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In this paper, we construct an explicit family of measures that are p-adic doubling

for any given pair of primes, yet not doubling. This generalizes the construction by

Boylan, Mills, and Ward on a structure theorem on the intersection of dyadic doubling

measures and tri-adic doubling measures. As some byproducts, we apply these results

to show analogous statements about the reverse Hölder and Muckenhoupt Ap classes of

weights.

1 Introduction

Breaking up the real numbers into a union of dyadic pieces is a central technique in

analysis. Dyadic decompositions underscore many major theorems in analysis, as often

dyadic pieces are easier to understand and can be treated in different ways. One can

also break up the real numbers into n-adic pieces for any n ∈ N, and the study of

such systems has been a frequent topic of investigation. However, there are still many

fundamental unanswered questions pertaining to measures and functions defined on

these systems, such as, if a measure is n-adic doubling for all n, is it doubling? In

this paper, we make substantial progress on these questions by uncovering and greatly

developing the underlying number theory present when one “intersects” two different
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n-adic systems. This reveals an interesting parallel with the failure of the Hasse

principle in number theory. Our main results are the following: we construct a family

of measures that are p-adic doubling for any pair of primes, yet not doubling, and we

prove several applications to the theory of weights.

The inspiration for this work comes from questions of the form: if X is an

operator/object that is in p-adic “class” for every p, then is it in “class” overall? For

example, X could be a measure, or a function, and “class” could be “doubling” or BMO

(the class of functions of bounded mean oscillation). For instance, in unpublished work,

Peter Jones explored such a question for the “p-adic” BMO classes (alluded to in [16], but

known among analysts). Answering such a general question has an interesting parallel

with the well-known Hasse principle in number theory: that solutions modulo p for

every p can be used to create an integer solution. If one can show that X being in p-adic

“class” for each p means it is in “class,” then one has demonstrated a type of Hasse

principle in harmonic analysis. However, since the study of the failure of the Hasse

principle is a major area of study in number theory and algebraic geometry, showing

that X is not in “class” has many interesting applications as well.

In the authors’ previous works together ([2, 3]), as well as in other places

([1, 19, 23]), a class of numbers called the far numbers (specifically “far from the dyadic

rationals”) play a large role in understanding distinct dyadic systems, which are a set

of grids with the property that every cube is contained in a cube from one of the grids of

roughly the same size. Distinct dyadic systems are highly useful ([6, 8, 10, 17, 18, 20, 21]

to name just a few), and in our recent works, we were able to completely characterize

them in both R and Rn ([2, 3]). Essentially, far numbers are bounded away from the

dyadic numbers on every scale (see (A.3) for a precise definition), and by shifting a dyadic

grid by a far number, one can create a distinct dyadic systems for small scale cubes. In

a recent paper [5], Boylan, Mills, and Ward constructed a concrete example of a measure

on [0, 1], which is both dyadic doubling and triadic doubling, but not doubling. Though

seemingly unrelated, since the dyadic and triadic grids do not form a distinct dyadic

system, the concept of far numbers was our original inspiration to further the number

theory behind the work of Boylan, Mills, and Ward.

The bulk of this paper is devoted to generalizing and strengthening [5] to

construct a family of measures that are both p-adic doubling and q-adic doubling for

primes q and p, but not doubling. That is:

Theorem 1.1. There exists an infinite family of measures that are both p-adic and

q-adic doubling for any distinct primes p and q, but not doubling.
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While there are some similarities with the set up from [5], both our approach and

the necessary number theory and geometry are quite different. One of our main novelties

is expanding the number theory to work in tandem with the underlying geometry in our

setup. In [5], the authors worked with the very specific case of the primes 2 and 3, which

allowed not only detailed concrete analysis, but also avoided many technical difficulties

that arise with arbitrary primes: for example, they use the fact that 2 is always a

primitive root of 3n,n ≥ 1. Without such properties, the necessary number theory

does not work. We replace these concepts by a new flavor of number theory depending

the the stability of certain orders over specific powers of primes and how they relate

to arithmetic progressions. The basic idea is the following: by using techniques from

elementary number and group theory (see Section 2), for infinitely many rationals of

the form k
pn (where k lies in a specific arithmetic progression), we are able to find an

infinite arithmetic progression of scales j and m such that k
pn and j

qm are close in a

precise fashion.

We also are able to quantitatively strengthen the geometric results by using the

tools described above. Since we will be looking at intersections of q-adic intervals I

and p-adic intervals J, we focus on the proximity of two distinguished points, the left

endpoint of the rightmost child of I, which we call Z (I), and the right endpoint of the

leftmost child of J, called ϒ(J). In particular, we are able to show that ϒ and Z lie in

a certain relative arrangement, and that no matter how small I is, we always have that

for a certain J, the difference ϒ(J) − Z (I) < ε|I|, for any ε > 0 that we wish. While the

far numbers had inspired us in exploring this step, they could only take us so far—in

particular, while far numbers allow us to quantify the fact that any p-adic interval that

intersects an endpoint of a q-adic interval must have at least a fixed fraction both inside

and outside the interval, this does not give us the quantitative strength “to be within ε,”

that we desire (see, Theorem 3.4).

In [5], the authors carefully checked that their underlying measure was triadic

doubling, including carefully computing the constants, in which consisted the bulk of

their article. Here we completely restructure this part via our “exhaustion procedure,”

which in particular allows us to treat all nontrivial cases in a unified manner by

focusing only on the two rightmost p-adic children (described in great detail in

Section 5.3).

Finally, we apply our results to the theory of weights. We begin by showing

several facts pertaining to the reverse Hölder weight classes RHr. Reverse Hölder

weights are closely intertwined with the Muckenhoupt Ap weights and are relevant

in multiple applications. Understanding their structure has been a deep topic of
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investigation (see, e.g., [9]). Via our construction and proof technique for the previous

Theorem 1.1, we are able to show the following structure theorem for the prime reverse

Hölder classes RHp
r (see Section 8 for its definition):

Theorem 1.2. Any intersection of two prime (r)-reverse Hölder classes never coincides

the full (r)-reverse Hölder class, namely, for any 1 ≤ r < ∞ and {q1, q2} being a pair of

distinct primes, RHr � RHq1
r ∩ RHq2

r .

The proof of the above theorem requires a careful selection of the r parameter

governing the reverse Hölder classes, as well as an elaborated analysis of the structural

properties of the measure used to satisfy Theorems 1.1 and 1.1. This leads us to prove

a similar statement for the prime Muckenhoupt Ap weights (see Section 8 for its

definition):

Theorem 1.3. Any intersection of two prime Muckenhoupt Ap classes never coincides

the full Muckenhoupt Ap class, namely, for any 1 < p ≤ ∞ and {q1, q2} being a pair of

distinct primes, Ap � Aq1
p ∩ Aq2

p .

More details are found in Section 8. These provide more analogues to Jones’s

result on the BMO classes; likely many other related applications are possible.

One may wonder if our results are extendable to general integers n1 and n2

instead of primes. First note that if n1 = nk
2, then it can be easily shown that any n1-adic

doubling measure is automatically n2-adic doubling (and vice versa) with constants C

and Ck. Hence one could ask if we can get the same results outside of this situation,

or even in the case (n1,n2) = 1. Even in the latter case this appears to be a very

difficult question. While the construction of the measure and the analysis employed

in Sections 4–7 could carry through in this setting, we would still crucially rely on

the underlying number theory connected to the geometry of this setting, where it

appears that several new ideas would be needed (e.g., to name one: in place of Fermat’s

little theorem one can naively expect to use Euler’s theorem, but this creates several

bottlenecks). Other, similarly more difficult, extensions are possible; it appears that

this area has a lot of intriguing possibilities to explore.

The organization of our paper is the following: Section 2 elaborates the number

theory that we develop and how it connects to our underlying geometry, which is

further detailed in Section 3. The analytic aspects begin in Section 4, with many visible

connections to the work [5], but the bulk of our work and novelty occur in Sections 5,
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Intersections of General Doubling Measures 5

6, and 7 where we show that our measure is p-adic doubling. In particular, Section 5

contains figures of our measure, and a description, both in text and mathematically, of

our exhaustion procedure. Section 6 works out the math for the most involved cases, and

Section 7 finishes the work, by dealing with other two similar cases. Applications to the

theory of weights appear in Section 8. Finally, in Appendix A, we resolve a conjecture of

Krantz that is loosely related to the contents of this paper and reappeared in the work

[5] that motivated our study.

2 Preliminaries

The goal of this section is to deal with some preliminaries that play an important role in

constructing the desired measure in Theorem 1.1. We make a comment that although the

basic tool we need for this part is some elementary number and group theory, the key

point is that these results have certain geometric interpretation, which further suggests

us how to select “nice” pairs of intervals when we construct the targeted measure (see,

Theorem 3.4).

We begin with revisiting the model case considered in [5], where (p,q) = (3, 2).

Note that their construction is based on the following three facts:

(a). 2 is a primitive root of 3n for any n ≥ 1;

(b). 23
n−1 ≡ 3n − 1 (mod 3n) for n ≥ 1;

(c). 22·3n−2 ≡ 3n−1 + 1 (mod 3n) for n ≥ 2.

It is not difficult to see that these facts can easily fail for other pairs of primes. For

example, (p,q) = (7, 2), since 2 is not a primitive root of 7, hence also for 7n for any

n ≥ 1. We start with refining these facts to any pairs of (p,q).

Recall that p and q are two distinct primes. Without the loss of generality, we

may assume p > q. To begin with, by Fermat’s little theorem, we know that

pq−1 ≡ 1 (mod q)

and

qp−1 ≡ 1 (mod p).

Moreover, we denote (Z/nZ)∗ the multiplicative group of integers modulo n, n ∈ N.
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6 T. C. Anderson and B. Hu

Proposition 2.1. Let p,q be two distinct primes. Let further, Om(p,q) be the order of

qp−1 in
(
Z
/ (

pmZ
))∗ for each m ≥ 1. Then there exists some integer C(p,q) ≥ 0, such that

Om(p,q)

pm−1 = 1

pC(p,q)
.

when m is sufficiently large.

Remark 2.2. Note that the claim is easily true for C(p,q,m) ≥ 0 (where the constant is

allowed to depend on m) since Om(p,q) | pm−1 by Euler’s theorem. The nontrivial claim

is that for all m large enough, this constant does not depend on m. Indeed, not only will

we be able to “cancel” the tern pm in the denominator, but what is left over will be both

independent of m and unchanging for m large.

