waters were
considered for the larger solutes. The cavity in principle has no interactions with water, serving to

sample solvent density fluctuations within its boundaries. For large volumes, however, the rarity
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of large density fluctuations ensure that empty or nearly empty cavities are never observed. To
sample large scale density fluctuations we applied a biasing harmonic umbrella potential®® to
restrict the range of cavity occupancies observed during the simulation

Pump() = ko(n —ng)?. (31
Here k, is the spring constant and n, is the occupancy for which the umbrella potential is a
minimum. The value of n, was adjusted from 0 to values well above (n) in increments of An, =
2 to ensure sampling of the full range of relevant occupancy states. The spring constant was
adjusted to sample occupancy states +3 on either side of n, to ensure overlapping fluctuations
between simulations with consecutive values of n,. As such, k, took on values from 2.5 kJ/mol
up to 9 kJ/mol depending on n,, with larger k, values needed as the cavity is emptied. The full p,,
distribution was reconstructed using the weighted histogram analysis method.** 4! At least 105 MC
passes (where 1 MC pass corresponds to 1 attempted move on each water molecule) were
performed for equilibration at each value of n,, followed by 2.5x107 passes for evaluation of
thermodynamic averages. Volume moves were performed every 5 MC passes. The water and
cavity displacements were modified to ensure acceptance of 30% of moves, while the total
simulation volume displacement was similarly modified to ensure acceptance of 30% of attempted
changes.

In addition to simulations of an explicit cavity in water, we also performed MC simulations of
pure mW water at 25°C and 1 atm. The cubic simulation cell contained 700 water molecules. In
addition to gathering information on the pure water properties (e.g., density and compressibility),
we evaluated the excess chemical potentials of atomic-sized solutes using Widom test particle

insertion.*>*} 103 random test particle insertion attempts were made every tenth MC pass. 10° MC
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passes were conducted for equilibration, followed by 108 MC passes for the evaluation of

thermodynamic averages.

4. Results and Discussion

4.1 Density Fluctuations within a Spherical Cavity. Figure 1 illustrates the Gaussian nature of
solvent density fluctuations within atomic-scale cavities up to 3.7 A in radius in mW water at 25°C
and 1 atm. Specifically, when the probability of observing n water molecules within the cavity,
Pn, 18 plotted on a logarithmic scale as a function of n, we find that the distributions effectively
assume a parabolic form consistent with a Gaussian distribution. The simulation results are in
excellent agreement with the distributions predicted by IGFT, lending confidence to the fidelity of
the theory for describing small-scale solute hydration.

The accuracy of the Gaussian description can be further probed by plotting In K, (=
In(pn41/pn)) versus n (Figure 2). The expectation is that if the density fluctuations are Gaussian
(i.e., Inp, = an? + bn + c, where a, b, and c are constants) then In K,, will be a linear function
ofn (i.e., InK,, = 2an + a + b). While IGFT predicts this linear dependence by construction, the
simulation results exhibit deviations from linearity with increasing solute size. The simulation
results for each cavity considered in Figure 2 exhibit linear behavior for occupation numbers close
to the mean ((n) = pv = 1.3, 3.4, and 7.1 for the 2.1 A, 2.9 A, and 3.7 A radius cavities,
respectively), indicative of Gaussian-like fluctuations near the mean of the distribution that are
well described by IGFT. For more extreme fluctuations away from (n), however, this does not
necessarily hold. Notably for the 3.7 A radius sphere, the simulations exhibit a slight positive
deviation from linearity for n = 2 and 3, followed by a drop below the linear prediction for n =0

and 1. Analogous behavior can be observed for the 2.9 A radius sphere as well, although not as
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dramatic as for the larger volume. The 2.1 A radius cavity, on the other hand, is accurately
described by the Gaussian prediction. For these atomic-scale volumes, however, the combination
of positive and negative deviations from linearity for In K,, are largely compensatory, such that the
Gaussian predictions for the probability of observing an empty sphere, i.e., p,, are reasonably
accurate up to 3.7 A (Figure 1).

