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1. Introduction

The convection configuration considered in this paper has emerged from the study of
radiatively driven convection in ice-free Lake Superior. During springtime warming of
this freshwater lake, observational data in Austin (2019) appear to show that an instability
arises each day near the surface and carries heat through the entire water column on a time
scale of hours. The temperature of the lake is between approximately 0 ◦C and 4 ◦C, which
means that the water is in the anomalous regime where increasing temperature increases
rather than decreases density.

The instability can be understood physically as follows. Observations show that the
water column begins the day at a uniform temperature throughout. As the sun comes
up, radiative heating penetrates into the water column, with the heating concentrated
near the surface and falling off exponentially with depth. Because the water is in the
anomalous regime where temperature increase leads to density increase, heating at the
surface increases the density of the water there. Buoyancy then causes the denser water
to sink. If the buoyancy effects outweigh the restraining effects of heat diffusion and
viscosity, then an instability arises. In many bodies of water, radiative heating penetrates
into only a small fraction of the water column, and here we therefore treat the limit
of radiative heating confined to an infinitesimally small layer near the surface, meaning
that we specify a time-varying heat flux at one of the boundaries rather than including a
radiative source term in the governing equations. The two infinite surfaces with heat flux
imposed at one boundary and temperature imposed at the other makes this essentially a
Rayleigh–Bénard (RB) configuration, but with an imposed flux that is modulated in time
rather than an imposed steady temperature difference.

Most previous work has considered modulation on top of a background temperature
gradient. Here, we treat modulation with zero mean, meaning that the average of the
temperature difference between the top and bottom surfaces is zero for the unperturbed
base state. With zero-mean modulation, if the amplitude of the boundary heat-flux
modulation is set to zero, then nothing interesting happens as the water column is stably
stratified from gravity and uniform in temperature. Only with a non-zero modulation
amplitude is there a possibility for an unstable configuration.

The linear stability of modulated convection has been studied in earnest since at least
Gershuni & Zhukhovitskii (1963), who looked at the low-frequency limit of modulated
temperature gradient in standard RB convection. Just as temperature boundary conditions
were considered first in standard RB convection, temperature modulation was considered
first for modulated RB convection. In particular, the combination of no-stress velocity
conditions and imposed temperature boundary conditions allows an analytical solution in
terms of sine functions to be obtained, which was the approach taken in Venezian (1969),
where the amplitude of modulation of the boundaries in standard RB convection was taken
as a small parameter.

These were followed by a number of studies on the linear stability of modulated
convection. Few authors, however, addressed zero-mean modulation, with the exception of
Yih & Li (1972), Gershuni & Zhukhovitskii (1976), Or & Kelly (1999) and Souhar & Aniss
(2016). These authors investigated boundary temperature modulation, but no one appears
to have addressed boundary heat-flux modulation. Davis (1976) reviewed the stability
(linear and nonlinear) of a variety of time-periodic flows, including thermal instabilities,
but did not explicitly mention zero-mean modulated flow or heat-flux modulation.

In addition to linear stability, we also examine nonlinear stability of modulated
convection using the energy method. The first major work using the energy method to
establish nonlinear stability in fluid dynamics appears to be Joseph (1976), though it was
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Rayleigh–Bénard convection with zero-mean modulated heat flux

used before that by a variety of researchers, including Serrin (1959), who cited Reynolds
and Orr as the progenitors. More recent textbooks covering the energy method include
Doering & Gibbon (1995) and Straughan (2004). The work most relevant to our concerns
is Homsy (1974), which investigated gravity modulation as well as modulation of the
boundary temperatures.

To summarize the two approaches to determining stability, linear stability analysis
establishes a sufficient condition for instability, in this case a Rayleigh number above
which at least one infinitesimal disturbance grows exponentially in time. Nonlinear
stability analysis establishes a sufficient condition for stability, in this case a Rayleigh
number below which the energy of all disturbances eventually decays. In the present case
with a time-periodic base state, we consider two possibilities. For asymptotic stability, the
disturbance may grow during a cycle but overall experiences net decay, whereas for strong
global stability the disturbance decays exponentially in time.

In the present paper, we consider convection in a layer of fluid that is infinite in the
horizontal directions. We investigate zero-mean modulation of the heat flux at the bottom
boundary of a standard fluid layer, which, from the symmetry of the modulation profile,
is equivalent to modulation at the top of a water layer in the anomalous 0–4 ◦C regime,
as would be the case for a lake. For comparison, we also give results for zero-mean
modulation of the temperature at the bottom boundary, though we do not detail the
derivation of the equations. After discussing the set-up and governing equations in § 2,
we go through the calculation of linear and nonlinear stability thresholds in §§ 3 and 4,
respectively. We then present results in § 5. Our main conclusions are further confirmed
by selected direct numerical simulations (DNS) of the initial value problem, presented in
§ 6. We finally discuss our results and future works in § 7.

2. Set-up

We consider two parallel plates extending infinitely far in the horizontal x- and
y-directions, containing fluid satisfying the Boussinesq equations,

∂t∗u∗ + u∗ · ∇∗u∗ = − 1

ρ0
∇∗p∗ + αgT∗ẑ + ν ∇2

∗u∗, (2.1)

∇∗ · u∗ = 0, (2.2)

∂t∗T∗ + u∗ · ∇∗T∗ = κ ∇2
∗T∗, (2.3)

where asterisks represent dimensional quantities. Here, u∗ is the velocity, T∗ is the
temperature measured with respect to the reference temperature at the upper boundary,
ρ0 is the density at the reference temperature, g is the acceleration due to gravity, ν is the
kinematic viscosity, κ is the thermal diffusivity, α is the thermal expansion coefficient,
and p∗ is the pressure. Figure 1 shows a schematic of the configuration.

The velocity boundary conditions can be either no-stress or no-slip, and the temperature
boundary conditions are

k ∂zT∗ = H cos(ω∗t∗) at z∗ = 0, (2.4)

T∗ = 0 at z∗ = d, (2.5)

where d is the domain size in the vertical z-direction pointing up, H is the amplitude of
the modulated heat flux, and k is the conductivity. We non-dimensionalize using

t ≡ ω∗t∗ x ≡ x∗
d

, u ≡ du∗
κ

, T ≡ kT∗
Hd

, (2.6a–d)
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Figure 1. Schematic geometry.

and an appropriate scaling for pressure. We note that choosing to scale time by a
diffusive time scale (e.g. d2/κ) may be more appropriate in certain cases such as in the
low-frequency limit ω∗ → 0.

