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Motivated by recent advances in the development of single photon emitters for quantum
information sciences, here we design and formulate a quantum cascade model that de-
scribes cascade emission by a quantum dot (QD) in a cavity structure while preserving
entanglement that stores information needed for single photon emission. The theoreti-
cal approach is based on a photonic structure that consists of two orthogonal cavities in
which resonance with either the first or second of the two emitted photons is possible,
leading to amplification and rerouting of the entangled light. The cavity- QD scheme uses
a four-level cascade emitter that involves three levels for each polarization, leading to two
spatially entangled photons for each polarization. By solving the Schrodinger equation, we
identify the characteristic properties of the system which can be used in conjunction with
optimization techniques to achieve the “best” design relative to a set of prioritized criteria
or constraints in our optical system. The theoretical investigations include an analysis of
emission spectra in addition to the joint spectral density profile, and the results demonstrate
the ability of the cavities to act as frequency filters for the photons that make up the entan-
glements, and to modify entanglement properties. The results provide new opportunities
for the experimental design and engineering of on-demand single photon sources.
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I. INTRODUCTION

With the growth of processing capacity doubling every 18 months(or even less), photonic tech-
nologies are rapidly growing in importance for secure and reliable information transfer. This has
fostered a race to the development and advancement of non-classical light sources: sources that
produce photons with controllable quantum correlations. This has resulted in a new scientific fron-
tier where the development of a single-photon emitter (SPE); a fundamental resource for scalable
quantum information technologies!?, is the main impediment for further progress.

The ideal on-demand SPE radiates exactly one photon at a specified time into a given spatio-
temporal mode. Such SPEs play a key role in many proposed quantum computing schemes, in-
cluding quantum simulation?, boson sampling* , precision measurement’, quantum memories®,
quantum networks’ and quantum walks®. SPEs are also advantageous or required in variety of
quantum secure communication strategies’. This great interest in SPEs for cutting-edge quantum
technologies has attracted much attention, particularly to its experimental realization in quantum
optics!O11,

The search for ‘ideal’ on-demand SPEs has led to many promising material systems, and a num-
ber of these have progressed beyond proof-of-concept to engineering initiatives, with constantly

improved results'2~13,

Recent progress in making SPE’s has cleared away some challenges in the nano-fabrication and
materials growth techniques, leading to scalable on-chip integration and the fabrication of identical
sources'® for photonic circuits, and using different platforms that include quantum dots(QDs)!”,
defects in solids'8, two-dimensional hosts and of course carbon nanotubes!®.

In this work, we consider the decay of an excited QD that emits two photons as a cascade
source, leading to entanglement of the two photons. So far, this approach has been examined
to produce and measure atomic superposition states?’, generate atom—atom?! and atom—photon

t?2, create single photons>? and produce entangled photonic states by sequentially

entanglemen
manipulating atomic systems>*2°. In this paper we explore the theoretical foundations of this
emission process more rigorously for the case where the emission occurs in a cavity, and we map
out the opportunities for achieving useful intensity changes while preserving entanglements for
the chosen cavity structure.

The importance of SPEs in different cutting-edge technologies has opened up new research

opportunities for enhancing the performance of the system as a single bright source. Taking ad-
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vantage of optical microcavities in quantum optics and cavity quantum electrodynamics, de-

16,29

velopments with different geometries ( micropillar structures , and photonic crystal cavities3?)

have been successfully employed, and these optical resonators have risen in performance and with

high fabrication yields either by using the Purcell effect®!-3?

regime>3.

or by entering the strong-coupling

Comparing monolithic cavities with fixed modes versus open cavities, we see that deterministic
fabrication techniques®*3> have made it possible to carefully design a monolithic cavity-single
emitter(SE) hybrid system, matching the spatial and spectral modes between cavity resonances
and the emitter. In addition, due to the intrinsic tunability of open cavities, the cavity dimensions
can be adjusted to the embedded emitter’®*!. The latter cases have proven to be a viable method of
investigation in cavity quantum electrodynamics (cQED) obtaining the same levels of performance
as their monolithic competitors.

It should be noted that in most studies, the cavity’s fundamental mode is used, and higher-order
modes are so widely separated in frequency that they don’t interact with the two-level system. This
means when multiple transitions from the same emitter are required for cQED, it’s not feasible to
design a cavity that uses the fundamental and first-order modes. To circumvent this, two coupled
cavities have been combined to create a doublet of hybridized modes3%*>~43. In order to provide
synchronous frequency matching of both modes with multiple transitions from an emitter, this
technique necessitates fabrication processing that is much more difficult than for a single-mode
cavity.

