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In this paper, we construct an explicit family of measures that are p-adic doubling
for any given pair of primes, yet not doubling. This generalizes the construction by
Boylan, Mills, and Ward on a structure theorem on the intersection of dyadic doubling
measures and tri-adic doubling measures. As some byproducts, we apply these results
to show analogous statements about the reverse Hélder and Muckenhoupt A, classes of

weights.

1 Introduction

Breaking up the real numbers into a union of dyadic pieces is a central technique in
analysis. Dyadic decompositions underscore many major theorems in analysis, as often
dyadic pieces are easier to understand and can be treated in different ways. One can
also break up the real numbers into n-adic pieces for any n € N, and the study of
such systems has been a frequent topic of investigation. However, there are still many
fundamental unanswered questions pertaining to measures and functions defined on
these systems, such as, if a measure is n-adic doubling for all n, is it doubling? In
this paper, we make substantial progress on these questions by uncovering and greatly

developing the underlying number theory present when one “intersects” two different
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n-adic systems. This reveals an interesting parallel with the failure of the Hasse
principle in number theory. Our main results are the following: we construct a family
of measures that are p-adic doubling for any pair of primes, yet not doubling, and we
prove several applications to the theory of weights.

The inspiration for this work comes from questions of the form: if X is an
operator/object that is in p-adic “class” for every p, then is it in “class” overall? For
example, X could be a measure, or a function, and “class” could be “doubling” or BMO
(the class of functions of bounded mean oscillation). For instance, in unpublished work,
Peter Jones explored such a question for the “p-adic” BMO classes (alluded to in [16], but
known among analysts). Answering such a general question has an interesting parallel
with the well-known Hasse principle in number theory: that solutions modulo p for
every p can be used to create an integer solution. If one can show that X being in p-adic
“class” for each p means it is in “class,” then one has demonstrated a type of Hasse
principle in harmonic analysis. However, since the study of the failure of the Hasse
principle is a major area of study in number theory and algebraic geometry, showing
that X is not in “class” has many interesting applications as well.

In the authors’ previous works together ([2, 3]), as well as in other places
(1, 19, 23]), a class of numbers called the far numbers (specifically “far from the dyadic
rationals”) play a large role in understanding distinct dyadic systems, which are a set
of grids with the property that every cube is contained in a cube from one of the grids of
roughly the same size. Distinct dyadic systems are highly useful ([6, 8, 10, 17, 18, 20, 21]
to name just a few), and in our recent works, we were able to completely characterize
them in both R and R" ([2, 3]). Essentially, far numbers are bounded away from the
dyadic numbers on every scale (see (A.3) for a precise definition), and by shifting a dyadic
grid by a far number, one can create a distinct dyadic systems for small scale cubes. In
a recent paper [5], Boylan, Mills, and Ward constructed a concrete example of a measure
on [0, 1], which is both dyadic doubling and triadic doubling, but not doubling. Though
seemingly unrelated, since the dyadic and triadic grids do not form a distinct dyadic
system, the concept of far numbers was our original inspiration to further the number
theory behind the work of Boylan, Mills, and Ward.

The bulk of this paper is devoted to generalizing and strengthening [5] to
construct a family of measures that are both p-adic doubling and g-adic doubling for

primes g and p, but not doubling. That is:

Theorem 1.1. There exists an infinite family of measures that are both p-adic and

g-adic doubling for any distinct primes p and g, but not doubling.
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While there are some similarities with the set up from [5], both our approach and
the necessary number theory and geometry are quite different. One of our main novelties
is expanding the number theory to work in tandem with the underlying geometry in our
setup. In [5], the authors worked with the very specific case of the primes 2 and 3, which
allowed not only detailed concrete analysis, but also avoided many technical difficulties
that arise with arbitrary primes: for example, they use the fact that 2 is always a
primitive root of 3",n > 1. Without such properties, the necessary number theory
does not work. We replace these concepts by a new flavor of number theory depending
the the stability of certain orders over specific powers of primes and how they relate
to arithmetic progressions. The basic idea is the following: by using techniques from
elementary number and group theory (see Section 2), for infinitely many rationals of

the form l% (where k lies in a specific arithmetic progression), we are able to find an

infinite arithmetic progression of scales j and m such that 1% and qj—'m are close in a
precise fashion.

We also are able to quantitatively strengthen the geometric results by using the
tools described above. Since we will be looking at intersections of g-adic intervals I
and p-adic intervals J, we focus on the proximity of two distinguished points, the left
endpoint of the rightmost child of I, which we call Z (I), and the right endpoint of the
leftmost child of J, called Y(J). In particular, we are able to show that T and Z lie in
a certain relative arrangement, and that no matter how small I is, we always have that
for a certain J, the difference Y(J) — Z (I) < ¢|I|, for any ¢ > 0 that we wish. While the
far numbers had inspired us in exploring this step, they could only take us so far—in
particular, while far numbers allow us to quantify the fact that any p-adic interval that
intersects an endpoint of a g-adic interval must have at least a fixed fraction both inside
and outside the interval, this does not give us the quantitative strength “to be within ¢,”
that we desire (see, Theorem 3.4).

In [5], the authors carefully checked that their underlying measure was triadic
doubling, including carefully computing the constants, in which consisted the bulk of
their article. Here we completely restructure this part via our “exhaustion procedure,”
which in particular allows us to treat all nontrivial cases in a unified manner by
focusing only on the two rightmost p-adic children (described in great detail in
Section 5.3).

Finally, we apply our results to the theory of weights. We begin by showing
several facts pertaining to the reverse Holder weight classes RH,. Reverse Holder
weights are closely intertwined with the Muckenhoupt A, weights and are relevant

in multiple applications. Understanding their structure has been a deep topic of
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4 T. C. Anderson and B. Hu

investigation (see, e.g., [9]). Via our construction and proof technique for the previous
Theorem 1.1, we are able to show the following structure theorem for the prime reverse

Holder classes RHY (see Section 8 for its definition):

Theorem 1.2. Any intersection of two prime (r)-reverse Holder classes never coincides
the full (r)-reverse Holder class, namely, for any 1 < r < oo and {q;, g,} being a pair of
distinct primes, RH, ¢ RH{' N RH?.

The proof of the above theorem requires a careful selection of the r parameter
governing the reverse Holder classes, as well as an elaborated analysis of the structural
properties of the measure used to satisfy Theorems 1.1 and 1.1. This leads us to prove
a similar statement for the prime Muckenhoupt A, weights (see Section 8 for its

definition):

Theorem 1.3. Any intersection of two prime Muckenhoupt Ap classes never coincides
the full Muckenhoupt 4, class, namely, for any 1 < p < oo and {q,, g,} being a pair of
distinct primes, A, ¢ Al AL

More details are found in Section 8. These provide more analogues to Jones's
result on the BMO classes; likely many other related applications are possible.

One may wonder if our results are extendable to general integers n; and n,
instead of primes. First note that if n; = n¥, then it can be easily shown that any n,-adic
doubling measure is automatically n,-adic doubling (and vice versa) with constants C
and C*. Hence one could ask if we can get the same results outside of this situation,
or even in the case (n,,n,) = 1. Even in the latter case this appears to be a very
difficult question. While the construction of the measure and the analysis employed
in Sections 4-7 could carry through in this setting, we would still crucially rely on
the underlying number theory connected to the geometry of this setting, where it
appears that several new ideas would be needed (e.g., to name one: in place of Fermat's
little theorem one can naively expect to use Euler’'s theorem, but this creates several
bottlenecks). Other, similarly more difficult, extensions are possible; it appears that
this area has a lot of intriguing possibilities to explore.

The organization of our paper is the following: Section 2 elaborates the number
theory that we develop and how it connects to our underlying geometry, which is
further detailed in Section 3. The analytic aspects begin in Section 4, with many visible

connections to the work [5], but the bulk of our work and novelty occur in Sections 5,
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Intersections of General Doubling Measures 5

6, and 7 where we show that our measure is p-adic doubling. In particular, Section 5
contains figures of our measure, and a description, both in text and mathematically, of
our exhaustion procedure. Section 6 works out the math for the most involved cases, and
Section 7 finishes the work, by dealing with other two similar cases. Applications to the
theory of weights appear in Section 8. Finally, in Appendix A, we resolve a conjecture of
Krantz that is loosely related to the contents of this paper and reappeared in the work

[5] that motivated our study.

2 Preliminaries

The goal of this section is to deal with some preliminaries that play an important role in
constructing the desired measure in Theorem 1.1. We make a comment that although the
basic tool we need for this part is some elementary number and group theory, the key
point is that these results have certain geometric interpretation, which further suggests
us how to select “nice” pairs of intervals when we construct the targeted measure (see,
Theorem 3.4).

We begin with revisiting the model case considered in [5], where (p,q) = (3, 2).

Note that their construction is based on the following three facts:

(a). 21is a primitive root of 3" for any n > 1;
(b). 28" =3" —1 (mod 3") forn > I;
(c). 22%"%=3""111 (mod3") forn > 2.

It is not difficult to see that these facts can easily fail for other pairs of primes. For
example, (p,q) = (7,2), since 2 is not a primitive root of 7, hence also for 7" for any
n > 1. We start with refining these facts to any pairs of (p, q).

Recall that p and g are two distinct primes. Without the loss of generality, we

may assume p > q. To begin with, by Fermat's little theorem, we know that

p? =1 (modq)
and
¢ '=1 (modp).

Moreover, we denote (Z/nZ)* the multiplicative group of integers modulo n, n € N.
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6 T.C. Anderson and B. Hu
Proposition 2.1. Let p,q be two distinct primes. Let further, O,,(p, ) be the order of

@°1in (Z/ (p™Z))" for each m > 1. Then there exists some integer C(p, q) > 0, such that

O,p.q@ 1
pm—l - pC(p,q)'

when m is sufficiently large.

Remark 2.2. Note that the claim is easily true for C(p, g, m) > 0 (where the constant is
allowed to depend on m) since O,,(p,q) | p™ ! by Euler’s theorem. The nontrivial claim
is that for all m large enough, this constant does not depend on m. Indeed, not only will
we be able to “cancel” the tern p™ in the denominator, but what is left over will be both

independent of m and unchanging for m large.