Using the non-dimensional variables in (2.6a–d), the non-dimensional governing
equations become

ω ∂tu + u · ∇u = −∇p + Ra Pr T ẑ + Pr ∇2
u, (2.7)

∇ · u = 0, (2.8)

ω ∂tT + u · ∇T = ∇2T. (2.9)

The temperature boundary conditions become

∂zT = cos t at z = 0, (2.10)

T = 0 at z = 1. (2.11)

The non-dimensional frequency ω, Rayleigh number Ra, and Prandtl number Pr, are
defined as

ω ≡ ω∗d2

κ
, Ra ≡ αgHd4

kνκ
, Pr ≡ ν

κ
. (2.12a–c)

We write the base state velocity, temperature and pressure as uB, TB and pB. For the
stability analysis, we take a base state with no motion (uB = 0) and a temperature profile
satisfying (2.9) with the velocity set to zero, namely

ω ∂tTB = ∇2TB, (2.13)

and the boundary conditions (2.10) and (2.11). We write the solution for the base state
temperature as

TB(z, t) = Re

{

eit

β

[

sinh (βz) − sinh β cosh (βz)

cosh β

]}

, (2.14)

where β =
√

iω = eiπ/4 ω1/2, and Re(·) indicates ‘real part of’.
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Rayleigh–Bénard convection with zero-mean modulated heat flux

3. Linear stability calculation

For linear stability, we consider small perturbations to the base state and write

u = uB + up, T = TB + θp, p = pB + P. (3.1a–c)

Using these in the governing equations (2.7) and (2.8), neglecting products of
perturbations, and isolating the vertical velocity component (ez · up = wp) results in

(ω ∂t∇2 − Pr ∇4)wp(x, t) = Ra Pr ∇2
Hθp(x, t), (3.2)

(ω ∂t − ∇2)θp(x, t) = −(∂zTB) wp(x, t), (3.3)

where ∇2
H = ∂2

x + ∂2
y . The governing equations have constant coefficients in space,

therefore the horizontal spatial components of the functions can be analysed using normal
modes, so that we can write the perturbations as

wp(x, t) = eikxx eikyy w(z, t), (3.4)

θp(x, t) = eikxx eikyy θ(z, t). (3.5)

The resulting equations are

(ω ∂tL − Pr L2)w(z, t) = −k2 Ra Pr θ(z, t), (3.6)

(ω ∂t − L)θ(z, t) = −(∂zTB) w(z, t), (3.7)

where k2 ≡ k2
x + k2

y and L ≡ ∂2
z − k2.

To manage the z dependence, we use Chebyshev polynomials. One possibility is to
use Chebyshev differentiation matrices, as discussed in Weideman & Reddy (2000) and
Trefethen (2000), so that w and θ are solved for at specific grid points. Another possibility
is to express w and θ as Chebyshev polynomials and then use collocation or Galerkin
projection to remove the z dependence so that the coefficients in the Chebyshev expansion
of w and θ become the relevant unknowns, which is the approach taken in Or & Kelly
(1999). The boundary conditions must be satisfied in each case. For details on the
numerical methods used, see Appendix A.

The resulting matrix equation can be written as

Hd

dx

dt
= [H0 + Ra HR + H1 eit + H−1 e−it]x, (3.8)

with x = (w, θ)T, where w and θ are vectors of coefficients or of the solutions at chosen
grid points, depending on the method chosen. The base state gradient is expressed as
∂zTB = T1(z) eit + T−1(z) e−it and discretized using the same method as the solutions.

The system of ordinary differential equations (ODEs) represented by (3.8) has
coefficients that are periodic in time, and we therefore use Floquet theory. There are two
ways in which we can use Floquet theory: the Floquet–Fourier–Hill (FFH) and monodromy
matrix methods. The FFH method requires solving an eigenvalue problem, while the
monodromy matrix method requires solving a system of ODEs. Here, we use the FFH
method because it is more efficient computationally. For details on the FFH method, see
Deconinck & Kutz (2006).
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3.1. Floquet–Fourier–Hill method

For the FFH method, we use Floquet theory to decompose w(t) and θ(t) into an exponential
function of time multiplying a function that is periodic in time with the same period as the
coefficients (2π). The solution vector is then

x(t) = eµt

∞
∑

n=−∞
xn eint, (3.9)

where µ is the Floquet exponent. Using this representation in (3.8) leads to

∞
∑

n=−∞
Hd(in + µ) xn eint =

∞
∑

n=−∞
[H0xn + Ra HRxn + H1xn−1 + H−1xn+1]eint. (3.10)

Orthogonality of the exponential functions leads to

Hd(in + µ) xn = H0xn + Ra HRxn + H1xn−1 + H−1xn+1, (3.11)

which is an infinite system of coupled equations for the Fourier coefficients and can be
treated as an eigenvalue problem for Ra or µ. We solve this coupled set of equations
numerically by truncating the Fourier series and solving the resulting generalized
eigenvalue problem, which is block tridiagonal on one side and block diagonal on the
other.

The eigenvalue problem depends on Pr, ω, k, Ra, µ, the number of Fourier modes,
the number of Chebyshev modes or grid points, and the boundary conditions. Once other
parameters are fixed, either the Rayleigh number Ra or the Floquet exponent µ can be
considered as the eigenvalue. The critical Rayleigh number for given Pr and ω is the
lowest Rayleigh number found through varying k that results in Re(µ) = 0.

If the Rayleigh number is treated as the eigenvalue, then we fix Re(µ) = 0 to look for
marginal stability. If we write µ = µ0 + im in (3.9), with 0 � Im(µ0) � 1 (where Im(·)
indicates ‘imaginary part of’) and m a positive integer, then we find

x(t) = eµ0t

∞
∑

n=−∞
xn ei(n+m)t. (3.12)

We see that m serves only to shift the association between the coefficient index and the
frequency of the exponential that it accompanies, and we can therefore restrict Im(µ) to
lie between 0 and 1 without loss of generality. The lowest Rayleigh number found over all
wavenumbers is the critical Rayleigh number. If, instead, the Floquet exponent µ is chosen
as the eigenvalue, then k and Ra must be swept through to find the minimum value of Ra

resulting in Re(µ) = 0.
For our numerical results, we have generally found the critical Rayleigh number by

treating Ra as the eigenvalue. We have then checked the resulting critical Rayleigh number
and wavenumber by using these values and treating µ as the eigenvalue to ensure that
Re(µ) is truly close enough to zero to represent the stability threshold. Furthermore, we
have checked the surrounding (k, Ra) parameter space to be sure that the critical Rayleigh
number found is truly a local minimum leading to marginal stability.

