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Motivated by recent advances in the development of single photon emitters for quantum

information sciences, here we design and formulate a quantum cascade model that de-

scribes cascade emission by a quantum dot (QD) in a cavity structure while preserving

entanglement that stores information needed for single photon emission. The theoreti-

cal approach is based on a photonic structure that consists of two orthogonal cavities in

which resonance with either the first or second of the two emitted photons is possible,

leading to amplification and rerouting of the entangled light. The cavity- QD scheme uses

a four-level cascade emitter that involves three levels for each polarization, leading to two

spatially entangled photons for each polarization. By solving the Schrodinger equation, we

identify the characteristic properties of the system which can be used in conjunction with

optimization techniques to achieve the “best” design relative to a set of prioritized criteria

or constraints in our optical system. The theoretical investigations include an analysis of

emission spectra in addition to the joint spectral density profile, and the results demonstrate

the ability of the cavities to act as frequency filters for the photons that make up the entan-

glements, and to modify entanglement properties. The results provide new opportunities

for the experimental design and engineering of on-demand single photon sources.
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I. INTRODUCTION

With the growth of processing capacity doubling every 18 months(or even less), photonic tech-

nologies are rapidly growing in importance for secure and reliable information transfer. This has

fostered a race to the development and advancement of non-classical light sources: sources that

produce photons with controllable quantum correlations. This has resulted in a new scientific fron-

tier where the development of a single-photon emitter (SPE); a fundamental resource for scalable

quantum information technologies1,2, is the main impediment for further progress.

The ideal on-demand SPE radiates exactly one photon at a specified time into a given spatio-

temporal mode. Such SPEs play a key role in many proposed quantum computing schemes, in-

cluding quantum simulation3, boson sampling4 , precision measurement5, quantum memories6,

quantum networks7 and quantum walks8. SPEs are also advantageous or required in variety of

quantum secure communication strategies9. This great interest in SPEs for cutting-edge quantum

technologies has attracted much attention, particularly to its experimental realization in quantum

optics10,11.

The search for ‘ideal’ on-demand SPEs has led to many promising material systems, and a num-

ber of these have progressed beyond proof-of-concept to engineering initiatives, with constantly

improved results12–15.

Recent progress in making SPE’s has cleared away some challenges in the nano-fabrication and

materials growth techniques, leading to scalable on-chip integration and the fabrication of identical

sources16 for photonic circuits, and using different platforms that include quantum dots(QDs)17,

defects in solids18, two-dimensional hosts and of course carbon nanotubes19.

In this work, we consider the decay of an excited QD that emits two photons as a cascade

source, leading to entanglement of the two photons. So far, this approach has been examined

to produce and measure atomic superposition states20, generate atom–atom21 and atom–photon

entanglement22, create single photons23 and produce entangled photonic states by sequentially

manipulating atomic systems24–26. In this paper we explore the theoretical foundations of this

emission process more rigorously for the case where the emission occurs in a cavity, and we map

out the opportunities for achieving useful intensity changes while preserving entanglements for

the chosen cavity structure.

The importance of SPEs in different cutting-edge technologies has opened up new research

opportunities for enhancing the performance of the system as a single bright source. Taking ad-
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vantage of optical microcavities27,28 in quantum optics and cavity quantum electrodynamics, de-

velopments with different geometries ( micropillar structures16,29 , and photonic crystal cavities30)

have been successfully employed, and these optical resonators have risen in performance and with

high fabrication yields either by using the Purcell effect31,32 or by entering the strong-coupling

regime33.

Comparing monolithic cavities with fixed modes versus open cavities, we see that deterministic

fabrication techniques34,35 have made it possible to carefully design a monolithic cavity-single

emitter(SE) hybrid system, matching the spatial and spectral modes between cavity resonances

and the emitter. In addition, due to the intrinsic tunability of open cavities, the cavity dimensions

can be adjusted to the embedded emitter36–41. The latter cases have proven to be a viable method of

investigation in cavity quantum electrodynamics (cQED) obtaining the same levels of performance

as their monolithic competitors.

It should be noted that in most studies, the cavity’s fundamental mode is used, and higher-order

modes are so widely separated in frequency that they don’t interact with the two-level system. This

means when multiple transitions from the same emitter are required for cQED, it’s not feasible to

design a cavity that uses the fundamental and first-order modes. To circumvent this, two coupled

cavities have been combined to create a doublet of hybridized modes36,42–45. In order to provide

synchronous frequency matching of both modes with multiple transitions from an emitter, this

technique necessitates fabrication processing that is much more difficult than for a single-mode

cavity.

The cavity- QED implementation used in this paper makes use of a four-level excited QD cou-

pled to two high-Q cavities, which allows for the deterministic generation of polarized-entangled

photon pairs (here the Q of a cavity is determined by the energy stored per cycle versus the energy

lost. With no absorption by the cavity material, Q is determined by the reflection loss at the inter-

face between the interior and exterior of the cavity). Typically, the generation of correlated photon

pairs in semiconductor emitters occurs through a biexciton-exciton cascade emission16,46,47. In

this process, two electron–hole pairs form a biexciton state that radiatively decays with the emis-

sion of two photons in which a single exciton state serves as the intermediate state. This radiative

biexciton cascade in a single semiconductor QD provides a source of entangled photons under gen-

eral circumstances48–51. Preparing the QD in a biexciton state often leads to emission of photon

pairs with different polarization52–55.