The cavity- QED implementation used in this paper makes use of a four-level excited QD cou-
pled to two high-Q cavities, which allows for the deterministic generation of polarized-entangled
photon pairs (here the Q of a cavity is determined by the energy stored per cycle versus the energy
lost. With no absorption by the cavity material, Q is determined by the reflection loss at the inter-
face between the interior and exterior of the cavity). Typically, the generation of correlated photon
pairs in semiconductor emitters occurs through a biexciton-exciton cascade emission'®4%47. In
this process, two electron—hole pairs form a biexciton state that radiatively decays with the emis-
sion of two photons in which a single exciton state serves as the intermediate state. This radiative
biexciton cascade in a single semiconductor QD provides a source of entangled photons under gen-

48-51

eral circumstances . Preparing the QD in a biexciton state often leads to emission of photon

pairs with different polarization>>~>.

It should be noted that asymmetry in geometry of the QDs induces splitting of the intermediate
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excitonic states, i.e., fine-structure splitting (FSS) (Agss), which is modified as QD size varies.
Therefore it is more realistic if we describe our QD biexciton cascade emission using a four-
level system composed of a biexciton state (|B)), two bright intermediate exciton levels (|X(Y)))
with different polarization, and a ground state (|G))°%. Spontaneous decay of the biexciton state
to the ground state thus occurs via two intermediate exciton states leading to the emission of
pairs of photons through the transitions |[B) — |X(Y)) and |X(Y)) — |G) respectively (see Fig. 1).
Accordingly, the intermediate excitonic states lead to spin-dependent properties in the emission
process. Note that the FSS between exciton levels is typically of the order of several tens of peV>’
and only causes minor quantitative changes to the results, however the entangled polarized photon
pairs have a lower degree of entanglement>®>°, Effective solutions have been presented in past
studies®9 to resolve this issue so, we ignore it in this work and assume that the two states are
degenerate.

In this work, we assume the system is initially ( at time; # = 0) in the biexciton level |B) with

energy /(g + wg) and the lifetime of the two-photon excited state is a parameter that we denote

Yo

ground state. If Y, < ¥3, the exciton to ground state emission occurs within a short time delay

A second decay rate 3 is assumed to govern the transition from the exciton state to the

after the first emission. We have previously demonstrated for emission into vacuum that this leads

to a high degree of entanglement of the photons %!

. In the present study, we focus on how the
cavity alters the emission, with emphasis on the entangled pair that arises when the first photon
emitted with one polarization is resonant with the one cavity (cavity 1) while the second photon of
that polarization is nonresonant. Another entangled pair arises when both photons have the other
polarization, and the first photon is nonresonant while the second photon is resonant with the other

cavity (cavity 2, see Fig. 1).

II. THEORY IMPLEMENTATION

The different components of the physical system under investigation are depicted in Fig. 1,
including; one four-level QD and two high-Q cavities supporting a single longitudinal mode of
angular frequency @, for one cavity and @, for the other, and the two cavities are associated with
different polarizations (X and Y), i.e., there are two cavity modes of the electromagnetic (e.m.)
field where the optical axes of each cavity are assumed as the quantization axis for the angular

momentum. The transitions from biexciton(B) to exciton state(X/Y) and to the ground state(G)
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FIG. 1. Four-level system QD that includes: biexciton state (|B)), two bright intermediate exciton levels
(1X(Y))) with different polarizations, and a ground state (|G)) that are coupled to two high-Q cavities with
different polarizations. Here the first X- polarized emission (|B) — |X)) is coupled to cavity 1 and the
second Y- polarized emission (|Y) — |G)) is coupled to cavity 2. Spontaneous decay of the biexciton state
to the ground state thus occurs via two intermediate exciton states leading to the emission of pairs of photons

through the transitions |B) — |X(Y)) and |X(Y)) — |G) respectively.

are considered to satisfy the electric dipole selection rules (additional details are provided in our
previous work>%31), and are coupled to the fundamental optical mode of each cavity.