Proof. Let m(p,q) be the smallest integer such that
g’~! #1 (mod p™P T,

This implies that there exists some N € {1,2,...,m(p, @)} such that

No

(qpfl)p = 1 (mod p™P9+1), (2.1)

since by Euler’s theorem (applied to g), it is always true that

pm(prq)
(qpfl) =1 (mod p™P D+,
Without the loss of generality, we assume that the IV, fixed above is the smallest, namely

@

Claim: For any ¢ > 0, there holds

No—

1
# 1 (mod p™Pd+1y, (2.2)

No+e—1

(qp_l) £ 1 (mod p™P DLy (2.3)
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Intersections of General Doubling Measures 7

We prove the claim by induction. The case when ¢ = 0 is exactly (2.2). Assume

(2.3) holds when ¢ = k, that is,

No+k—1

(@) 21 mod prpatityy,

and we have to prove it for the case when ¢ = k + 1. By (2.1) and the fact that: if

a = b (mod pY),
then
aP = bP (mod p**h).
we have
No+k—1
(qp_l) =1 (mod p™PD+k),

which, together with (2.4), implies that we can write

No+k—1

(qpfl)p = pnPtk g4,

where p { s (otherwise it contradicts (2.4)).

Taking the p-th power on both sides of the above equation, we have

(qp—l)pNO+k ((qpl)pN0+k—1)p
= (preotk st 1)p

= pm(py4)+k+1 s+1

# 1 (mod pm®OHet);

in the last line above, we use the fact that p 4 s. Therefore, (2.3) is proved.

Now from (2.3) and (2.5) with k¥ = ¢ + 1, we conclude that there exists some

Ny € {1,...,m(p,q)}, such that for each ¢ > 0,

No-+t
Omp,g+e+1@ @ =P ot
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8 T. C. Anderson and B. Hu

which by setting ¢ = m — m(p, q) — 1, implies that when m > m(p, q) + 2, the ratio

0,09  Ompgrm-mpg-n+1® @  pmmeo-1tNo 1
pm-1 pm1 - pm-1 - pm®.@-No
stabilizes, with C(p,q) = m(p, q) — N, ]

This statement along with the next fact will generalize the underlying number

theory and geometry in [5]. After the following proof we explain the connection.

Proposition 2.3. Let p, g be two distinct primes and C(p, q), m(p, q) be defined as in

m@.q)

T and

Proposition 2.1. Then for any m; >

k e {1, 1 4+ pCPO+L | L opCP@+L @D _ pCo+1 4 1}

— {a € [l,pml(qfl)] a=1 (mod pC(p'q)“)} , (2.6)
there exists infinitely many pairs j and m,, where m, € N, and

j € {q—1,2q—1,...,qm2(p_1)—1}

= {b € [l,qu(p_l)] :b=—1 (mod q)}, (2.7)

such that

k j 1

pr@D g1  pr@ Dgme-D’ (2.8)

Proof. It is clear that (2.8) is equivalent to find infinitely many pairs m, and j, which

satisfies (2.7) for the equation

kqmz(p—l) _jpml(q—l) =1, (2.9)

where m, > ™22 and k satisfies (2.6).

q—1
To begin with, we note that if (2.9) holds, then j automatically satisfies (2.7).
Indeed, from (2.9), it is clear that 0 < j < ¢™®~D, and the fact that b = —1(mod q)

follows easily by taking modulus g on both sides of (2.9) and the Fermat's little theorem.
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Intersections of General Doubling Measures 9

Therefore, it suffices for us to solve (2.9) for infinitely many pairs m, and j.

Taking modulus p"™ @~V on both sides of (2.9), we see that it suffices to solve
kq™®-D =1 (mod pml(q_l)) , (2.10)
where
ke {a € [1,pm1(q_1)] ca=1 (mod pc(p'q)“)} .
Denote
G, (P, Q) = {a € [1,pm1(q_1)] ca=1 (mod pc(p'q”l)} .

The solubility of (2.11) will follow from the following facts.

(a). The set G, (p,q) is a subgroup of (Z/ (p™@ V) z)";
(b). gP~!is a generator of the group G, (0, Q-

Suppose both (@) and (b) hold, it follows that there exists some m’ € N, such that
k= q™ P (mod pml(q—n) ,
which implies the desired assertion. Indeed, this is because
ke G @@ =) < (2/(p™ ) 2)
Hence,
kg™ @D = gm'P-1) | gma(p=1) = g(m'+m)(p=1) (mod pml(q_l)) _
Now we wish to find m, such that
qmm2e-D = 1 (mod pml(q—l))
and this is guaranteed by the fact that
qp—l and pml(Q—l)

are coprime and Euler’s theorem.
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10 T. C. Anderson and B. Hu

We now show (a) and (b). To begin with, we note that
Fl=1 (mod pc(p'q)“) , (2.11)
that is, g1 e G, (P, @). This is because m(p, g) is the smallest integer such that
g"~! #1 (mod p™P )

and C(p,q) = m(p,q) — N, for some N € {1,...,m(p, q)}. Next, as an easy consequence

of (2.11), it is also easy to see that

(qp_l)‘ € G (D@, VEZ1,

and hence

() < Gy @ 00,

where (gP~!) is the cyclic group generated by g?~! € (Z/ (p™ @ V) z)".

Therefore, both assertions (a) and (b) will follow if we can actually show that
()= 6, 2.0,
which follows from the fact that
Oy g1y = P™EDCPD1 |G, (p, )
which crucially hinges on Proposition 2.1. The proof is complete. |

Remark 2.4. Propositions 2.1 and 2.3 indeed can be viewed as a generalization of
[5, Claim 1.13], in which, the authors considered the case when p = 3 and q = 2, and
they showed that:

Foranyn € Nand k € {1,4,7,...,3" — 2}, there exists infinitely many pairs j and
m, where m € Nand j € {1,3,5,...,2™ — 1}, such that

(2.12)

A thorough description is in order.
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Intersections of General Doubling Measures 11

If one wants to generalize (2.12) to primes p, g, the most obvious approach is to
show for all n large enough and k € {1,p+1,2p + 1,...} that there exist infinitely many
mandje{l,gq—1,2g—1,...} (one might also think instead of claiming j € {1,q+1,2q+

1,...}, but this does not work and is not suited to the geometry of the problem) such that

= . (2.13)

A natural choice would be to use the properties of far numbers that we have developed
in [1], [2] (see Definition A.3). Specifically, following similar ideas in all of these (see e.g.,

Lemma 2 and Remark 4 in [1]), one can show that

i C
with Cpn =1 /p" and that there exists an infinite sequence of m and j where this C is
the best possible. We start with the first claim: plugging in C = 1/p™ means that we
must show that |kq™ — jp™| > 1, that is, to prevent kg™ = jp™. But this is easy since we
assume that g tj and p 1 k. For the second claim, let C = 1/p™+¢ for ¢ > 0 and arbitrarily
small. Then if this constant were to work, we would need to prevent kg™ = jp™ + 1 and

k@™ = jp™ — 1. However, since
¢*?) =1 (mod p")

we have, if kK = 1, that C = 1/p™ precisely for an infinite sequence of m, j, so we have
equality (up to possible negative signs) in (2.13). Moreover, one can easily see by taking
moduli that j = —1 (mod q).

There is one major issue with this argument: a priori it only works for k = 1.
This is where Proposition 2.1 and 2.3 come into play: the former allows the fractions
k/p™ to stabilize when paired with the latter's more specific arithmetic progression of
k. That is, by restricting k to lie in the sequence 1 mod p”, for a specific choice of h
independent of n (our (2.6)), we essentially replicate the desired situation where k is
always equal to 1.

Some additional commentary relating our generalization compared with [5]

includes:

(1). From the view of number theory, since 2 is a primitive root modulo 3", the
order of 2 modulo 3" is 2-3""!, and hence 0,,(3,2) = 3" ! always; moreover
the set {1,4,7,...,3" — 2} is exactly the subgroup of 1 mod 3 contained
in (Z/3"Z)*. Note that g°P~! = 4, which is generator of this subgroup,
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12 T. C. Anderson and B. Hu

mirroring our proof of (2.11). All these suggest that one probably can restate

[5, Claim 1.13] simply by
C@3,2) = 0.

using our work.

(2). From the view of analysis, we first note that one does not need the full
strength of the condition “for any n € N” in the statement of [5, Claim 1.13]
for its application to constructing the desired measure. Indeed, it suffices
if the statement of [5, Claim 1.13] holds for a subsequence {n;};.;. This is

clear from the proof of [5, Theorem 1.12] (see, [5, Page 272, Line 19-22]).
Om(®.9)

In Proposition 2.1, we have shown that the ratio i stabilizes for m
sufficiently large (which is n in [5]), which is stronger than necessary.

Moreover, Proposition 2.1 also generalizes the geometric structure inherited
in [5, Claim 1.13]. More precisely, Propositions 2.1 and 2.3 generalize the

claim that there exists a pair of intervals I and J, such that

TUJ)—-zd) = oman’
where J is a tri-adic interval of sidelength ,o,n%l and I is a dyadic interval
of sidelength 2,,}—,1 with m even, for any p and q. This will be highlighted in

future sections.

3 The Selection Procedure

The purpose of this section is to select a collection of disjoint g-adic intervals, and these
intervals can be treated as a building block of the example of the desired measure. These
intervals are chosen carefully according to Proposition 2.1 and Proposition 2.3.

We recall several definitions.

Definition 3.1. A doubling measure p is a measure for which there exists a positive
constant C such that for every interval I C R, u(2I) < Cu(I), where 2I is the interval

which shares the same midpoint of I and twice the length of I.

Definition 3.2. Forn > 1,n € N, the standard n-adic system D(n) is the collection of

n-adic intervals in R of the form
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Intersections of General Doubling Measures 13

The n-adic children of the interval defined in (3.1) are

I k—1 j—1 k-1 b
T | pm M+l pm nm+1

), 1<j<n. (3.2)

Moreover, we write Y (I) be the right endpoint of I;, that is,

k-1 1
T = o + s (3.3)
and Z (I) be the left endpoint of I,,, that is,
k-1 n-1
Z (I, = n—m+W' (3.4)

Finally, we denote [(I) the left endpoint of I and r(I) the right endpoint of I as usual.