It should be noted that asymmetry in geometry of the QDs induces splitting of the intermediate
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excitonic states, i.e., fine-structure splitting (FSS) (∆FSS), which is modified as QD size varies.

Therefore it is more realistic if we describe our QD biexciton cascade emission using a four-

level system composed of a biexciton state (|B〉), two bright intermediate exciton levels (|X(Y )〉)

with different polarization, and a ground state (|G〉)56. Spontaneous decay of the biexciton state

to the ground state thus occurs via two intermediate exciton states leading to the emission of

pairs of photons through the transitions |B〉 → |X(Y )〉 and |X(Y )〉 → |G〉 respectively (see Fig. 1).

Accordingly, the intermediate excitonic states lead to spin-dependent properties in the emission

process. Note that the FSS between exciton levels is typically of the order of several tens of µeV57

and only causes minor quantitative changes to the results, however the entangled polarized photon

pairs have a lower degree of entanglement58,59. Effective solutions have been presented in past

studies60–65 to resolve this issue so, we ignore it in this work and assume that the two states are

degenerate.

In this work, we assume the system is initially ( at time; t = 0) in the biexciton level |B〉 with

energy h̄(ωα +ωβ ) and the lifetime of the two-photon excited state is a parameter that we denote

γ−1
α . A second decay rate γβ is assumed to govern the transition from the exciton state to the

ground state. If γα � γβ , the exciton to ground state emission occurs within a short time delay

after the first emission. We have previously demonstrated for emission into vacuum that this leads

to a high degree of entanglement of the photons50,51. In the present study, we focus on how the

cavity alters the emission, with emphasis on the entangled pair that arises when the first photon

emitted with one polarization is resonant with the one cavity (cavity 1) while the second photon of

that polarization is nonresonant. Another entangled pair arises when both photons have the other

polarization, and the first photon is nonresonant while the second photon is resonant with the other

cavity (cavity 2, see Fig. 1).

II. THEORY IMPLEMENTATION

The different components of the physical system under investigation are depicted in Fig. 1,

including; one four-level QD and two high-Q cavities supporting a single longitudinal mode of

angular frequency ωcx for one cavity and ωcy for the other, and the two cavities are associated with

different polarizations (X and Y), i.e., there are two cavity modes of the electromagnetic (e.m.)

field where the optical axes of each cavity are assumed as the quantization axis for the angular

momentum. The transitions from biexciton(B) to exciton state(X/Y) and to the ground state(G)
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FIG. 1. Four-level system QD that includes: biexciton state (|B〉), two bright intermediate exciton levels

(|X(Y )〉) with different polarizations, and a ground state (|G〉) that are coupled to two high-Q cavities with

different polarizations. Here the first X- polarized emission (|B〉 → |X〉) is coupled to cavity 1 and the

second Y- polarized emission (|Y 〉 → |G〉) is coupled to cavity 2. Spontaneous decay of the biexciton state

to the ground state thus occurs via two intermediate exciton states leading to the emission of pairs of photons

through the transitions |B〉 → |X(Y )〉 and |X(Y )〉 → |G〉 respectively.

are considered to satisfy the electric dipole selection rules (additional details are provided in our

previous work50,51), and are coupled to the fundamental optical mode of each cavity.

Here we express the coupled components of our photonic system such as QD, cavity 1, cavity 2

and outside reservoir in mathematical notation, where cavity 1, 2 and outside reservoir are initially

in the vacuum states,

|QD〉⊗ |0cx〉⊗
∣∣0cy

〉
⊗|0Rx〉⊗

∣∣0Ry

〉
= |QD〉⊗ |Ω〉= |QD,Ω〉 (1)

In the above expression, the first term shows the QD state (|B〉 or|X(Y )〉 or|G〉) coupled (with

tensor product) to vacuum states of cavity 1; â†
x(âx) and cavity 2; â†

y(ây), with â†
i (âi) being the

photon creation (annihilation) operator in the corresponding cavity mode and then coupled to the

outside reservoir; r̂†
x,y(r̂x,y). Since we assume the QD has initially been excited to the biexciton
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FIG. 2. Emission paths for entangled photon production and the specific coupling with the cavities.

state |B〉 by another process, the initial state of the whole system at time t = 0 is defined as

|ψ(t = 0)〉= |I〉= |B,Ω〉 (2)

We are interested in the describing the near resonant interaction of the QD with the cavity

modes. Here we assume the first X- polarized emission (|B〉 → |X〉) is coupled to cavity 1 and the

second Y- polarized emission (|Y 〉 → |G〉) is coupled to cavity 2.

In addition, we assume the right wall of the cavity 1 and the top wall of cavity 2 are partially

transparent, so called single-sided Fabry-Perot resonators66; that leak photons out to the outside

reservoir leading to two entangled photons that can be detected outside of the cavities for single

photon applications. The cavity fields, âi=x,y couple to the r̂i=x,y reservoir oscillator via a coupling

constant gr
i=x,y in the rotating-wave approximation. The emissions inside the cavities and the

corresponding couplings are depicted in Fig. 2.