Proof. Let m(p,q) be the smallest integer such that

qp−1 	≡ 1 (mod pm(p,q)+1).

This implies that there exists some N0 ∈ {1, 2, . . . ,m(p,q)} such that

(
qp−1

)pN0 ≡ 1 (mod pm(p,q)+1), (2.1)

since by Euler’s theorem (applied to q), it is always true that

(
qp−1

)pm(p,q)

≡ 1 (mod pm(p,q)+1).

Without the loss of generality, we assume that the N0 fixed above is the smallest, namely

(
qp−1

)pN0−1

	≡ 1 (mod pm(p,q)+1). (2.2)

Claim: For any � ≥ 0, there holds

(
qp−1

)pN0+�−1

	≡ 1 (mod pm(p,q)+�+1). (2.3)
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Intersections of General Doubling Measures 7

We prove the claim by induction. The case when � = 0 is exactly (2.2). Assume

(2.3) holds when � = k, that is,

(
qp−1

)pN0+k−1

	≡ 1 (mod pm(p,q)+k+1), (2.4)

and we have to prove it for the case when � = k + 1. By (2.1) and the fact that: if

a ≡ b (mod p�),

then

ap ≡ bp (mod p�+1).

we have

(
qp−1

)pN0+k−1

≡ 1 (mod pm(p,q)+k), (2.5)

which, together with (2.4), implies that we can write

(
qp−1

)pN0+k−1

= pm(p,q)+k · s + 1,

where p � s (otherwise it contradicts (2.4)).

Taking the p-th power on both sides of the above equation, we have

(
qp−1

)pN0+k

≡
((

qp−1
)pN0+k−1)p

≡
(
pm(p,q)+k · s + 1

)p
≡ pm(p,q)+k+1 · s + 1

	≡ 1 (mod pm(p,q)+k+2);

in the last line above, we use the fact that p � s. Therefore, (2.3) is proved.

Now from (2.3) and (2.5) with k = � + 1, we conclude that there exists some

N0 ∈ {1, . . . ,m(p,q)}, such that for each � ≥ 0,

Om(p,q)+�+1(p,q) = pN0+�,
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8 T. C. Anderson and B. Hu

which by setting � = m − m(p,q) − 1, implies that when m ≥ m(p,q) + 2, the ratio

Om(p,q)

pm−1 = Om(p,q)+(m−m(p,q)−1)+1(p,q)

pm−1 = pm−m(p,q)−1+N0

pm−1 = 1

pm(p,q)−N0

stabilizes, with C(p,q) = m(p,q) − N0. �

This statement along with the next fact will generalize the underlying number

theory and geometry in [5]. After the following proof we explain the connection.

Proposition 2.3. Let p, q be two distinct primes and C(p,q), m(p,q) be defined as in

Proposition 2.1. Then for any m1 >
m(p,q)
q−1 and

k ∈
{
1, 1 + pC(p,q)+1, 1 + 2pC(p,q)+1, . . . ,pm1(q−1) − pC(p,q)+1 + 1

}
=

{
a ∈

[
1,pm1(q−1)

]
: a ≡ 1

(
mod pC(p,q)+1

)}
, (2.6)

there exists infinitely many pairs j and m2, where m2 ∈ N, and

j ∈
{
q − 1, 2q − 1, . . . , qm2(p−1) − 1

}
=

{
b ∈

[
1,qm2(p−1)

]
: b ≡ −1 (mod q)

}
, (2.7)

such that

k

pm1(q−1)
− j

qm2(p−1)
= 1

pm1(q−1)qm2(p−1)
. (2.8)

Proof. It is clear that (2.8) is equivalent to find infinitely many pairs m2 and j, which

satisfies (2.7) for the equation

kqm2(p−1) − jpm1(q−1) = 1, (2.9)

where m1 >
m(p,q)
q−1 and k satisfies (2.6).

To begin with, we note that if (2.9) holds, then j automatically satisfies (2.7).

Indeed, from (2.9), it is clear that 0 < j ≤ qm2(p−1), and the fact that b ≡ −1(mod q)

follows easily by taking modulus q on both sides of (2.9) and the Fermat’s little theorem.
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Intersections of General Doubling Measures 9

Therefore, it suffices for us to solve (2.9) for infinitely many pairs m2 and j.

Taking modulus pm1(q−1) on both sides of (2.9), we see that it suffices to solve

kqm2(p−1) ≡ 1
(
mod pm1(q−1)

)
, (2.10)

where

k ∈
{
a ∈

[
1,pm1(q−1)

]
: a ≡ 1

(
mod pC(p,q)+1

)}
.

Denote

Gm1
(p,q) :=

{
a ∈

[
1,pm1(q−1)

]
: a ≡ 1

(
mod pC(p,q)+1

)}
.

The solubility of (2.11) will follow from the following facts.

(a). The set Gm1
(p,q) is a subgroup of

(
Z/
(
pm1(q−1)

)
Z
)∗
;

(b). qp−1 is a generator of the group Gm1
(p,q).

Suppose both (a) and (b) hold, it follows that there exists somem′ ∈ N, such that

k ≡ qm
′(p−1)

(
mod pm1(q−1)

)
,

which implies the desired assertion. Indeed, this is because

k ∈ Gm1
(p,q) = 〈qp−1〉 ⊆

(
Z/
(
pm1(q−1)

)
Z
)∗

.

Hence,

kqm2(q−1) ≡ qm
′(p−1) · qm2(p−1) ≡ q(m′+m2)(p−1)

(
mod pm1(q−1)

)
.

Now we wish to find m2 such that

q(m′+m2)(p−1) ≡ 1
(
mod pm1(q−1)

)
and this is guaranteed by the fact that

qp−1 and pm1(q−1)

are coprime and Euler’s theorem.
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10 T. C. Anderson and B. Hu

We now show (a) and (b). To begin with, we note that

qp−1 ≡ 1
(
mod pC(p,q)+1

)
, (2.11)

that is, qp−1 ∈ Gm1
(p,q). This is because m(p,q) is the smallest integer such that

qp−1 	≡ 1 (mod pm(p,q)+1)

and C(p,q) = m(p,q) − N0 for some N0 ∈ {1, . . . ,m(p,q)}. Next, as an easy consequence

of (2.11), it is also easy to see that

(
qp−1

)� ∈ Gm1
(p,q), ∀� ≥ 1,

and hence 〈
qp−1

〉
⊆ Gm1

(p,q),

where 〈qp−1〉 is the cyclic group generated by qp−1 ∈ (Z/
(
pm1(q−1)

)
Z
)∗
.

Therefore, both assertions (a) and (b) will follow if we can actually show that

〈
qp−1

〉
= Gm1

(p,q),

which follows from the fact that

Om1(q−1) = pm1(q−1)−C(p,q)−1 = ∣∣Gm1
(p,q)

∣∣
which crucially hinges on Proposition 2.1. The proof is complete. �

Remark 2.4. Propositions 2.1 and 2.3 indeed can be viewed as a generalization of

[5, Claim 1.13], in which, the authors considered the case when p = 3 and q = 2, and

they showed that:

For any n ∈ N and k ∈ {1, 4, 7, . . . , 3n − 2}, there exists infinitely many pairs j and

m, where m ∈ N and j ∈ {1, 3, 5, . . . , 2m − 1}, such that

k

3n
− j

2m
= 1

2m3n
. (2.12)

A thorough description is in order.
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Intersections of General Doubling Measures 11

If one wants to generalize (2.12) to primes p,q, the most obvious approach is to

show for all n large enough and k ∈ {1,p+ 1, 2p+ 1, . . . } that there exist infinitely many

m and j ∈ {1,q− 1, 2q− 1, . . . } (one might also think instead of claiming j ∈ {1,q+ 1, 2q+
1, . . . }, but this does not work and is not suited to the geometry of the problem) such that

k

pn − j

qm
= 1

qmpn . (2.13)

A natural choice would be to use the properties of far numbers that we have developed

in [1], [2] (see Definition A.3). Specifically, following similar ideas in all of these (see e.g.,

Lemma 2 and Remark 4 in [1]), one can show that

∣∣∣∣ kpn − j

qm

∣∣∣∣ ≥ Cp,n

qm

with Cp,n = 1/pn and that there exists an infinite sequence of m and j where this C is

the best possible. We start with the first claim: plugging in C = 1/pn means that we

must show that |kqm − jpn| ≥ 1, that is, to prevent kqm = jpn. But this is easy since we

assume that q � j and p � k. For the second claim, let C = 1/pn+ε for ε > 0 and arbitrarily

small. Then if this constant were to work, we would need to prevent kqm = jpn + 1 and

kqm = jpn − 1. However, since

qϕ(pn) ≡ 1
(
mod pn)

we have, if k = 1, that C = 1/pn precisely for an infinite sequence of m, j, so we have

equality (up to possible negative signs) in (2.13). Moreover, one can easily see by taking

moduli that j ≡ −1 (mod q).

There is one major issue with this argument: a priori it only works for k = 1.

This is where Proposition 2.1 and 2.3 come into play: the former allows the fractions

k/pn to stabilize when paired with the latter’s more specific arithmetic progression of

k. That is, by restricting k to lie in the sequence 1 mod ph, for a specific choice of h

independent of n (our (2.6)), we essentially replicate the desired situation where k is

always equal to 1.

Some additional commentary relating our generalization compared with [5]

includes:

(1). From the view of number theory, since 2 is a primitive root modulo 3n, the

order of 2 modulo 3n is 2 · 3n−1, and hence On(3, 2) = 3n−1 always; moreover

the set {1, 4, 7, . . . , 3n − 2} is exactly the subgroup of 1 mod 3 contained

in (Z/3nZ)∗. Note that qp−1 = 4, which is generator of this subgroup,
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12 T. C. Anderson and B. Hu

mirroring our proof of (2.11). All these suggest that one probably can restate

[5, Claim 1.13] simply by

C(3, 2) = 0.

using our work.

(2). From the view of analysis, we first note that one does not need the full

strength of the condition “for any n ∈ N” in the statement of [5, Claim 1.13]

for its application to constructing the desired measure. Indeed, it suffices

if the statement of [5, Claim 1.13] holds for a subsequence {ni}i≥1. This is

clear from the proof of [5, Theorem 1.12] (see, [5, Page 272, Line 19–22]).

In Proposition 2.1, we have shown that the ratio Om(p,q)

pm−1 stabilizes for m

sufficiently large (which is n in [5]), which is stronger than necessary.