Here we express the coupled components of our photonic system such as QD, cavity 1, cavity 2
and outside reservoir in mathematical notation, where cavity 1, 2 and outside reservoir are initially

in the vacuum states,
|0D) ®10c,) ®[0c,) ® |Og,) © |Or,) = |OD) ®|Q) = |0D, Q) (1)

In the above expression, the first term shows the QD state (|B) or|X(Y)) or|G)) coupled (with
tensor product) to vacuum states of cavity 1; a}(a,) and cavity 2; &\; (ay), with Zij(c’ii) being the
photon creation (annihilation) operator in the corresponding cavity mode and then coupled to the

outside reservoir; /rj’y (7x,y). Since we assume the QD has initially been excited to the biexciton
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FIG. 2. Emission paths for entangled photon production and the specific coupling with the cavities.

state |B) by another process, the initial state of the whole system at time ¢ = 0 is defined as

lw(t=0))=I) =|B,Q) )

We are interested in the describing the near resonant interaction of the QD with the cavity
modes. Here we assume the first X- polarized emission (|B) — |X)) is coupled to cavity 1 and the
second Y- polarized emission (|Y) — |G)) is coupled to cavity 2.

In addition, we assume the right wall of the cavity 1 and the top wall of cavity 2 are partially
transparent, so called single-sided Fabry-Perot resonators®®; that leak photons out to the outside
reservoir leading to two entangled photons that can be detected outside of the cavities for single
photon applications. The cavity fields, a;— , couple to the 7;—, , reservoir oscillator via a coupling
constant g;_,  in the rotating-wave approximation. The emissions inside the cavities and the

corresponding couplings are depicted in Fig. 2.

The evolution of the whole system is traced by writing down the Hamiltonian governing cavities
1 and 2 and the interactions between 'the QD states and the cavities’ and between ’the cavities and
the reservoir’, including for the two polarization modes. In the following expression, we are
considering near-resonant interactions involving quantum dot-cavity interactions, so the biexciton
emission of the QD couples specifically to cavity mode x,1 and the exciton emission couples to

y,2. Similarly, cavity modes x,1 and y,2 only couple to the corresponding reservoir modes and
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there are non-resonant interactions for the other couplings. The resulting Hamiltonian is:

Hcavity = wcxa;cax + wcya;ay
7 _ ~ T i(0g—0, )t ~ T i(wg—op)t
HQD—cavity = 8a, dx,10px¢€ (@ —0cy) +Zgﬁx‘k Qx 2, Ox ;€ ( B x)
- :

+Zgay,q ay,qu;Yei(w @)t + &g, ay, ZG;Ge H0p=e)t 4y,
q
7 3)

—o a7 (@m0 oF o Wey— Oy )t
Hcavity—Rom = 8x,1 ax7]rx71 e( e~ O 1)t i( cy y,2)

+gy2 ay,ry2 e
rooF i(op—ay)t ro~F =~ i(g— o)t
+ngl ax,zervzl e + Zg)/m ay,lqry:lm e " +h c.
1,k

mg
Fou Za)hr] r]X+ZwaA 7

where ng = |B) (X|, G;G = |X) (G| and gq, and gg, are QD-cavity coupling strengths for transi-
tions from the biexciton state to exciton and then to the ground state respectively inside the cavity
and g, and g,» are the vacuum Rabi couplings of the resonant cavity modes vs. the outside
reservoir. We also include the nonresonant couplings here but will neglect them later.

Note that the second index for g, a or 7 is related to the emission event; for instance the first
emission for X-polarization and the second emission for X-polarization: @ ; and Ziyg. We also
define the coupling of y-polarized emission differently than x-polarized emission by introducing
a phase ¢'?; i.e. 8oy, = 8oy ¢'? and 8B, = 8P, ¢'? (look at these references for more details ©7:68).
As we mentioned earlier the FSS between exciton levels is very small and only causes minor
quantitative changes to the results so we assume degenerate intermediate levels; 0q(g), = @g(g),»
by setting Arss ~ 0. Note however that @y # wg for either x or y.

Using e* Be~% = B+ a[A+ B] + %‘—!2 [A,[A, B]], we rewrite the complete form of Hamiltonian

(= Hop + Heaviry + Hop—cavity + Heavity—Ro + H(If"‘”) in the interaction picture,

V] = gax Zl\x,logxel(wa—abc)t +Zg%7q Zl\quGBTYel( U)q +Zgﬁx k ax ZkG;Ge ((DB )l‘
q
+gﬁy ay 26;66( B (Dcy)t +g)’;,l El\il;‘\le ei(wcx_wx,l)l +Zg;l 21\1'72](;.}721 ei(ﬂ)k—(()])l (4)

k,l

r /\T ~ l(a) — @, )t r =~ -~ i(w',*ﬁ)y‘z)[
+ Zgy;n ay,lqr)’alm e +gy,2 ay72ry,2 e o2 4 he.
q,m

where @y — @, and @ — @, are the QD detunings (which we assume are small) with respect to

the cavities. Given this, the state vector of the cavity-QD system at any time ¢ is described by
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FIG. 3. State notation for different emission paths from biexciton state to the outside reservoir and marking

the ones which meet the resonance condition and that we choose to follow for the purpose of this work.

