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Since the initial discovery of Aqueoria victoria’s green fluorescence off the coast
of Washington’s Puget Sound, biofluorescent marine organisms have been found
across the globe. The variety of colors of biofluorescence as well as the variability
in the organisms that exhibit this fluorescence is astounding. The mechanisms
of biofluorescence in marine organisms are also variable. To fluoresce, some
organisms use fluorescent proteins, while others use small molecules. In eels, green
biofluorescence was first identified in Anguilla japonica. The green fluorescence in
A. japonica was discovered to be caused by a fatty acid binding protein (UnaG) whose
fluorescence is induced by the addition of bilirubin. Members of this class of proteins
were later discovered in Kaupichthys eels (Chlopsid FP | and Chlopsid FP Il). Here,
we report the discovery and characterization of the first member of this class of green
fluorescent fatty acid binding proteins from the moray eel Gymnothorax zonipectis. This
protein, GymFP, is 15.6 kDa with a fluorescence excitation at 496 nm and an emission
maximum at 532 nm upon addition of bilirubin. GymFP is 61% homologous to UnaG and
47% homologous to Chlopsid FP . Here, we report de novo transcriptome assembly,
protein expression, and fluorescence spectroscopic characterization of GymFP. These
findings extend the fluorescent fatty acid binding proteins into a third family of true eels
(Anguilliformes).

Keywords: eels, fluorescence, fatty acid binding proteins, bilirubin, green fluorescence, marine fish, fluorescent
proteins

INTRODUCTION

Biofluorescence is a phenomenon that is widespread in the marine environment, being found in eels
(Hayashi and Toda, 2009; Kumagai et al., 2013; Gruber et al., 2015; Krivoshik et al., 2020), sharks,
and many other fish species (Sparks et al., 2014). Marine biofluorescence was first discovered in
the 1960s by Osamu Shimomura in the jellyfish Aqueoria victoria (Shimomura et al., 1962). The
structure of green fluorescent protein (GFP) is a beta barrel with the fluorophore forming from a
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spontaneous cyclization reaction of three amino acids: Serine-
Tyrosine-Glycine (Barondeau et al., 2005). Derivatives of GFP
were later identified in corals (Matz et al., 1999; Salih et al., 2000;
Field et al., 2006; Leutenegger et al., 2007).

In 2009, a green fluorescent protein (UnaG) was discovered in
an eel, Anguilla japonica (Hayashi and Toda, 2009; Kumagai et al.,
2013). UnaG was found to be a member of the fatty acid binding
protein family (Kumagai et al., 2013). Structural characterization
of UnaG revealed a beta barrel structure (Kumagai et al.,
2013). UnaG did not fluoresce spontaneously as GFP, instead it
required the addition of bilirubin, a breakdown product of heme
metabolism (Kumagai et al., 2013). Other Anguilla species were
later discovered to have bilirubin inducible fluorescent fatty acid
binding proteins in their transcriptome sequences (Funahashi
et al., 2017). Our work led to the discovery of members of this
class of proteins in two chlopsid eels: Kaupichthys hyoproroides
and Kaupichthys n. sp. These proteins are called Chlopsid FP I
and Chlopsid FP II, respectively (Gruber et al., 2015).

All fluorescent fatty acid binding proteins discovered to date
have a Glycine-Proline-Proline (GPP) motif that resides on a
loop that may act to protect bilirubin from solvent. This may be
a reason for fluorescence in the eel fatty acid binding proteins
(Gruber et al., 2015; Krivoshik et al., 2020). Work with Chlopsid
FP I showed that mutation of the GPP motif to GGG significantly
reduces quantum yield (Gruber et al., 2015), while deletion fully
quenches fluorescence (Krivoshik et al., 2020).

Here, we report a new fluorescent fatty acid binding protein
(GymFP) isolated from the widespread Indo-Pacific moray
eel, Gymnothorax zonipectis. This discovery represents the
third family of Anguilliformes (true eels), Muraenidae, from
which FPs have been isolated and characterized. This is the
first report of a fluorescent fatty acid binding protein from
Muraenidae. Herein we report de novo transcriptome assembly
of G. zonipectis, fluorescence characterization, and recombinant
expression of GymFP.