The evolution of the whole system is traced by writing down the Hamiltonian governing cavities

1 and 2 and the interactions between ’the QD states and the cavities’ and between ’the cavities and

the reservoir’, including for the two polarization modes. In the following expression, we are

considering near-resonant interactions involving quantum dot-cavity interactions, so the biexciton

emission of the QD couples specifically to cavity mode x,1 and the exciton emission couples to

y,2. Similarly, cavity modes x,1 and y,2 only couple to the corresponding reservoir modes and
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there are non-resonant interactions for the other couplings. The resulting Hamiltonian is:

Ĥcavity = ωcx â
†
x âx +ωcy â

†
y ây

ĤQD−cavity = gαx âx,1σ
†
BX ei(ωα−ωcx)t +∑

k
gβx,k

âx,2kσ
†
XGei(ωβ−ωk)t

+∑
q

gαy,q ây,1qσ
†
BY ei(ωα−ωq)t +gβy ây,2σ

†
Y Gei(ωβ−ωcy)t +h.c.

Ĥcavity−Rout = gr
x,1 â†

x,1r̂x,1 ei(ωcx−ωx,1)t +gr
y,2 â†

y2
r̂y,2 ei(ωcy−ωy,2)t

+∑
l,k

gr
xl

â†
x,2k

r̂x,2l ei(ωk−ωl)t +∑
m,q

gr
ym

â†
y,1q

r̂y,1m ei(ωq−ωm)t +h.c.

ĤRout
0 = ∑

jx

ω jx r̂
†
jx r̂ jx +∑

jy

ω jy r̂
†
jy r̂ jy

(3)

where σ
†
BX = |B〉〈X |, σ

†
XG = |X〉〈G| and gαx and gβx are QD-cavity coupling strengths for transi-

tions from the biexciton state to exciton and then to the ground state respectively inside the cavity

and gx,1 and gy,2 are the vacuum Rabi couplings of the resonant cavity modes vs. the outside

reservoir. We also include the nonresonant couplings here but will neglect them later.

Note that the second index for g, â or r̂ is related to the emission event; for instance the first

emission for X-polarization and the second emission for X-polarization: âx,1 and ây,2. We also

define the coupling of y-polarized emission differently than x-polarized emission by introducing

a phase eiφ ; i.e. gαy = gαx eiφ and gβy = gβx eiφ (look at these references for more details 67,68).

As we mentioned earlier the FSS between exciton levels is very small and only causes minor

quantitative changes to the results so we assume degenerate intermediate levels; ωα(β )x = ωα(β )y ,

by setting ∆FSS ≈ 0. Note however that ωα 6= ωβ for either x or y.

Using eαABe−αA = B+α[A+B]+ α2

2! [A, [A,B]], we rewrite the complete form of Hamiltonian

(= ĤQD + Ĥcavity + ĤQD−cavity + Ĥcavity−Rout + ĤRout
0 ) in the interaction picture,

V̂I = gαx âx,1σ
†
BX ei(ωα−ωcx)t +∑

q
gαy,q ây,1qσ

†
BY ei(ωα−ωq)t +∑

k
gβx,k âx,2kσ

†
XGei(ωβ−ωk)t

+gβy ây,2σ
†
Y Gei(ωβ−ωcy)t +gr

x,1 â†
x,1r̂x,1 ei(ωcx−ωx,1)t +∑

k,l
gr

xl
â†

x,2k
r̂x,2l ei(ωk−ωl)t

+∑
q,m

gr
ym

â†
y,1q

r̂y,1m ei(ωq−ωm)t +gr
y,2 â†

y,2r̂y,2 ei(ωcy−ωy,2)t +h.c.

(4)

where ωα −ωcx and ωβ −ωcy are the QD detunings (which we assume are small) with respect to

the cavities. Given this, the state vector of the cavity-QD system at any time t is described by
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FIG. 3. State notation for different emission paths from biexciton state to the outside reservoir and marking

the ones which meet the resonance condition and that we choose to follow for the purpose of this work.

|ψ(t)〉= ηB(t) |B,Ω〉+ηX(t) â†
x,1 |X ,Ω〉+∑

k
ηk(t) â†

x,1â†
x,2k
|G,Ω〉

+∑
q

ηY,q(t) â†
y,1q
|Y,Ω〉+∑

q
ηq(t) â†

y,1q
â†

y,2 |G,Ω〉

+∑
k

η
ox
k (t) r̂†

x,1â†
x,2k
|G,Ω〉+∑

q
η

oy
q (t) â†

y,1q
r̂†

y,2 |G,Ω〉

+∑
l

η
ox
l (t) r̂†

x,1r̂†
x,2l
|G,Ω〉+∑

m
η

oy
m (t) r̂†

y,1m
r̂†

y,2 |G,Ω〉

(5)

Here, the state vector is a linear combination of the states where the η’s are the corresponding

slowly varying probability amplitudes. In this expression the last four terms refer to emission

of photons to the reservoir modes, so we use the superscript "o" to designate the production of

photons "outside" the cavity. Also, the mode labels k and q refer to modes inside the cavity, while

l and m refer to modes in the reservoir.

Note that if we define the state vector according to all the emission paths depicted in Fig.3, it

would be much more complex, but we selected only the resonant ones with higher probability53,63,69–71

that are of interest in this work in defining the wavefunction.