W (1) = na(r) 1B,Q) +nx (1) ay , [X. Q)+ Y me(r) @y, a5, |G.Q)
9 k ) ) k

+ZnY,q(f) a;,1q’Y7Q>+an(f)a )
q q

(5)
+ ) ng¥(r) ﬂ,l@gJGvQ)‘FZn?( y,lq y2|G Q)
%

+Z’710x( xl x2,|G Q) +Zn ylm y,2|G Q)
/

Here, the state vector is a linear combination of the states where the 1n’s are the corresponding
slowly varying probability amplitudes. In this expression the last four terms refer to emission
of photons to the reservoir modes, so we use the superscript "o" to designate the production of
photons "outside" the cavity. Also, the mode labels k and q refer to modes inside the cavity, while
1 and m refer to modes in the reservoir.

Note that if we define the state vector according to all the emission paths depicted in Fig.3, it
would be much more complex, but we selected only the resonant ones with higher probability>3-63-69-71
that are of interest in this work in defining the wavefunction.

We now assume the Wigner-Weisskopf approximation to determine the states of the particle
and radiation field as a function of time, where the particle in an excited state decays to the ground

state with a characteristic lifetime but does not make back and forth transitions. Then from the
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Schrédinger equation |(z)) = —iV; | w(t)), we construct the equations of motion as:

Np(t) = —iga, € ¢! (@ e)t nx (1 ’Zg% 4 ¢/(@a )t Nyq(t)

fix (1) = —igh, e /(e @)l _lzgﬁxk e/l =) (1)
My q(t) = —igh, 4 € @ np(r) — igg €@~ ™), (1)
ﬁk(t) — _lgz;x,k e i(wp—ay)t nX( ) ig;jkl e—i(a)ox—wx,l)tn]?x(t)
hq(t) _ _ig;zei(a)cv ®y0)t n lgﬁ e~ (wﬁ_wcy)tnY,q ©)
hl?x(t) _ _lnge i( @, — @y 1 )t N — lzgr i(op— a)])tnlox
N (1) = —ighye (o= ®2lin, — lZgy ~Omliqoy
nlox([) _ _izg)r;e i(wk—wl)tnl?x
k
19(¢) = _izgr:efi(wrwm)zngy
q

Solving this coupled equations lead to an expression for the amplitude of the outgoing waves as

follows (for details see Appendix A):

Kx
OX g —Do% oF - ; : — ] ] !
i SBS (y + 8 ) (— i — 1001 — (Oatc, — Yar) (— i — 101 — Ypo) v
K
Oy ~ — =
gﬁ‘gay (O)CyZ -+ iKym)(_i(L)(xm - iwﬁc'y o iwcyz - }/(x)(_iwﬁcy o }/ﬁ}) (8)

These are our key results (Eq. 7 and Eq. 8) which show the relationship between scattering ampli-
tudes and properties of the emitter and cavity. Eq. 7 and Eq. 8 allow us to predict and optimize
the functionality of our optical system as a SPE. In bellow we use these findings to discuss some

aspects of entangled photon generated by Cavity-QD system studied here.

III. APPLICATIONS OF THE THEORY
A. Signature of entangled photons through joint spectral density

As mentioned earlier, advances toward applications of the biexciton structure in a quantum dot
as a source of polarized entangled photon pairs are still very attractive!>!3. Here we show that

the entanglement can be preserved while the spectrum of emitted light is modified via cavities.
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In the absence of a fine-structure splitting; Arss = 0, the two possible two-photon de-excitation
paths without cavities are indistinguishable except for their polarization degree of freedom (x ory),
producing equal frequency photon pairs’>. The non-zero fine-structure splitting provides ‘which
path’ information that impairs indistinguishability, while producing photons that are entangled in
both frequency and polarization.