MATERIALS AND METHODS

Collection and Identification of

Gymnothorax zonipectis

Specimens of G. zonipectis were collected during daylight SCUBA
dives via the application of rotenone to a targeted shallow reef
habitat (8-12 m) in Peava Lagoon, Western Province of the
Solomon Islands (—8.784222 degrees S, 158.231345 degrees E).
Immediately after collection, the G. zonipectis specimen (AMNH
277097) was placed in a narrow photographic tank and held
flat against a thin plate glass (Figures 1A,B). Fluorescent macro
images were produced in a dark room by covering the flash
with interference bandpass excitation filters (Omega Optical,
Inc., Brattleboro, VT; Semrock, Inc., Rochester, NY) to elicit
fluorescence. Longpass (LP) and bandpass (BP) emission filters
(Semrock) were attached to the front of the camera lens to block
the excitation light and record emitted fluorescence. The eel was
stored in a liquid nitrogen dry shipper and transported back to
the American Museum of Natural History, New York, where

it was immediately stored at —80°C. The specimen was then
delivered to Baruch College.

Research and collection permits were obtained from the
Ministry of Fisheries and Marine Resources (MFMR), and the
Ministry of Environment, Climate Change, Disaster Management
and Meteorology (MECDM), Honiara, Solomon Islands. Fishes
were collected and handled in accordance with AMNH
Institutional Animal Care and Use Committee (IACUC) and
American Fisheries Society (AFS) guidelines, as established for
the safe and humane care and handling of vertebrate animals.
Fieldwork was carried out in collaboration with and permitted
by the Solomon Islands MFMR and MECDM, and facilitated in
the Solomon Islands by the Wildlife Conservation Society (WCS,
New York; Munda, Western Province, Solomon Islands).

Gymnothorax zonipectis was identified using the following
criteria: Overall body coloration brown. The posterior 2-3
laterosensory pores on the upper and lower jaws are enclosed in
vertically oriented white bars that are continuous across the lower
jaw. Distinct irregular dark brown marking with pale borders
posterior to orbit. Body with oblique pattern of darkly pigmented
broken/discontinuous vertical bars (in four longitudinal series)
that become more pronounced caudally. Bars become more
darkly pigmented/larger with bright white borders on posterior
fins (Supplementary Figure 1).

Determination of Fluorescent Properties

From Tissue Samples

G. zonipectis was dissected using a Lightools Research LT-9900
Mlumatool Tunable Lighting System (Lightools Research) to
ensure that the samples taken contained fluorescent tissue. Cross-
sectional images of specimens were generated using a Zeiss-Axio
Zoom V16 stereo fluorescent microscope affixed with a Nikon
D4 camera. These samples were homogenized in 1X PBS using
a BeadBug homogenizer (Benchmark Scientific) and centrifuged
at 15,000 rcf for 10 min.

RNA Extraction and de novo

Transcriptome Assembly

RNA extraction of the fluorescent tissue from G. zonipectis
was performed using the RNeasy Fibrous Tissue Mini Kit from
Qiagen. Fluorescent tissue in G. zonipectis was found below the
skin of the eel. The location of the fluorescence is shown in a
photo of the cross section of the eel in Figure 1E. A 30 mg piece
of fluorescent tissue was cut using a scalpel for RNA extraction.
The extracted RNA sample (28 L of 75 ng/LL) was then sent to
GENEWIZ, LLC (South Plainfield, NJ) for de novo transcriptome
assembly and bioinformatic analysis including a BLAST search
was used to search for protein candidates.