Definition 3.3. A measure u is a n-adic doubling measure if there exists a positive
constant C, independent of all parameters, such that for any n-adic interval I of the
form (3.1),

w;) -

= =
n

Cr

Ql+~

where both I; and I;, are some n-adic children of I, which take the form (3.2). The

smallest possible constant C are called the n-adic doubling constant of p.
Recall that we assume that p and g are two distinct primes, with p > q.

Theorem 3.4. There exists a collection of g-adic intervals {Ig“}gZl on [0,1), where

a, > 1is a positive integer associated to ¢, such that

(1). The collection of p-adic intervals {J* }¢e>1 18 pairwise disjoint and contained
in [0,1), where J¢ is the smallest p-adic interval that contains I?‘. In
particular, the collection {I;*} ¢>1 1s also pairwise disjoint;

(2). Foreachwa > 1,a € N, there are only finitely many ¢ > 1, such that o, = «.

(3). Foreacht¢>1,

0<7 (7)) -z (1) = g\ 1. (3.5)

Note that since J¢ is the smallest p-adic interval that contains I, condition
(3.5) in particular guarantees that the right endpoint of I;* is to the right of
TJY;
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14 T. C. Anderson and B. Hu

The specific role of & will be detailed later on; basically it represents the number
of generations that we will alter to construct our measure. We'll refer to the points Y
and Z as distinguished points.

To prove this result, we need the following proposition.

Proposition 3.5. Given any interval J C [0,1] (J is not necessarily p-adic) and any

¢ > 0, there exists a g-adic interval I C J such that
0<TYW) -2 <elll,

where J is the smallest p-adic interval that contains I.

Remark 3.6. One of the key differences between our approach and [5] is that we can
make the difference between the distinguished points arbitrarily small. This simplifies

some of the analysis and allows for great flexibility in our construction.

Proof. We start with fixing an interval J c [0,1] and some ¢ > O, and we let J
be the largest g-adic interval which is contained in J with sidelength —-. We choose
q 1

m(p,q) m, m1+C(p,q)+1
q—1 """1’ p—1

: 1
m; > max{ } with pm@n < &4, and

ke {1, 1 4+ pCO@HL 1 4 opCP@+1 pymi@-D _ pCoa+1 | 1} , (3.6)

such that ; € J'. Note that the existence of such a k is guaranteed by the fact

ml(q 1

that the set {zﬁ 'k satisfies(3.6)} is a m—net in [0, 1] and the inequality

1 . .
S@EDTEaT < qT,l (recall that p > g). Fix such a pair of m; and k, and let

7o k-1 k+p-1
T pm1(q—1)’ pm1(q—l)

Note that we then have

k

T = pm@-1)

and J C J’' C J due to the choice of m, and the fact that p > q.
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Intersections of General Doubling Measures 15

By Proposition 2.3, there exists infinitely many pairs m, € N and

je {q—1,2q—1,...,qm2(p—1)—1},

such that

pqu—n - qmz{P—l) - pm1<q—1)1qmz<p—1)' 8.7
We choose such a pair m, and j, with m, sufficiently large such that

qg™® Y >~ 10 p™@ b (3.8)
and let
[ [j+1—q J+1 }
gm2®-1 ! gm2®-1) ’
Note that
Z (1) = #@.

The desired result will follow if the following assertions are verified:
i). YW >ZzZd);
). ICJ;
(iii). J is the smallest p-adic interval containing I;
). YWJ)—Z{d) < el
Proof of (i). This is clear by (3.7).
Proof of (ii). This is indeed guaranteed by (3.8). More precisely, recall that we
denote () to be the left endpoint of I and r(I) to be the right endpoint, then

D, YD = |lld), Z DI+ [1Z (D), T (D]
_ q—1 1
720D T pm@ Dgme D
1
10pmi(g—1)

), YD

A
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16 T.C. Anderson and B. Hu

z(}) I(I) Z(I) T(J) r(I)
Fig.1. I CJ.

where we have used (3.8) to arrive at the third line (see Figure 1). This will imply that
both I{I) —I(J) > 0 and r(J) — r(I) > 0, so that I C J.

Proof of (iii). This is also clear since I contains YT(J) as an interior point (see
Figure 1) and all other p-adic intervals whose sidelength are less or equal to |J| are
either disjoint from Y (J) or contain Y (J) as an endpoint.

Proof of (iv). The last assertion is straightforward from the choice of m;. Indeed,

1
cpe.—1
ml(q—l)qmg(p—l) qmz{P—l)

TJ)—Z @)= = ell].
p

Remark 3.7. The condition being used in (3.7) is quite strong as it asserts that for
such a chosen k and m,, we have infinitely many structured j and m, (i.e., j belonging
to an arithmetic progression) that give equality. This implies that the corresponding far
number inequality (A.3) for § = k/p™ is sharp infinitely often in a structured way. This
indicates that for these §, not only does the sharp constant C(§) gives precise geometric
information about the proximity of the distinguished points in our construction, but
that the sharp constant recurs infinitely often in a structured way. This phenomenon
might extend to other rational far numbers in a related way, and if not, might give a

further gradient on which to determine the “strength” of a given far number.

Proof. Proof of Theorem 3.4 Let us choose an infinite collection of {35}821 of pairwise
disjoint p-adic subintervals of [0, 1]. For each J¢, we associate a natural number a; toit
and apply Proposition 3.5 with ¢ (= g,) = q~1%% to J*, this yields a g-adic interval I}
and a p-adic interval J¢, which satisfy the third condition in Theorem 3.4. While for the

first condition, we note that for each £ > 1, there holds
eyt

and the disjointedness of {J”E}’221 follows from the fact that {.—JEF’E}E21 are pairwise disjoint.
Finally, for the second condition, it can be simply achieved by choosing ;s in such a

way. |
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Intersections of General Doubling Measures 17

Remark 3.8. Upon a very careful reading of this paper, one will hopefully discover
that the location of the distinguished points do not matter; it is their relative order and
proximity (specifically that they can be arbitrarily close) and consistency of position
(that they are interior, an endpoint of a child, and in the same position each time)
that matter. For instance, YT could be the right endpoint of the child J, and Z the right
endpoint of child Iy if p = 19 and q = 13. However, the underlying number theory might
prohibit such an arrangement of a uniform pattern; this is a key reason advocating for
the approach that we chose. In [5], the authors use a different approach, but it should be
noted that they could have chosen any of the children’s interior endpoints and orderings
as well (there are only four possible total choices there), and either choice works due to

a variant of their procedure akin to the approach described in our Remark 2.4.

4 Construction of the Measure n

Theorem 3.4 plays the role of identifying each building block of the targeted measure.
In this section, we construct a measure p which is both p-adic and g-adic doubling, but
not doubling. The proof of the fact that u is p-adic will be postponed to the next section.

From now on, we shall fix a £ € N and pay attention to a single Iz‘ ¢ chosen in
Theorem 3.4, with an integer «, € N being associated. The construction of the desired
measure will be completed if we apply the construction in this section repeatedly to all
I*'s and equip Lebesgue measure on the rest of [0, 1)\ (U, ;).

Note that from the proof of Proposition 3.5, we can indeed write

7 — j+l—q Jj+1
[ qm(p—l)’qm(p—l)

for some m € N and

In particular,
- qm(p—l) ’
In the rest of this section, we write
I'=I, a:=a, and Z:=Z(I}")

for convenience.
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18 T. C. Anderson and B. Hu

We remark that the number « comes into play a role in the construction. To begin

with, we take 0 < a < 1 < b such that
(q—la+b=q.

Roughly speaking, the idea is to assign the weights a and b carefully to the g-adic

intervals near the point Z.

Remark 4.1. It is certainly possible that our analysis carries through by choosing g

weights ay, a,, ..., Ag_1. b; by doing things this way we have less constants to deal with.

Here are some details.
Step 1: We start with the interval I and all its g-adic children {I;,...,1

} (see
q
(3.2)). Define

alll .
M(Ii)=a|Ii|=T, t=1,...,q—1.

and
blI|
w(l)=>bll|=—.
q q q
Note that
Z (q—Da+b
u() =D ) = = (4.1)
i=1

To this end, we denote
1. 1) .
HY = I, , and GWY = I,.
Step 2: We consider the g-adic children of H and G'*), and denote them by
(0. )

and

{e.....c"},
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Intersections of General Doubling Measures 19

respectively. We redistribute the weight on HV) and GV by defining

bu (HYV)  ab|I|
M) _ _
n(117) = a 7

’

ap (HV)  a?|1
p ()= 2 ED) _a

N @
and
bu (GV) b1
1 —
ap (GM)  ablI|

To this end, we denote
H? = Hél) and G? := Ggl).
Step k, 3 < k < a: Suppose we have already constructed H*1 and G%*~1, and

our goal is to construct H® and G® and redistribute the weights on H*~1 and ¢*-1

from the previous step. Note that by induction we have

u (H#ED) =—a::|1[| and . (%) :_b::|11|.

Denote the g-adic children of H*~1D and G*-V by
(-0, . )

and

{ef .66 ™),
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20 T.C. Anderson and B. Hu

respectively. We redistribute the weight on H*~1 and G*~1 by defining

q gk

B bu k-1 b k=11
M(Hik 1))= ( ) _ ba¥ ']

- an (H*D) gkl
M(Hf 1))= ; = =2,...,q,
and
bu (G*-D)  pk
-1\ _ b ( ) bMI|
1) an (G(k_l)) ab* 11|
I‘L(Gl ): p = qk , =2,.. ' q

To this end, we denote
H® = HF Y and 6® = g*D,
Step « + 1: From the above construction, we know that

m (H(“)) = % and pu (G(a)) = %. (4.2)

We will now use a different way to distribute the weights a and b to the g-adic children
of H® and G, Again, let

and

be the g-adic children of H® and Q@, respectively. We redistribute the weight on H®
and G by defining

a H(Dl) aOt+II
) e

q - th-‘rl
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Intersections of General Doubling Measures 21

bu (H® p|I
M(Hf[’))z u(HS) — abii|

q - qa+1 !
and
@ apn (G®)  ab*|1| .
M(Gia): . — qu+1' l:l,...,q—l,

bu (G®) bt
@) _ _
nw (an ) = p = pos)

To this end, we denote
H(oH-I) — ng) and G(a+1) — G(la)'

Step a+k, 2 < k < a. Suppose we have already constructed H@®*+*~1 and G@+k-1
and similarly as before, our goal is to construction H@*¥ and G®*® and redistribute
the weights on on H@*+*~1 and G@+k~1 from the previous step. Note that by induction

we have

apk—1 o k—1
@tk-1) _ @67l ( (a+k71)) _ bra
s (H ) T ogetk-l and p|G o getk-l

Denote the g-adic children of H@*+*~1 and ¢@+*—1 by
{H§a+k—1), o ,H‘(Za+k—1)}

and
{Ggwkfl), L ng+k71)} ,

respectively. We redistribute the weight on H@tk~1 and G@+k—1 by defining

8 a H(a+k—1) aa+1bk—1 I
M(Hi(a+k 1))= I’L( )= ||/ i=1,...,q—1,

q q()l+k

q - qu—k

n (H(a+k—1>) _ bu (HHRD)  gebk
« =
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22 T.C. Anderson and B. Hu

and

" (G(a+k—1)) _ap (Glatk=1) _ bYak|I|
¢ -

p = qa+k’ t=1,...,q9—-1,

(G(oz+k71)) _ bu(GUtY)  pelak
H\bg - q - qa-i-k

To this end, we denote

gtk — Hz(za+k_l) and G(a+k) = G(loz+k—1).