We have generally used 18 Chebyshev grid points. The highest Fourier mode used
when solving for Ra as the eigenvalue varied between 15 and 30, depending on the
frequency, with more Fourier modes being necessary to reach a converged solution at
lower frequencies. When solving for µ as the eigenvalue, we have been able to use sparse
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Rayleigh–Bénard convection with zero-mean modulated heat flux

eigenvalue routines that use the fact that |µ| is small, which has allowed us to use a largest
Fourier mode of 35 to 50. This is not possible for Ra values that are not small.

3.2. Low-frequency limit

At a certain O(1) value of ω, the eigenvalue problem resulting from the FFH method
becomes too ill-conditioned to continue working. For small ω, the leading order of the
z-derivative of the base state in (2.14) becomes independent of space and can be written as

∂zTB = cos t + O(ω). (3.13)

This coincides with what we expect physically since for very slow modulation, the
temperature profile will be almost linear, and its slope will be that imposed at the boundary,
namely cos t. With the spatial dependence eliminated, we can compare the eigenvalue
problems for stability in the modulated case to the eigenvalue problems for stability in the
steady case with boundaries held at different temperatures, which has non-dimensional
temperature profile slope −1.

For temperature modulation with no-stress boundary conditions, the governing
equations reduce to a Mathieu equation in this limit, and a WKB analysis can be done, as
discussed in Or (2001). For all other cases, a similar approach leads to a system of coupled
Mathieu equations, which can be solved formally with an extension of the WKB ansatz to
systems of equations. Unfortunately, connecting the WKB solutions through turning points
is much more difficult with higher-order systems of equations than it is for the standard
second-order ODE. Mathematical details are discussed in Wasow (1985), but there does
not appear to be a simple way to use the WKB approach for the cases considered here.

4. Nonlinear stability calculation

To determine the threshold for nonlinear stability, we use the energy method and two
notions of nonlinear stability: strong global stability and asymptotic stability, as used and
described in Homsy (1974) for non-zero-mean temperature modulation. The analysis in
Homsy (1974) uses the mean of the boundary temperature difference as the temperature
scale, which is not possible for zero-mean modulation, and the base state is different, but
otherwise the approach is similar. We therefore give only the essentials and refer the reader
to Homsy (1974), Joseph (1976) or Straughan (2004) for more details.

The first step is to form an energy functional using power integrals. The first integral
comes from taking the dot product of (2.7) with u and integrating over the volume. The
second integral comes from writing the temperature as the base state plus a fluctuation
of arbitrary size, T(x, t) = TB(z, t) + θ(x, t), using this expression in (2.9), and then
multiplying by θ and integrating over the volume. Finally, we multiply the temperature
integral by λRa and add the result to the momentum integral, where λ is a coupling
parameter that we can later tune to achieve better stability results. The resulting equation
for the time evolution of the energy is

ω
d

dt

(

‖u‖2
2

2 Pr
+

‖φ‖2
2

2

)

= R√
λ

∫

V

wφ (1 − λ ∂zTB) dV − (‖∇u‖2
2 + ‖∇φ‖2

2), (4.1)

where R =
√

Ra, φ = θ
√
λRa, and the norms are

‖φ‖2
2 =

∫

V

φ2 dV, ‖∇φ‖2
2 =

∫

V

|∇φ|2 dV, ‖∇u‖2
2 =

∫

V

∂uj

∂xk

∂uj

∂xk

dV. (4.2a–c)
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We now define

E =
(

‖u‖2
2

2Pr
+

‖φ‖2
2

2

)

, Iλ = λ−1/2
∫

V

wφ (1 − λ∂zTB) dV, D = (‖∇u‖2
2 + ‖∇φ‖2

2),

(4.3a–c)
so that we have

ω
dE

dt
= RIλ − D. (4.4)

From (4.4), we develop strong global stability and asymptotic stability.

4.1. Strong global stability

For strong global stability, we divide both sides of (4.4) by D to find

ω
E′(t)

D
= R

Iλ

D
− 1 � R max

H

(

Iλ

D

)

− 1, (4.5)

whereH is the space of divergence-free functions satisfying the boundary conditions. We
define

1

ρλ(t)
≡ max

H

(

Iλ

D

)

, (4.6)

where ρλ(t) is periodic with the same period as the base state temperature gradient. We
then define

RS,λ ≡ min
t∈[0,2π]

ρλ, (4.7)

to arrive at

E′(t) � −D

ω

(

RS,λ − R

RS,λ

)

. (4.8)

From Poincaré’s inequality, we have D � α1E, with α1 � 0. We therefore obtain

E(t) � E(0) exp

(

−α1t(RS,λ − R)

ωRS,λ

)

. (4.9)

For R < RS,λ, the energy decays exponentially or faster in time, which we call strong global
stability.

To find RS,λ, we must first solve the variational problem for ρλ(t) in (4.6), which upon
using variational calculus with a Lagrange multiplier for the incompressibility constraint
(see Straughan (2004) and Christopher (2021) for details), leads to

ρλ(t)

2
√
λ

(1 − λ ∂zTB)∇2
Hφ + ∇4w = 0, (4.10)

ρλ(t)

2
√
λ

(1 − λ ∂zTB) w + ∇2φ = 0. (4.11)

We use normal modes and write

(w(x, t), φ(x, t)) = (W(z, t), Φ(z, t)) eikxx eikyy. (4.12)
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Rayleigh–Bénard convection with zero-mean modulated heat flux

The equations then become

L2 W(z, t) = k2 ρλ(t)

2
√
λ

(1 − λ ∂zTB)Φ(z, t), (4.13)

L Φ(z, t) = −ρλ(t)

2
√
λ

(1 − λ ∂zTB) W(z, t). (4.14)

This is a generalized eigenvalue problem for ρλ(t), which can be written as
(

L2 0
0 L

)(

W

Φ

)

= ρλ(t)

(

1 − λ ∂zTB

2
√
λ

)(

0 k2

−1 0

) (

W

Φ

)

. (4.15)

We solve this generalized eigenvalue problem by discretizing on a Chebyshev basis (as
discussed in the linear stability section). To find RS,λ, we then minimize ρλ(t) over time
as specified in (4.7). Finally, we vary λ to find the best stability result, namely the highest
RS,λ, which we define as the threshold for strong global stability, RS. Altogether, this is