Library Preparation With PolyA Selection

and HiSeq Sequencing

RNA Library preparation was performed by Genewiz, LLC. RNA
was quantified using Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, United States). RNA integrity measurement was
completed using TapeStation (Agilent Technologies, Palo Alto,
CA, United States).
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FIGURE 1 | Details of green fluorescence of Gymnothorax zonipectis (AMNH 277097, 151 mm SL). (A) White light and (B) fluorescent emission photo of
Gymnothorax zonipectis. (C,D) Close up of epidermis revealing dark pigmented regions (chromatophores) interspersed with green fluorescence arising from below
the skin, and (E,F) cross-section through the mid body demonstrating fluorescence below the skin. Muraenids (morays), like most anguilliform eels, lack scales.
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NEBNext Ultra RNA Library Prep Kit for Illumina was
used in library preparation using manufacturer’s instructions
(NEB, Ipswich, MA, United States). mRNAs were enriched
with Oligod(T) beads. Enriched mRNAs were fragmented
for 15 min at 94°C. First and second strand ¢cDNA were
synthesized. cDNA fragments were end repaired and adenylated
at 3’ends, and universal adapters were ligated to cDNA fragments,
followed by index addition and library enrichment by PCR
with limited cycles.

The Agilent TapeStation was used for library validation
(Agilent Technologies, Palo Alto, CA, United States), and
quantified by using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad,
CA) as well as by quantitative PCR (KAPA Biosystems,
Wilmington, MA, United States).

After clustering the library on flowcell, the flowcell was loaded
on the Illumina HiSeq instrument (4,000 or equivalent) according
to manufacturer’s instructions. The sample was sequenced using
a 2 x 150 bp Paired End (PE) configuration. Image analysis
and base calling were conducted by the HiSeq Control Software
(HCS). Raw sequence data (.bcl files) generated from Illumina
HiSeq was converted into fastq files and de-multiplexed using
Mumina’s bel2fastq 2.17 software. One mismatch was allowed for
index sequence identification.

Data Analysis

Data analysis was performed by GENEWIZ, United States.
Sequence reads were trimmed to remove possible adapter
and nucleotides with poor quality (error rate < 0.01) using
Trimmomatic v.0.36 (Bolger et al., 2014). Then Trinity v2.5, de
novo assembler (Grabherr et al., 2011), was used on combined
samples per species. One de novo assembled transcriptome was
created with a minimum contig length of 200 bp. Transrate v1.0.3
(Smith-Unna et al., 2016) was used to generate statistics for the de
novo assembled transcriptome. EMBOSS tool getorf (Rice et al.,
2000) was then used to find the open reading frames within the
de novo assembled transcriptome. The de novo transcriptome
assembly was then annotated using Diamond BLASTx against the
NCBI NR database.

Phylogetic Tree Generation

The phylogenetic tree is presented in Supplementary Figure 2A.
The alignments are presented in Supplementary Figure 2B.
Alignments were done using MAFFT v7.487 with the L-INS-i
Iterative refinement method and default parameters (Figure 2A
and Supplementary Figure 2B; Hofacker et al,, 2002; Katoh
et al., 2002, 2005; Katoh and Toh, 2008; Tabei et al.,
2008; Katoh and Frith, 2012; Kuraku et al, 2013; Katoh
and Standley, 2016; Yamada et al., 2016; Rozewicki et al,
2019). The best model of substitution was selected using
ModelFinder (Kalyaanamoorthy et al., 2017). For generation of
the phylogenetic tree (Supplementary Figure 2A), the following
input data statistics were generated: 14 sequences with 146
amino-acid sites. Number of constant sites: 24 (= 16.4384%
of all sites). Number of invariant (constant or ambiguous
constant) sites: 24 (= 16.4384% of all sites). Number of parsimony
informative sites: 91. Number of distinct site patterns: 143.
The tree was constructed from 1,000 ultrafast bootstrap trees
(Hoang et al., 2018).

Bacterial Expression of GymFP

Plasmids were ordered from Genscript United States in a
pET—24b(+) vector with kanamycin resistance for expression in
BL21(DE3) E. coli with an N-terminal 6x histidine tag. Following
a chemical transformation, BL21(DE3) were plated on agar
containing a 1:1,000 dilution of kanamycin (50 mg/mL). Single
colonies were selected and grown overnight in 5 mL LB media
containing 5 WL kanamycin at 37°C in a shaking incubator. The
resulting culture was transferred to 100 mL LB with 100 pL
kanamycin and left to grow at 37°C until reaching an ODgg of
0.4. A 1:1,000 dilution of IPTG (0.1 M) was then added, and the
culture was left to grow for another 3 h after which the culture
was then centrifuged at 3,000 rcf for 30 min.