In the present application, the quantum dot is further coupled with cavities, leading to both
frequency and polarization entanglement in the emitted photons,

1 PO PO
Ver) =5 (%7 7,1G,Q) + 0 7 7, 1G,Q) ] ©)

Given the analytical expressions for the amplitude of our polarized photons in the reservoir,
we can examine the existence of entanglement and manipulate the quality of the entanglement
as a function of parameters of the model. We performed some computations using parameters
that simulate polarization-entangled photon pairs from a biexciton cascade for a single InAs QD
embedded in a GaAs/AlAs planar microcavity’>74. Here we look at the joint spectral density (JSD)
of both photons in the x and y directions, [n*|?, |n,”|?, respectively (see Fig. 4). The entanglement
degree can be varied via the emission bandwidths and other relevant parameters in Eq. 7 and Eq. 8.
In practice, the JSD profile can be observed and measured through Hong—Ou—Mandel(HOM)
quantum interference experiments which quantifies the two-photon coherence bandwidth and the
indistinguishablity of the photon pair’>7®. Here in Fig. 4, the vertical and horizontal axes show
the detunings from the resonant cavity frequencies for x (left panel) and y (right panel)-polarized
photon emissions into the reservoir modes from the cavities. We observe that the probability
of frequency correlation is the highest in a very short range of detunings close to the resonance
conditions: |@y — @, | = 0 for x-polarized and |wg — @, | = 0 for y-polarized.

At the same time, the distribution is highly aligned with the anti-diagonal wherein @y + wg =
) + @ and W + O = M + O for x-polarized photon and y-polarized respectively. For the
parameters we have chosen(particularly the cavity frequencies), the bright antidiagonal peak in
the x-polarized result is shifted below the (0,0) origin in Fig. 4 by roughly 2 GHz while the y-
polarized result is shifted up relative to the (0,0) origin by about the same amount. This detuning
arises because the second x-polarized photon and the first y-polarized photon are not in resonance
with the cavity.

In addition to the anti-diagonal correlation behavior in both directions, we recognize that the

intensity is a few orders of magnitude higher in x-polarized photon emission than in y-polarized.
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FIG. 4. Panel (a); joint spectral density, [17/*|*; and Panel (b); |n,”|*>. Using Eq. 7 and Eq. 8, here we
assumed |@y — @, | = |@g — @,| = 0.05 GHz which is the near resonance condition between QD and
cavities. Other assumptions are: @y = 1.5 GHz, g = 3.5 GHz, ¢ = /4, Yo, = 0.005 GHz, Ky = Ky, =
¥, = 0.5 GHz. The scale bar is logarithmic and the dashed lines( -16 to -6 with stepping of 5) refer to the

same intensity scale for X and Y polarization direction.

This reflects differences in the prefactors (the terms that couple the quantum dot to the cavities)
in Eq. 7 and Eq. 8. It is also worth mentioning that the dashed lines(contours going from -16 to
-6 with a step of 5) in Fig. 4, refer to the same intensity scale for X and Y-polarization directions.
We notice that as we tune the frequencies well away from the peak spectral density, the intensity
changes more slowly for Y-polarization where it is the second photon that is resonant with the
cavity than for X-polarization. However close the the peak of the antidiagonal the width of the
peaks measured perpendicular to the antidiagonal are about the same for x and y. This happens
because we chose the x and y decay parameters to be the same, i.e., Yo, =Ya, and yg.=yp,. In
Appendix B, we show based on our earlier work>! that this leads to x and y entanglements which
are similar. However these parameters can be varied in various ways, such as changing the FSS,
so it is possible to adjust the Schmidt numbers of the entanglements using the cavity as well.

It is interesting to compare the results in Fig. 4 with those obtained in the heralding paper”!,
where an amplitude analogous to Eq. 7 and Eq. 8 is given by Eq. 10 of that paper;

ncas: 8a8p
K9 (0, — wp +ivp) (0 + 0 — 0 — O +iY0)

What we find is that the numerator and denominators of Eq. 7 and Eq. 8 have the same structure
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as Eq. 10, but with additional terms. The numerator in Eq. 10 involves a product of g¢ and gg, as
in Eq. 7 and Eq. 8, but there is an extra factor k in Eq. 7 and Eq. 8. The denominator in Eq. 10
involves two of the three terms in parenthesis in Eq. 7 and Eq. 8, with the new term involving
(w + ix). Overall this leads to a factor x/(® + ix) in the amplitudes in Eq. 7 and Eq. 8 that is
the same on resonance as in Eq. 10 (leaving out some additional refinements that we mention
shortly). This suggests that the cavity doesn’t enhance the emitted field compared to what comes
directly from the quantum dot, as makes physical sense given that the cavity is a passive structure.
However the cavity does change a number of factors. It is easy to see from Fig. 4 that the resonance
frequencies of the emitted light are determined by the cavity frequencies ®., and @, rather than
by the quantum dot frequencies. Another difference arises from the factor 1/(w + ix) that was
just mentioned, as this could lead to a much narrower resonance when ®; = @, in Eq. 7 or when
= @y in Eq. 8 than is possible without the cavity. This indicates that the cavity acts in many
respects acts a filter that modifies frequencies and amplitudes and entanglements associated with
the quantum dot emission while transducing emission to the reservoir photons.