The deviations from Gaussian fluctuations are more significant with increasing cavity size.
The occupation probabilities for the 4.3 A, 5.3 A, and 6.3 A radius cavities shown in Figure 3 are
parabolic on a logarithmic scale near the maxima in these distributions, and hence are Gaussian
close to (n). As n decreases, however, the probability distributions for each of these volumes
exhibit markedly greater probabilities for observing nearly empty cavities than anticipated based
on Gaussian fluctuations. As such, the free energy cost associated with observing an empty
mesoscopic-sized cavity would be much lower than predicted following a Gaussian description.
This deviation from the Gaussian prediction corresponds to the fat-tail distribution associated with
drying phenomena in the context of hydrophobic phenomena.?%: >

The breakdown of the Gaussian description for larger volumes is further scrutinized in the plot
of In K, versus n in Figure 4. As above, near the mean occupation number ((n) = 11.1, 20.8, and
34.9 forthe 4.3 A, 5.3 A, and 6.3 A spheres, respectively) the simulation results are linear and well
described by IGFT. As n gets smaller, however, each of these cavities exhibit a dramatic break
from linearity. The location of this break depends on the size of the sphere. To a first
approximation, In K, from n = 0 to the break from linearity is (very) roughly constant and equal
to ~2.5, although there is an n dependence in this regime. A conclusion that can been drawn is that
the crossover from Gaussian to non-Gaussian density fluctuations is not gradual but rather exhibits

a marked change as n drops, suggestive of a transition in the cavity emptying mechanism.
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The differences in the emptying process of the atomic and meso-scale cavities is readily
observed when we consider the hydration free energies of the empty cavities (Figure 5). Up to
solutes ~3.7 A in radius, the hydration free energy is well described by IGFT within ~1 kg T. This
range of solute sizes is coincident with the range of solute sizes for which we reliably observe
empty solute cavities in water by test particle insertion. The hydration free energies of solutes
larger that 3.7 A determined using umbrella sampling, however, are markedly lower than what is
predicted by IGFT. Indeed, for the 6.3 A radius solute IGFT predicts a hydration free energy 64
kgT greater than, or nearly twice, the simulation result. Not accounting for non-Gaussian density
fluctuations as the solute size increases subsequently leads to increasingly inaccurate predictions

of solute hydration free energies.

4.2 Structural Characterization of Cavity Emptying. Insight into the cavity emptying
mechanism can be gained by examining the n dependent RDFs between the cavity and water. In
Figure 6 we report g, (1) forn = 0, 1, 35, and 45 waters within the 6.3 A cavity, representative of
occupancies from empty to well above (n) (RDFs across all cavity occupancy states are reported
in Figure S1 in the Supporting Information). The RDF for the empty volume (g, (), Figure 6a)
corresponds to the RDF between a hard sphere solute and the solvent. Water clearly packs around
the 6.3 A hard solute, with a contact peak approximately 60% greater than the bulk solvent density.
This contact density is comparable to that observed for similarly sized hard sphere solutes in
multiple different representations of water.!> 144 The RDF between water and a cavity with one
water molecule within the solute (g, (1), Figure 6b) is nearly the same as that for the empty volume
for separations outside the cavity. As anticipated in section 2.1 above, the water density changes

discontinuously across the cavity boundary. Within the cavity we find the lone water tends to
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adsorb onto the inner surface of the cavity, indicated by the red arrow pointing to the inner packing
peak. This water presumably attaches itself to the inner surface to gain attractive interactions with
the waters outside the volume that it no longer finds within the emptied solute. The lower value of
the packing density of water against the inner wall compared to that against the outer wall indicates
that water entry into the cavity is favorable. Similar results are observed for cavities with n < (n),
as seen in Figures S1c — Slai in the Supporting Information.