The pellets were then combined and resuspended into 5 mL
of Tris-HCl (50 mM), NaCl (150 mM). Lysozyme (100 pL
of 10 mg/mL) was added, and the sample was left at room
temperature for 1 h. The sample was then centrifuged at 8,000
rcf for 30 min. The supernatant was purified using Nickel
affinity chromatography. The elution buffer contained Tris-
HCI (50 mM), NaCl (150 mM), and Imidazole (300 mM),
pH 7.4. Protein Ajgp was measured using a Cary60 UV-Vis
spectrophotometer. The extinction coeflicient was calculated
using the ExPasy ProtParam tool (Artimo et al, 2012) to be
21,430 M~ ! cm™ L. Bilirubin was dissolved in NaOH and diluted
to 10 pM in 1X PBS (1.19 mM phosphates, 13.7 mM sodium
chloride, 270 wM potassium chloride), pH 7.3, for further use in
fluorescence assays.

Generation of Swiss Model
Swiss Model was used to construct a model of GymFP (Guex
et al., 2009; Bienert et al., 2017; Bertoni et al., 2017; Waterhouse
et al., 2018; Studer et al., 2020). The tool chose WT UnaG as the
template (PDB code 4I3B, Kumagai et al., 2013). The model was
rendered in PyMol (Schrodinger, 2015).

Fluorescence Analysis of GymFP

A Hitachi F-7,000 Fluorimeter was used to collect fluorescence
spectra. Spectra were recorded of a 1:1 complex of bilirubin and
purified GymFP (2.1 w M of each).

RESULTS

Properties of Endogenous Gymnothorax

zonipectis Fluorescence

Fluorescence is visible in the tissue of Gymnothorax zonipectis
along the entire organism and is localized below the skin
(Figure 1). Solubilization of fluorescent tissue from G. zonipectis
was completed in 1X PBS (1.19 mM phosphates, 13.7 mM
sodium chloride, 270 puM potassium chloride, pH 7.3).
Following centrifugation, the fluorescent protein remained
soluble in the supernatant. Boiling the homogenized samples fully
quenched fluorescence.

Transcriptome
We searched the transcriptome for fatty acid-binding proteins.
From there, we further narrowed the hits based on the presence of
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A

GymFP MLEQFVGKWTIAESKDFGKYLEAIGAPTSLSEAGDNTQPKLEISQKDGNK

Chlopsid MFEDFLGTWKCIDSQNFGAYLAAIGAPPVLSERADATRPTVHFN-RDGDK

UnaG MVEKFVGTWKIADSHNFGEYLKAIGAPKELSDGGDATTPTLYISQKDGDK

GymFP MTVDIDNGPPTNYQVQVKFTLGEEFDEKTSDGRKGIKTTVTYEDNKLVYT

Chlopsid LSLKVEHGPPPLKDVLLSFKLGEEFDEHPTDGRK-CKTLVTFEGDKLLYL

UnaG MTVKIEN TFLDTQVKFKLGEEFDEFPSDRRKGVKSVVNLVGEKLVYV

GymFP ORWDGKKAVTYRQVVDGTLVTKLTYGDVVSVRKYKRIN-———— v

Chlopsid QKWDGKETVVVREIRDGNVVATLSHEGVVALRVYKKVAGPTALE

UnaG OKWDGKETTYVREIKDGKLVVTLTMGDVVAVRSYRRAT—E
FIGURE 2 | (A) Alignment of GymFP, Chlopsid FP |, and UnaG generated by MAFFT (Hofacker et al., 2002; Katoh et al., 2002, 2005; Katoh and Toh, 2008; Tabei
et al., 2008; Katoh and Frith, 2012; Kuraku et al., 2013; Katoh and Standley, 2016; Yamada et al., 2016; Rozewicki et al., 2019). (B) Predicted structure of GymFP
generated by SWISS Model (Guex et al., 2009; Bienert et al., 2017; Bertoni et al., 2017; Waterhouse et al., 2018; Studer et al., 2020). In both, the GPP insert is
shown in green and residues identical in all three sequences are shown in purple.

a GPP sequence at residues 58-60 (Gruber et al., 2015; Krivoshik
etal., 2020). One sequence was found in G. zonipectis.