The construction will stop at Step 2«.

Remark 4.2. The fact the construction goes to step 2« (instead of, say, «) is needed
in order to show the measure is p-adic doubling, specifically in the case when Z € J
(precisely, one can see that the measure will fail to be p-adic doubling by stopping at
Step «). Additionally, it allows us to exploit symmetry in the Case where J is to the left
of Z, see Section 7.1. Finally we remark that variations of our construction might be

possible, as long as they stop at Step co, where c is a constant independent of «.

At the end of this section, we show that u is not doubling but g-adic doubling,

and we will prove that u is p-adic doubling in next section.

Proposition 4.3. Let u be defined as above. Then

(1). p is not doubling;
(2). pis g-adic doubling.

Proof. (1). By (4.2), we have

Using Theorem 3.4, (2), we see that this ratio can be arbitrary small when ¢ is sufficiently

large, which will clearly fail Definition 3.1 if we consider the interval H® U G,
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Intersections of General Doubling Measures 23

(2). From the construction, it is clear that given any g-adic interval on [0, 1), we

have
n(d;)) a b o
=1,—-, or—, foranyi,,i,€{l,...,q},
u@y,) b a e
in particular, this implies u is g-adic. |

5 Trivial Cases and Exhaustion Procedure

The goal of the coming two sections is to prove the measure x construction in Section 4
is p-adic doubling, and we start making some reduction in this section.
To begin with, let us take a p-adic interval J C [0, 1), the goal is to show that

there exists a positive constant C > 0, such that

<C, Vj.j,efll,...,ph (5.1)

Ql+-
=
—~
<~
N

5.1 Supporting constructions and trivial cases

First, let us recall from Theorem 3.4 that, for each I?z that had been chosen, J¢ is the
smallest p-adic interval that contains it, and the collection {J*},., is pairwise disjoint.
We begin with three trivial cases.

Trivial Case I: J does not intersect any J*.

Trivial Case II: J intersects more than two J's.

Trivial Case III: J intersects a single J¢ but contains it strictly.

Indeed, one can see that in all of these cases, all the ratios in (5.1) take the
value 1. More precisely, for the first case, since J does not intersect any J¢, the measure
w restricted to J is exactly the Lebesgue measure. While for the second case, since J
intersects more than two J¢'s, J has to be a p-adic ancestor of those J!s that intersect
with J. The desired claim for the second case follows from the fact that u(J%) = |J¢|
for all ¢ > 1 (which follows from (4.1) easily). Finally, the third case holds for the same
reason.

Therefore, it suffices for us to consider the case when J coincides with one of

the J’s or with one of their p-adic offspring. Again, let us fix some ¢ € N, and write

L= =0, Z=2 (") and T = (J)
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24 T.C. Anderson and B. Hu

E(2a-1) g(20)  o(2e) Fl2a—1)

Z T

Fig. 2. F®'s g0's [(20) ang g2,

for convenience. To begin with, let us observe the measure p constructed in Section 4 in

a more compact way. More precisely, we start with H?® and G?®, and recall that

ﬂ(mhg:“(mmg:aziﬂ.

We define the following: forany 1 <k < 2o —1
FO .= gO\gI+D  ang  EO . glo\ gletD
and
EO:=nu-.-uI_,.

(see, Figure (2)).

Remark 5.1. Let us make some remarks.

(1). If g = 2, then there is no need to consider E©® since E© is empty in this
case;

(2). One can also define F(?, but it is always empty.

By the construction in Section 4, we have

k—o e
@-a- Tl a<kz2a-1;
b) —
..‘.L(F{ )_
(q—b)-;’—:%, l<k<a-—1,

while

-1 — DI
‘F(k)|:qT'|G(k}|:(qk—+l)ll' l<k<2a-—1.
q
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Similarly,
(q—b)-%, o <k<20-1;
u (E<k>) - (5.2)
(q—a)-%, l<k<a-—1,
while
-1 — DI
‘E(k)‘=q—')H(k)‘=%, 1 <k<20-1. (5.3)
q gt

Finally, we have

(50 = a(g - I, 50 = q —q2>|1|.

Note that no p-adic interval can ever be equal to any of the E®, H® G® or F®,

We now consider one more easy case.

5.1.1 When J = J¢.
Let

T dp)
be all the p-adic children of J, and note that in particular we have r (J,) = (J,) = Y. We

recall that the goal is to show (5.1).
SinceI c J* =Jand YT — Z0, it follows that I C J, UJ,, and hence

/L(Jl)zm, j=3,...,p,
p

since we have {JZ}EZl are pairwise disjoint. Moreover, by (3.8), we have

Wl

2 2 2p
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E(2a-3) E(2a—2) E(2a—1) i (2a)
A A v_/H/_,/H
an+]bn—3 ar}-+]bn—2 an—lbrr—l a®p™
. . . . *Z
(g —1) q(q — 1) g-1 1
pla—2) ple—1) H )
e ~ e
E(Q)
—
baa—z ao‘_l bar_\r—l a™ ﬂC\:—l
a+1 a+1 @ “g—2 4
q ¢t (g —2) q 4% (g — 2)
—~ A —~ /H/_/
¢* (g 1) g%(g—1) g -1)

Fig. 3. p on the left hand side of Z.

This implies the left half of J; and the right half of J, do not intersect with I, and
combining this with the fact that u(I) = |I], we have

J 2|7
u E LI’ i = ]'I' 2!

2p p

and hence the ratio in (5.1) is bounded above by 4 and below by ;ll, which implies the

desired result.

5.2 Visualization of the measure

Let us now turn to the non-trivial case of the proof, that is, the case the case when J
coincides with one of the offspring of a single J* and J ¢ J*. It will be convenient for
us to see directly how the measure u looks like. We start with visualizing u on the left
hand side of Z (see Figure 3).

Let us make some remarks for Figure 3.

(1). The red parts correspond the weight associated to each E®, 1 < k < 2o — 1
and H?_ For example, on E?*~2), we have the weight a®*'b*~2, which
means du|gee2 = (a*t15*2) dx, where dx is the Lebesgue measure;

(2). The blue parts refers to the ratio of the lengths between the targeted interval
and H?® (see (5.3)). For example, under E?*~2), we have the ratio g(q — 1),
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E®)
ba* ak+t

i 2ok-1 i 2o k1(g - 2) i
¢ g - 1)

Fig. 4. E® with1 <k<a —1.

E®)

aa+lbk—cx

g -1)

Fig. 5. E® witha <k < 20 — 1.

which means

|2 :

IH(T}l =q(g—1);

(3). The behavior of the measure u follows two different patterns on the left
hand side of Z, with the distinguished point [(H%*) (the green point in
Figure 3) and this corresponds the fact that we distribute the weight in a
different way from Step « + 1 onward (see, Section 4).
More precisely, when 1 < k < ¢ — 1, the weight and ratio associated to E®
is given by Figure 4:
and when @ < k < 2« — 1 it is given by Figure 5:

(4). We can easily recover the previous calculation (5.3) by using these figures.

Indeed, whenl <k <a—1,

&) _ k. 20-k-1 Ml K+l 20-k—1,, ]
ﬂ(E ) = ba"-q ‘q—za-i-a -q (q 2)lq_2“
k

a“|I|
= (b+a(Q—2))-—qk+1
ak|1|

(q—a)‘F-
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G{2u) F{2u—l) F(2u—2) F(?a—S)
/‘A—V A A A
&g e b g ba—]ﬂrx—] baan—] brx—lan—Z bnan—Z bn+1an—3
Z* > - - - - . -
T q—2 1 alg — 2) a ?(g—2) q?
\V—A A A
v e '
1 g-1 alg — 1) g*(g — 1)
Gle) pla=1) Fla—=2)
— A I
F(‘})
S a bu——1 b(r—la b(x—Qa
VA &

@ Hg—-1) q%(g—1) *tlg—1)

Fig. 6. p on the right side of Z.

Fk)

A

bFa

20—k—1 (q _ 1)

q

Fig.7. F®O with1 <k <a — 1.

and when a¢ < k < 20 — 1, we have

I
u (E(k}) _ qeHlpka g2a—k-1n_ 1y, %
g+t
bk—qa 1|
= (@g—b)- 6}'157

Similarly, we can also plot 1 on the right hand side of Z as follows (see Figure 6).

(1). When 1 < k < «¢ — 1, the weights and the ratio associated to F® jg given by
(see Figure 7)
(2). When & < k < 2« — 1, we have the following (see Figure 8)
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120
b(.tak—(.t+1 bu——la_k—u
i q20—k—1(q _ 2) i q2cr—k—l i
¢ g - 1)

Fig. 8. F® witha <k <2a — 1.

Remark 5.2. The above figures clearly indicate that this case is a “mirror symmetric”

version of the case where Z is to the right of Jp-

5.3 The exhaustion procedure

Here we describe the main idea that we will apply to all the rest of the scenarios, called
the exhaustion procedure. Upon reading this section, the reader should be equipped
to check the calculations with greater ease, and also be convinced that this technique
will handle all the nontrivial cases, and therefore show that our measure is p-adic
doubling. At its heart, this idea capitalizes on the geometric progressions inherent in
this construction to bound the ratios of J’s p-adic children.