We now assume the Wigner-Weisskopf approximation to determine the states of the particle

and radiation field as a function of time, where the particle in an excited state decays to the ground

state with a characteristic lifetime but does not make back and forth transitions. Then from the
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Schrödinger equation |ψ̇(t)〉=−iV̂I |ψ(t)〉, we construct the equations of motion as:

η̇B(t) =−igαx ei(ωα−ωcx)tηX(t)− i∑
q

gαy,q ei(ωα−ωq)tηY,q(t)

η̇X(t) =−ig∗αx
e−i(ωα−ωcx)tηB(t)− i∑

k
gβx,k ei(ωβ−ωk)tηk(t)

η̇Y,q(t) =−ig∗αy,q e−i(ωα−ωq)tηB(t)− igβy ei(ωβ−ωcy)tηq(t)

η̇k(t) =−ig∗
βx,k e−i(ωβ−ωk)tηX(t)− igr∗

x,1 e−i(ωcx−ωx,1)tηox
k (t)

η̇q(t) =−igr
y,2ei(ωcy−ωy,2)tηoy

q − ig∗
βy

e−i(ωβ−ωcy)tηY,q

η̇
ox
k (t) =−igr∗

x,1e−i(ωcx−ωx,1)tηk− i∑
l

gr
xl

ei(ωk−ωl)tηox
l

η̇
oy
q (t) =−igr∗

y,2e−i(ωcy−ωy,2)tηq− i∑
m

gr
ym

ei(ωq−ωm)tηoy
m

η̇
ox
l (t) =−i∑

k
gr∗

xl
e−i(ωk−ωl)tηox

k

η̇
oy
m (t) =−i∑

q
gr∗

ym
e−i(ωq−ωm)tηoy

q

(6)

Solving this coupled equations lead to an expression for the amplitude of the outgoing waves as

follows (for details see Appendix A):

η
ox
l ≈−2g∗

βx
g∗αx

κxl

(ωcx1 + iκxl)(−iωβ l− iωcx1− iωαcx− γα)(−iωβ l− iωcx1− γβx)
(7)

η
oy
m ≈−g∗

βy
g∗αy

κym

(ωcy2 + iκym)(−iωαm− iωβcy− iωcy2− γα)(−iωβcy− γβy)
(8)

These are our key results (Eq. 7 and Eq. 8) which show the relationship between scattering ampli-

tudes and properties of the emitter and cavity. Eq. 7 and Eq. 8 allow us to predict and optimize

the functionality of our optical system as a SPE. In bellow we use these findings to discuss some

aspects of entangled photon generated by Cavity-QD system studied here.

III. APPLICATIONS OF THE THEORY

A. Signature of entangled photons through joint spectral density

As mentioned earlier, advances toward applications of the biexciton structure in a quantum dot

as a source of polarized entangled photon pairs are still very attractive12,13. Here we show that

the entanglement can be preserved while the spectrum of emitted light is modified via cavities.
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In the absence of a fine-structure splitting; ∆FSS = 0, the two possible two-photon de-excitation

paths without cavities are indistinguishable except for their polarization degree of freedom (x or y),

producing equal frequency photon pairs72. The non-zero fine-structure splitting provides ‘which

path’ information that impairs indistinguishability, while producing photons that are entangled in

both frequency and polarization.

In the present application, the quantum dot is further coupled with cavities, leading to both

frequency and polarization entanglement in the emitted photons,

|ψEP〉=
1√
2

[
η

ox r̂†
x,1r̂†

x,2 |G,Ω〉+η
oy r̂†

y,1r̂†
y,2 |G,Ω〉

]
(9)

Given the analytical expressions for the amplitude of our polarized photons in the reservoir,

we can examine the existence of entanglement and manipulate the quality of the entanglement

as a function of parameters of the model. We performed some computations using parameters

that simulate polarization-entangled photon pairs from a biexciton cascade for a single InAs QD

embedded in a GaAs/AlAs planar microcavity73,74. Here we look at the joint spectral density (JSD)

of both photons in the x and y directions, |ηox
l |

2, |ηoy
m |2, respectively (see Fig. 4). The entanglement

degree can be varied via the emission bandwidths and other relevant parameters in Eq. 7 and Eq. 8.

In practice, the JSD profile can be observed and measured through Hong–Ou–Mandel(HOM)

quantum interference experiments which quantifies the two-photon coherence bandwidth and the

indistinguishablity of the photon pair75,76. Here in Fig. 4, the vertical and horizontal axes show

the detunings from the resonant cavity frequencies for x (left panel) and y (right panel)-polarized

photon emissions into the reservoir modes from the cavities. We observe that the probability

of frequency correlation is the highest in a very short range of detunings close to the resonance

conditions: |ωα −ωcx |= 0 for x-polarized and |ωβ −ωcy |= 0 for y-polarized.

At the same time, the distribution is highly aligned with the anti-diagonal wherein ωα +ωβ =

ω1 +ωl and ωα +ωβ = ω2 +ωm for x-polarized photon and y-polarized respectively. For the

parameters we have chosen(particularly the cavity frequencies), the bright antidiagonal peak in

the x-polarized result is shifted below the (0,0) origin in Fig. 4 by roughly 2 GHz while the y-

polarized result is shifted up relative to the (0,0) origin by about the same amount. This detuning

arises because the second x-polarized photon and the first y-polarized photon are not in resonance

with the cavity.