Another issue is what happens if the cavity resonance is narrower than the QD resonance. Here
we note that it is the 7y, width that controls the most intense features in Fig. 4. However, one
could imagine that if the cavity modes are narrower, such that k,; < 7, then Fig. 4(a) would be
dominated by the resonance at ®; = .y, rather than the anti-diagonal. This would suppress the
entanglement since entanglement requires that the anti-diagonal character be more important. This
situation is displayed in Fig. 5, left panel, where the resonance at @; = ., is more important. In
fact the cavity effect is weakened and the system is mildly perturbed by cavity in this case. So,
a conclusion from this work is that we need to work in the regime where the cavity resonance
is broader than the QD linewidth for the first emitted photon (in x- direction) and second photon

emission in the y-direction.

B. One-photon correlation function, G

In order to visualize the spectra of the emitted photons, here we look at the one-photon
correlation function G(l)(’c), where an important property of the first-order correlation func-
tion is that it forms a Fourier transform pair with the power spectrum expressed as: S(®) =
%Re Jod G (1)e~®%. The spectrum is obtained by performing a photon number measurement

for a specific mode on a given state, i.e. for a given two-photon state density p, its spectrum is
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FIG. 5. Joint spectral density, |nl‘”‘]2; here we assumed |®y — @.,| = 0.05 GHz where the QD-cavity 1
meets the near resonance condition. Other assumptions are: wy = 1.5 GHz, g = 3.5 GHz, ¢ = n/4,

Yo, = 0.005 GHz, 3. = 0.5 GHz and x,, = 0.0005,0.5,10.0 GHz for the three images. The scale bar is

logarithmic.

given by S(®) = Tr[a" (®)a(w)p]. Using Eq. 7 and Eq. 8 along with residue theorem, for the case
where Yo < Y5, " (this is a good approximation as it was explained in the introduction) with some

simplifications we arrive at,

Gl=Ymn? = s (10%)
l
K 1
~|2¢5 g% |7 X Yo < V5., (10b)
‘ B Otx‘ 2,}/a(a)3x1 + K)%) (wgwx + ']/[%x) a ﬁx/}
GV=Ymyr = s (10¢)
m
ok k(2 ’_Cy 1
= [85,84,] (10d)

X
2%5((1)%,2—# Kyz) (wécy ‘H’éy)

Here K, y, are the average decay from x- and y-directions. Knowing that>!; 8a; 8B, > /Yo, Vg, Where

i = x,y, then the total power spectrum is then obtained as follows,
S(0) =Re{G\" (0) + G} ()} (11)

When the resonance condition between QD and cavities are met; g, = 0 and g, = 0, the

spectrum is simplified into Lorentzian line shape functions;

_ 2Ya, " Ky
T Yo (@, — @) 4 K]
g _ T Ky
T 2%y, (@, — an)? + K7

7’06 < Yﬁx/y
(12)
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FIG. 6. The total power spectrum S(®) in near resonance condition vs. ® = @; » for X- and Y- polarization.

Here Wy = 1.5 GHz, wg = 3.5 GHz, ¢ = /4, Yo, = 0.005 GHz, 15, = 0.5 GHz.

We notice that the line shape broadening in the above spectra is determined by decay of the cavities
in x- and y- directions, K, and &y, and this can be seen in the plotted power spectra (for both x-
and y- emissions) in different scenarios when the resonance condition is changed (see Fig. 6).
Furthermore, when decay of the cavities varies, the plots indicate that the choices of cavity decay
factor are reflected in a phenomenological linewidth for the emissions. However the height of the
spectra fluctuate as an intrinsic property of the QD as Y, and 3 differ. Also note that the results
illustrate that the peak of spectra red shift (moving to lower frequency) as the QD is stepped away

from the resonance condition in both x- and y-polarized spectra.