Alignments and Phylogenetic Tree

Sequences of GymFP, Chlopsid FP I, and UnaG were aligned to
identify homologous residues (Figure 2A). Residues in purple are
identical between the respective sequences. The GPP sequence
motif is shown in green. GymFP is 61% identical to UnaG and
47% identical to Chlopsid FP I, according to the SIM Alignment
tool on ExPasy (Huang and Miller, 1991). Alignments and
phylogenetic analysis of fluorescent and non-fluorescent FABPs
are included in Supplementary Figure 2. The tree illustrates
not only the relation of the FPs to brain FABPs, but also the
distinction of GymFP as it is phylogenetically distinct from the
Anguilla and Kaupichthys FPs.

Properties of GymFP

GymFP is 139 amino acids in length and has a calculated
molecular weight of 15.6 kDa, similar to UnaG (Hayashi and
Toda, 2009; Kumagai et al., 2013) and Chlopsid FP (Gruber et al,,
2015; Krivoshik et al., 2020). Bilirubin-bound GymFP has an
excitation maximum at 496 nm and a peak emission at 532 nm
(Figure 3). The apo protein does not fluoresce. Chopsid FP I has
EX/EM of 488/525 nm and GymFP has 496/532 nm, which is
similar to that of UnaG (497/532 nm) (Figure 4).

DISCUSSION

Fluorescent proteins have now been reported and characterized
in three anguilliform (true eels) families and genera, Anguillidae
(Anguilla; Hayashi and Toda, 2009; Kumagai et al, 2013),
Chlopsidae (false morays: Kaupichthys; Gruber et al., 2015;
Krivoshik et al., 2020), and in this report, Muraenidae (morays:
Gymnothorax). Interestingly, we observed that G. zonipectis has
a different distribution of fluorescence in the tissue. In Anguilla
and Kaupichthys fluorescence was observed throughout the
musculature of the organism (Hayashi and Toda, 2009; Kumagai
et al,, 2013; Gruber et al., 2015). However, in G. zonipectis it was

only found in a thin layer below the outer layer of the skin. The
implications of this difference are not yet known.

Members of the genus Anguilla are catadromous and are
known to undergo vast migrations (Tsukamoto, 2006) between
habitats in freshwater and tropical and subtropical open ocean
water. In Anguillidae, it has been hypothesized that fluorescence
may have antioxidant properties in the muscle tissue, resulting
from bilirubin binding (Kumagai et al., 2013). All members of
Chlopsidae are marine, as are nearly all species of Muraenidae. In
Chlopsidae, fluorescence has been proposed to potentially serve
a visual function during full moon spawning. Previous studies
have shown that these eels reproduce and spawn synchronized
according to a lunar cycle (Lee et al., 2008). In the two species
of chlopsid eels studied to date, Kaupichthys hyoproroides and
Kaupichthys n. sp., two FPs were discovered (Chlopsid FP I and
II) that are 94% homologous to each other (Gruber et al., 2015).

Previous work on muraenids has demonstrated that the
undulated moray G. undulatus possesses rod visual pigments
that allow them to detect wavelengths of 495 nm (Munz and
McFarland, 1973), which suggests that Gymnothorax eels are
capable of green-light detection. Additional studies of other
moray species reveal that Gymnothorax favagineus has a rod at
487 + 5.4 nm and single cone 501 £ 7.7 nm and Gymnothorax
reticularis has a rod at 486 + 4.0 nm and a single cone at
494 4+ 5.8 nm (Wang et al., 2011). There is relatively sparse
behavioral data associated with G. zonmipectis and hence, at the
moment, there is no clear indication if fluorescence plays a role
in the eels’ visual ecology. Nocturnal feeding habits have been
observed for individuals of this species (Bohlke and Randall,
2000), and while a Bronsonian knot has not been observed
in G. zonipectis, it has been observed in other members of
Gymnothorax (Kondo, 1955; Barley et al., 2016). Additional
species of Gymnothorax have been shown to hunt collaboratively
with groupers, including Plectropomus pessuliferus masrubri and
the coral trout Plectropomus leopardus (Vail et al., 2013).