RS = max
λ

min
k

min
t

ρλ(t; k). (4.16)

4.1.1. Low-frequency limit

For strong global stability, as ω → 0 the eigenvalue problem from (4.10) and (4.11)
becomes

ρλ(t)

2
√
λ

(1 − λ cos t) ∇2
Hφ + ∇4w = 0, (4.17)

ρλ(t)

2
√
λ

(1 − λ cos t) w + ∇2φ = 0. (4.18)

The eigenvalue problem for the linear stability threshold in standard RB convection can be
written as

R ∇2
Hθ + ∇4w = 0, (4.19)

Rw + ∇2θ = 0. (4.20)

The spatial operators in the two cases are equivalent, so ρλ(t) must satisfy

ρλ(t)

2
√
λ

(1 + λ cos(t)) ∈ {Rj,steady}, (4.21)

where each Rj,steady satisfies the eigenvalue problem in (4.19) and (4.20). Rearranging, we
have

ρλ(t) = 2
√
λ

1 + λ cos(t)
Rj,steady (4.22)

for each possible j. Now we use normal modes and perform RS = maxλmink mint ρλ(t; k).
Minimizing in time clearly means that we must take cos t = 1. We are then left to
maximize over λ, which leads to λ = 1. Finally, we minimize the resulting ρλ(t; k) over k,
which leads to

RS ≡ max
λ

min
k

min
t

ρλ(t; k) = min
k

{Rj,steady}. (4.23)

Because RL,steady ≡ mink{Rj,steady}, we conclude that RaS → RaL,steady as ω → 0. This is
the limit approached by the numerical results, as seen in figures 2 and 5 for modulated flux
and temperature, respectively.
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Figure 2. Critical Rayleigh numbers and wavenumbers for heat-flux modulation for Pr = 1: (a,c) no-slip;
(b,d) no-stress. For RaL, magenta indicates a synchronous disturbance (Im(µ) = 0) and red indicates a
subharmonic disturbance (Im(µ) = 1/2). Linear stability results at low frequencies are absent because the
numerical problem becomes ill-conditioned.

4.2. Asymptotic stability

For asymptotic stability, we start from (4.4) and write

E′(t) =
(

R Iλ(t) − D

ω E(t)

)

E(t). (4.24)

First, we define

νλ(t) ≡ max
H

(

R Iλ(t) − D

ω E(t)

)

, (4.25)

whereH is the space of divergence-free functions satisfying the boundary conditions. This
leads to

E′(t) � νλ(t) E(t), (4.26)

which means that

E(t) � exp

(∫ t

0
νλ(t

′) dt′
)

E(0). (4.27)
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Rayleigh–Bénard convection with zero-mean modulated heat flux

To find νλ(t), we use the variational calculus with a Lagrange multiplier for
incompressibility, leading to

R

2
√
λ

(1 − λ ∂zTB)∇2
Hφ + ∇4w = νλ

2 Pr
∇2w, (4.28)

R

2
√
λ

(1 − λ ∂zTB)w + ∇2φ = νλ

2
φ. (4.29)

The eigenvalue νλ(t) is periodic, and we define the configuration as asymptotically stable
if the integral of νλ over one period is less than zero, defining

ν̄λ ≡
∫ 2π

0
νλ(t) dt. (4.30)

We use normal modes as in (4.12) and find the generalized eigenvalue problem
⎛

⎜

⎜

⎝

L2 −k2R

2
√
λ

(1 − λ ∂zTB)

R

2
√
λ

(1 − λ ∂zTB) L

⎞

⎟

⎟

⎠

(

W

Φ

)

= νλ(t)

(

Pr−1 L/2 0
0 1/2

) (

W

Φ

)

.

(4.31)
We then discretize in z using a Chebyshev basis, and solve this generalized eigenvalue
problem numerically in order to estimate ν̄λ, the integral of νλ(t) over one period. For
fixed Ra, Pr and ω, we first sweep through wavenumbers and take the worst-case (largest)
value for νλ(t) at the chosen points in time over one period, which upon integrating in
time gives us ν̄λ. For efficiency, we have used Gauss quadrature with 30 grid points for the
integral. Checks using more advanced integration methods indicate a relative error in the
resulting Rayleigh number of well below 1 % when using Gauss quadrature with 30 grid
points. We then vary λ to minimize this integral, and we define the result as

ν̄ ≡ min
λ

max
k

ν̄λ. (4.32)

Finally, we find the largest R satisfying ν̄ < 0 and define it as RA, so that

RA ≡ max R s.t. ν̄ < 0. (4.33)

4.2.1. Low-frequency limit

For heat-flux modulation, we have not found any simplification to be possible in
the low-frequency limit for asymptotic stability, and we therefore discuss temperature
modulation only for symmetric no-stress boundary conditions in this subsubsection. In
this case, sine functions may be used as eigenfunctions as in standard RB convection, and
the z derivative of the base state is ∂zTB ≈ − cos t.

In (4.31), we take

W(z, t) =
∞
∑

n=0

wn(t) sin nπz, Φ(z, t) =
∞
∑

n=0

φn(t) sin nπz, (4.34a,b)

to arrive at a quadratic equation for νλ(t):

ν2
λ

− 2λn(1 + Pr)νλ + 4 Pr

λn

(λ3
n + k2 g(λ)2 R2) = 0, (4.35)

where λn = −(k2 + n2
π

2) and g(λ) = (1 − λ ∂zTB)/(2
√
λ).
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T.W. Christopher, M. Le Bars and S.G. Llewellyn Smith

To find the stability threshold, we solve the quadratic equation (4.35), set the resulting
ν̄λ equal to zero, and find

RaA � RaL,steady

(

2π

√
λ

2 cos−1 (−1/λ) − π + 2λ sin (cos−1 (−1/λ))

)2

, (4.36)

with the maximization over k in the definition of ν̄ in (4.32) leading to kcr = π/
√

2, the
critical wavenumber in steady RB with the same boundary conditions. The value of λ
leading to the largest RaA is λ ≈ 1.319, leading to RaA ≈ 2891.38, which is exactly what
we find numerically, as seen in figure 5.

5. Results

5.1. Heat-flux modulation

Carrying out the linear and nonlinear stability calculations as described in the preceding
sections, we are able to find results for linear stability, asymptotic stability and strong
global stability for specified ω, Pr and boundary conditions. Results for no-slip conditions
on the top and bottom are shown in figures 2(a,c), while no-stress conditions are shown
in figures 2(b,d). As usual in RB convection, no-slip conditions lead to a higher critical
Rayleigh number.