Moreover, Proposition 2.1 also generalizes the geometric structure inherited

in [5, Claim 1.13]. More precisely, Propositions 2.1 and 2.3 generalize the

claim that there exists a pair of intervals I and J, such that

ϒ(J) − Z (I) = 1

2m3n
,

where J is a tri-adic interval of sidelength 1
3n−1 and I is a dyadic interval

of sidelength 1
2m−1 with m even, for any p and q. This will be highlighted in

future sections.

3 The Selection Procedure

The purpose of this section is to select a collection of disjoint q-adic intervals, and these

intervals can be treated as a building block of the example of the desired measure. These

intervals are chosen carefully according to Proposition 2.1 and Proposition 2.3.

We recall several definitions.

Definition 3.1. A doubling measure µ is a measure for which there exists a positive

constant C such that for every interval I ⊂ R, µ(2I) ≤ Cµ(I), where 2I is the interval

which shares the same midpoint of I and twice the length of I.

Definition 3.2. For n ≥ 1,n ∈ N, the standard n-adic system D(n) is the collection of

n-adic intervals in R of the form

I =
[
k − 1

nm ,
k

nm

)
, m, k ∈ Z. (3.1)
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Intersections of General Doubling Measures 13

The n-adic children of the interval defined in (3.1) are

Ij =
[
k − 1

nm + j − 1

nm+1 ,
k − 1

nm + j

nm+1

)
, 1 ≤ j ≤ n. (3.2)

Moreover, we write ϒ(I) be the right endpoint of I1, that is,

ϒ(I1) = k − 1

nm + 1

nm+1 , (3.3)

and Z (I) be the left endpoint of In, that is,

Z (In) = k − 1

nm + n − 1

nm+1 . (3.4)

Finally, we denote l(I) the left endpoint of I and r(I) the right endpoint of I as usual.

Definition 3.3. A measure µ is a n-adic doubling measure if there exists a positive

constant C, independent of all parameters, such that for any n-adic interval I of the

form (3.1),

1

C
≤ µ(Ij1)

µ(Ij2)
≤ C,

where both Ij1 and Ij2 are some n-adic children of I, which take the form (3.2). The

smallest possible constant C are called the n-adic doubling constant of µ.

Recall that we assume that p and q are two distinct primes, with p > q.

Theorem 3.4. There exists a collection of q-adic intervals {Iα�

� }�≥1 on [0, 1), where

α� ≥ 1 is a positive integer associated to �, such that

(1). The collection of p-adic intervals {J�}�≥1 is pairwise disjoint and contained

in [0, 1), where J� is the smallest p-adic interval that contains Iα�

� . In

particular, the collection {Iα�

� }�≥1 is also pairwise disjoint;

(2). For each α ≥ 1,α ∈ N, there are only finitely many � ≥ 1, such that α� = α.

(3). For each � ≥ 1,

0 < ϒ
(
J�
)

− Z
(
Iα�

�

) ≤ q−100α�
∣∣Iα�

�

∣∣ . (3.5)

Note that since J� is the smallest p-adic interval that contains Iα�

� , condition

(3.5) in particular guarantees that the right endpoint of Iα�

� is to the right of

ϒ(J�);
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14 T. C. Anderson and B. Hu

The specific role of α will be detailed later on; basically it represents the number

of generations that we will alter to construct our measure. We’ll refer to the points ϒ

and Z as distinguished points.

To prove this result, we need the following proposition.

Proposition 3.5. Given any interval J̃ ⊂ [0, 1] (̃J is not necessarily p-adic) and any

ε > 0, there exists a q-adic interval I ⊂ J̃ such that

0 < ϒ(J) − Z (I) ≤ ε|I|,

where J is the smallest p-adic interval that contains I.

Remark 3.6. One of the key differences between our approach and [5] is that we can

make the difference between the distinguished points arbitrarily small. This simplifies

some of the analysis and allows for great flexibility in our construction.

Proof. We start with fixing an interval J̃ ⊂ [0, 1] and some ε > 0, and we let J ′

be the largest q-adic interval which is contained in J̃ with sidelength 1

qm
′
1
. We choose

m1 > max
{
m(p,q)
q−1 ,m′

1,
m′

1+C(p,q)+1
p−1

}
with 1

pm1(q−1) < εq, and

k ∈
{
1, 1 + pC(p,q)+1, 1 + 2pC(p,q)+1, . . . ,pm1(q−1) − pC(p,q)+1 + 1

}
, (3.6)

such that k
pm1(q−1) ∈ J ′. Note that the existence of such a k is guaranteed by the fact

that the set
{

k
pm1(q−1) : k satisfies(3.6)

}
is a 1

pm1(q−1)−C(p,q)−1 -net in [0, 1] and the inequality
1

pm1(q−1)−C(p,q)−1 < 1

qm
′
1
(recall that p > q). Fix such a pair of m1 and k, and let

J :=
[

k − 1

pm1(q−1)
,
k + p − 1

pm1(q−1)

]
.

Note that we then have

ϒ(J) = k

pm1(q−1)

and J ⊆ J ′ ⊆ J̃ due to the choice of m1 and the fact that p > q.
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Intersections of General Doubling Measures 15

By Proposition 2.3, there exists infinitely many pairs m2 ∈ N and

j ∈
{
q − 1, 2q − 1, . . . , qm2(p−1) − 1

}
,

such that

k

pm1(q−1)
− j

qm2(p−1)
= 1

pm1(q−1)qm2(p−1)
. (3.7)

We choose such a pair m2 and j, with m2 sufficiently large such that

qm2(p−1) > 10q · pm1(q−1) (3.8)

and let

I :=
[
j + 1 − q

qm2(p−1)
,

j + 1

qm2(p−1)

]
.

Note that

Z (I) = j

qm2(p−1)
.

The desired result will follow if the following assertions are verified:

(i). ϒ(J) > Z (I);

(ii). I ⊂ J;

(iii). J is the smallest p-adic interval containing I;

(iv). ϒ(J) − Z (I) < ε|I|.
Proof of (i). This is clear by (3.7).

Proof of (ii). This is indeed guaranteed by (3.8). More precisely, recall that we

denote l(I) to be the left endpoint of I and r(I) to be the right endpoint, then

|[l(I),ϒ(J)]| = |[l(I), Z (I)]| + |[Z (I),ϒ(J)]|
= q − 1

qm2(p−1)
+ 1

pm1(q−1)qm2(p−1)

<
1

10pm1(q−1)

< |[l(J),ϒ(J)]|
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1 6  T.  C.  A n d e r s o n a n d  B.  H u

Fi g. 1. I ⊂ J .

w h e r e  w e  h a v e  u s e d ( 3. 8 ) t o a r ri v e at t h e t hi r d li n e ( s e e  Fi g u r e 1 ).  T hi s  will i m pl y t h at

b ot h l(I ) − l(J ) > 0 a n d r (J ) − r (I ) > 0, s o t h at I ⊆ J .

P r o of of (iii). T hi s i s al s o cl e a r si n c e I c o nt ai n s ϒ ( J ) a s a n i nt e ri o r  p oi nt ( s e e

Fi g u r e 1 ) a n d all ot h e r p - a di c i nt e r v al s  w h o s e si d el e n gt h a r e l e s s o r e q u al t o |J | a r e

eit h e r  di sj oi nt f r o m ϒ ( J ) o r c o nt ai n ϒ ( J ) a s a n e n d p oi nt.

P r o of of (i v). T h e l a st a s s e rti o n i s st r ai g htf o r w a r d f r o m t h e c h oi c e of m 1 . I n d e e d,

ϒ ( J ) − Z (I ) =
1

p m 1 (q − 1 ) q m 2 (p − 1 )
< ε ·

q

q m 2 (p − 1 )
= ε |I |.

R e m a r k 3. 7. T h e c o n diti o n  b ei n g  u s e d i n ( 3. 7 ) i s  q uit e st r o n g a s it a s s e rt s t h at f o r

s u c h a c h o s e n k a n d m 1 ,  w e  h a v e i nfi nit el y  m a n y st r u ct u r e d j a n d m 2 (i. e., j b el o n gi n g

t o a n a rit h m eti c  p r o g r e s si o n) t h at gi v e e q u alit y.  T hi s i m pli e s t h at t h e c o r r e s p o n di n g f a r

n u m b e r i n e q u alit y ( A. 3 ) f o r δ = k / p n 1 i s s h a r p i nfi nit el y oft e n i n a st r u ct u r e d  w a y.  T hi s

i n di c at e s t h at f o r t h e s e δ ,  n ot o nl y  d o e s t h e s h a r p c o n st a nt C ( δ ) gi v e s  p r e ci s e g e o m et ri c

i nf o r m ati o n a b o ut t h e  p r o xi mit y of t h e  di sti n g ui s h e d  p oi nt s i n o u r c o n st r u cti o n,  b ut

t h at t h e s h a r p c o n st a nt r e c u r s i nfi nit el y oft e n i n a st r u ct u r e d  w a y.  T hi s  p h e n o m e n o n

mi g ht e xt e n d t o ot h e r r ati o n al f a r  n u m b e r s i n a r el at e d  w a y, a n d if  n ot,  mi g ht gi v e a

f u rt h e r g r a di e nt o n  w hi c h t o  d et e r mi n e t h e “ st r e n gt h” of a gi v e n f a r  n u m b e r.

P r o of. P r o of of  T h e o r e m 3. 4 L et  u s c h o o s e a n i nfi nit e c oll e cti o n of {J } ≥ 1 o f  p ai r wi s e

di sj oi nt p - a di c s u bi nt e r v al s of [ 0, 1].  F o r e a c h J ,  w e a s s o ci at e a  n at u r al  n u m b e r α t o it

a n d a p pl y  P r o p o siti o n 3. 5 wit h ε = ε = q − 1 0 0 α t o J , t hi s yi el d s a q - a di c i nt e r v al I α

a n d a p - a di c i nt e r v al J ,  w hi c h s ati sf y t h e t hi r d c o n diti o n i n  T h e o r e m 3. 4 .  W hil e f o r t h e

fi r st c o n diti o n,  w e  n ot e t h at f o r e a c h ≥ 1, t h e r e  h ol d s

I α ⊆ J ⊂ J ,

a n d t h e  di sj oi nt e d n e s s of {J } ≥ 1 f oll o w s f r o m t h e f a ct t h at {J } ≥ 1 a r e  p ai r wi s e  di sj oi nt.