In addition to the anti-diagonal correlation behavior in both directions, we recognize that the

intensity is a few orders of magnitude higher in x-polarized photon emission than in y-polarized.

x



FIG. 4. Panel (a); joint spectral density, |ηox
l |2; and Panel (b); |ηoy

m |2. Using Eq. 7 and Eq. 8, here we

assumed |ωα −ωcx | = |ωβ −ωcy | = 0.05 GHz which is the near resonance condition between QD and

cavities. Other assumptions are: ωα = 1.5 GHz, ωβ = 3.5 GHz, φ = π/4, γαx = 0.005 GHz, κxl = κym =

γβx = 0.5 GHz. The scale bar is logarithmic and the dashed lines( -16 to -6 with stepping of 5) refer to the

same intensity scale for X and Y polarization direction.

This reflects differences in the prefactors (the terms that couple the quantum dot to the cavities)

in Eq. 7 and Eq. 8. It is also worth mentioning that the dashed lines(contours going from -16 to

-6 with a step of 5) in Fig. 4, refer to the same intensity scale for X and Y-polarization directions.

We notice that as we tune the frequencies well away from the peak spectral density, the intensity

changes more slowly for Y-polarization where it is the second photon that is resonant with the

cavity than for X-polarization. However close the the peak of the antidiagonal the width of the

peaks measured perpendicular to the antidiagonal are about the same for x and y. This happens

because we chose the x and y decay parameters to be the same, i.e., γαx=γαy and γβx=γβy . In

Appendix B, we show based on our earlier work51 that this leads to x and y entanglements which

are similar. However these parameters can be varied in various ways, such as changing the FSS,

so it is possible to adjust the Schmidt numbers of the entanglements using the cavity as well.

It is interesting to compare the results in Fig. 4 with those obtained in the heralding paper51,

where an amplitude analogous to Eq. 7 and Eq. 8 is given by Eq. 10 of that paper;

η
cas
kq =

gαgβ

(ωq−ωβ + iγβ )(ωk +ωq−ωα −ωβ + iγα)

What we find is that the numerator and denominators of Eq. 7 and Eq. 8 have the same structure
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as Eq. 10, but with additional terms. The numerator in Eq. 10 involves a product of gα and gβ , as

in Eq. 7 and Eq. 8, but there is an extra factor κ in Eq. 7 and Eq. 8. The denominator in Eq. 10

involves two of the three terms in parenthesis in Eq. 7 and Eq. 8, with the new term involving

(ω + iκ). Overall this leads to a factor κ/(ω + iκ) in the amplitudes in Eq. 7 and Eq. 8 that is

the same on resonance as in Eq. 10 (leaving out some additional refinements that we mention

shortly). This suggests that the cavity doesn’t enhance the emitted field compared to what comes

directly from the quantum dot, as makes physical sense given that the cavity is a passive structure.

However the cavity does change a number of factors. It is easy to see from Fig. 4 that the resonance

frequencies of the emitted light are determined by the cavity frequencies ωcx and ωcy rather than

by the quantum dot frequencies. Another difference arises from the factor 1/(ω + iκ) that was

just mentioned, as this could lead to a much narrower resonance when ω1 = ωcx in Eq. 7 or when

ω2 = ωcy in Eq. 8 than is possible without the cavity. This indicates that the cavity acts in many

respects acts a filter that modifies frequencies and amplitudes and entanglements associated with

the quantum dot emission while transducing emission to the reservoir photons.

Another issue is what happens if the cavity resonance is narrower than the QD resonance. Here

we note that it is the γα width that controls the most intense features in Fig. 4. However, one

could imagine that if the cavity modes are narrower, such that κxl < γα , then Fig. 4(a) would be

dominated by the resonance at ω1 = ωcx, rather than the anti-diagonal. This would suppress the

entanglement since entanglement requires that the anti-diagonal character be more important. This

situation is displayed in Fig. 5, left panel, where the resonance at ω1 = ωcx is more important. In

fact the cavity effect is weakened and the system is mildly perturbed by cavity in this case. So,

a conclusion from this work is that we need to work in the regime where the cavity resonance

is broader than the QD linewidth for the first emitted photon (in x- direction) and second photon

emission in the y-direction.

B. One-photon correlation function, G(1)

In order to visualize the spectra of the emitted photons, here we look at the one-photon

correlation function G(1)(τ), where an important property of the first-order correlation func-

tion is that it forms a Fourier transform pair with the power spectrum expressed as: S(ω) =
1
π

Re
∫

∞

0 dτG(1)(τ)e−iωτ . The spectrum is obtained by performing a photon number measurement

for a specific mode on a given state, i.e. for a given two-photon state density ρ , its spectrum is
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FIG. 5. Joint spectral density, |ηox
l |2; here we assumed |ωα −ωcx | = 0.05 GHz where the QD-cavity 1

meets the near resonance condition. Other assumptions are: ωα = 1.5 GHz, ωβ = 3.5 GHz, φ = π/4,

γαx = 0.005 GHz, γβx = 0.5 GHz and κxl = 0.0005,0.5,10.0 GHz for the three images. The scale bar is

logarithmic.

given by S(ω) = Tr[â†(ω)â(ω)ρ]. Using Eq. 7 and Eq. 8 along with residue theorem, for the case

where γα � γβx/y
(this is a good approximation as it was explained in the introduction) with some

simplifications we arrive at,

G(1)
x = ∑

l
|ηox

l |
2 ⇒ Sx (10a)