The basic idea is the following: assuming Z is on the right hand side of J, we
will look at the rightmost child of J, Jp, which will intersect a certain number of the E
and H® intervals (or none of them) that we have defined. These intervals have a nice
structure, in particular they exhibit geometric grown (see Figure 3), and so n(Jp) will be

(essentially) controlled by
(the weight on the leftmost part of Jp) . |Jp) . (5.4)

All other children are limited in how many other E and H®® intervals they can intersect,
and we can “exhaust” these children one by one by quantifying how many can lie in the
next largest interval. Once we exhaust a certain number of children, we move again to
the next largest interval, and exhaust more. Due to the geometric progression inherent
in certain ratios involving either the E or H?®) intervals, we will be able to exhaust all
the children in N steps, where N is a fixed number depending only on p and g (see (5.5)).
Moreover, the geometric progression also guarantees that each J;,1 <i < p—1 intersects

at most two of the E and H intervals.
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30 T.C. Anderson and B. Hu

As long as we can favorably compare ratios at each exhaustion, we will have
upper and lower bounds that are controlled by a fixed power (no matter what « is) of
the ratios at a single exhaustion. Taking care of the special case in considering the ratio
between M(Jp) and u(Jp_l), which is calculated separately, all other children will be
exhausted, resulting in the whole family being exhausted, and leading to the explicitly
calculable (though by no means optimal) upper and lower bounds.

Some details are in order. Here, we treat a generic situation to give greater unity,

there are a few small technicalities and particularities that are pointed out later when

logp
logq

they occur. First we notice that N := | 1+ 1 is the smallest integer, such that

p<l+@-D+q@-1--+q" 1 (g-1)=q". (5.5)

We will end up doing at most NV exhaustion steps, where at the kth exhaustion, we will
at least exhaust g*~1(g — 1) children, precisely those consecutively located to the right
of the previous exhaustion. So explicitly, for the first exhaustion, at least g children are
exhausted, for the second, at least g(q— 1), for the third, at least q2 (@q—1) are, and so on.
Since the total number of children is p, which is less than gV (see (5.5)), and remember
that we can count J,, as exhausted already as we will handle it separately), after the
N-th exhaustion, all the p-adic children will be exhausted.

At each exhaustion step, the ratio of the (to be) exhausted children to each other
will be controlled by some bounded constant dependent on a and b (or on g and p, but
never «), like b/a?, so after N steps, the worst ratio we can have between all children
2)N

is that constant to the Nth power, such as (b/a®)". This essentially leaves only one

remaining step: to calculate the ratio

w(lJTp)

H’(Jp_l) .

Computationally, this full procedure takes N + 1 steps, and more importantly, the num-

ber of steps as well as the actual ratios computed, are independent of the parameter «.

Remark 5.3. Our approach involving the exhaustion procedure is different from [5],
though some similar ideas are present in both works. We developed this exhaustion
procedure due to the generality that we consider, but it also allows us to unify several
of the cases under one umbrella, and this guides the different way that we split up our

cases. In particular, we do not need the concept of valuable set from [5].
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We now work the details out. Recall that J is a p-adic interval that coincides
with one of the p-adic offspring of J¢ and J C J*. Moreover, we denote all the p-adic
children of J by

{Jl,...,.]p},

where each J;, 1 <i < p is defined as in (3.2).

Assumptions: To begin with, we make some assumptions.

(1). We assume that Z is on the right hand side of J. Note that in this case,
among all {J;, ... ,Jp}, Jp is the interval that is the closest to Z and intersects
the E®’s and H?® in the most complicated way.

(2). There exists some constant A > 0, which is independent of «, such that

1 w(lJp)

— < —=<A. (5.6)
A~ nlyop

(8). For simplicity, let us write

E® = g,
(4). Finally, we assume
l(Jp) cE®), (5.7)

for some K € {0,...,2a}.

Remark 5.4. We make a remark the condition (5.6), together with condition (5.7), can
be interpreted as a quantitative way to capture all the information coming from J,,, and
from now on, it suffices for us to deal with {J;,...J,_;}.

Moreover, it can happen that the condition (5.7) fails, that is, [ (Jp) ¢ I, and note

that the exhaustion procedure in this case is indeed trivial (see Section 6.1).

Remark 5.5. Let us also make some remarks for the other cases.

(@). If Z € J, we will see this case is essentially the “same” as the case when Z is

on the right hand side of J since by our construction

T-—7 < q—100a|I| < q—201|I| — ‘G(ZO!)
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32 T.C. Anderson and B. Hu

(b). If Z is on the left hand side of J, then the assumption (5.6) above would be:

there exists some constant A > 0, independent of «, such that

L i) <A, (5.6))
A~ u(Jy

and (5.7) would be
Fo) = g, (5.7')

Hence, the exhaustion procedure in this case be treated a “mirror symmet-
ric” version of the case we are considering, with respect to Z, in which, we
shall start with J;, instead of J, as in this case J; is the closest interval to
Z.

Step 1: By (5.7), J, c H®. Since

B0

e —4

it implies that the g — 1 p-adic children to the left of J,, that is,
Tp1r- iy (g1

are either contained in EX), E&-D or E®) U EX-D (at most one of them). Therefore, the

values of
M(Jp_l): ceey M(Jp_(q_1))
are either
(Weights on E(K)) 1, (Weights on E(K_l)) ||
or a convex combination of them. Moreover, it is not hard to see that

J:
%25 ZEJL; 5%, J1jzep—(@—-1),...,p}
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(one may refer Figure 3 to check this). Finally, we note that here we exhausted the
rightmost ¢ = 1 4+ (@ — 1) many p-adic children of J, and this corresponds to the
term”“l 4+ (g — 1)" in (5.5).

Step 2: Now we move the next step to exhaust more p-adic children of J from

the rightmost side. Note that Since

|EE-2)| |EE-2)|
WIQ(‘Z—U, and W:q_ll
we conclude that the next g(gq — 1) p-adic children next to J,_,,, that is,

J

p—qr-- 1Y,

p—g*+1

will be of one of the following situations:

(1). They are either contained in EX), EE=D or E®UEXE-D (at most one of them);
(2). They are either contained in EX—1, EK=2) or E&K-D y EK=2) (at most one of

them).

This implies the values of

1 (Goa) oo (G
will take one of the following forms:

(1'). Either
(Weights on E(K)) |yl (weights on E(K*U) 1,

or a convex combination of them,;
(2"). Either

(weights on E(K_l)) |yl (Weights on E(K_Z)) 1,

or a convex combination of them.

Moreover, it still holds that

HA\YJe
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34 T.C. Anderson and B. Hu

To this end, we note that in this step we exhausted the rightmost g(q — 1) many p-adic

children of J next to J,_,,

Step k: In general, assume we have already made such an exhaustion k—1 times,

and this corresponds to the term “g(q — 1)” in (5.5).

and here is how we make the k-th exhaustion. Observe that

| E&—k | - | &=k | o |E(K*’<) |
THO] =q (@-1), m:q (-1, ..., m:q_l'

Similarly, these allow us to conclude that

n (inqk—l) peee W (prqurl)

will be of one of the following situations:

(1). Either

(Weights on E(Kl)) |yl (weights on E(Kl_l)) |yl

or a convex combination of them; :
(k). Either

(Weights on E(Kl_k“)) |y, (Weights on E(Kl_k)) |y,

or a convex combination of them.

Most importantly, the estimate

%2<M(Jj1; 5%, hietp—d"+1,....p—q
2

k—l}

still holds, and just as before, we have exhausted the rightmost g1 (q — 1) many p-adic
children of J next to J,,_gx-1,,, and this corresponds to the term “g¥~1(g — 1)" in (5.5).
Step N: Continuing this process and (5.5) suggests that this process will stop
after N steps, that is, all the p-adic children of J will be exhausted after N steps. Recall
that N only depends on p and g. This suggests (5.1) holds with the absolute constant
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b N .
C = (—2) , that is,

N

2 J:) b\V
(%) sZ(“ <( ) . Jide€{l,...,.p—1} (5.8)

=\ g2
T ~\a

Final Step: The final step would be adding J,, to (5.8), via our assumption (5.6).

This is straightforward by both estimates, and finally we conclude that

1 (a?\"  n@;) b\V .
5 SMSA. 2z) JiJ2€{l,...,p}
J2

Therefore, we see that the exhaustion procedure reduces the original problem to

. ) J;
the computation of the ratio M(A’p) .
", )
. wJp)
6 Computation of 7Ty D)

In this section, we complete the proof of u is p-adic doubling by showing that the
constant A in our assumption (5.6) can be chosen only depending on p, g, a, and b.

Without loss of generality, we may assume
q> 2.

The case when g = 2 is indeed much more easier and follows from an easy modification
of the case when g > 2, and we would like to leave the details to the interested reader.

We start with computing the ratio

J.
Up) 6.1)
/'L(prl)

with the assumption when Z is on the right hand side of J and Z C J*.
Recall that in the case when Jp cI,Ke{0,...,2w} is the integer such that

(K)
l(Jp) € EY.
Moreover, we assume that K’ € {0,...,2a} with 0 < K + K’ < 2« is the integer such that

r(J,) € EX).
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We make a comment that the ratio (6.1), or in other words, the constant A defined in

assumption (5.6) is independent of the choice of K and K'.

6.1 Computation of - “p)_if K does not exist
w(J; p—1 )

First, we consider the case when K does not exist, that is, l(Jp) ¢ I. Note that the
exhaustion procedure in this case is indeed trivial: all the J;, ... ,Jp_1 do not intersect I

and hence

np =1pl, j=1,...p—1
There are several cases for K'.

6.1.1 K’ does not exist.

In this case, J NI = ¢, in particular, the ratio in (6.1) takes the value 1.

6.1.2 K'=0

In this case, the weight on Jp is either 1 or a; therefore, we have
all,| < u(,) < |7,

and hence

w(lJp)

= =
/’L(Jp—])
In particular, one may pick A = é in this case.

6.1.3 K' >1.

Note that in this case, E© C J,, and we can always bound (J,) from above as follows

wy = w([lwpm]) +u([io.rap])
< W+ =Wyl +11]
= Wl 5 [EO <1+ |y
- 2qq_—22 1T, .