For linear stability, we find that the critical Rayleigh number always arises from either
Im(µ) = 0 or Im(µ) = 1/2, representing synchronous and subharmonic disturbances,
respectively. There is a stark contrast between low and high frequencies. At low
frequencies, RaL generally decreases with ω, but in an oscillatory manner as the critical
instability switches between various modes of synchronous and subharmonic disturbances,
as shown by the discontinuities in the most dangerous wavenumber curves (figures 2c,d).
At high frequencies, the critical instability is always subharmonic, and an asymptotic
balance is reached with RaL ω−2 and kLω−1/2 approaching non-zero constants, as shown
in figure 3. For linear stability, no-slip conditions with Pr = 1 give RaL ω−2 → 22.58,
while no-stress conditions give RaL ω−2 → 12.44. The nonlinear stability thresholds
do not appear to reach the same asymptotic relationship between the critical Rayleigh
number and the modulation frequency. The nonlinear stability results do not change as
radically with frequency as the linear stability results overall, though the threshold for
both asymptotic stability and strong global stability does go down at low frequencies.
Note that ω ≈ 107 for Lake Superior, and Ra ≈ 1020 at 3 ◦C (Christopher 2021). This
value of ω is above numerically attainable values, which makes the large-ω limit results
interesting. Both of these values use molecular thermal diffusivity. As the temperature
approaches the temperature of maximum density for water, the coefficient of thermal
expansion approaches zero. The Rayleigh number is proportional to the coefficient of
thermal expansion, so at some point the Rayleigh number must pass through the critical
Rayleigh numbers found here.

The dependence of the critical Rayleigh numbers on Pr is shown in figure 4 for ω = 100.
It can be seen that RaL changes by orders of magnitude as Pr is varied, while RaA stays
in a relatively narrow range. In contrast, strong global stability RaS is independent of the
Prandtl number. A subcritical instability is an instability arising for a Ra value between the
linear and nonlinear stability thresholds. There is therefore a very large region for potential
subcritical instabilities at low Pr, with the region increasing as Pr decreases, as seen in
figure 4.
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Rayleigh–Bénard convection with zero-mean modulated heat flux

102

103

101

100

1.4 0.8

0.7

0.6

0.5

0.4

0.3

0.2

1.2

1.0

0.8kω
–
1
/2

R
a
 ω

–
2

102

101

100

0.6

0.4

0.2

5 20 40 60 80 100 5 20 40 60 80 100

5 20 40 60 80 100 5 20 40 60 80 100
ω ω

(b)(a)

(d )(c)

RaL

RaA

RaS

RaL

RaA

RaS

kA

kS

kL

kA

kS

kL

Figure 3. As figure 2, but with results now scaled for large ω and computed over a larger range of ω.

108

60 000
No-slip

No-stress

No-slip

No-stress

50 000

40 000

30 000

20 000

10 000

107

106

105

10–3 10–2 10–1 100

Pr
101 102 103 10–3 10–2 10–1 100

Pr
101 102 103

RaL RaA

(b)(a)

Figure 4. Dependence of (a) RaL and (b) RaA on Pr for ω = 100, with symmetric no-slip and no-stress
conditions, and heat-flux modulation.

Low Prandtl number means decreasing viscosity, so on the one hand, it should be easier
to trigger instability. However, for small Prandtl number, viscosity on its own disappears
from the linear system, which contains Ra Pr. It is possible that both effects compensate
for nonlinear stability, leading to a nearly flat curve with a maximum near Pr = 1. It
is somewhat surprising, then, to find that RaA reaches a maximum near Pr = 0.6 and
then decreases with decreasing Pr for ω = 100 and no-stress boundary conditions, with
a similar result for no-slip conditions. Calculations for ω = 10 show the same pattern of
behaviour.

The asymptotic behaviour of RaL with Pr is readily predicted by looking at the linear
equation system (3.6)–(3.7). In the large Prandtl number limit, the first term on the
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Figure 5. Temperature modulation results with Pr = 1: (a,c) no-slip; (b,d) no-stress. For RaL, magenta
indicates a synchronous disturbance (i.e. Im(µ) = 0) and red indicates a subharmonic disturbance
(i.e. Im(µ) = 1/2).

left-hand side of (3.6) is negligible, so Pr disappears from the linear system, as for
the classical RB configuration. Then RaL is independent of Pr. On the contrary, in the
small Prandtl number limit, the second term on the left-hand side of (3.6) is negligible:
the only remaining parameter is then RaL Pr, and the stability threshold in term of this
parameter becomes RaL Pr = const., yielding the scaling RaL = const. × Pr−1 observed
in figure 4(a).

5.2. Temperature modulation

Linear stability results for non-zero-mean temperature modulation of one boundary can be
found in Or & Kelly (1999). For completeness, we include here nonlinear stability results
for that set-up, with Ra defined appropriately for the configuration. These results are shown
in figure 5. The general dependence of the critical Rayleigh number is the same as in the
modulated flux case, and only the specific numbers are different.

The no-stress case can be treated with sine eigenfunctions, meaning that the stability
problem reduces to a single ODE. It is also possible to use the WKB approximation for
this case, as in Or (2001), but we do not pursue further WKB calculations here for the
reasons discussed in § 3.2.

Results scaled for large ω are shown in figure 6. As ω → ∞, the appropriately defined
Rayleigh number grows with ω3/2, and the critical wavenumber grows with ω1/2. For
linear stability, no-slip conditions with Pr = 1 lead to RaLω−3/2 → 27.86, while no-stress
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Figure 6. As figure 5, but with results now scaled for large ω and computed over a larger range of ω.

conditions lead to RaLω−3/2 → 18.38. The nonlinear stability thresholds do not appear
to reach the same asymptotic relationship between the critical Rayleigh number and the
modulation frequency.

5.3. High frequency

In this subsection, we look at high-frequency results for all configurations to compare the
behaviour of the linear and global stability thresholds. Though we have treated explicitly
only the zero-temperature top boundary condition listed in (2.11), it is of course possible to
use a no-flux top boundary condition. As the modulation frequency is increased, the base
state temperature profile becomes largely confined to a small layer near the modulated
surface at the bottom. For large ω, the base state for heat-flux modulation in (2.14) leads
to the following form for the base state derivative:

∂zTB(z, t) ≈ e−z
√

ω/2 cos

(

t − z

√

ω

2

)

. (5.1)

The (dimensionless) boundary layer thickness is therefore δ = O(ω−1/2), so that for large
enough ω, we might expect the same results even with different boundary conditions
imposed at the top at z = 1 because the base state derivative has hardly any influence
there.