≈ |2g∗
βx

g∗αx
|2 κ̄x

2γα(ω2
cx1 + κ̄2

x )
× 1

(ω2
αcx

+ γ2
βx)

γα � γβx/y
(10b)

G(1)
y = ∑

m
|ηoy

m |2 ⇒ Sy (10c)

= |g∗
βy

g∗αy
|2

κ̄y

2γα(ω2
cy2 + κ̄2

y )
× 1

(ω2
βcy

+ γ2
βy
)

(10d)

Here κ̄x,y, are the average decay from x- and y-directions. Knowing that51; gαigβi ∝
√

γαiγβi where

i = x,y, then the total power spectrum is then obtained as follows,

S(ω) = Re{G(1)
x (ω)+G(1)

y (ω)} (11)

When the resonance condition between QD and cavities are met; ωαcx = 0 and ωβcy = 0, the

spectrum is simplified into Lorentzian line shape functions;

Sx =
2γαx

γαγβx
× κ̄x

[(ωcx−ω1)2 + κ̄2
x ]

γα � γβx/y

Sy =
γαy

2γαγβy

κ̄y

[(ωcy−ω2)2 + κ̄2
y ]

(12)
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FIG. 6. The total power spectrum S(ω) in near resonance condition vs. ω = ω1,2 for X- and Y- polarization.

Here ωα = 1.5 GHz, ωβ = 3.5 GHz, φ = π/4, γαx = 0.005 GHz, γβx = 0.5 GHz.

We notice that the line shape broadening in the above spectra is determined by decay of the cavities

in x- and y- directions, κ̄x and κ̄y, and this can be seen in the plotted power spectra (for both x-

and y- emissions) in different scenarios when the resonance condition is changed (see Fig. 6).

Furthermore, when decay of the cavities varies, the plots indicate that the choices of cavity decay

factor are reflected in a phenomenological linewidth for the emissions. However the height of the

spectra fluctuate as an intrinsic property of the QD as γα and γβ differ. Also note that the results

illustrate that the peak of spectra red shift (moving to lower frequency) as the QD is stepped away

from the resonance condition in both x- and y-polarized spectra.
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C. Probability of polarized emissions into the reservoir

Another interesting analysis can be done by looking at the total amplitude in both x and y

direction and in all frequencies,

Ax
SPE = ∑

l
η

ox
l =−∑

l
2g∗

βx
g∗αx

κxl

(ωcx1 + iκxl)(−iωβ l− iωcx1− iωαcx− γα)(−iωβ l− iωcx1− γβx)

∝−2g∗
βx

g∗αx

κ̄x

(ωcx1 + iκ̄x)[ωαcx + i(γβx− γα)]

Ay
SPE = ∑

m
η

oy
m =−∑

m
gβyg

∗
αy

κym

(ωcy2 + iκym)(−iωαm− iωβcy− iωcy2− γα)(−iωβcy− γβy)

∝−igβyg
∗
αy

κ̄y

(ωcy2 + iκ̄y)(ωβcy− iγβy)

(13)

The probability of emission outside of the cavity is

PSPE = Px
SPE +Py

SPE = |Ax
SPE |2 + |A

y
SPE |

2

=
4γβxγαx κ̄

2
x

(ω2
cx1 +κ2

xl
)[ω2

αcx
+(γβx− γα)2]

+
γβyγαy κ̄

2
y

(ω2
cy2 +κ2

ym
)(ω2

βcy
+ γ2

βy
)

(14)

The probabilities of x- and y- polarized emission; Px
SPE , Py

SPE are plotted in Fig. 7. These indicate

that the x-polarized emission is red-shifted respect to y-polarized emission. This seems reasonable

since the most intense emission happens when the system is in near resonance with the first cavity.

However for the y- polarized emission the most intense emission (less intense compared with the

x-polarized emission) occurs when the near resonance condition with the second cavity is met.

It should be noted that in this work, we assumed that the coupling strength between the QD and

cavities is constant, however in general it depends on the position of the QD inside the cavity.

In a simplest model, the coupling can be defined as gcx(z) = gcx cos(2πz/λcx). In this expression

the position z is with respect to the left wall of the cavity 1, and λcx is the wavelength of the

cavity mode (the corresponding angular frequency is ωcx = 2πc/λcx)
77. In the same fashion we

can define the distance dependence of the QD position respect to the bottom wall of cavity 2,

assuming the detectors are located at the right and top of the system respectively. This is another

degree of freedom that can be manipulated to achieve high intense emission at the reservoir in both

x and y directions.
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FIG. 7. (a) Probability of X- and (b) Y- polarization emissions; Px
SPE , Py

SPE respectively. Using Eq. 14, we

assumed φ = π/4, γαx = 0.005 GHz, κ̄x = κ̄y = γβx = 0.5 GHz.