While for the lower bound, let us consider two different sub-cases.
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o If ‘[I(Jp),l(l)]‘ < 117,|, then

1) = i ([ 10]) = [ 0] > 1,
o If ‘[Z(Jp),l(I)]‘ < 11J,], then

() ol

2= T2 )|

n(Jp)

v

a(g-2)
2q il

Therefore, in this case, we have

’

J,| a(q—2)|J (2q — 2)|J,
min [ 72! 4@ DWl) o BaZ 2
2 2q p q—2

and we can pick A accordingly.

if K exists

. M(Jp)
6.2 Computation of WD)

Note that if K exists, then K’ also exists. Let us consider several possibilities.

6.2.1 K' =0.

In this case, we have J, C E® _ There are three possibilities in this situation:

(@). Ifa <K < 2a, using Figure 5, we have u(J,) = at1pK—« \J,,|. Moreover, we
also have

a* XN < uy ) <@ TBET,), ifK >«

and
a“ | < (Jp_l) <a®J,l, ifK=a.

Hence, we have
J
ulJp_1)

and we can put A = max {b, é} in this case.
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(b).

(o).

If 1 <K <« —1, using Figure 4, we have
a¥ Tl < np) < bak|g,|.
Moreover, we also have
a¥ Tl < nlp_y) < ba"|Jy .

Hence, we have

and we can let A = g in this case.

If K =0, then n(Jp) = aldyl. Indeed, it is easy to see that in this case
a|Jp| S M(Jp_l) E |‘]p|r

and hence

n(Jp)

— <

a ru’(']pfl) a

’

which suggests that one can take A = é in this case.

6.2.2 K =1.

This case is very similar to the case in Section 6.2.1, and the only difference here is the

estimate of n(Jp). Note that in this case, 0 < K < 2« since K’ = 1. There are again three

possibilities in this situation:

(a).

If K = 20 — 1, then using Figure 3, we have
a+lpa—1 oo
a® b Tl < nlp) = @byl
While the estimate of nWJp_y) is similar as before, namely, we have

ao{+1b(x—2|Jp| E M(Jp_l) S aOl"rle{—llJpl,
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and therefore

uJ,) b2
< =<,
nl, )~ a

b2 . .
where we can put A = - in this case;

(b). If ¢ <K < 2« — 2, then then using Figure 5, we have
aotJrlefa'Jp' < u(J,) < aa+1bK+lftx|Jp|
and
aa+1bK—a—1|Jp| < u,_y) < aa+1bK—a|Jp|_

Therefore,

< ﬂ < bz,
/’L(Jp—l)

which suggests we can put A = b? in this case;

(c). If0 <K <o« —1, then using Figure 3 and Figure 4, we have

a¥ P2\ | < pJ,) < bak|g,l,, K=1;

a®|J,| < u(Jp) < abldy|, K =0,
and

aXKtNI,| < u(lp_y) < ba¥|J,l, K=1;

al']pl S M(prl) S |Jp|l K= 0'

This means that in this case we have

and with A being % in this case.

€202 |Mdy 0] UO Jasn opelojo) UIBYMLON Jo ANsIsAun AQ £2/6559/6902BULUIWI/SE0 L 0 L /I0p/3|o1e-00uBAPE/UIWI/WOo2 dNo dlwapeae//:sdjjy Wol) PapEOjUMO(]



40 T. C. Anderson and B. Hu

6.2.3 K’ >1.

In this case, we have

g&+D c ']p C H(K),

2a
where we identify H® := |J E®. Note that

k=0

[E&D| g1
T

which implies

B g

‘Jp( > P2 (6.3)

Moreover, since K’ > 2, the defining condition on K’ implies 0 < K < 2o — 2. There are

again several cases.

(a).

If1 <K+1 < a—1, using (5.2), (5.3) and (6.3), we can bound M(Jp) from
below as follows,

(%)

K+1
&+DY _ a1
p(ECY) = @-a) ey

v

(@—a)a*t! g-1 (q—a)a*™ | i
- = ‘E )
qg-—1 gkt qg-1
(@—aaft g-1 (@ — @)a®*!
- q_ 1 : qz |Jp| = qz |']p|'
While for the upper bound, we have if K > 1,
K K K+2
(K)_a|I|_a q q-1
M(-]p) < M(H )_q_K_q_Kq—_1W|I|
aK

2 2 K
aaT .‘E<K+1>‘ <L ;5. (6.4)

q—'l q—l"‘]p
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and if K =0,

a(q — DI _1
i (H(O)) S S P Sy

u(Jy)
14 q q2

IA

= aq- ‘E(l)‘ <aq-|Jy.

The estimate for n(Jp) in this case is exactly the same as (6.2), and hence

2
(g—a)a - n(Jp) __4a

bg> T uWl,_y) T a@-1)’

which implies that we can put

2
a— _ba
a(g—a)

in this case.

Ifa <K+ 1<2a—1, wecan bound M(Jp) from below by

bK+1—aaa |I|
) = (B ) = @b ey
(q _ b) . bK—H—ozaoz q-— 1
= q-— 1 ’ qK+2 ) |I|
_ @-b- pKt1-eqe ’E(K+1)‘
qg—1
(q _ b) . bK-‘rl—ocaoz q-— 1
(q _ b) . bK-‘rl—aaa
- Pe “Wpl-

While for the upper bound, we need to consider two sub-cases. If K = o — 1,

then following the same argument in (6.4), we have

B < Wl
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If K > «, then

aabK7a|I| B ao:beoz qK+2 q—l

X)) — . . .
“(H )_ & & q—1 qk2 ]

IA

w(Jyp)

K— K+2
_ a“b_“.q_.‘Eaﬂn‘ -
: <

qzaabea
& 7= —|\J, |

g-1 P

While for the estimate of pnJp_1), we have

a®|Jpl < nWp_y) < ba*~!|Jy|, K=a-1

aa+le70{71|Jp| < M(Jp—l) < aDt+1bK70(|Jp|l K > a.
All these estimates yield

(@-ba _ n(Jp) - bq?
bg? T nWp_y) T al@-1)

and

b 2
R
a(@—1)
in this case.

Therefore, combining all the estimate of A, together with the exhaustion
procedure, the proof for the case when Z is on the right hand side of J is complete.

Now we turn to the other cases.

7 Other Cases

In this section, we make some comments on how to adapt the exhaustion procedure to

deal with the other two cases when

(1). Zis on the left hand side of J;
(2). zZed.

This allows us to conclude the measure u construction in Section 4 is p-adic doubling,

which proves Theorem 1.1.
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7.1 Zin on the left hand side of J

Recall that T is on the right of Z. First we note that if T € J, then Y has to be either
I(J) or r(J); otherwise, this will force J to be J* or some p-adic ancestor of J¢, which
contradicts the our assumption J C J*. Therefore, Y is either located on the right hand
side of Y or on the left.

The case when Y is on the right hand side of J is trivial. Since J c [Z, Y] c G?¥,
and (5.1) holds with the constant 1 (since the weight on G?® is a*b®).

Hence, we may assume Y is on the left hand side of J. However, by (3.5), we know
that Y —Z < qﬂ%, which is “negligible” compared to the length of G?¥, which is q‘%.
In other words, this motivates us to treat Y and Z “the same” under such a situation.
Therefore, the proof of this case follows from an easy modification of the arguments
presented for the case when Z is on the right hand side of J and we would like to leave

the detail to the interested reader.

72 ZeJ

The last case is also an application of the exhaustion procedure in Section 5.3. To begin
with, we note that since Z € J, T is forced to located on the right hand side of J.
Otherwise, Y will be an interior point of J, and following the argument in the first
paragraph in Section 7.1, this contradicts the assumption J C J*.

We consider several possibilities.

(1). I(H@) ¢ J,. Since Z € J, it follows that r(J) = r(J,) > [ (H?). Let
K €{1,...,2a — 1} be the unique integer such that [ (H*®)) € Jy (if such a K
does not exist, then J c H?®'NG?® and (5.1) holds trivially with the constant 1,

since the weight on both H?® and G?® is g*b®). This means we have

1(Jggr) = =n (Jp) = a”b|J,|,

while the estimate of w(J;),..., u(Jx) follows exactly the same as the
exhaustion procedure, and (5.8) holds in this case.
(2). L(H®*®) € J,. To begin with, we first note that by an application of the
exhaustion procedure, we can show that there exists an absolute constant
C' > 0, such that
1 nWj)

= =

¢~ nJ,)

<C, jiJ,ef{l,...,p—1},
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since Z is on the right of Jp_l. Therefore, it suffices to show that there exists

an absolute constant C” > 0, such that

1 wn(Jp)

C" = npy) -

/!

This will follow from an easy argument by examining whether the ratio

[ i)
A

makes a significant contribution (e.g., whether it is greater than 1/2) or not.

We would like to leave the detail to the interested reader.

Remark 7.1. We note that this is the key part where Step 2« is needed, as by stopping
at Step «, for very small J,, lying almost entirely to the right of Z, the ratio |[Jp|/IJ,_|
would be essentially (b/a)“.

8 Applications

We now use our results to show an application related to the reverse Hélder inequality,
mentioned in the introduction. Though well equipped to do so by our earlier analysis,
including the exhaustion procedure, the proofs require significant care. To provide
clarity, we explain our reasoning within the proofs before providing the detailed
calculations. We begin with some definitions.

Let p and g be a pair of primes with p > g and w be a weight (i.e., a nonnegative
locally integrable function). We may also assume g > 2 as before, while the case g = 2
follows from an easy modification of the proof for g > 2.

Let further, w, be the weight associated to the measure pu that we have

constructed in Section 4, that is,
w(l) = /WMdX, for any interval I.
I

Define the reverse Hélder and g-adic reverse Hélder classes as follows:
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Definition 8.1. Let1 < r < co. We say that w € RH,, if

( Wr)rfC w (8.1)
I I

for all intervals I, where C is an absolute constant. Moreover, we say w € RH; if w € RH,

for some r > 1, that is,

RH, := | J RH,.

r>1

Definition 8.2. Let1 < r < co. We say that w € RH;! if

( wr)rsc w (8.2)
a Q

for all g-adic intervals Q, where C is an absolute constant and w is g-adic doubling.

Moreover, we say w € RHf ifwe RHg for some r > 1, namely

RH{ := | | RH}.

r>1

Note that it is well known that any RH, weight is doubling, but a weight that
satisfies (8.2) is not necessarily g-adic doubling (see, e.g., [19]). This is why the g-adic
doubling assumption is added to the second definition.