Figure 7 shows the critical Rayleigh numbers for all possible configurations. The scaled
linear Rayleigh number used in figure 7(a) is defined as

Ra∞ =
{

RaL ω−2 for heat-flux modulation,

RaL ω−3/2 for temperature modulation,
(5.2)
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Figure 7. Comparison of results with Pr = 1 for all 16 possible combinations of boundary conditions and
modulation style: no-slip or no-stress for velocity, zero-temperature or no-flux for temperature, and heat-flux
or temperature modulation. (a) Linear stability; (b) global stability. Colour indicates the velocity boundary
condition at the surface of modulation and the modulation type, with the associations listed in the legend.
Line style indicates the boundary conditions at the non-modulated surface: solid indicates no-slip and
zero-temperature; dashed indicates no-slip and no-flux; dotted indicates no-stress and no-flux; dash-dotted
indicates no-stress and zero-temperature.

in agreement with figures 3 and 6. For all frequencies shown here, the critical disturbance
is subharmonic. For linear stability, by ω � 100, the boundary conditions at the
non-modulated surface have ceased to affect the critical Rayleigh number: Ra∞ converges
towards a constant value that is essentially dependent only on the conditions at the
modulated surface. This scaling behaviour can be explained following a local approach
similar to that of Howard (1966), assuming that all the dynamics takes place in the
boundary layer δ and that the depth d of the system is no longer a relevant parameter
of its dynamics. Then one can define a local Rayleigh number as Ra × δ4 ∼ Ra ω−2

for modulated flux, and Ra × δ3 ∼ Ra ω−3/2 for modulated temperature. Instability starts
once the local Rayleigh number – here the scaled linear Rayleigh number (5.2) – reaches
a given critical value that depends only on the conditions at the modulated surface. The
most dangerous mode has a wavenumber inversely proportional to the only relevant scale
of the system, δ ∼ ω−1/2, in agreement with figures 3(c,d) and 6(c,d).

In contrast, for nonlinear stability, the non-modulated boundary condition does affect
the critical Rayleigh number even at high frequencies. The local analysis in the boundary
layer is not relevant. Figure 7 shows that results for the four possible top boundary
conditions do not converge at high frequency as they do in linear stability. Asymptotic
stability results indicate the same pattern, with the top boundary condition influencing
results even at higher frequencies. For nonlinear stability, the critical Rayleigh numbers
grow at a rate closer to Ra ∼ ω as ω → ∞. Considering the scaling (5.2) for linear
stability, this means that the potential region for subcritical instabilities grows rapidly as
ω → ∞.

6. Validation by direct numerical simulations

Our purpose here is to validate the main features of our analytical stability analysis by
performing initial value, two-dimensional DNS of the full equations, starting from the
purely diffusive base state solution (2.14) plus some infinitesimal perturbations of the
temperature field. A complete numerical study of the system – including, for instance,
bistability analysis in the range below the linear threshold and above the nonlinear one,
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Rayleigh–Bénard convection with zero-mean modulated heat flux

ω Ra Pr Γ Boundary conditions Corresponding figure

100 [0.95; 1.025; 1.05; 1.10; 1.25; . . . 1.0 8.0 No-slip 8
1.5; 2; 3.5; 5] × RaL

with RaL = 2.2 × 105

100 [0.09; 0.24; 0.95; 1.025] × RaL 1.0 8.0 No-slip 9
with RaL = 2.2 × 105

4.7 1.05 × RaL with RaL = 5.4 × 103 1.0 16.0 No-stress 10

5.9 1.05 × RaL with RaL = 5.8 × 103

8.5 1.05 × RaL with RaL = 6.3 × 103

13.1 1.05 × RaL with RaL = 6.3 × 103

8.5 1.05 × RaL with RaL = 6.3 × 103 1.0 16.0 No-stress 11, 12
13.1

Table 1. Dimensionless numbers and velocity boundary conditions for the 15 simulations used in figures 8–12.
The values of the linear critical Rayleigh number RaL given here come from the analytical study (see figure 2).

the study of the highly non-linear dynamics at large Rayleigh number, or the processing of
more realistic boundary layer forcing – is left for future work.

6.1. Numerical method

Equations (2.7)–(2.9) with temperature boundary conditions (2.10)–(2.11) are solved using
the commercial software COMSOL Multiphysics, based on the finite element method.
Note that for numerical efficiency, it is better to start with a zero flux at the bottom: hence
our bottom forcing is ∂zT = sin t at z = 0, shifted by π/2 compared to the theoretical
study, with no further consequences. The computational domain is rectangular, with
dimensionless depth 1 and dimensionless width Γ � 8, chosen to include at least 4
wavelengths of the first excited mode. Top/bottom velocity boundary conditions are either
no-slip or no-stress, and we use periodic boundary conditions in the horizontal direction
for both temperature and velocity. The mesh is triangular in the bulk and rectangular
close to the top and bottom plates, where it is strongly refined. We use standard Lagrange
elements, quadratic for the pressure, and cubic for the velocity and temperature fields. The
total number of degrees of freedom is at least 2 × 105. Grid convergence and influence of
the aspect ratio Γ were tested for each studied value of the Rayleigh number and forcing
frequency. No stabilization technique is used. The implicit, time-dependent solver employs
the backward differentiation formula with accuracy order 2–3 and relative tolerance
5 × 10−3. We impose a minimum of 50 time steps per forcing period. A random noise
of typical amplitude 10−6 is added to the diffusive temperature field (2.14) as the initial
condition. Then the code is run for at least 1.5 diffusive time, or until saturation of the
kinetic energy for the unstable configurations. Table 1 lists the characteristics of the 15
simulations used in the results presented in figures 8 to 12. Many other simulations were
performed to confirm the trends shown here, but are not presented.