A transcriptome of G. zonipectis was completed and is now
available under Bioproject PRJNA718586. A total of 273,073,027
reads were acquired and run through a BLAST search by
GENEWIZ, LLC (South Plainfield, NJ) to generate a list of
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FIGURE 3 | Excitation (EX) and emission spectra (EM) of GymFP with bilirubin (1:1 complex, 2.1 wM). GymFP was held in 50 mM Tris HCI, 150 mM NaCl, 300 mM
Imidazole, pH 7.4. Bilirubin was held in 1X PBS (1.19 mM phosphates, 13.7 mM sodium chloride, 270 WM potassium chloride), pH 7.3.
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sequences. To search the hits from the transcriptome assembly,
we looked for fatty acid binding proteins that contained a GPP
sequence insert. We found one transcript matching this criteria
and synthesized the corresponding gene for protein expression.
A number of brain fatty acid-binding proteins were also found
that did not contain this sequence. This further supports this

sequence insert’s importance in eel fluorescence. None of these
sequences contained GPP in residues 58-60 and were therefore
not analyzed any further. In previous work with Chlopsid FP we
had synthesized and expressed the homologous fatty acid binding
protein analoges that did not contain GPP and they were found
to be non-fluorescent.
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The protein sequence discovered in G. zonipectis, which we
refer to as GymFP, shares 61.0% identity with UnaG, isolated
from Anguilla japonica, and 46.7% identity to Chlopsid FP I,
isolated from Kaupichthys hyoproroides. Further characterization
of this FP has uncovered many similarities with both UnaG and
Chlopsid FP I, including the emission of green light and the use
of bilirubin as a ligand. It is significant that this third eel FP
also possesses a GPP motif. The consistency of this motif in all
fluorescent fatty acid binding proteins is also observed in the
grouping in the phylogenetic tree. We generated a phylogenetic
tree based on 14 fatty acid binding proteins from fluorescent eels,
non-fluorescent fish, and humans. The fluorescent sequences
formed their own clade (Supplementary Figure 2A). This is
consistent with other trees that have been previously published
(Gruber et al., 2015; Funahashi et al., 2017). We also note that the
Anguilla and Gymnothorax fluorescent fatty acid binding protein
groups are sister, although this is not highly supported (36%).

We used Swiss Model (Guex et al., 2009; Bienert et al., 2017;
Bertoni et al., 2017; Waterhouse et al., 2018; Studer et al., 2020)
to generate a model of GymFP (Figure 2B). The template for
the model was pdb code 4I3B, which is the WT structure of
UnaG (Kumagai et al., 2013). The model shows the expected
beta barrel structure. The GPP motif is highlighted in green and
is in the same position found in the other fluorescent eel fatty
acid binding proteins. In purple, we highlight those areas that
are the same in UnaG, ChlopsidFP I and GymFP. It should be
noted that we have not been able to determine sequence motifs
responsible for shifting fluorescence excitation or emission to
date (Krivoshik et al., 2020).

The lipocalin family of proteins, which includes fatty acid
binding proteins and apolipoprotein D, contains other proteins
that are able to use heme breakdown products to produce
fluorescence. Sandercyanin, found in Stizostedion vitreum
(previously Sander vitreus), is homologous to apolipoprotein
D and is able to use biliverdin to produce red fluorescence
(Ghosh et al., 2016).

In closing, this report provides the characterization of another
member of the eel fluorescent fatty acid binding protein family.
This is the first report of fluorescent protein characterization
from an eel from the family Muraenidae.
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