The study of these weights has been extensive, more information and some
recent applications can be found in [9], [21], [22], [19], [14], [15], [4] among many others.
There is also interesting complimentary work done in [7]. Reverse Holder weights are
relevant in the theory of quasiconformal maps, which was the original motivation for
their study [11].

Consider the w = w, from our construction. Since this w, is not doubling, then

it does not satisfy (8.1), namely w,, ¢ RH,.
Proposition 8.3. The weight w, € RH.

Proof. It suffices to show that w € RH? for some r > 1. Let us fix an r with

nqg
Ind’

l<r<
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where we recall that b < g from the construction in Section 4. We denote

r ar
B, :=— and B,:=—,
q q

which by our assumption, clearly satisfies 0 < B;,B, < 1.

Let I be any g-adic interval. Without loss of generality, we may assume I
intersects at least one Ig“, otherwise the constant C in (8.2) is simply 1.

Particular case. First of all, we consider the case when I C Ig‘f for some ¢. Note
that among all the g-adic offspring of I}, the only interesting cases are I coincides one

of the following:
1 H® and ¢®, k=1,...,2a0 — 1. (8.3)

Otherwise, the weight on I is of the form a*b? for some x,y € N, and in this case, one

can easily check that

that is, the constant C in (8.2) is 1.
Let us consider five different cases for the intervals in (8.3).
CaseI: I=H®,k=q,...,20 — 1. On one hand

k
wo— M(H( )) N
gl " [HR) '

and on the other hand

B aerper a(“+1)rb(k*‘1)r -(q—1) 2 k-1 b" i
. Wy = 20—k + ' q
Hb q q — 1
_ r
< g plk—aor I:B%a—k + q_l ._a
q 1 -B;
< q¥pk-or |14 a—- ! . !
- q 1 -B,

— Cl . aozrb(k—a)rl
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where we denote

q—1 1
Ci=1+——" .
q 1 -5

1
Therefore, (8.2) holds in this case with the constant C = C].
CaseIl: T=H® k=1,...,a — 1. On one hand, we have

o RHS)
ot |H®)
On the other hand,
o aTper N a(ot+1)r(q_ 1) . a—1 (E)l
H® I q2a—k qa—k-i-l P q
brakr |:“_k_1 a’ i:|
5 ()
q —o q

a*Tper a(a—i—l)r(q -1 1 N brakr 1

IA

20—k a—k+1 b T _a
q q 1 q q 1 g
a(k+1)r(q _ 2) 1
+ P—
q =%
q
B2 *lg—-1) B, +B,(q—2
— g B‘i‘B‘;_k+ 2 (q )+ 1 +B,(@—2)
1-B, 1-B,
< ok 14 q-—1 +B1 +B,y(q—2)
1-B 1-B,
(since 0 < B,,B, < 1.)
— CZ akrl
where we denote
-1 B B -2
Cpi=1+ q 1 +By(@—2)

1-B, 1-B,

1
and therefore, (8.2) holds in this case with the constant C = C;.
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CaseIll: 1= G®,k =«,...,2a — 1. On one hand, we have

G®
w, = a ) = bgk,
ch M |GR)
On the other hand,
2a0—k—1
baraar ar
ro_ ar ,r(k—a) _ i
i = S a0 LS

2a—k—1 i
_}_barar(k—oz).b_‘ Z (a_r)

a = \q

< pergk-or (Bz)Za—k i (@ —2)B, + B,
= 1-B,
< pergl—or|y (@—2)B, + B
= 1-B,
— C3 . bara(k—a)r’
where we denote
— 2)B B
Cym 14 (q )B, + B,

1
and therefore, (8.2) holds in this case with the constant C = CJ.

CaseIV:I=G%® ,k=1,...,a — 1. On one hand, we have

o w@G®y

w, =
el M |GB)

)
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On the other hand,

ch M q2(x—k

ar ar r\a—k
wl = b_a+bkr.(q_2).<%) .

plati=kr -1 ar)i

D — > (=
1k
q —=\q

a—k—-1 i
a” br

B g1 D (—)
q —~ \4q

1%

1-B, 1-B,
- l_Jr(q—Z)BerBl (@— 1B,
1-B, 1-B,
(since 0 < B;,B, < 1.)
— C4 . bkr,
where we denote
—2)B B —1)B
Cp=1+@ )B, +B,  (@-1B,
1-B, 1-B,
1
and therefore, (8.2) holds in this case with the constant C = C; .
Case V: I =1I;*. One one hand, we have
Iaé
w, = M(agi ) -1
It 17"
Other the other hand
q-— 2 r 1 r 1 r
w, = —. wh+—- wh+ =~ w
re q g0 Hl g go *lqg v M
—-2)a”~ C,a"” C,b"
< (q—2) I L!
q q q

(@ —2+ Cy)B, + CyBy,
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where in the second to last line, we use the estimate from Case II and Case IV above.
1

Hence in this case, (8.2) holds with the constant C = C., where we denote

C5 = (q - 2 + CZ)BZ + C4B1.

General case. Finally, we consider the case when I contains one or more Iy. By

our construction, it is clear that

Let us assume there are indices ¢,, ..., £j, such that

Without loss of generality, we may assume M < oo. The key point is that the constant
we get here is independent of the choice of any finite M; therefore, the estimate for the
case when I contains infinitely many I,* follows by a standard limiting argument.

From the proof of the case when I C I}, we see that

=

where we set

Let us put
IZZJ' _
)j 1= W’ Jj=1,..., M.
In particular, this suggests that
M
20j=1
j=1
Finally, we denote
M M
I€ =1\ UIZZj B R
j=1 j=1

Note that wg;, ; = %
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Therefore, we have

1 / 1
r r r r
w = — = — . E ap, W + w
" I Jr " A
M
= Zw w +ow w'’
- ]y T M+1 c M
) I, I
M r
\T" ~
< ij (c) w W, | o
j=1 IZj

< (€)Y +1

that is, in general, we have

( ; W;) <C . wy,, for any g-adic interval I,

with C":=(C)" +1ifl <r< E—g. The proof is complete. |
Proposition 8.4. The weight w, € RH].

Proof. This proof of this proposition is an application of the exhaustion procedure
and Proposition 8.3. We reference the structure and setup in Sections 4 and 5 often.

Recall that for each Ig“, J, is the smallest p-adic interval that contains Ig‘ with
J, € 10,1) and the J,'s are pairwise disjoint.

Let J be the p-adic interval to be tested. There are several reductions that we
can make.

Reduction I: To begin with, we may assume again that J coincides with some
J, or some of its p-adic offspring. Otherwise, if J contains some J, properly or contains
more than two J,, we can argue as we did for Proposition 8.3.

Reduction II: We may assume « = «, > 2N where we recall that N = L%J +1
is constant we fixed at the beginning of the exhaustion procedure. Otherwise, we can
simply estimate (8.1) crudely, as all the weights here only depend on a, b, g, and p.

Reduction III: The third reduction would be that we may assume

JN(J), #9 or Jn(J,), # 9,

€202 |Mdy 0] UO Jasn opelojo) UIBYMLON Jo ANsIsAun AQ £2/6559/6902BULUIWI/SE0 L 0 L /I0p/3|o1e-00uBAPE/UIWI/WOo2 dNo dlwapeae//:sdjjy Wol) PapEOjUMO(]



52 T.C. Anderson and B. Hu

otherwise, the measure equipped on J is the standard Lebesgue measure and (8.1) holds
trivially. Without loss of generality, let us assume the intersection of J and (JE)1 is
nonempty, the other case can be argued similarly as the “mirror symmetric” argument
in Section 7.1.

Reduction IV: Recall the points Z and T defined in Section 4. Note that it suffices

to consider the case when Z > l(Jp). Otherwise, by Reduction ITI, we have
J, C [Z, 1],

in particular,

11|
IJpl < I1Z, Y1l < qlm'

where I = I;*. This implies that J ¢ H?* U G?® since |[H*¥| = |G| = q'%. Therefore,
the estimate (8.1) is again trivial with the constant C = 1.

Reduction V: Furthermore, we may assume that Jp C I, that is, there exists some
K € {1,...,2a}, such that l(Jp) € E®, Again, the case when such a K does not exist is
even easier.

We first bound the term

from above.

Here comes the key observation: if I(J,,) € E® then by the exhaustion procedure,
J € HXN) and we may assume J € HXY) (N € {0,1,...,N}), where HE-N) is the
shortest H®-interval that contains J.

Reduction VI: Without loss of generality, we may assume K — N’ > 1. Otherwise,
we let J' be the unique p-adic child that contains I (H)), and group the p-adic children
of J as follows:

(1). {J;:J;is on the left of J'} U {J'};
(2). {J;,J; is on the right of J'}.

The first group either is weighted by 1 or a, and the second group can be dealt

with it by using the argument for K — N’ > 1. Finally, we glue both groups together, and

we may argue again as in the proof of the general case in Proposition 8.3.
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E(K) E(K)
N
J* J*
Jp—1 Jp Jp—2 Jp-1 Jp
B(K-1) E(K)
N A
J‘

Fig. 9. Examples of all three possibilities of J* with E&) if 1 < K < « — 1, where we recall from
Figure 4 that the weight on the right hand side of the red point is a¥*!, and is baX on the left
hand side, respectively. Moreover, the weight on the part of E&—1 that is adjacent to EX) is aX.

Therefore, we have

][ " IJI/ |J| H(K_N,)Wi- (8.4)

On the other hand, let

] ::fw,
2 7 I

and we would like to bound it from below. To begin with, we denote J* to be the
rightmost p-adic children among the set {J;, ... Jp_1} such that there is only one value
assigned to the weight on J*, that is, d (,u,
ny,n, € {0,...,a}. Note that by the geometric growth of the E®)’s, J* is either Jp_1:9p_2
orJ, 5 (see Figure 9 for examples). This suggests us to treat J* as a very small shift of

7+) can be written as (a™b")dx for some

Jpr however, with a much easier expression to work with.

Therefore, we have

0 = 7 [wa=r5 (w00 + )
— — ... - J
1 (u{J*) ot aas ) D
> L (), (8.5)

C\J|
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54 T. C. Anderson and B. Hu

where in the last estimate, we use the exhaustion procedure and we assume the constant
there is C.