X1V



C. Probability of polarized emissions into the reservoir

Another interesting analysis can be done by looking at the total amplitude in both x and y

direction and in all frequencies,

le
(@c,1 + Ky, ) (—i0p; — iWc,1 — iOac, — Vo) (—i0B; — iWc,1 — Vpa)
Ky
1 + i’_(x) [wacx + I(Yﬁx - 'Yoz)]

SPE = anox = —ZZgEXg*ax
/ /

oc —Zg;;xg:;X (

(13)

Ky,,
—i@om — IO, — 10,2 — Yo ) (—i0pe, — Vp,)

Ay — oy _ _ * :
SPE ;nm ;gﬁ"gq"(wcyz-i-ﬂfym)(

Ky
W2 +iKy) (wﬁc‘y - i'}’ﬁy>

o< —ig B8 2‘; (
The probability of emission outside of the cavity is

Pspr = Pipg + Ppy = [ASpel” + |Agpy
49, You K N ¥, Yoo Ky (14)
(02, + K20, + (g 1)) (@2, 2 (03, + 1)

The probabilities of x- and y- polarized emission; Pgp, ngE are plotted in Fig. 7. These indicate
that the x-polarized emission is red-shifted respect to y-polarized emission. This seems reasonable
since the most intense emission happens when the system is in near resonance with the first cavity.
However for the y- polarized emission the most intense emission (less intense compared with the
x-polarized emission) occurs when the near resonance condition with the second cavity is met.
It should be noted that in this work, we assumed that the coupling strength between the QD and
cavities is constant, however in general it depends on the position of the QD inside the cavity.
In a simplest model, the coupling can be defined as g (z) = g¢, cos(27z/A., ). In this expression
the position z is with respect to the left wall of the cavity 1, and A, is the wavelength of the
cavity mode (the corresponding angular frequency is ®., = 27c/A.,)’". In the same fashion we
can define the distance dependence of the QD position respect to the bottom wall of cavity 2,
assuming the detectors are located at the right and top of the system respectively. This is another
degree of freedom that can be manipulated to achieve high intense emission at the reservoir in both

x and y directions.
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FIG. 7. (a) Probability of X- and (b) Y- polarization emissions; Pgp, P;PE respectively. Using Eq. 14, we
assumed ¢ = /4, Yo, = 0.005 GHz, k, = &k, = y3, = 0.5 GHz.

IV. CONCLUSION

In conclusion, in this work we derived comprehensive analytical formulas to investigate the
emission spectra of entangled photons in a QD-cavity coupled system. Solving the Schrodinger
equation, we traced the creation of the radiated photons into the reservoir and we characterized
the results by examining the JSD and spectra. By examining the amplitudes of the emissions in
both x and y directions, we were able to predict the best case scenarios for producing highly en-
tangled bright photons. The emission can be significantly modified by coupling to the cavities,
with resonant frequencies that are determined by the cavity resonances rather than the quantum
dots, but the maximum resonant amplitude for emission is the same. The entanglements are also
maintained in some limits, which is important for secure information transfer in communication
technology. These theoretical investigations and the analysis provide a backbone for the experi-
mental design and engineering of an on-demand single photon source. One can therefore modify
the entangled photon properties and the performance of the single-photon properties by optimizing

the characteristic parameters of the system using our analytical formulations.
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Appendix A: Solving the equations of motion

As explained in the main text, from the Schrodinger equation |(¢)) = —iV; |w(¢)) and the state

vector, we construct the equations of motion as:

N(1) = —iga, ¢~ * ) nx (1 ’Zg% €Oy 4 (1)

Mx (1) = —igy, e\ ® )y —lnge 5=, (1)

Myg(t) = —igg g4 € G ns(t) —igg, el @0y, (1)

M(t) = —igly, e~ O8= W (r) — igly @O imox p)

nq(t)z—lg}, i(@cy— wyz)n lgﬁe (wﬁ—wcy)tnnq (Al
(l‘):_lgx7 (wbx (Dxl nk IZ r l(l)k a)])l‘nlox

ng (1) = —ig;"ze"(“’f-‘ My =Yg,y

__lZg (Dll k

=ik ey
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We next rearrange the above equations according to Wigner-Weisskopf approximation and follow

our previous work>! as,

—igo, € C el Nx(t) = — Yo, NB(t)

—iZgav g @@y (1) = — yo,np(1)
(A2)

—lZgﬁh,k @O (1) = — 5 x (1)