When the cavity contains approximately a number of waters close to the mean value (g35(7),
Figure 6¢) the RDF is practically featureless and nearly equal to 1 across all separations, both
inside and outside the cavity. This observation reflects that when averaged overall occupancy
states the RDF between the cavity and water is 1 (eq. (22)) and that the occupancy states closest
to (n) comprise the dominant contribution to this average. Since the RDF is essentially uniform, it
is anticipated that there is little to no barrier for water entry or exit from the cavity when the contact
density inside and outside are nearly equal.

Finally, when the cavity occupancy is significantly greater than that expected by the bulk
density the waters within the volume are expected to pack more like they would in a high pressure
solid than in a liquid at ambient conditions. When the cavity contains 45 waters the density inside
the volume is 29% greater than the bulk. In this case the RDF between the cavity and water
(gas(r), Figure 6d) exhibits significant structuring. Inside the volume, the waters pack into
approximately two bands as indicated by the two peaks in the RDF for r < 6.3 A. The dominant
peak inside the cavity is the one pressed against the inner surface. The waters outside the volume,
on the other hand, appear to be repelled from its outer surface. This reflects the fact that the waters
inside the volume are so tightly packed against the inner wall they largely present their excluded

volumes to the external waters, resulting in the observed depletion. The net result of this is that the
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density of water pressed against the inner wall is greater than that against the outer wall, forming
a barrier for water entry into the cavity. Similar results are observed for cavities with n > (n), as
seen in Figures Slak — Slas in the Supporting Information.

The segregation of the solvent molecule to the inner surface of the cavity as it is emptied can
be quantified by considering the radius-of-gyration of the collection of waters inside that volume
(Figure 7), evaluated as

R
_ [Frtgaar

2
Rg(m) = [ r2gnryar (32)

For the case of the 6.3 A cavity, R, exhibits a non-monotonic dependence on n (Figure 7a).
Beginning near (n) (= 34.9 for the 6.3 A cavity), R, decreases with decreasing (n) before reaching
a minimum at n = 22. This nearly coincides with the observed deviation from Gaussian behavior
of In K, in Figure 4. This indicates from n = 35 to 22 the waters within the cavity are segregating
towards its middle. For values of n less than 22, however, this trend reverses and R, increases as
water molecules are removed from the cavity (Figure 7a). This effect is such that R, for the volume
with only 1 water molecule in it is greater than that observed near (n), let alone for the largest
occupancy state considered. The suggests over this range of occupancies the water molecules
adsorb onto the inner surface of the cavity as it is emptied, facilitating the formation of a bubble
within the cavity.

Given that the deviations from Gaussian-like behavior are more pronounced for larger cavities
(e.g., Figures 2 and 4), it stands to reason that the non-monotonic dependence of R; on n will
likewise be more pronounced as well. To facilitate comparison of R, across different sized cavities,

we use the normalized variables n/(n), corresponding to the fractional water occupancy, and

Ry/ (R,/S / 5), where R,/3/5 is the radius-of-gyration normalized of a sphere with a uniform
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density of water inside (i.e., eq. (32) with g, (r) = 1). In Figure 7b we compare solvent R;’s for
spheres 3.3 A, 43 A, 5.3 A, and 6.3 A in radius. For occupancies greater than that for which the
minimum in R is observed, each of these cavities appear to follow a universal dependence on n
using the normalized variables. The values of n/(n) for which R is minimized, on the other hand,
depends on the size of the cavity. For the 3.3 A volume the minimum occurs when n = 2, or
n/(n) ~ 0.40. As the volume gets bigger, the value of n/(n) for which R, is minimized shifts to
even larger values, occurring near n/{n) ~ 0.63 for the 6.3 A volume. This indicates that on the
basis of n/(n), the range of fractional occupancy states for which a bubble is stable within the
cavity grows as the cavity size increases.