Fi n all y, f o r t h e s e c o n d c o n diti o n, it c a n  b e si m pl y a c hi e v e d  b y c h o o si n g α ’ s i n s u c h a

w a y.
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Intersections of General Doubling Measures 17

Remark 3.8. Upon a very careful reading of this paper, one will hopefully discover

that the location of the distinguished points do not matter; it is their relative order and

proximity (specifically that they can be arbitrarily close) and consistency of position

(that they are interior, an endpoint of a child, and in the same position each time)

that matter. For instance, ϒ could be the right endpoint of the child J2 and Z the right

endpoint of child I9 if p = 19 and q = 13. However, the underlying number theory might

prohibit such an arrangement of a uniform pattern; this is a key reason advocating for

the approach that we chose. In [5], the authors use a different approach, but it should be

noted that they could have chosen any of the children’s interior endpoints and orderings

as well (there are only four possible total choices there), and either choice works due to

a variant of their procedure akin to the approach described in our Remark 2.4.

4 Construction of the Measure µ

Theorem 3.4 plays the role of identifying each building block of the targeted measure.

In this section, we construct a measure µ which is both p-adic and q-adic doubling, but

not doubling. The proof of the fact that µ is p-adic will be postponed to the next section.

From now on, we shall fix a � ∈ N and pay attention to a single Iα�

� chosen in

Theorem 3.4, with an integer α� ∈ N being associated. The construction of the desired

measure will be completed if we apply the construction in this section repeatedly to all

Iα�

� ’s and equip Lebesgue measure on the rest of [0, 1)\ (⋃� I
α�

�

)
.

Note that from the proof of Proposition 3.5, we can indeed write

Iα�

� =
[
j + 1 − q

qm(p−1)
,

j + 1

qm(p−1)

]

for some m ∈ N and

j ∈
{
q − 1, 2q − 1, . . . , qm(p−1) − 1

}
.

In particular,

Z
(
Iα�

�

) = j

qm(p−1)
.

In the rest of this section, we write

I := Iα�

� , α := α� and Z := Z
(
Iα�

�

)
for convenience.
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18 T. C. Anderson and B. Hu

We remark that the number α comes into play a role in the construction. To begin

with, we take 0 < a < 1 < b such that

(q − 1)a + b = q.

Roughly speaking, the idea is to assign the weights a and b carefully to the q-adic

intervals near the point Z.

Remark 4.1. It is certainly possible that our analysis carries through by choosing q

weights a1,a2, . . . ,aq−1, b; by doing things this way we have less constants to deal with.

Here are some details.

Step 1: We start with the interval I and all its q-adic children {I1, . . . , Iq} (see

(3.2)). Define

µ(Ii) = a|Ii| = a|I|
q

, i = 1, . . . , q − 1.

and

µ(Iq) = b|Iq| = b|I|
q

.

Note that

µ(I) =
q∑

i=1

µ(Ii) = (q − 1)a + b

q
· |I| = |I|. (4.1)

To this end, we denote

H(1) := Iq−1 and G(1) := Iq.

Step 2: We consider the q-adic children of H(1) and G(1), and denote them by

{
H(1)
1 , . . . ,H(1)

q

}
and

{
G(1)
1 , . . . ,G(1)

q

}
,
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Intersections of General Doubling Measures 19

respectively. We redistribute the weight on H(1) and G(1) by defining

µ
(
H(1)
1

)
= bµ

(
H(1)

)
q

= ab|I|
q2

,

µ
(
H(1)

i

)
= aµ

(
H(1)

)
q

= a2|I|
q2

, i = 2, . . . , q,

and

µ
(
G(1)
1

)
= bµ

(
G(1)

)
q

= b2|I|
q2

,

µ
(
G(1)

i

)
= aµ

(
G(1)

)
q

= ab|I|
q2

, i = 2, . . . , q.

To this end, we denote

H(2) := H(1)
q and G(2) := G(1)

1 .

Step k, 3 ≤ k ≤ α: Suppose we have already constructed H(k−1) and G(k−1), and

our goal is to construct H(k) and G(k) and redistribute the weights on H(k−1) and G(k−1)

from the previous step. Note that by induction we have

µ
(
H(k−1)

)
= ak−1|I|

qk−1
and µ

(
G(k−1)

)
= bk−1|I|

qk−1
.

Denote the q-adic children of H(k−1) and G(k−1) by

{
H(k−1)
1 , . . . ,H(k−1)

q

}
and

{
G(k−1)
1 , . . . ,G(k−1)

q

}
,
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20 T. C. Anderson and B. Hu

respectively. We redistribute the weight on H(k−1) and G(k−1) by defining

µ
(
H(k−1)
1

)
= bµ

(
H(k−1)

)
q

= bak−1|I|
qk

µ
(
H(k−1)

i

)
= aµ

(
H(k−1)

)
q

= ak|I|
qk

, i = 2, . . . , q,

and

µ
(
G(k−1)
1

)
= bµ

(
G(k−1)

)
q

= bk|I|
qk

,

µ
(
G(k−1)

i

)
= aµ

(
G(k−1)

)
q

= abk−1|I|
qk

, i = 2, . . . , q.

To this end, we denote

H(k) := H(k−1)
q and G(k) := G(k−1)

1 .

Step α + 1: From the above construction, we know that

µ
(
H(α)

)
= aα|I|

qα
and µ

(
G(α)

)
= bα|I|

qα
. (4.2)

We will now use a different way to distribute the weights a and b to the q-adic children

of H(α) and G(α). Again, let

{
H(α)
1 , . . . ,H(α)

q

}
and {

G(α)
1 , . . . ,G(α)

q

}
be the q-adic children of H(α) and Q(α), respectively. We redistribute the weight on H(α)

and G(α) by defining

µ
(
H(α)

i

)
= aµ

(
H(α)

)
q

= aα+1|I|
qα+1 , i = 1, . . . , q − 1,
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Intersections of General Doubling Measures 21

µ
(
H(α)
q

)
= bµ

(
H(α)

)
q

= aαb|I|
qα+1 ,

and

µ
(
G(α)

i

)
= aµ

(
G(α)

)
q

= abα|I|
qα+1 , i = 1, . . . , q − 1,

µ
(
G(α)
q

)
= bµ

(
G(α)

)
q

= bα+1|I|
qα+1 .

To this end, we denote

H(α+1) := H(α)
q and G(α+1) := G(α)

1 .

Step α+k, 2 ≤ k ≤ α. Suppose we have already constructed H(α+k−1) and G(α+k−1)

and similarly as before, our goal is to construction H(α+k) and G(α+k) and redistribute

the weights on on H(α+k−1) and G(α+k−1) from the previous step. Note that by induction

we have

µ
(
H(α+k−1)

)
= aαbk−1|I|

qα+k−1
and µ

(
G(α+k−1)

)
= bαak−1|I|

qα+k−1
.

Denote the q-adic children of H(α+k−1) and G(α+k−1) by

{
H(α+k−1)
1 , . . . ,H(α+k−1)

q

}
and {

G(α+k−1)
1 , . . . ,G(α+k−1)

q

}
,

respectively. We redistribute the weight on H(α+k−1) and G(α+k−1) by defining

µ
(
H(α+k−1)

i

)
= aµ

(
H(α+k−1)

)
q

= aα+1bk−1|I|
qα+k

, i = 1, . . . , q − 1,

µ
(
H(α+k−1)
q

)
= bµ

(
H(α+k−1)

)
q

= aαbk|I|
qα+k
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22 T. C. Anderson and B. Hu

and

µ
(
G(α+k−1)

i

)
= aµ

(
G(α+k−1)

)
q

= bαak|I|
qα+k

, i = 1, . . . , q − 1,

µ
(
G(α+k−1)
q

)
= bµ

(
G(α+k−1)

)
q

= bα+1ak−1|I|
qα+k

.

To this end, we denote

H(α+k) := H(α+k−1)
q and G(α+k) := G(α+k−1)

1 .

The construction will stop at Step 2α.

Remark 4.2. The fact the construction goes to step 2α (instead of, say, α) is needed

in order to show the measure is p-adic doubling, specifically in the case when Z ∈ J

(precisely, one can see that the measure will fail to be p-adic doubling by stopping at

Step α). Additionally, it allows us to exploit symmetry in the Case where J is to the left

of Z, see Section 7.1. Finally we remark that variations of our construction might be

possible, as long as they stop at Step cα, where c is a constant independent of α.

At the end of this section, we show that µ is not doubling but q-adic doubling,

and we will prove that µ is p-adic doubling in next section.

Proposition 4.3. Let µ be defined as above. Then

(1). µ is not doubling;

(2). µ is q-adic doubling.

Proof. (1). By (4.2), we have

µ
(
H(α)

)
µ
(
G(α)

) =
(a
b

)α =
(a
b

)α�

.

Using Theorem 3.4, (2), we see that this ratio can be arbitrary small when � is sufficiently

large, which will clearly fail Definition 3.1 if we consider the interval H(α) ∪ G(α).
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Intersections of General Doubling Measures 23

(2). From the construction, it is clear that given any q-adic interval on [0, 1), we

have

µ(Ii1)

µ(Ii2)
= 1,

a

b
, or

b

a
, for any i1, i2 ∈ {1, . . . , q} ,

in particular, this implies µ is q-adic. �

5 Trivial Cases and Exhaustion Procedure

The goal of the coming two sections is to prove the measure µ construction in Section 4

is p-adic doubling, and we start making some reduction in this section.

To begin with, let us take a p-adic interval J ⊂ [0, 1), the goal is to show that

there exists a positive constant C > 0, such that

1

C
≤

µ
(
Jj1

)
µ
(
Jj2

) ≤ C, ∀j1, j2 ∈ {1, . . . ,p}. (5.1)

5.1 Supporting constructions and trivial cases

First, let us recall from Theorem 3.4 that, for each Iα�

� that had been chosen, J� is the

smallest p-adic interval that contains it, and the collection {J�}�≥1 is pairwise disjoint.

We begin with three trivial cases.

Trivial Case I: J does not intersect any J�.

Trivial Case II: J intersects more than two J�’s.

Trivial Case III: J intersects a single J� but contains it strictly.

Indeed, one can see that in all of these cases, all the ratios in (5.1) take the

value 1. More precisely, for the first case, since J does not intersect any J�, the measure

µ restricted to J is exactly the Lebesgue measure. While for the second case, since J

intersects more than two J�’s, J has to be a p-adic ancestor of those J�’s that intersect

with J. The desired claim for the second case follows from the fact that µ(J�) = |J�|
for all � ≥ 1 (which follows from (4.1) easily). Finally, the third case holds for the same

reason.