IV. CONCLUSION

In conclusion, in this work we derived comprehensive analytical formulas to investigate the

emission spectra of entangled photons in a QD-cavity coupled system. Solving the Schrodinger

equation, we traced the creation of the radiated photons into the reservoir and we characterized

the results by examining the JSD and spectra. By examining the amplitudes of the emissions in

both x and y directions, we were able to predict the best case scenarios for producing highly en-

tangled bright photons. The emission can be significantly modified by coupling to the cavities,

with resonant frequencies that are determined by the cavity resonances rather than the quantum

dots, but the maximum resonant amplitude for emission is the same. The entanglements are also

maintained in some limits, which is important for secure information transfer in communication

technology. These theoretical investigations and the analysis provide a backbone for the experi-

mental design and engineering of an on-demand single photon source. One can therefore modify

the entangled photon properties and the performance of the single-photon properties by optimizing

the characteristic parameters of the system using our analytical formulations.
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Appendix A: Solving the equations of motion

As explained in the main text, from the Schrödinger equation |ψ̇(t)〉=−iV̂I |ψ(t)〉 and the state

vector, we construct the equations of motion as:

η̇B(t) =−igαx ei(ωα−ωcx)tηX(t)− i∑
q

gαy,q ei(ωα−ωq)tηY,q(t)

η̇X(t) =−ig∗αx
e−i(ωα−ωcx)tηB(t)− i∑

k
gβx,k ei(ωβ−ωk)tηk(t)

η̇Y,q(t) =−ig∗αy,q e−i(ωα−ωq)tηB(t)− igβy ei(ωβ−ωcy)tηq(t)

η̇k(t) =−ig∗
βx,k e−i(ωβ−ωk)tηX(t)− igr∗

x,1 e−i(ωcx−ωx,1)tηox
k (t)

η̇q(t) =−igr
y,2ei(ωcy−ωy,2)tηoy

q − ig∗
βy

e−i(ωβ−ωcy)tηY,q

η̇
ox
k (t) =−igr∗

x,1e−i(ωcx−ωx,1)tηk− i∑
l

gr
xl

ei(ωk−ωl)tηox
l

η̇
oy
q (t) =−igr∗

y,2e−i(ωcy−ωy,2)tηq− i∑
m

gr
ym

ei(ωq−ωm)tηoy
m

η̇
ox
l (t) =−i∑

k
gr∗

xl
e−i(ωk−ωl)tηox

k

η̇
oy
m (t) =−i∑

q
gr∗

ym
e−i(ωq−ωm)tηoy

q

(A1)
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We next rearrange the above equations according to Wigner-Weisskopf approximation and follow

our previous work51 as,

−igαx ei(ωα−ωcx)tηX(t) =− γαx ηB(t)

−i∑
q

gαy,q ei(ωα−ωq)tηY,q(t) =− γαyηB(t)

−i∑
k

gβx,k ei(ωβ−ωk)tηk(t) =− γβx ηX(t)

−igβy ei(ωβ−ωcy)tηq(t) =− γβy ηY,q(t)

(A2)

Based on these formulas, a new form of the coupled equations of motion can be expressed as

η̇B(t) =−γαx ηB(t)− γαy ηB(t)

η̇X(t) =−ig∗αx
e−i(ωα−ωcx)tηB(t)− γβx ηX(t)

η̇Y,q(t) =−ig∗αy,q e−i(ωα−ωq)tηB(t)− γβy ηY,q(t)

η̇k(t) =−ig∗
βx,k e−i(ωβ−ωk)tηX(t)− igr∗

x,1 e−i(ωcx−ωx,1)tηox
k (t)

η̇q(t) =−igr
y,2ei(ωcy−ωy,2)tηoy

q − ig∗
βy

e−i(ωβ−ωcy)tηY,q

η̇
ox
k (t) =−igr∗

x,1e−i(ωcx−ωx,1)tηk− i∑
l

gr
xl

ei(ωk−ωl)tηox
l

η̇
oy
q (t) =−igr∗

y,2e−i(ωcy−ωy,2)tηq− i∑
m

gr
ym

ei(ωq−ωm)tηoy
m

η̇
ox
l (t) =−i∑

k
gr∗

xl
e−i(ωk−ωl)tηox

k

η̇
oy
m (t) =−i∑

q
gr∗

ym
e−i(ωq−ωm)tηoy

q

(A3)

The amplitudes regarding the emissions inside and outside of the cavities are obtained by solving

these ODEs in different steps in which the solutions for the first three equations are expressed as

ηB(t) = e−γα t where γα = γαx + γαy

ηX(t) = ig∗αx

[e−i(ωα−ωcx)t−γα t− e−γβx t ]

−i(ωα −ωcx)+ γβx− γα

ηY,q(t) = ig∗αy,q
[e−i(ωα−ωq)t−γα t− e−γβy t ]

−i(ωα −ωq)+ γβy− γα

(A4)

Assuming FX ,k(t) = ig∗
βx,k

e−i(ωβ−ωk)tηX(t) and FY,q(t) = ig∗
βy

e−i(ωβ−ωcy)tηY,q we arrive at,

ηk(t) =−
∫ t

0
dt ′FX ,k(t ′)− i

∫ t

0
dt ′gr∗

x,1 e−i(ωx,1−ωcx)t
′
η

ox
k (t ′)

ηq(t) =−i
∫ t

0
dt ′gr

y,2ei(ωcy−ω2)t ′ηoy
q (t ′)−

∫ t

0
dt ′FY,q(t ′)

(A5)
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We also define the following terms to simplify our equations for further analysis;

iΩkα
= iωαcx + iωβk + γα

iΩkβ
= iωβk + γβx

iΩqα
= iωαq + iωβcy + γα

iΩβ = iωβcy + γβy

(A6)