The knitting together of internal and external portions of the RDFs to determine the cavity
correlation functions, y,, (), for the 6.3 A sphere is illustrated in Figure 8. Shifting —Ing, (r < 6.3
A) down by 3.5 to meet —Ing,(r > 6.3 A) at contact yields a smooth result for —Iny,(r) across
all separations (Figure 8a). The resulting downward shift corresponds to a —kgTInK, = -3.5 kgT
drop in the free energy for adding a single water molecule to an empty cavity. This free energy
drop reflects the observed lower value of g;(R™) at contact with the inner surface of the cavity
(Figure 6b) compared to the great value of g;(R*) at contact with the outer surface (Figure 6a).
Alternately, shifting —Ing,s(r < 6.3 A) up by 2.1 to meet —Ing,,(r > 6.3 A) at contact yields a
smooth result for —Iny,, (r) across all separations (Figure 8b). So, in difference to adding a water
molecule to an empty cavity in water, adding a water to an overly packed volume results in an
unfavorable —kgTInK,, = 2.1 kgT free energy increase. This, likewise is reflected by differences
in the packing of water against the inner surface versus depletion of waters from the outer surface

of the cavity for overly packed states (e.g., Figure 6d).
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In Figure 9a we compare values of InK, determined by umbrella sampling against that
determined from knitting together the cavity RDFs for the 6.3 A cavity (Similarly good results for
the 3.3 A, 4.3 A, and 5.3 A cavities are reported in Figure S2 in the Supporting Information). The
agreement between these two approaches is excellent, such that the p,, distributions determined by
either technique are indistinguishable (Figure 9a inset). In Figure 9b we show simulation snapshots
of slices through the 6.3 A cavity at n values of 35, 30, 25, 20, 15, 10, 5, and 0. In the Gaussian
regime (n = 35, 30, and 25), the water molecules inside the cavity appear, to a first approximation,
uniformly spread across the cavity. A small bubble appears in the lower lefthand side of the n =
20 simulation snapshot, just below the water occupancy level for which InK,, breaks from the
Gaussian prediction. As n decreases further the bubble within the cavity grows even larger until it
is completely empty (n = 0). For the n = 15, 10, and 5 states, the water molecules within the
cavity clearly adsorb to the inner surface of the cavity, largely a result of their attraction to the

waters in the bulk solvent and consistent with the observed growth of R, as the cavity is emptied

(Figure 7a).

4.3 Theoretical Accounting of Non-Gaussian Density Fluctuations. Here we develop a
theoretical framework to modify IGFT to account for non-Gaussian contributions in the
description of solvent density fluctuation within a cavity. Following the observations made above,
we expect the onset of non-Gaussian fluctuations to occur over a narrow range of cavity
occupancies (e.g., Figure 4), followed by the formation of an empty bubble within the cavity as
more waters are removed (e.g., Figure 9). Within the bubble the remaining waters are adsorbed
onto the inner surface of the cavity. These observations form the basis for our extension of the

thermodynamic description of cavity emptying.
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In the Gaussian fluctuation regime, IGFT predicts that the free energy difference associated

with removing a water molecule from a cavity is

ex _ ,,ex \ — Pn+1) . Olnpn _ ((n)-n)
B — ufyo) = In (B2) = S70n = EE, (33)

Note that In(p,+1/p) = InK,, is at best an approximation for the derivative of p,, at n + 1/2,
since the derivative in this expression assumes n is continuous rather than discrete. The derivation
provided here assumes n is a continuous variable as in the development of IGFT above. This
assumption, however, does not impact the outcome of the present derivation.

For large fluctuations that sufficiently reduce the density within the cavity we hypothesize that
a single bubble is nucleated within its boundary. In this case, the thermodynamics of reducing the
solvent occupation number is governed by the work against the bulk pressure and the interfacial
tension of the bubble. Assuming the bubble can be treated as a spherical void in the cavity carved

out from the solvent, the volume and radius of the empty bubble within cavity are

(n)—
Vbubble = % (34)
and
3 \1/3
Rpubbie = (E) ((n) —n)'/3. (35)

The surface upon which the interfacial tension acts is not necessarily determined by Ry ppi1e, but

rather at an effective radius given as

3 \1/3 1/3
Reffective = Rbubble + AR = (E) [(<n> - Tl) + 6]9 (36)

where AR = (3/4mp)*/36 is the difference between the effective and actual bubble radii, and is

qualitatively similar to a Tolman length.* The resulting effective surface area of the bubble is