Therefore, it suffices for us to consider the case when J coincides with one of

the J�’s or with one of their p-adic offspring. Again, let us fix some � ∈ N, and write

I := Iα�

� ,α := α�, Z := Z
(
Iα�

�

)
and ϒ := ϒ

(
J�
)
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2 4  T.  C.  A n d e r s o n a n d  B.  H u

Fi g. 2. F (k ) ’ s, E (k ) ’ s, H (2 α ) , a n d G (2 α ) .

f o r c o n v e ni e n c e.  T o  b e gi n  wit h, l et  u s o b s e r v e t h e  m e a s u r e μ c o n st r u ct e d i n S e cti o n 4 i n

a  m o r e c o m p a ct  w a y.  M o r e  p r e ci s el y,  w e st a rt  wit h H (2 α ) a n d G (2 α ) , a n d r e c all t h at

μ H (2 α ) = μ G (2 α ) =
a α b α |I |

q 2 α
.

W e  d efi n e t h e f oll o wi n g: f o r a n y 1 ≤ k ≤ 2 α − 1

F (k ) := G (k ) \ G (k + 1 ) a n d E (k ) := H (k ) \ H (k + 1 )

a n d

E (0 ) := I1 ∪ · · · ∪ Iq − 2 .

( s e e,  Fi g u r e (2 )).

R e m a r k 5. 1. L et  u s  m a k e s o m e r e m a r k s.

( 1). If q = 2, t h e n t h e r e i s  n o  n e e d t o c o n si d e r E (0 ) si n c e E (0 ) i s e m pt y i n t hi s

c a s e;

( 2).  O n e c a n al s o  d efi n e F (0 ) ,  b ut it i s al w a y s e m pt y.

B y t h e c o n st r u cti o n i n S e cti o n 4 , w e h a v e

μ F (k ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(q − a ) · a k − α b α |I |
q k + 1 , α ≤ k ≤ 2 α − 1;

(q − b ) · b k |I |
q k + 1 , 1 ≤ k ≤ α − 1,

w hil e

F (k ) =
q − 1

q
· G (k ) =

(q − 1 )|I |

q k + 1
, 1 ≤ k ≤ 2 α − 1.
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Intersections of General Doubling Measures 25

Similarly,

µ
(
E(k)

)
=


(q − b) · bk−αaα |I|

qk+1 , α ≤ k ≤ 2α − 1;

(q − a) · ak|I|
qk+1 , 1 ≤ k ≤ α − 1,

(5.2)

while

∣∣∣E(k)
∣∣∣ = q − 1

q
·
∣∣∣H(k)

∣∣∣ = (q − 1)|I|
qk+1

, 1 ≤ k ≤ 2α − 1. (5.3)

Finally, we have

µ
(
E(0)

)
= a(q − 2)|I|

q
and

∣∣∣E(0)
∣∣∣ = (q − 2)|I|

q
.

Note that no p-adic interval can ever be equal to any of the E(k), H(k), G(k), or F(k).

We now consider one more easy case.

5.1.1 When J = J�.

Let

{J1, . . . , Jp}

be all the p-adic children of J, and note that in particular we have r
(
J1
) = l

(
J2
) = ϒ . We

recall that the goal is to show (5.1).

Since I ⊂ J� = J and ϒ − Z 0, it follows that I ⊂ J1 ∪ J2, and hence

µ(Ji) = |J|
p
, j = 3, . . . ,p,

since we have {J�}�≥1 are pairwise disjoint. Moreover, by (3.8), we have

∣∣J1∣∣
2

=
∣∣J2∣∣
2

= |J|
2p

> |I|.
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2 6  T.  C.  A n d e r s o n a n d  B.  H u

Fi g. 3. μ o n t h e l eft  h a n d si d e of Z .

T hi s i m pli e s t h e l eft  h alf of J 1 a n d t h e ri g ht  h alf of J 2 d o  n ot i nt e r s e ct  wit h I , a n d

c o m bi ni n g t hi s  wit h t h e f a ct t h at μ( I ) = | I |, w e h a v e

|J |

2 p
≤ μ J i ≤

2 |J |

p
, i = 1, 2,

a n d  h e n c e t h e r ati o i n ( 5. 1 ) i s  b o u n d e d a b o v e  b y 4 a n d  b el o w  b y 1
4 ,  w hi c h i m pli e s t h e

d e si r e d r e s ult.

5. 2  Vi s u ali z a ti o n of t h e  m e a s u r e

L et  u s  n o w t u r n t o t h e  n o n-t ri vi al c a s e of t h e  p r o of, t h at i s, t h e c a s e t h e c a s e w h e n J

c oi n ci d e s  wit h o n e of t h e off s p ri n g of  a si n gl e J a n d J J . It  will  b e c o n v e ni e nt f o r

u s t o s e e  di r e ctl y  h o w t h e  m e a s u r e μ l o o k s li k e.  W e st a rt  wit h vi s u ali zi n g μ o n t h e l eft

h a n d si d e of Z ( s e e  Fi g u r e 3 ).

L et  u s  m a k e s o m e r e m a r k s f o r  Fi g u r e 3 .

( 1).  T h e r e d  p a rt s c o r r e s p o n d t h e w ei g ht a s s o ci at e d t o e a c h E (k ) , 1 ≤ k ≤ 2 α − 1

a n d H (2 α ) .  F o r e x a m pl e, o n E (2 α − 2 ) ,  w e  h a v e t h e  w ei g ht a α + 1 b α − 2 , w hi c h

m e a n s d μ |E (2 α − 2 ) = a α + 1 b α − 2 d x ,  w h e r e d x i s t h e  L e b e s g u e  m e a s u r e;

( 2).  T h e  bl u e  p a rt s r ef e r s t o t h e r ati o of t h e l e n gt h s  b et w e e n t h e t a r g et e d i nt e r v al

a n d H (2 α ) ( s e e (5. 3 )).  F o r e x a m pl e,  u n d e r E (2 α − 2 ) , w e h a v e t h e r ati o q (q − 1 ),
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I nt e r s e cti o n s of  G e n e r al  D o u bli n g  M e a s u r e s 2 7

Fi g. 4. E (k ) wit h 1 ≤ k ≤ α − 1.

Fi g. 5. E (k ) wit h α ≤ k ≤ 2 α − 1.

w hi c h  m e a n s

E (2 α − 2 )

H (2 α )
= q (q − 1 );

( 3).  T h e  b e h a vi o r of t h e  m e a s u r e μ f oll o w s t w o  diff e r e nt  p att e r n s o n t h e l eft

h a n d si d e of Z ,  wit h t h e  di sti n g ui s h e d  p oi nt l (H α ) (t h e g r e e n  p oi nt i n

Fi g u r e 3 ) a n d t hi s c o r r e s p o n d s t h e f a ct t h at  w e  di st ri b ut e t h e  w ei g ht i n a

diff e r e nt  w a y f r o m St e p α + 1 o n w a r d ( s e e, S e cti o n 4 ).

M o r e  p r e ci s el y,  w h e n 1 ≤ k ≤ α − 1, t h e  w ei g ht a n d r ati o a s s o ci at e d t o E (k )

i s gi v e n  b y  Fi g u r e 4 :

a n d  w h e n α ≤ k ≤ 2 α − 1 it i s gi v e n  b y  Fi g u r e 5 :

( 4).  W e c a n e a sil y r e c o v e r t h e  p r e vi o u s c al c ul ati o n (5. 3 )  b y  u si n g t h e s e fi g u r e s.

I n d e e d,  w h e n 1 ≤ k ≤ α − 1,

μ E (k ) = b a k · q 2 α − k − 1 ·
|I |

q 2 α
+ a k + 1 · q 2 α − k − 1 (q − 2 ) ·

|I |

q 2 α

= (b + a (q − 2 )) ·
a k |I |

q k + 1

= (q − a ) ·
a k |I |

q k + 1
.
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2 8  T.  C.  A n d e r s o n a n d  B.  H u

Fi g. 6. μ o n t h e ri g ht si d e of Z .

Fi g. 7. F (k ) wit h 1 ≤ k ≤ α − 1.

a n d  w h e n α ≤ k ≤ 2 α − 1,  w e  h a v e

μ E (k ) = a α + 1 b k − α · q 2 α − k − 1 (q − 1 ) ·
|I |

q 2 α

= (q − 1 )a ·
b k − α a α |I |

q k + 1

= (q − b ) ·
b k − α a α |I |

q k + 1
.

Si mil a rl y,  w e c a n al s o  pl ot μ o n t h e ri g ht  h a n d si d e of Z a s f oll o w s ( s e e  Fi g u r e 6 ).

( 1).  W h e n 1 ≤ k ≤ α − 1, t h e  w ei g ht s a n d t h e r ati o a s s o ci at e d t o F (k ) i s gi v e n  b y

( s e e  Fi g u r e 7 )

( 2).  W h e n α ≤ k ≤ 2 α − 1,  w e  h a v e t h e f oll o wi n g ( s e e  Fi g u r e 8 )
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I nt e r s e cti o n s of  G e n e r al  D o u bli n g  M e a s u r e s 2 9

Fi g. 8. F (k ) wit h α ≤ k ≤ 2 α − 1.

R e m a r k 5. 2. T h e a b o v e fi g u r e s cl e a rl y i n di c at e t h at t hi s c a s e i s a “ mi r r o r s y m m et ri c”

v e r si o n of t h e c a s e  w h e r e Z i s t o t h e ri g ht of J p .

5. 3  T h e e x h a u s ti o n  p r o c e d u r e

H e r e  w e  d e s c ri b e t h e  m ai n i d e a t h at  w e  will a p pl y t o all t h e r e st of t h e s c e n a ri o s, c all e d

t h e e x h a u sti o n  p r o c e d u r e .  U p o n r e a di n g t hi s s e cti o n, t h e r e a d e r s h o ul d  b e e q ui p p e d

t o c h e c k t h e c al c ul ati o n s  wit h g r e at e r e a s e, a n d al s o  b e c o n vi n c e d t h at t hi s t e c h ni q u e

will  h a n dl e all t h e  n o nt ri vi al c a s e s, a n d t h e r ef o r e s h o w t h at o u r  m e a s u r e i s p - a di c

d o u bli n g.  At it s  h e a rt, t hi s i d e a c a pit ali z e s o n t h e g e o m et ri c  p r o g r e s si o n s i n h e r e nt i n

t hi s c o n st r u cti o n t o  b o u n d t h e r ati o s of J s p - a di c c hil d r e n.