6.2. Linear and nonlinear stability

We first checked the linear stability results. To do so, we performed a number of DNS
runs, systematically changing the Rayleigh number around the theoretical critical value
RaL determined in § 5. We then plot the space-averaged value of the kinetic energy as
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Figure 8. Linear stability study for ω = 100 and Pr = 1.0. (a) Two examples of the time evolution of the
space-averaged kinetic energy and of the determination of the exponential growth rate. (b) Measured growth
rate as a function of the Rayleigh number for 9 runs. A complete list of parameters is provided in table 1.

a function of time: after a short transient due to the adjustment of the initial, random
perturbation of the temperature field, it is well fitted by an exponential function of type
K0 exp [2σ(t − t0)], with σ the instability growth rate (see e.g. figure 8a). An example of
a systematic study for ω = 100 and Pr = 1.0 is shown in figure 8(b). The threshold for
instability (where σ = 0) is in perfect agreement with the theoretical prediction.

Our numerical code with a random, infinitesimal, initial temperature perturbation is
not well fitted to study the nonlinear stability, which would require imposing as the
initial condition the most dangerous mode in all the velocity, pressure and temperature
fields. We can nevertheless check the existence of the different regimes. Figure 9 shows
the space-averaged kinetic energy for ω = 100, Pr = 1.0, and four different Rayleigh
numbers: just above the linear threshold, Ra = 1.025RaL, just below it, Ra = 0.95RaL,
just below the asymptotic nonlinear threshold, Ra = 0.95RaA, and just below the strong
nonlinear threshold, Ra = 0.95RaS. The main expected features of the different regimes
are recovered: above the linear threshold, the small perturbation grows exponentially in
time, while below the strong nonlinear threshold, it decreases exponentially. In between,
the disturbance energy might grow transiently during a cycle, but for the infinitesimal
initial perturbations considered here, it always experiences overall net decay. Again, this is
not a complete study of the nonlinear stability, which would require more advanced DNS,
but it illustrates the sufficient conditions provided by the nonlinear stability results.

6.3. Synchronous and subharmonic modes

One of the most surprising results from the linear analysis is the competition between
synchronous and subharmonic modes at a relatively low forcing frequency ω. To verify
this, we have performed simulations for various ω, just above the stability threshold.
Results are shown in figure 10 and confirm the analytical results. Note that the mode
selection is very sensitive to the aspect ratio Γ because of the influence of the imposed
periodicity on the wavelength selection. For instance, convergence of the results shown in
figure 10 was not reached for Γ = 8.0 used in the previous DNS.

Figures 11 and 12 allow us to further understand the origin of the two different
modes. The synchronous mode is the most straightforward to understand: heating the
system from below leads to a transient destabilization of the otherwise stably stratified
system, and instability appears with a period similar to the forcing; negative flux then
restabilizes the system, before a new cycle begins. However, this synchronous mode is
clearly subdominant close to linear threshold, where most of time a subharmonic mode
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Figure 9. Temporal evolution of the space-averaged kinetic energy as a function of time for four DNS runs
illustrating the linear and nonlinear stability regimes at ω = 100, Pr = 1.0, and for Ra = 1.025 RaL, 0.95 RaL,
0.95 RaA and 0.95 RaS, respectively. Values of RaL, RaA and RaS come from the analytical study (figure 3).
A complete list of parameters is provided in table 1.

10 000

RaL, subharmonic

DNS subharmonic

DNS synchronous

RaL, synchronous
RaA
RaS
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ω

Figure 10. Validation of the competition between synchronous and subharmonic modes. The analytical results
come from figure 2(b). Symbols show corresponding unstable numerical simulations performed for a Rayleigh
number just above the threshold. A complete list of DNS parameters is provided in table 1.

kicks in first. From figure 12, both modes correspond to a similar velocity pattern,
i.e. one big cell over the whole depth. This cell is mostly stationary, but the direction
in which the fluid flows along this cell might reverse or not between two successive
forcing cycles, respectively leading to subharmonic and synchronous modes. (Note also
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Figure 11. (a) Time evolution over two forcing periods of the imposed bottom heat flux, of the space-averaged
kinetic energy, and of the perturbation temperature and vertical velocity at the centre of a ‘hot’ cell close to
the middle of the computational domain, i.e. at x = 8.4, z = 0.2 for the synchronous case (left) and x = 7.6,
z = 0.2 for the subharmonic case (right). The three variables are rescaled to appear on the same y-axis.
(b) Snapshot at time t/2π = 4 of the perturbation temperature field normalized by the maximum value over
the two cycles shown in (a), and of the streamlines of the associated field. The stars show the locations where
the local data in (a) are taken. A complete list of DNS parameters is provided in table 1.

the positive/negative reflection symmetry of the subharmonic signals in figure 11a.)
If we look at the temperature field at the end of the decreasing flux part of the first
cycle (t/2π = 4.25), then we can notice for the subharmonic case negative temperature
perturbations on the left and right sides of the zoom, as opposed to the synchronous
case: this might lead to a locally stronger bottom temperature gradient at these locations,
hence triggering a rising convective velocity there, and a sinking return flow at the central
location, which was formerly rising. This mechanism triggers the instability with a period
twice that of the forcing. This process is all the more efficient for large ω, i.e. when the
temperature perturbation from the previous cycle does not have time to diffuse away,
hence the predominance of subharmonic modes at large ω. Nevertheless, preliminary
studies when increasing Ra show that these subharmonic modes are restricted to the
close neighbourhood of the stability curve: as soon as buoyancy forcing becomes strong
enough, the boundary layer rapidly becomes unstable at each cycle before the building
up of any subharmonic interaction, and the readily expected synchronous regime appears.
As an illustration, for the case ω = 100 and Pr = 1.0 studied in figure 8, a synchronous
regime dominates at Ra = 3.5RaL at saturation, while the subharmonic mode still persists
at Ra = 2RaL. We expect that the competition between the fine tuning necessary to trigger
a subharmonic mode, and the most direct, but less efficient excitation of a synchronous
mode, also explains the mode alternation observed at low ω (see e.g. figure 10).
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Figure 12. From top to bottom, time evolution over two forcing periods of (a,c,e,g,i,k,m,o) a synchronous
mode, and (b,d, f,h,j,l,n,p) a subharmonic mode. The time space between two rows is 1/4 of the forcing period.
For each time and each mode, from left to right, we show a zoom of the temperature perturbation field and
associated streamlines, and a vertical cross-section at the centre of the ‘hot’ cell close to the middle of the
computational domain (i.e. at x = 8.4 for the synchronous case, and x = 7.6 for the subharmonic case) of the
temperature and vertical velocity.