Aeffective = (3/)6_:)1/3 [((Tl> - Tl)l/S + 5]2, (37)
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The free energy associated with creating a cavity with n waters and a bubble within its bounds is

subsequently determined by the work against the pressure and surface tension as

36m\1/3 2
pust = z(my—m) + By (35) () =2 +6]" + e, (38)
where Z = P /p is the compressibility factor, y is the surface tension of the bubble interface
(assumed here to be the vapor/liquid surface tension), and € is a constant that ensures continuity

of the free energy between the Gaussian and non-Gaussian regimes. As above, the work associated

with removing a single water molecule from the cavity is

3211')1/3 (n)-n)1/3+8

duz”
Blusr — i) ~ - =2+ py (35) LR, (39)

We propose that a bubble is nucleated inside the cavity when the free energy of removing a
water molecule following eq. (39), the bubble growth path, is equal to that determined following
eq. (33), the Gaussian fluctuation path. For states with occupancies less than this transition point,
the free energies for removing waters from the cavity following eq. (39) are lower than that
determined by eq. (33). The emptying of the cavity subsequently follows the path for removing
water that is lowest in free energy. The occupation number at which the bubble is nucleated, n*, is
determined by equating egs. (33) and (39)

1/3 _,*\1/3
32n) (n)y—n*)>+6 (40)

{(n)-n")
=Z+py (ﬁ (—n"2/3

(n)x
A general solution of this expression requires numerical solution of a quintic equation.
Nevertheless, an accurate approximate solution can be derived. Assuming pressure contributions
are negligible (Z = 0), an excellent approximation near atmospheric pressure, and § = 0 we find

321'[)1/4
3p2 ’

n* = (n) — By ( (41)

Expanding the solution of eq. (40) in Z and & to second order we find
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For small values of Z and §, as those found here, use of eq. (42) is simpler than numerical solution
of'eq. (40). Indeed, use of the terms linear in Z and 6 yields results for the free energy (below) that
are practically indistinguishable from the numerical solution of n*. Considering the linear terms in
eq. (42), it is apparent that n* is always less than (n). It is possible to find negative values of n*
from eqgs. (40) and (42). In this case no bubble is nucleated within the cavity and density
fluctuations are Gaussian over the full range of solvent occupancies.

Ensuring that eq. (29a) continuously joins with eq. (38) at n* to determine &, the free energy

of finding n waters in the cavity is

( Z(n* —n)
+By (3:”) Ml =2 + 6T = [(n) —n)B + 6]} n<n

Buz" = +% + %ln(Zn(n))() , (43)
\ OO 1 2 in(2m(n)p) nzn

Since n* typically is two or more standard deviations less than (n), normalization of the
P (= exp(—Bug*)) distribution is well approximated by the normalization of the underlying
Gaussian distribution. As such, eq. (43) is effectively already normalized. The free energy of

creating an empty cavity (n = 0) is subsequently

( n*
+hy (3;)6”) {[<">1/3 +6]° = [(tn) —n")3 + 5]2} n* >0
Aus =1 + (nz;,f_;?) + = In(2m(n)x) . (44)
L <n) L ln(2ﬂ<n)x) n* <0
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We refer to this theory as the augmented fluctuation theory (AFT).

We note that AFT draws inspiration from the description of non-Gaussian fluctuations
proposed by Huang and Chandler.?® The main differences with their proposal and the present
derivation are that we introduce a Tolman-like length to the description of interfacial contributions
(eq. (37)), identify the cavity occupancy at which the solvent density fluctuations transition from
Gaussian to non-Gaussian (eq. (40)), and neglect contributions from the volume accessible to the
bubble within the cavity. The first reason we neglect the volume accessibility contribution is it
predicts a divergent hydration free energy for the empty cavity since it assigns a zero probability
of observing an empty cavity, i.e., p, = 0, due to the reduction of the accessible volume to zero
when the bubble volume matches the cavity volume. Secondly, we hypothesize that the bubble
becomes pinned to the center of the cavity as n approaches zero, as seen in Figure 9. The reason
for this pinning is because, for smaller values of n either the bubble of volume ({(n) — n)/p resides
entirely within the cavity or a larger bubble that is off center overlaps the cavity so that n solvent
molecules on one side of the bubble remain in the cavity. Since the probability of observing
bubbles even larger than ({(n) —n)/p becomes negligibly small as the bubble grows, the most
likely outcome is that the bubble contained within the cavity is pinned near its center as its

occupancy approaches zero.