Therefore, to prove the estimate (8.1) with respect to the p-adic interval J, it
suffices to show that

1
>

‘ HE-N)

1
IJ| ge-n) w(JT*)

TN

®1
—1 <
@2 -

is bounded above by some absolute constant, where in the above estimate, we use (8.4)
and (8.5). To this end, let us denote

NI

‘ HE-N)

o [T\ )L
3 7| ge-vy P )’

Let us start with analysing the term

‘ HE-N)

1]

Note that for most cases, HEV) is the g-adic interval that essentially has the “same”

size of J, priorly, we should expect

e
o ~1 (8.6)
where the implicit constant here only depends on g. More precisely, we consider several
possibilities.

(i). If N/ > 2, then since J € HX ), we also have EE-¥N+D) < J (by the
geometric structure, since I(J,) € EX) otherwise J would have to be
contained in H®~1D, contradicting the choice of N’). Therefore, we get the
desired equation (8.6), where the implicit constant in the above equation
only depends on g;

(ii). IfN'=0orlandJ,C E® N EXFD then the weight on J will be one of the

following situations:
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e If1 <K <a-—2,then these weights are

baK_l,aK,baK,aKH,baKH, aK+2[,

e Ifa+1 <K < 2¢, then these weights are

a(x+le—l—a, aa-i—le—ot' aot+1bK+l—oz;

e If K = ¢, then these weights are
baa—l aa aa+1 aa+1b,
e If K=o« —1, then these weights are

ba®2,a* ! ba* !, g% q@t1,

The key point here is that for each of the situations above, the weights are

comparable, in the sense the ratios between them are bounded above and

below by some constant only depending on a and b, independent of the
choices of K and «. This allows us to establish the estimate (8.1);

(iii). If N' = 0 or 1 and EX*D c J,, then since EX*? takes a large portion

of either HX) or HX~D, we can conclude again that (8.6) holds, with the

implicit constant there depending only on gq.

From now on, we assume the ratio in (8.6) is approximately 1.
Completing the argument:

Now we turn to estimate the rest two terms in ©,, that is,

r J
( . W;) and |J|* .
HE-N) nJ*)

Our goal is to show that

1
r J
( Wr) . 1 <1, (8.7)
gy ) p(J®)
where the implicit constant above should only depend on a, b, p, and g, and independent
of @ and K.

We again need to consider several different cases.
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Casel:1 < K < a — 1. First of all, we note that according to the choice of J*, the
value of pu(J*) is

either a¥|J*|, ba®X|J*|, or af*tlJ*|.

Since these three quantities differ by a constant multiple that only depends on a and b,

we may write
u(J*) = k1.

This means
I _plJ 1

nJ*  pd* " ak’

On the other hand, recall that in this case we have 1 < K—N’ < o —1, by the computation

in Case II of Proposition 8.3, we have

Wl < Cy-a®Nr (8.8)
HE-N")

Therefore

Wr r'ﬂsaK_N/'ifi,
g&-ny M w(J*) ak — aV

which implies the estimate (8.7).
Case II' « < K < 2«. Again, we start with estimating u(J*), and as before, we

collect all the possible values of (J*) and this gives us
u(JT*) ~ a*b |7,

where the implicit constant only depends on a and b. This means

Ui _pl 1
w@* - p@® - @bk

While for the upper bound of the term

1

w'! ’

_ny M !
HE-N)

we consider two sub-cases.
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e If1<K—N <a-—1,then as in (8.8), we have

_ 4
w; <G, . q&=NOr,
HE-N')

Moreover, we notice that in this case, we have
0<K—a<N —-1<N,

and hence

1
bK—oz

~1,

where the implicit constant above only depends on b, p and gq. Therefore,

AT M 1 1 _ 1
w . —=,
K- n w(J%) ~ gVl pK—a ~ gN

which again implies the desired estimate (8.7);
e Ifa < K— N < 2«, then using the computation in Case I of Proposition 8.3,

we have
— /_
Wr < Cl .aarb(K N a)r'

Therefore,

1
wr) L
ge-vy M) @)~ -

This implies the desired estimate (8.7) for this case.

As a conclusion, we have shown that
05 <1,

where the implicit constant above only depends on a, b, p, and g, independent of « and

K. The proof is complete. |

Corollary 8.5. Foranyr > 1 and {p, q} being a pair of distinct primes, RH, C RHY NRH;..
In particular, RH; ¢ RHY NRH}.
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Proof. Note that from the proof of Proposition 8.4, we indeed have if w, € RH for
somerwithl <r < E—g, then for the same choice of r, there holds w, € RHf.

To proof the desired claim, it suffices to take 0 < a < 1 < b satisfying
l1-a,b-1«1 and (g—1)a+b=q.

This suggests that we can make the ratio ig—g arbitrarily large. The desired claim then

follows easily from Proposition 8.3 and Proposition 8.4. |

Finally, we can prove analogous statements about the Muckenhoupt A, weights
(which we will call A, weights to prevent confusion with p being used for a prime). We

recall the definition first.

Definition 8.6. Let1 < r < oo, we say a weight w € A, if

r—1
sup ( W(X)dX) ( W(X)TlldX) < 00,
I I I

where the supremum is taken over all intervals I. Moreover, we say w € A, if w € A,

for some r > 1, that is,

A = U A,.

r>1

We define the p-adic AP, as well as p-adic A%, similarly by only allowing
averages along p-adic intervals. Note that the A, condition implies doubling. An easy
modification of the proof of Proposition 8.3, Proposition 8.4, and Corollary 8.5 allows
us to conclude the following analog for Muckenhoupt A, weights, which immediately

implies Theorem 1.3:

Corollary 8.7. For any r > 1 and {p, g} being a pair of distinct primes, A, C AP nAal In
particular, A, C AP nAal.

Proof. Note that since any reverse Holder weight (of class r) is also an A, weight for
some 1 < r; < oo, and similarly for the prime classes, Corollary 8.5 indeed directly
implies Corollary 8.7 holds for some r > 1.

However, it turns out that we can improve such a range to all > 1 and the proof

is parallel to those in Proposition 8.3, Proposition 8.4, and Corollary 8.5. Let us mention
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the necessary modifications that we need to make to prove the result: recall that at the
beginning of Proposition 8.3, we pick r > 1, such that
ngq

l<r<—

Inb’

Now we replace this by

Note that since 0 < a < 1, the term on the left hand side above is strictly bigger than 1, in
particular, this means that when proving the analog of Corollary 8.5 for Muckenhoupt
weights, we again choose a sufficiently close to 1, to make 1 — ﬁ—‘; arbitrarily close
to the threshold 1. The rest of the proof then follows by interchanging the role of b
and a, and replacing the role of r in the proof of Proposition 8.3, Proposition 8.4, and
Corollary 8.5 by —%, for example, we may define
_1 _1
By = a and B, := b ,
q q

to replace B, and B, there, respectively. We would like to leave the detail to the interested

reader. [ |

Appendix A. A Conjecture of Krantz

In Appendix A, we resolve a conjecture of Krantz that is loosely related to the contents
of this paper and reappeared in the work [5] that motivated our study. Here we are able
to completely resolve this conjecture using some machinery developed in our previous
result [2], that is different from, yet connected to, our number theoretic treatment
earlier. This part can be read independently from the rest of this paper.

We begin firstly with some explanations. The conjecture of Krantz [16] is the

following.

Conjecture A.1 ([16]). Let € > 0 be arbitrarily small, and m € N be sufficiently large.
For each positive integer k, does there exists a prime p, an integer 8 and an integer n
with 1/10 < p™/2™ < 10, such that
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Krantz then suggests that if the prime numbers were “strongly randomly
distributed,” then this conjecture would be true. This is not exactly the case; what
Krantz mentions would be true if the m in the conjecture is allowed to vary (i.e., m
can depend on ¢). More precisely, if we replace the fixed m (which is n in Krantz's
original notation) in the conjecture above by allowing m (and therefore p) to vary, then
the strong randomness property implies that this (new) statement is true. The strong
randomness property is indeed true via the strong form of the prime number theorem
(prime number theorem with error term), which is a classical result. Therefore, we
will interpret Krantz's conjecture in the manner that he writes, but emphasize that the
strong randomness property is true and that this property implies a slightly different
statement than what Krantz wrote. This is a subtle, yet important difference.

While for Conjecture A.1, we can disprove it by showing the following result:

Proposition A.2. For any m € N, there exists some constant C(m) > 0, which only

depends on m, such that

1B

2m pn

- C(m)

inf .
2m

BeN, n,p prime:%gf—zglo

Assuming Proposition A.2, we turn to disprove Conjecture A.1. To do this, we fix
a m sufficiently large, and let € = @

have zlm in the statement of Proposition A.2, instead of zim The contradiction follows

. Moreover, we let k = 1 there, which is why we

immediately.
Proposition A.2 is an immediate consequence of our previous work [2]. To begin

with, we recall the definition of far numbers.

Definition A.3. A real number § is n-far if the distance from § to each given rational
k/n™ is at least some fixed multiple of 1/n'™, where m > 0, k € Z. That is, if there exists
C > 0 such that

Ym >0,k eZ, (A.1)

z

‘ k

nm nm’

where C may depend on § but independent of m and k.

Proof of Proposition A.2. Let us fix m € N. First of all, since
1
—_—<
10 — 2

it is clear that there are only finitely many pairs (p,n) that satisfy (A.2), and such a

| iS}
3

< 10, (A.2)

3

number only depends on m,
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Now let us take one of these pairs and denote it as (p, n). Observe that there are

only finitely many non-zero 8 such that the following holds:

1B

— —| < 1, (A.3)
2 p

and such a number of 8’s only depends on p and n, and hence only depends on m. While
for those g that fail the estimate and 8 = 0, it suffices, for example, to take C(im) = 1.
To this end, we take a non-zero 8 that satisfies (A.3).

Now we apply [2,Corollary 2.10, (a)] to see that there exists a constant Cy ,, , > 0,
which only depends on 8, p, and n, such that

1 C _
since [% is far with respect to 2. In particular, letting m = m, we have
1 B Cppn
om  pn| = 2m

Finally, it suffices to take

C(m) := min min C L1t
B:B satisfies (A.2),8+#0, ppm
n,p prime:%gf—zglo
which only depends on m. n
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