T h e  b a si c i d e a i s t h e f oll o wi n g: a s s u mi n g Z i s o n t h e ri g ht  h a n d si d e of J , w e

will l o o k at t h e ri g ht m o st c hil d of J , J p ,  w hi c h  will i nt e r s e ct a c e rt ai n  n u m b e r of t h e E

a n d H (2 α ) i n t e r v al s ( o r  n o n e of t h e m) t h at  w e  h a v e  d efi n e d.  T h e s e i nt e r v al s  h a v e a  ni c e

st r u ct u r e, i n  p a rti c ul a r t h e y e x hi bit g e o m et ri c g r o w n ( s e e  Fi g u r e 3 ), a n d s o μ( J p ) will  b e

( e s s e nti all y) c o nt r oll e d  b y

t h e  w ei g ht o n t h e l eft m o st  p a rt of J p · J p . ( 5. 4)

All ot h e r c hil d r e n a r e li mit e d i n  h o w  m a n y ot h e r E a n d H (2 α ) i n t e r v al s t h e y c a n i nt e r s e ct,

a n d  w e c a n “ e x h a u st” t h e s e c hil d r e n o n e  b y o n e  b y  q u a ntif yi n g  h o w  m a n y c a n li e i n t h e

n e xt l a r g e st i nt e r v al.  O n c e  w e e x h a u st a c e rt ai n  n u m b e r of c hil d r e n,  w e  m o v e a g ai n t o

t h e  n e xt l a r g e st i nt e r v al, a n d e x h a u st  m o r e.  D u e t o t h e g e o m et ri c  p r o g r e s si o n i n h e r e nt

i n c e rt ai n r ati o s i n v ol vi n g eit h e r t h e E o r H (2 α ) i n t e r v al s,  w e  will  b e a bl e t o e x h a u st all

t h e c hil d r e n i n N st e p s,  w h e r e N i s a fi x e d  n u m b e r  d e p e n di n g o nl y o n p a n d q ( s e e (5. 5 )).

M o r e o v e r, t h e g e o m et ri c  p r o g r e s si o n al s o g u a r a nt e e s t h at e a c h J i, 1 ≤ i ≤ p − 1 i nt e r s e ct s

at  m o st t w o of t h e E a n d H i nt e r v al s.
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30 T. C. Anderson and B. Hu

As long as we can favorably compare ratios at each exhaustion, we will have

upper and lower bounds that are controlled by a fixed power (no matter what α is) of

the ratios at a single exhaustion. Taking care of the special case in considering the ratio

between µ(Jp) and µ(Jp−1), which is calculated separately, all other children will be

exhausted, resulting in the whole family being exhausted, and leading to the explicitly

calculable (though by no means optimal) upper and lower bounds.

Some details are in order. Here, we treat a generic situation to give greater unity,

there are a few small technicalities and particularities that are pointed out later when

they occur. First we notice that N := � logp
logq � + 1 is the smallest integer, such that

p < 1 + (q − 1) + q(q − 1) · · · + qN−1(q − 1) = qN . (5.5)

We will end up doing at most N exhaustion steps, where at the kth exhaustion, we will

at least exhaust qk−1(q − 1) children, precisely those consecutively located to the right

of the previous exhaustion. So explicitly, for the first exhaustion, at least q children are

exhausted, for the second, at least q(q−1), for the third, at least q2(q−1) are, and so on.

Since the total number of children is p, which is less than qN (see (5.5)), and remember

that we can count Jp as exhausted already as we will handle it separately), after the

N-th exhaustion, all the p-adic children will be exhausted.

At each exhaustion step, the ratio of the (to be) exhausted children to each other

will be controlled by some bounded constant dependent on a and b (or on q and p, but

never α), like b/a2, so after N steps, the worst ratio we can have between all children

is that constant to the Nth power, such as (b/a2)N . This essentially leaves only one

remaining step: to calculate the ratio

µ(Jp)

µ(Jp−1)
.

Computationally, this full procedure takes N + 1 steps, and more importantly, the num-

ber of steps as well as the actual ratios computed, are independent of the parameter α.

Remark 5.3. Our approach involving the exhaustion procedure is different from [5],

though some similar ideas are present in both works. We developed this exhaustion

procedure due to the generality that we consider, but it also allows us to unify several

of the cases under one umbrella, and this guides the different way that we split up our

cases. In particular, we do not need the concept of valuable set from [5].
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Intersections of General Doubling Measures 31

We now work the details out. Recall that J is a p-adic interval that coincides

with one of the p-adic offspring of J� and J � J�. Moreover, we denote all the p-adic

children of J by {
J1, . . . , Jp

}
,

where each Ji, 1 ≤ i ≤ p is defined as in (3.2).

Assumptions: To begin with, we make some assumptions.

(1). We assume that Z is on the right hand side of J. Note that in this case,

among all {J1, . . . , Jp}, Jp is the interval that is the closest to Z and intersects

the E(i)’s and H(2α) in the most complicated way.

(2). There exists some constant A > 0, which is independent of α, such that

1

A
≤ µ(Jp)

µ(Jp−1)
≤ A. (5.6)

(3). For simplicity, let us write

E(2α) := H(2α).

(4). Finally, we assume

l
(
Jp
)

∈ E(K), (5.7)

for some K ∈ {0, . . . , 2α}.

Remark 5.4. We make a remark the condition (5.6), together with condition (5.7), can

be interpreted as a quantitative way to capture all the information coming from Jp, and

from now on, it suffices for us to deal with {J1, . . . Jp−1}.
Moreover, it can happen that the condition (5.7) fails, that is, l

(
Jp
)

/∈ I, and note

that the exhaustion procedure in this case is indeed trivial (see Section 6.1).

Remark 5.5. Let us also make some remarks for the other cases.

(a). If Z ∈ J, we will see this case is essentially the “same” as the case when Z is

on the right hand side of J since by our construction

ϒ − Z < q−100α|I| � q−2α|I| =
∣∣∣G(2α)

∣∣∣ .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac069/6555723 by U

niversity of N
orthern C

olorado user on 10 April 2023



32 T. C. Anderson and B. Hu

(b). If Z is on the left hand side of J, then the assumption (5.6) above would be:

there exists some constant A > 0, independent of α, such that

1

A
≤ µ(J1)

µ(J2)
≤ A, (5.6′)

and (5.7) would be

F(2α) := G(2α). (5.7′)

Hence, the exhaustion procedure in this case be treated a “mirror symmet-

ric” version of the case we are considering, with respect to Z, in which, we

shall start with J1, instead of Jp as in this case J1 is the closest interval to

Z.

Step 1: By (5.7), Jp ⊂ H(k). Since

∣∣E(K−1)
∣∣∣∣H(K)
∣∣ = q − 1,

it implies that the q − 1 p-adic children to the left of Jp, that is,

Jp−1, . . . , Jp−(q−1)

are either contained in E(K), E(K−1) or E(K) ∪ E(K−1) (at most one of them). Therefore, the

values of

µ(Jp−1), . . . ,µ(Jp−(q−1))

are either

(
weights on E(K)

)
· |Jp|,

(
weights on E(K−1)

)
· |Jp|

or a convex combination of them. Moreover, it is not hard to see that

a2

b
≤

µ
(
Jj1

)
µ
(
Jj2

) ≤ b

a2 , j1, j2 ∈ {p − (q − 1), . . . ,p}
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Intersections of General Doubling Measures 33

(one may refer Figure 3 to check this). Finally, we note that here we exhausted the

rightmost q = 1 + (q − 1) many p-adic children of J, and this corresponds to the

term“1 + (q − 1)” in (5.5).

Step 2: Now we move the next step to exhaust more p-adic children of J from

the rightmost side. Note that Since∣∣E(K−2)
∣∣∣∣H(K)
∣∣ = q(q − 1), and

∣∣E(K−2)
∣∣∣∣H(K−1)
∣∣ = q − 1,

we conclude that the next q(q − 1) p-adic children next to Jp−q+1, that is,

Jp−q, . . . , Jp−q2+1

will be of one of the following situations:

(1). They are either contained in E(K), E(K−1) or E(K)∪E(K−1) (at most one of them);

(2). They are either contained in E(K−1), E(K−2) or E(K−1) ∪ E(K−2) (at most one of

them).

This implies the values of

µ
(
Jp−q

)
, . . . µ

(
Jp−q2+1

)
will take one of the following forms:

(1’). Either

(
weights on E(K)

)
· |Jp|,

(
weights on E(K−1)

)
· |Jp|,

or a convex combination of them;

(2’). Either

(
weights on E(K−1)

)
· |Jp|,

(
weights on E(K−2)

)
· |Jp|,

or a convex combination of them.

Moreover, it still holds that

a2

b
≤

µ
(
Jj1

)
µ
(
Jj2

) ≤ b

a2 , j1, j2 ∈ {p − q2 + 1, . . . ,p − q}.
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To this end, we note that in this step we exhausted the rightmost q(q − 1) many p-adic

children of J next to Jp−q+1, and this corresponds to the term “q(q − 1)” in (5.5).

Step k: In general, assume we have already made such an exhaustion k−1 times,

and here is how we make the k-th exhaustion. Observe that

∣∣E(K−k)
∣∣∣∣H(K)
∣∣ = qk−1(q − 1),

∣∣E(K−k)
∣∣∣∣H(K−1)
∣∣ = qk−2(q − 1), . . . ,

∣∣E(K−k)
∣∣∣∣H(K−k+1)
∣∣ = q − 1.

Similarly, these allow us to conclude that

µ
(
Jp−qk−1

)
, . . . ,µ

(
Jp−qk+1

)

will be of one of the following situations:

(1). Either

(
weights on E(K1)

)
· |Jp|,

(
weights on E(K1−1)

)
· |Jp|,

or a convex combination of them;
...

(k). Either

(
weights on E(K1−k+1)

)
· |Jp|,

(
weights on E(K1−k)

)
· |Jp|,

or a convex combination of them.

Most importantly, the estimate

a2

b
≤

µ
(
Jj1

)
µ
(
Jj2

) ≤ b

a2 , j1, j2 ∈ {p − qk + 1, . . . ,p − qk−1}

still holds, and just as before, we have exhausted the rightmost qk−1(q− 1) many p-adic

children of J next to Jp−qk−1+1, and this corresponds to the term “qk−1(q − 1)” in (5.5).