7. Conclusion

We have described the first stability results for RB convection with a modulated flux
condition at one boundary. We have also included results for a modulated temperature
condition at one boundary. Three different notions of stability have been used: linear
stability, asymptotic stability and strong global stability. For all results found, the linear
stability threshold is above both nonlinear stability thresholds, as expected. For velocity,
both no-stress and no-slip velocity boundary conditions have been considered. For
temperature, the bulk of the results comes from a zero-temperature condition at the
non-modulated surface, but a no-flux condition there has also been considered.

The critical Rayleigh number for linear stability RaL has different behaviour in
the small and large ω limits. Below a certain value of ω, the critical Rayleigh
number arises alternately from synchronous and subharmonic disturbances, and decreases
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non-monotonically as ω decreases. The linear stability problem becomes ill-conditioned
for an O(1) frequency. For large enough ω, the critical instability is always subharmonic,
and RaLω−2 and RaLω−3/2 approach an O(10) constant in the modulated flux and
modulated temperature cases, respectively. The critical Rayleigh numbers for nonlinear
stability grow more slowly with ω, approximately linearly. The nonlinear stability results
complement the linear stability results, showing that the window of possible Rayleigh
numbers for subcritical instability is relatively small for low frequencies but increases
rapidly as ω → ∞.

The modulated flux set-up considered here is relevant to situations in nature where a
body of fluid experiences periodic heating at the surface, such as the diurnal heating
of a lake by the sun. The model in this paper uses a zero-mean heat-flux modulation
profile at the boundary, meaning that the net heat flux over each period is zero. This is
a simplification of the motivating case of springtime warming of ice-free Lake Superior
because the lake warms up during the spring. Despite this difference, the results in this
paper may provide insight at the time when the Rayleigh number passes from supercritical
to subcritical as the coefficient of thermal expansion goes from negative to positive. The
most realistic boundary conditions for the lake would be modulated heat flux and no-stress
conditions at the free surface, and zero heat flux and no-slip conditions at the lake bottom.
Another example of this set-up arising in the analysis of natural phenomena is Coenen
et al. (2021).

We have treated the modulated flux condition at one boundary as being representative
of radiative heating confined to a thin layer near the surface, and have also neglected
effects from rotation. Future work could include these additional factors. Radiatively
driven convection without modulation has recently been used experimentally in Bouillaut
et al. (2019) to observe the transition to the ultimate scaling regime of RB convection,
where the Nusselt number scales with the square root of the Rayleigh number. Radiative
heating could be incorporated into the stability methods used here, and the theoretical
modulation profile would then need to avoid radiative cooling.

When considering linear stability, rotation generally has a stabilizing effect on RB
convection, as shown in Chandrasekhar (1961), and we would expect the same effect when
combined with modulation. When considering nonlinear stability, the form of the energy
used here in the energy method is not sensitive enough to include rotation because the inner
product of the velocity with the Coriolis term is zero. To find nonlinear stability results
with rotation, researchers have had to use a modified energy that leads only to conditional
stability results, as detailed in Galdi & Straughan (1985), for example.
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Appendix A. Numerical methods for stability analyses

The stability calculations in this paper are all solved numerically by discretizing in
space with Chebyshev polynomials. We have done this in three different ways, both for
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Rayleigh–Bénard convection with zero-mean modulated heat flux

checking results with a different method and because different methods work better for
different cases. The three ways are (1) Chebyshev differentiation matrices, (2) Chebyshev
collocation in coefficient space, and (3) Chebyshev Galerkin projection. We give some
details of the first method, and then sketch the last two briefly (for more details, see
Christopher 2021).

The use of Chebyshev differentiation matrices is covered in Weideman & Reddy (2000)
and Trefethen (2000). The basic idea is to approximate the solution using a truncated
Chebyshev polynomial expansion. The result of applying the derivative operator to the
solution may then be expressed as the result of a matrix times a vector containing the
solution at Chebyshev grid points, so that du/dx becomes Du. The Chebyshev grid points
that we use are defined by xj = cos (π[1 − ( j − 1)/(N − 1)]), with j = 1, 2, . . . , N.

To satisfy the boundary condition, we use what we will call the nullspace method,
which does not seem to have been discussed in the literature until recently in Hsu, Hung
& Liao (2018). If the boundary conditions can be written in the form Bu = 0, then the
solution u must be in the nullspace of B. We project the entire problem into this nullspace.
For example, if the eigenvalue problem is u′′(x) = −λ u(x), u(0) = 0 = u(1), then the
discretized problem is

D
2
u = −λu, Bu = 0, (A1a,b)

where

u =
(

u(x1) u(x2) . . . u(xN)
)T

, B =
(

1 0 . . . 0
0 . . . 0 1

)

, (A2a,b)

and D is the appropriately sized Chebyshev differentiation matrix. To project this into the
nullspace of B, we set U = nullspace(B), with U

†
U = I , and assume that u∗ holds the

coordinates of u expressed in the nullspace of B, so that

u = Uu∗. (A3)

This leads to

D
2
Uu∗ = −λUu∗. (A4)

Upon multiplication on the left by U
†, we have

Mu∗ = U
†
D

2
U∗ = −λu∗. (A5)

We project the operator

Hd ≡
(

A 0
0 E

)

(A6)

into the nullspace of the appropriate boundary condition operator

B

(

w

θ

)

= 0. (A7)

The same procedure is followed for the right-hand side of (3.8), with the result that all
solutions to the resulting eigenvalue problem satisfy the boundary conditions.

For collocation with Chebyshev polynomials, we express the solutions in terms of basis
functions consisting of Chebyshev polynomials combined so as to meet the boundary
conditions. We therefore use different basis functions for w and θ , which we write as φw

n

and φθ
n for the nth basis function of each type. The domain in z is discretized zj = (xj +

1)/2. We form basis functions φw
n and φθ

n = 0 that satisfy the six boundary conditions.
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To use these basis functions, for linear stability we start from (3.6) and (3.7), and assume
solutions of the form

w(z, t) =
N

∑

n=1

wn(t) φw
n (z), θ(z, t) =

N
∑

n=1

θn(t) φθ
n (z). (A8a,b)

Now we use collocation and enforce the equation at the Chebyshev grid points.
Chebyshev Galerkin projection starts in the same way as Chebyshev collocation. The

same basis functions are used, but the differential equation is obtained by driving the
residual to zero on the basis space used rather than enforcing the differential equation at
specific points as in collocation. We take the inner product defined by

( f , g) ≡
∫ 1

−1

f (x) g(x)√
1 − x2

dx (A9)

of 2N basis functions with the governing equations to find 2N equations for the 2N

unknown coefficients.
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