4.4 Comparison of AFT with Molecular Simulation. We fit AFT to the simulation results for
Bus* obtained from simulation using umbrella sampling over the range 2.5 A to 6.3 A (Figure 5).
This fitting was conducted using the simulation temperature, pressure, and density of pure mW
water. Molinero et al. report a value of 66.0 dyne/cm at 300 K. We subsequently estimate a surface

tension of 66.3 dyne/cm at 298.15 K for our fitting using the experimental temperature dependence
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of the surface tension of water to correct for the slight temperature difference. The fitted value of
& was 0.83, corresponding to a radial increment of AR = 1.6 A. We compare the fitted predictions
of AFT for the chemical potential of a hard sphere solute in mW water as a function of the solute
size against that determined from simulation using umbrella sampling in Figure 5. AFT provides
a significantly improved description of the chemical potential over IGFT with quantitative
accuracy over the range of solute sizes examined here, giving us confidence in the physics
incorporated into the theory.

In Figure 3 we compare of simulation results for p,, against the predictions of AFT for the 4.3
A, 5.3, A, and 6.3 A cavities. Overall, the predictions of AFT are improved against that using
IGFT. Notably, AFT accurately captures the fat tail of these distributions. We do observe some
differences between the simulations and theory in the case of the 6.3 A sphere. These differences
are clearer if we consider the InK,, distributions for these cavities (Figure 4). Most significantly,
AFT accurately captures the break in K, associated with the transition from the Gaussian to non-
Gaussian regime below n*. For cavity occupancies below n*, however, AFT captures the n
dependence of InK, only semi-quantitatively. In particular, the simulation results observe a
shallow minimum in InK,, at intermediate values of n between 0 and n*, while AFT only predicts
on weak monotonic increase in InK, with n over this range. We hypothesize that the non-
monotonic dependence of InK,, over this range is the result of capillary fluctuations at the boundary
of the cavity making it harder to remove those final water molecules from the volume, although
we have not confirmed this. Nevertheless, AFT accurately threads between the simulation results
such that the comparison with simulation in Figure 3 is significantly improved.

In Figure 10 we compare the predictions of n* by AFT as a function of the cavity radius against

that determined from simulation. We estimated n* from our simulation results two different ways.
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The first way, we determined the value of n at which InK,, exhibits a peak, shifted up by 1/2 to
better compare the simulation results with the derivative of In p,, used to evaluate the transition
point in AFT (eq. (40)). The second way we used to evaluate n* from simulation was to determine

the value of n at which R, is a minimum (Figure 7). As can be seen in Figure 10, AFT accurately

captures the size dependence of n*, especially as the cavity volume grows. This comparison does
breakdown for the smallest volumes considered, which is not unexpected given that AFT assumes
a continuum treatment of thermodynamics even down to atomic scales. In addition, the agreement

between the n* values determined using either K, or R, is quite good, although the R, estimate
tends to be slightly larger. This provides strong evidence that the growth in R, as the occupation

number decreases is directly linked to the onset of non-Gaussian fluctuations in the cavity.