—igp, €" B n (1) =— 5, My q(1)
Based on these formulas, a new form of the coupled equations of motion can be expressed as
NB(t) = —Ya, NB(t) — Yo, NB(7)
N () = —igg, e =) np(e) —y5, nx (1)
Mrg(t) = —igh 4 € " (1) — y5, My g(t)
Mi(t) = —igh e 8™y (1) —ighy e e AN ()
fly(t) = —igh e i@y — akz)znoy lgﬁ e (wﬁ—wcy)zny
(1)

(A3)

:_ig)rc*lefi(wcx*wxl k—lZgr i( o —ay)t lax
M (1) = —igype (oA —ngy ~On)i oy
__lzg —y)t I?x

_lZg —i(@y— o)t n;y

The amplitudes regarding the emissions inside and outside of the cavities are obtained by solving

these ODEs in different steps in which the solutions for the first three equations are expressed as

ne(t) =e 7 where Yo = Yo, + Yo,

. [e*i(wa*wcx)f*?’a’_ _Yﬁxl]
Nx(t) = igg, (00 — 0) + Y5, — Ve (A4)
[e™H(@a—@g)t=Yal _ o~ B]

M) = 8aq o0 oy 15, — Ya

Assuming Fy (1) = igp ;e 1O~y (1) and Fy 4(r) = igfive_i(wﬁ_wc’)tnnq we arrive at,
/ dt/FX k _ l/ dt/g;*l e (@1 — O, )t nl?x(t/)

)= —i / dt'g! i@ =) oy (/) _ /O A Fyy (1)
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We also define the following terms to simplify our equations for further analysis;

1Qp, = i0qc, + IO+ Y
iQuy = iOp+ 13,

iQp =iwg.,+ Y8,

This helps us to obtain analytical solutions for the following amplitudes;

(A6)

(AT)

ne (1) = —i 8v18p 18l s T S
¢ —i(0g = 0c,) + Vg, = Yo | =iy (=i, — iy +Ky)  —iL, (—i,1 + Ky)
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Here the decay rate of the intracavity modes’®° has been defined as;

Kc—ﬂZ\gz o)|* = p 3/ do; oF |gi|?

where the x parameters are defined using equations similar to that above together with: @;; =

W; — ©j, Ky, = K1 + K; and K,,, = K» + K;,. This leads to an expression for the amplitude of the

outgoing waves as follows:

wl gi’*V ox
nl = 203 /dt/ ’( )da)k (A8a)
402V 8 8185 18
T ——— mlRAR (A8b)
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FIG. 8.  For different ratios of 7y sy 10 Ve, » WE show the joint spectral density. Top panel; |n/* |> and
bottom panel; |17 |*. Here we choose |0y — 0, | = |@wg — @, | = 0.05 GHz, @y = 1.5 GHz, @ = 3.5 GHz,
¢ = /4, k,, = Kk;,, = 0.5 GHz. The scale bar is logarithmic and the dashed lines( -16 to -6 with stepping

of 5) refer to the same intensity scale for X and Y polarization direction.

Here we assumed that gg 1 ~ gp.. 8a,.9 = 8a» 8, = &y and g & g;z. The above analytical
expression are related to Eq. 7 and 8 in main text. It is to be noted, in solving the above system,
where needed, we changed the sum into an integral over frequency as follows,
1% am _ oo ) Ve )
;%2W/O dq)/o desme/o dkjkj:m/o do; o] (A10)

Also, we have taken the long time limit in evaluating these equations.

Appendix B: Toward Schmidt analysis

Schmidt decomposition is a unique mathematical method for characterising a bipartite system

in terms of a complete set of basis states. As a result of this decomposition, one can calculate

the Schmidt number, which defines the “degree” of entanglement for the two-photon state30-82.

Previously, we have shown?!

an analytical expression for the Schmidt number of the cascade
emitters which has a strong dependence on the ratio of decay rates of the first and second photons.

Here although we didn’t formulate the Schmidt number for the current system, we observe the

XX



strong dependence of our system on the ratio of }’ﬁx/v/ Yo, In Fig. 8 we show how the joint

spectral density is differentiated when ratio of yg_ 10 Yo, varies. The top panel relates to [/~ 2

and bottom panel shows results for |1, |*. From the JSD here, we may conclude that the frequency
correlation which is related to the degree of entanglement of states of the two-photons depends on
the emission decay ratios, however, for a QD-cavity system there might be other characteristic

parameters of the system playing role.
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