Step N: Continuing this process and (5.5) suggests that this process will stop

after N steps, that is, all the p-adic children of J will be exhausted after N steps. Recall

that N only depends on p and q. This suggests (5.1) holds with the absolute constant

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac069/6555723 by U

niversity of N
orthern C

olorado user on 10 April 2023



Intersections of General Doubling Measures 35

C =
(

b
a2

)N
, that is,

(
a2

b

)N

≤ µ(Jj1)

µ(Jj2)
≤
(

b

a2

)N

, j1, j2 ∈ {1, . . . ,p − 1}. (5.8)

Final Step: The final step would be adding Jp to (5.8), via our assumption (5.6).

This is straightforward by both estimates, and finally we conclude that

1

A
·
(
a2

b

)N

≤ µ(Jj1)

µ(Jj2)
≤ A ·

(
b

a2

)N

, j1, j2 ∈ {1, . . . ,p}.

Therefore, we see that the exhaustion procedure reduces the original problem to

the computation of the ratio
µ(Jjp )

µ(Jjp−1 )
.

6 Computation of
µ(Jp)

µ(Jp−1)

In this section, we complete the proof of µ is p-adic doubling by showing that the

constant A in our assumption (5.6) can be chosen only depending on p, q, a, and b.

Without loss of generality, we may assume

q > 2.

The case when q = 2 is indeed much more easier and follows from an easy modification

of the case when q > 2, and we would like to leave the details to the interested reader.

We start with computing the ratio

µ(Jp)

µ(Jp−1)
(6.1)

with the assumption when Z is on the right hand side of J and Z � J�.

Recall that in the case when Jp ⊂ I, K ∈ {0, . . . , 2α} is the integer such that

l(Jp) ∈ E(K).

Moreover, we assume that K′ ∈ {0, . . . , 2α} with 0 ≤ K + K′ ≤ 2α is the integer such that

r(Jp) ∈ E(K′).
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36 T. C. Anderson and B. Hu

We make a comment that the ratio (6.1), or in other words, the constant A defined in

assumption (5.6) is independent of the choice of K and K′.

6.1 Computation of
µ(Jp)

µ(Jp−1)
if K does not exist

First, we consider the case when K does not exist, that is, l(Jp) /∈ I. Note that the

exhaustion procedure in this case is indeed trivial: all the J1, . . . , Jp−1 do not intersect I

and hence

µ(Jj) = |Jp|, j = 1, . . . ,p − 1.

There are several cases for K′.

6.1.1 K′ does not exist.
In this case, J ∩ I = ∅, in particular, the ratio in (6.1) takes the value 1.

6.1.2 K′ = 0

In this case, the weight on Jp is either 1 or a; therefore, we have

a|Jp| ≤ µ(Jp) ≤ |Jp|,

and hence

a ≤ µ(Jp)

µ(Jp−1)
≤ 1.

In particular, one may pick A = 1
a in this case.

6.1.3 K′ ≥ 1.

Note that in this case, E(0) ⊆ Jp, and we can always bound µ(Jp) from above as follows

µ(Jp) = µ
([

l(Jp), l(I)
])

+ µ
([

l(I), r(Jp)
])

≤ |Jp| + µ(I) = |Jp| + |I|

≤ |Jp| + q

q − 2

∣∣∣E(0)
∣∣∣ ≤ |Jp| + q

q − 2

∣∣∣Jp∣∣∣
= 2q − 2

q − 2
|Jp|.

While for the lower bound, let us consider two different sub-cases.
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• If
∣∣∣[l(Jp), l(I)

]∣∣∣ ≤ 1
2 |Jp|, then

µ(Jp) ≥ µ
([

l(Jp), l(I)
])

=
∣∣∣[l(Jp), l(I)

]∣∣∣ >
1

2
|Jp|.

• If
∣∣∣[l(Jp), l(I)

]∣∣∣ < 1
2 |Jp|, then

µ(Jp) ≥ µ
(
E(0)

)
= a

∣∣∣E(0)
∣∣∣

= a(q − 2)

q
|I| ≥ a(q − 2)

q

∣∣∣[l(I), r(Jp)
]∣∣∣

≥ a(q − 2)

2q
|Jp|.

Therefore, in this case, we have

min
{ |Jp|

2
,
a(q − 2)|Jp|

2q

}
≤ µ(Jp) ≤ (2q − 2)|Jp|

q − 2
,

and we can pick A accordingly.

6.2 Computation of
µ(Jp)

µ(Jp−1)
if K exists

Note that if K exists, then K′ also exists. Let us consider several possibilities.

6.2.1 K′ = 0.

In this case, we have Jp ⊂ E(K). There are three possibilities in this situation:

(a). If α ≤ K ≤ 2α, using Figure 5, we have µ(Jp) = aα+1bK−α|Jp|. Moreover, we

also have

aα+1bK−α−1|Jp| ≤ µ(Jp−1) ≤ aα+1bK−α|Jp|, if K > α

and

aα+1|Jp| ≤ µ
(
Jp−1

)
≤ aα|Jp|, if K = α.

Hence, we have

a ≤ µ(Jp)

µ(Jp−1)
≤ b

and we can put A = max
{
b, 1a

}
in this case.
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38 T. C. Anderson and B. Hu

(b). If 1 ≤ K ≤ α − 1, using Figure 4, we have

aK+1|Jp| ≤ µ(Jp) ≤ baK |Jp|.

Moreover, we also have

aK+1|Jp| ≤ µ(Jp−1) ≤ baK |Jp|.

Hence, we have

a

b
≤ µ(Jp)

µ(Jp−1)
≤ b

a

and we can let A = b
a in this case.

(c). If K = 0, then µ(Jp) = a|Jp|. Indeed, it is easy to see that in this case

a|Jp| ≤ µ(Jp−1) ≤ |Jp|,

and hence

a ≤ µ(Jp)

µ(Jp−1)
≤ 1,

which suggests that one can take A = 1
a in this case.

6.2.2 K′ = 1.

This case is very similar to the case in Section 6.2.1, and the only difference here is the

estimate of µ(Jp). Note that in this case, 0 ≤ K < 2α since K′ = 1. There are again three

possibilities in this situation:

(a). If K = 2α − 1, then using Figure 3, we have

aα+1bα−1|Jp| ≤ µ(Jp) ≤ aαbα|Jp|.

While the estimate of µ(Jp−1) is similar as before, namely, we have

aα+1bα−2|Jp| ≤ µ(Jp−1) ≤ aα+1bα−1|Jp|,
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and therefore

1 ≤ µ(Jp)

µ(Jp−1)
≤ b2

a
,

where we can put A = b2
a in this case;

(b). If α ≤ K ≤ 2α − 2, then then using Figure 5, we have

aα+1bK−α|Jp| ≤ µ(Jp) ≤ aα+1bK+1−α|Jp|

and

aα+1bK−α−1|Jp| ≤ µ(Jp−1) ≤ aα+1bK−α|Jp|.

Therefore,

1 ≤ µ(Jp)

µ(Jp−1)
≤ b2,

which suggests we can put A = b2 in this case;

(c). If 0 ≤ K ≤ α − 1, then using Figure 3 and Figure 4, we have


aK+2|Jp| ≤ µ(Jp) ≤ baK |Jp|, , K ≥ 1;

a2|Jp| ≤ µ(Jp) ≤ ab|Jp|, K = 0,

and 
aK+1|Jp| ≤ µ(Jp−1) ≤ baK |Jp|, K ≥ 1;

a|Jp| ≤ µ(Jp−1) ≤ |Jp|, K = 0.

(6.2)

This means that in this case we have

a2

b
≤ µ(Jp)

µ(Jp−1)
≤ b

a

and with A being b
a2

in this case.
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40 T. C. Anderson and B. Hu

6.2.3 K′ > 1.

In this case, we have

E(K+1) ⊂ Jp ⊂ H(K),

where we identify H(0) :=
2α⋃
k=0

E(k). Note that

∣∣E(K+1)
∣∣∣∣H(K)
∣∣ = q − 1

q2
,

which implies

∣∣E(K+1)
∣∣∣∣∣Jp∣∣∣ ≥ q − 1

q2
. (6.3)

Moreover, since K′ ≥ 2, the defining condition on K′ implies 0 ≤ K ≤ 2α − 2. There are

again several cases.

(a). If 1 ≤ K + 1 ≤ α − 1, using (5.2), (5.3) and (6.3), we can bound µ(Jp) from

below as follows,

µ
(
Jp
)

≥ µ
(
E(K+1)

)
= (q − a) · a

K+1|I|
qK+2

= (q − a)aK+1

q − 1
· q − 1

qK+2 · |I| = (q − a)aK+1

q − 1
·
∣∣∣E(K+1)

∣∣∣
≥ (q − a)aK+1

q − 1
· q − 1

q2
|Jp| = (q − a)aK+1

q2
|Jp|.

While for the upper bound, we have if K > 1,

µ(Jp) ≤ µ
(
H(K)

)
= aK |I|

qK
= aK

qK
· q

K+2

q − 1
· q − 1

qK+2 · |I|

= aK · q2
q − 1

·
∣∣∣E(K+1)

∣∣∣ ≤ q2aK

q − 1
·
∣∣∣Jp∣∣∣ ; (6.4)
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and if K = 0,

µ(Jp) ≤ µ
(
H(0)

)
= a(q − 1)|I|

q
= aq · q − 1

q2
|I|

= aq ·
∣∣∣E(1)

∣∣∣ ≤ aq · |Jp|.

The estimate for µ(Jp) in this case is exactly the same as (6.2), and hence

(q − a)a

bq2
≤ µ(Jp)

µ(Jp−1)
≤ q2

a(q − 1)
,

which implies that we can put

A = bq2

a(q − a)

in this case.

(b). If α ≤ K + 1 ≤ 2α − 1, we can bound µ(Jp) from below by

µ(Jp) ≥ µ
(
E(K+1)

)
= (q − b) · b

K+1−αaα|I|
qK+2

= (q − b) · bK+1−αaα

q − 1
· q − 1

qK+2 · |I|

= (q − b) · bK+1−αaα

q − 1
·
∣∣∣E(K+1)

∣∣∣
≥ (q − b) · bK+1−αaα

q − 1
· q − 1

q2
|Jp|

= (q − b) · bK+1−αaα

q2
· |Jp|.

While for the upper bound, we need to consider two sub-cases. If K = α − 1,

then following the same argument in (6.4), we have

µ(Jp) ≤ q2aα−1

q − 1
· |Jp|.
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If K ≥ α, then

µ(Jp) ≤ µ
(
H(K)

)
= aαbK−α|I|

qK
= aαbK−α

qK
· q

K+2

q − 1
· q − 1

qK+2 · |I|

= aαbK−α

qK
· q

K+2

q − 1
·
∣∣∣E(K+1)

∣∣∣ ≤ q2aαbK−α

q − 1
|Jp|.