5. Conclusions.

In this paper we presented a molecular simulation study of the emptying of atomic- and meso-
scale cavities in water to get a mechanistic understanding of this process and its relationship to the
thermodynamics of hydrophobic hydration. As found in previous studies, we demonstrated for
sufficiently large enough volumes, the nature of the solvent density fluctuations within a solute
cavity transitions from Gaussian to non-Gaussian. The non-Gaussian wing of the distribution as
the volume empties is significantly more probable than would be expected if the density
fluctuations were normally distributed, which has previously been referred to as a fat-tail
distribution. A structural analysis of the waters contained within the cavity finds that the
occurrence of a fat-tail in the distribution is accompanied with the formation of a bubble within
the cavity. A statistical thermodynamic analysis of solvent packing on either side of the boundary

between the cavity’s interior and the bulk solvent demonstrated that the formation of the bubble
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results in the net adsorption of water onto the cavity’s inner surface, reducing the penalty for
removing waters from the cavity thereby fattening the distribution.

The finding that the formation of a bubble within the cavity occurs over a narrow range of
occupancy states led us to propose an empirical correction to a theory we previously developed to
account for Gaussian solvent density fluctuations within solute cavities, IGFT. This augmented
fluctuation theory, or AFT, accounts for the formation of a bubble by smoothly joining IGFT with
a macroscopic thermodynamic description of a bubble’s interface at the transition occupancy. AFT
successfully describes the free energies of hard sphere solute hydration over a much broader range
of solute size scales that IGFT, capturing the fat-tail distribution and predicting the cavity
occupancies at which the bubble forms. We note that while we only considered solutes up to 6.3
A in radius in a coarse-grained representation of water, we previously reported simulations of a
more realistic description of water with solutes up to 18 A in radius where it was demonstrated
that a nascent version of AFT accurately describes bubble formation in this system.?? This lends
confidence in the accuracy of the theory presented here over a wide range of cavity sizes.

The statistical thermodynamic framework introduced here connecting the p,, distribution to
solvent packing both inside and outside a solute cavity provides both a new route for evaluating
solvent density fluctuations within the volume and for interpreting their origin. We demonstrated
here that the transition from Gaussian to non-Gaussian like behavior in the emptying of a cavity is
accompanied with the adsorption of water molecules inside the volume onto the inner surface of
the cavity. As a result of this adsorption and accompanying bubble formation, the penalty for
removing waters from the cavity is significantly lower than that would be anticipated assuming
Gaussian fluctuations. Within the context of this statistical thermodynamic framework, it is

worthwhile to consider other reasons large density fluctuations can deviate from Gaussian
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behavior. Notably, simulations of alternate solvents that include dense hard spheres,**43

an
isotropic model reproducing water’s RDF,* the Jagla model,”® and a water-like model with
weakened hydrogen-bonds®® found that solvent density fluctuations within cavities appear
Gaussian near (n), but exhibit significantly suppressed occupation probabilities as n — 0. This
would be indicated by large positive deviations from the linear Gaussian response on a InK,, plot,
in difference to the negative deviations observed here. Compared to water these solvents are more
repulsive to one another. For example, the isotropic water model noted above has a pressure of
7500 bar at 1 g/cm? at 25°C.* Rather than adsorb onto the inner surface of the cavity to gain
attractive interactions with the bulk solvent, we anticipate these repulsive solvents would be
pushed from the inner surface to positions deeper inside the cavity. As such, we would expect the
inner surface adsorption peak observed in Figure 6b to migrate towards the center of the cavity
with only a minimal contact density at the inner surface. This would establish a more significant
barrier for removing those solvent molecules from the cavity, suppressing larger density
fluctuations in accord with the simulation observations.

The present theory does not account for contributions like capillary fluctuations at the bubble
interface that can make it harder to fully empty the cavity. In addition, for non-spherical volumes
additional contributions associated with Gaussian curvature and higher order corrections may also
have to be accounted for.’! Nevertheless, we expect the present description will still capture the
onset of non-Gaussian solvent density fluctuations even in the case of non-spherical cavities since
we expect the initial bubble will be spherical, only adopting its final non-spherical shape as the

cavity is emptied.
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Figure Captions

Figure 1. Water occupational probability distributions, p,,, within cavities 2.1 A, 2.5A,2.9 A, 3.3
A, and 3.7 A in radius at 25°C and 1 atm. Simulation results determined by umbrella sampling are
compared against the predictions of IGFT using symbols defined in the figure legend. The

simulation errors are smaller than the figure symbols.