This helps us to obtain analytical solutions for the following amplitudes;

η
ox
k (t) =−i

gr∗
x,1g∗

βx,k
g∗αx

e−κxl t

−i(ωα −ωcx)+ γβx− γα

[
e−iωcx1t−iΩkα

t+κxl t−1
−iΩkα

(−iωcx1− iΩkα
+κxl)

− e−iωcx1t+κxl t−1
−iΩkα

(−iωcx1 +κxl)

− e
−iωcx1t−iΩk

β
t+κxl t−1

−iΩkβ
(−iωcx1− iΩkβ

+κxl)
+

e−iωcx1t+κxl t−1
−iΩkβ

(−iωcx1 +κxl)

]

η
oy
q (t) =−i

gr∗
y,2g∗

βy
g∗αy,qe−κym t

−i(ωα −ωq)+ γβy− γα

[
e−iωcy2t−iΩqα t+κym t−1

−iΩqα
(−iωcy2− iΩqα

+κym)
− e−iωcy2t+κym t−1
−iΩqα

(−iωcy2 +κym)

− e−iωcy2t−iΩq
β

t+κym t−1
−iΩβ (−iωcy2− iΩβ +κym)

+
e−iωcy2t+κym t−1
−iΩβ (−iωcy2 +κym)

]
(A7)

Here the decay rate of the intracavity modes78,79 has been defined as;

κc = π ∑
i
|gi(ωc)|2 =

V
π2c3

∫
∞

0
dωi ω

2
i |gi|2

where the κ parameters are defined using equations similar to that above together with: ωi j =

ωi−ω j, κxl = κ1 + κl and κym = κ2 + κm. This leads to an expression for the amplitude of the

outgoing waves as follows:

η
ox
l =−i

ω2
l gr∗

xl
V

π2c3

∫ t

0
dt ′
∫

∞

0
e−i(ωk−ωl)t ′ηox

k (t ′)dωk (A8a)

η
ox
l ≈−

4ω2
l V

πc3

gr∗
xl

gr∗
x,1g∗

βx,k
g∗αx

(ωcx1 + iκxl)(−iωβ l− iωcx1− iωαcx− γα)(−iωβ l− iωcx1− γβx)
(A8b)

≈−2g∗
βx

g∗αx

κxl

(ωcx1 + iκxl)(−iωβ l− iωcx1− iωαcx− γα)(−iωβ l− iωcx1− γβx)
(A8c)

η
oy
m =−i

(ω2
mgr∗

ym
V

π2c3

)∫ t

0
dt ′
∫

∞

0
dωq e−i(ωq−ωm)t ′ηoy

q (t ′)dωq (A9a)

η
oy
m ≈−

(
2

ω2
mV

πc3

) gr∗
ym

gr∗
y,2g∗

βy
g∗αy,q

(ωcy2 + iκym)(−iωαm− iωβcy− iωcy2− γα)(−iωβcy− γβy)
(A9b)

≈−g∗
βy

g∗αy

κym

(ωcy2 + iκym)(−iωαm− iωβcy− iωcy2− γα)(−iωβcy− γβy)
(A9c)
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FIG. 8. For different ratios of γβx/y
to γαx/y , we show the joint spectral density. Top panel; |ηox

l |2 and

bottom panel; |ηoy
m |2. Here we choose |ωα−ωcx |= |ωβ −ωcy |= 0.05 GHz, ωα = 1.5 GHz, ωβ = 3.5 GHz,

φ = π/4, κxl = κym = 0.5 GHz. The scale bar is logarithmic and the dashed lines( -16 to -6 with stepping

of 5) refer to the same intensity scale for X and Y polarization direction.

Here we assumed that gβx,k ≈ gβx , gαy,q ≈ gαy , gr
xl
≈ gr

x,1 and gr
ym
≈ gr

y,2. The above analytical

expression are related to Eq. 7 and 8 in main text. It is to be noted, in solving the above system,

where needed, we changed the sum into an integral over frequency as follows,

∑
j
→ 2

V
(2π)3

∫ 2π

0
dφ
′
∫

π

0
dθ sinθ

∫
∞

0
dk j k2

j =
V

π2c3

∫
∞

0
dω j ω

2
j (A10)

Also, we have taken the long time limit in evaluating these equations.

Appendix B: Toward Schmidt analysis

Schmidt decomposition is a unique mathematical method for characterising a bipartite system

in terms of a complete set of basis states. As a result of this decomposition, one can calculate

the Schmidt number, which defines the “degree” of entanglement for the two-photon state80–82.

Previously, we have shown51 an analytical expression for the Schmidt number of the cascade

emitters which has a strong dependence on the ratio of decay rates of the first and second photons.

Here although we didn’t formulate the Schmidt number for the current system, we observe the
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strong dependence of our system on the ratio of γβx/y
/γαx/y . In Fig. 8 we show how the joint

spectral density is differentiated when ratio of γβx/y
to γαx/y varies. The top panel relates to |ηox

l |
2

and bottom panel shows results for |ηoy
m |2. From the JSD here, we may conclude that the frequency

correlation which is related to the degree of entanglement of states of the two-photons depends on

the emission decay ratios, however, for a QD-cavity system there might be other characteristic

parameters of the system playing role.
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