Figure 2. Differential change in the water occupational probability, InK,, = In(p,,;1/p,) for the
2.1 A, 29 A, and 3.7 A radius cavities at 25°C and 1 atm. Simulation results determined by
umbrella sampling are compared against the predictions of IGFT using symbols defined in the

figure legend. The simulation errors are smaller than the figure symbols.

Figure 3. Water occupational probability distributions, p,,, within cavities 4.3 A, 5.3 A, and 6.3 A
in radius at 25°C and 1 atm. Simulation results determined by umbrella sampling are compared
against the predictions of IGFT and AFT using symbol defined in the figure legend. The simulation

errors are smaller than the figure symbols.

Figure 4. Differential change in the water occupational probability, InK,, = In(p,,;1/p,) for the
43 A, 53 A, and 6.3 A radius cavities at 25°C and 1 atm. Simulation results determined by
umbrella sampling are compared against the predictions of IGFT and AFT using symbol defined

in the figure legend. The simulation errors are smaller than the figure symbols.

Figure 5. Excess chemical potentials of hard sphere solutes (i.e., empty cavities) in water as a

function of their radius at 25 °C and 1 atm. Simulation results determined by test particle insertion
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and umbrella sampling are compared against the predictions of IGFT (eq. (29b)) and AFT (eq.
(44)) using the symbols defined in the figure legend. Simulation errors are smaller than the figure

symbols.

Figure 6. Cavity/water radial distribution functions, g, (r), for water occupancies of a) n = 0, b)
n =1, ¢)n =35, and a) n = 45 for the 6.3 A cavity. The blue and red circles in these figures
indicates the outer and inner cavity surface contact values of each radial distribution function. The
red arrow in b indicates the adsorption peak for one water molecule on the inner surface of the

cavity.

Figure 7. Radius-of-gyration of waters within a cavity as a function of n as evaluated by eq. (32)
at 25°C and 1 atm determined from simulation. a) Results for the 6.3 A radius spherical cavity. b)
Results for the 3.3 A, 43 A, 53 A, and 6.3 A radius cavities. The radii-of-gyration in b are
normalized by the radius-of-gyration of a uniform sphere (R, / (R\/S_/S)), while the occupation

numbers are normalized by the mean solvent occupation number (n/(n)).

Figure 8. Construction of the cavity correlation function, y,(r), from the g,(r = R) and
In+1(r < R) radial distribution functions for the 6.3 A radius cavity with a) n = 0, and b) n =
44, The red arrows indicate the direction which —Ing,, ., (r < R) is shifted to meet —Ing,,(r = R)

at R.

Figure 9. a) Differential change in the mW water occupational probability, InK,, = In(p+1/Pn)>

, as a function of n for 6.3 A radius volumes at 25°C and 1 atm. The solid line indicates the results
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determined using umbrella sampling, while the points indicate results determined from the cavity
radial distribution functions fitted to eq. (20). The red arrows indicate the cavity occupancies
shown in the simulation snapshots in b. The inset figure shows the p,, distribution function
determined using umbrella sampling and from the cavity radial distribution functions following
eq. (21). The error bars are smaller than the figure symbols. b) Simulation snapshots of the 6.3 A
cavity taken at cavity occupancies of n = 35, 30, 25, 20, 15, 10, 5, and 0. These snapshots are
taken from a 4 A thick slice through the center of the solute cavity to more clearly observe the
waters inside. The cavity boundary is indicated by the black dashed circle. The waters outside and
inside the cavity are colored red and cyan, respectively. The black dot in the middle of the figure

indicates the center of the cavity. These images were rendered using VMD.>?

Figure 10. The critical bubble nucleation occupancy, n*, as a function of the cavity radius. Results
are reported from the simulations obtained by determination of the peak in InK,, (e.g., Figure 4),
from the minima in the solvent radii-of-gyration (e.g., Figure 7), and AFT following eq. (42). The
difference between the n* predictions using egs. (40) and (42) are negligible. The figure symbols

are defined in the legend.
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Figure 9.
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