While for the estimate of µ(Jp−1), we have


aα|Jp| ≤ µ(Jp−1) ≤ baα−1|Jp|, K = α − 1;

aα+1bK−α−1|Jp| ≤ µ(Jp−1) ≤ aα+1bK−α|Jp|, K ≥ α.

All these estimates yield

(q − b)a

bq2
≤ µ(Jp)

µ(Jp−1)
≤ bq2

a(q − 1)

and

A = bq2

a(q − 1)

in this case.

Therefore, combining all the estimate of A, together with the exhaustion

procedure, the proof for the case when Z is on the right hand side of J is complete.

Now we turn to the other cases.

7 Other Cases

In this section, we make some comments on how to adapt the exhaustion procedure to

deal with the other two cases when

(1). Z is on the left hand side of J;

(2). Z ∈ J.

This allows us to conclude the measure µ construction in Section 4 is p-adic doubling,

which proves Theorem 1.1.
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7.1 Z in on the left hand side of J

Recall that ϒ is on the right of Z. First we note that if ϒ ∈ J, then ϒ has to be either

l(J) or r(J); otherwise, this will force J to be J� or some p-adic ancestor of J�, which

contradicts the our assumption J � J�. Therefore, ϒ is either located on the right hand

side of ϒ or on the left.

The case when ϒ is on the right hand side of J is trivial. Since J ⊂ [Z ,ϒ ] ⊂ G(2α),

and (5.1) holds with the constant 1 (since the weight on G(2α) is aαbα).

Hence, we may assume ϒ is on the left hand side of J. However, by (3.5), we know

that ϒ − Z ≤ |I|
q100α , which is “negligible” compared to the length of G(2α), which is |I|

q2α .

In other words, this motivates us to treat ϒ and Z “the same” under such a situation.

Therefore, the proof of this case follows from an easy modification of the arguments

presented for the case when Z is on the right hand side of J and we would like to leave

the detail to the interested reader.

7.2 Z ∈ J

The last case is also an application of the exhaustion procedure in Section 5.3. To begin

with, we note that since Z ∈ J, ϒ is forced to located on the right hand side of J.

Otherwise, ϒ will be an interior point of J, and following the argument in the first

paragraph in Section 7.1, this contradicts the assumption J � J�.

We consider several possibilities.

(1). l
(
H(2α)

)
/∈ Jp. Since Z ∈ J, it follows that r(J) = r(Jp) > l

(
H(2α)

)
. Let

K ∈ {1, . . . , 2α − 1} be the unique integer such that l
(
H(2α)

) ∈ JK (if such a K

does not exist, then J⊂H(2α)∩G(2α) and (5.1) holds trivially with the constant 1,

since the weight on both H(2α) and G(2α) is aαbα). This means we have

µ
(
JK+1

) = · · · = µ
(
Jp
)

= aαbα|Jp|,

while the estimate of µ(J1), . . . ,µ(JK) follows exactly the same as the

exhaustion procedure, and (5.8) holds in this case.

(2). l
(
H(2α)

) ∈ Jp. To begin with, we first note that by an application of the

exhaustion procedure, we can show that there exists an absolute constant

C′ > 0, such that

1

C′ ≤ µ(Jj1)

µ(Jj2)
≤ C′, j1, j2 ∈ {1, . . . ,p − 1},
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44 T. C. Anderson and B. Hu

since Z is on the right of Jp−1. Therefore, it suffices to show that there exists

an absolute constant C′′ > 0, such that

1

C′′ ≤ µ(Jp)

µ(Jp−1)
≤ C′′.

This will follow from an easy argument by examining whether the ratio

∣∣∣[l(Jp), l
(
H(2α)

)]∣∣∣
|Jp|

makes a significant contribution (e.g., whether it is greater than 1/2) or not.

We would like to leave the detail to the interested reader.

Remark 7.1. We note that this is the key part where Step 2α is needed, as by stopping

at Step α, for very small Jp lying almost entirely to the right of Z, the ratio |Jp|/|Jp−1|
would be essentially (b/a)α.

8 Applications

We now use our results to show an application related to the reverse Hölder inequality,

mentioned in the introduction. Though well equipped to do so by our earlier analysis,

including the exhaustion procedure, the proofs require significant care. To provide

clarity, we explain our reasoning within the proofs before providing the detailed

calculations. We begin with some definitions.

Let p and q be a pair of primes with p > q and w be a weight (i.e., a nonnegative

locally integrable function). We may also assume q > 2 as before, while the case q = 2

follows from an easy modification of the proof for q > 2.

Let further, wµ be the weight associated to the measure µ that we have

constructed in Section 4, that is,

µ(I) =
ˆ
I
wµdx, for any interval I.

Define the reverse Hölder and q-adic reverse Hölder classes as follows:
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Definition 8.1. Let 1 < r < ∞. We say that w ∈ RHr if

( 
I
wr
) 1

r ≤ C
 
I
w (8.1)

for all intervals I, where C is an absolute constant. Moreover, we sayw ∈ RH1 ifw ∈ RHr

for some r > 1, that is,

RH1 :=
⋃
r>1

RHr.

Definition 8.2. Let 1 < r < ∞. We say that w ∈ RHq
r if

( 
Q
wr
) 1

r ≤ C
 
Q
w (8.2)

for all q-adic intervals Q, where C is an absolute constant and w is q-adic doubling.

Moreover, we say w ∈ RHq
1 if w ∈ RHq

r for some r > 1, namely

RHq
1 :=

⋃
r>1

RHq
r .

Note that it is well known that any RHr weight is doubling, but a weight that

satisfies (8.2) is not necessarily q-adic doubling (see, e.g., [19]). This is why the q-adic

doubling assumption is added to the second definition.

The study of these weights has been extensive, more information and some

recent applications can be found in [9], [21], [22], [19], [14], [15], [4] among many others.

There is also interesting complimentary work done in [7]. Reverse Hölder weights are

relevant in the theory of quasiconformal maps, which was the original motivation for

their study [11].

Consider the w = wµ from our construction. Since this wµ is not doubling, then

it does not satisfy (8.1), namely wµ /∈ RHr.

Proposition 8.3. The weight wµ ∈ RHq
1 .

Proof. It suffices to show that w ∈ RHq
r for some r > 1. Let us fix an r with

1 < r <
lnq

lnb
,
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where we recall that b < q from the construction in Section 4. We denote

B1 := br

q
and B2 := ar

q
,

which by our assumption, clearly satisfies 0 < B1,B2 < 1.

Let I be any q-adic interval. Without loss of generality, we may assume I

intersects at least one Iα�

� , otherwise the constant C in (8.2) is simply 1.

Particular case. First of all, we consider the case when I ⊆ Iα�

� for some �. Note

that among all the q-adic offspring of Iα�

� , the only interesting cases are I coincides one

of the following:

Iα�

� ,H(k) and G(k), k = 1, . . . , 2α − 1. (8.3)

Otherwise, the weight on I is of the form axby for some x, y ∈ N, and in this case, one

can easily check that

( 
I
wr

µ

) 1
r =

 
I
wµ,

that is, the constant C in (8.2) is 1.

Let us consider five different cases for the intervals in (8.3).

Case I: I = H(k), k = α, . . . , 2α − 1. On one hand

 
H(k)

wµ = µ(H(k))

|H(k)| = aαbk−α,

and on the other hand

 
H(k)

wr
µ = aαrbαr

q2α−k
+ a(α+1)rb(k−α)r · (q − 1)

q
·
2α−k−1∑

i=0

(
br

q

)i

≤ aαrb(k−α)r ·
[
B2α−k
1 + q − 1

q
· ar

1 − B1

]
≤ aαrb(k−α)r ·

[
1 + q − 1

q
· 1

1 − B1

]
= C1 · aαrb(k−α)r,
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Intersections of General Doubling Measures 47

where we denote

C1 := 1 + q − 1

q
· 1

1 − B1
.

Therefore, (8.2) holds in this case with the constant C = C
1
r
1 .

Case II: I = H(k), k = 1, . . . ,α − 1. On one hand, we have

 
H(k)

wµ = µ(H(k))

|H(k)| = ak.

On the other hand,

 
H(k)

wr
µ = aαrbαr

q2α−k
+ a(α+1)r(q − 1)

qα−k+1
·
[

α−1∑
i=0

(
br

q

)i
]

+brakr

q
·
[

α−k−1∑
i=0

(
ar

q

)i
]

+a(k+1)r(q − 2)

q
·
[

α−k−1∑
i=0

(
ar

q

)i
]

≤ aαrbαr

q2α−k
+ a(α+1)r(q − 1)

qα−k+1
· 1

1 − br
q

+ brakr

q
· 1

1 − ar
q

+a(k+1)r(q − 2)

q
· 1

1 − ar
q

= akr

(
Bα
1B

α−k
2 + Bα−k+1

2 (q − 1)

1 − B1
+ B1 + B2(q − 2)

1 − B2

)

≤ akr
(
1 + q − 1

1 − B1
+ B1 + B2(q − 2)

1 − B2

)
(since 0 < B1,B2 < 1.)

= C2 · akr,

where we denote

C2 := 1 + q − 1

1 − B1
+ B1 + B2(q − 2)

1 − B2

and therefore, (8.2) holds in this case with the constant C = C
1
r
2 .
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48 T. C. Anderson and B. Hu

Case III: I = G(k), k = α, . . . , 2α − 1. On one hand, we have

 
G(k)

wµ = µ(G(k))

|G(k)| = bαak−α.

On the other hand,
 
G(k)

wr
µ = bαraαr

q2α−k
+ bαrar(k−α)(q − 2) · a

r

q
·
2α−k−1∑

i=0

(
ar

q

)i

+bαrar(k−α) · b
r

q
·
2α−k−1∑

i=0

(
ar

q

)i

≤ bαra(k−α)r
[(
B2

)2α−k + (q − 2)B2 + B1

1 − B2

]
≤ bαra(k−α)r

[
1 + (q − 2)B2 + B1

1 − B2

]
= C3 · bαra(k−α)r,

where we denote

C3 := 1 + (q − 2)B2 + B1

1 − B2

and therefore, (8.2) holds in this case with the constant C = C
1
r
3 .

Case IV: I = G(k), k = 1, . . . ,α − 1. On one hand, we have

 
G(k)

wµ = µ(G(k))

|G(k)| = bk.
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Intersections of General Doubling Measures 49

On the other hand,

 
G(k)

wr
µ = bαraαr

q2α−k
+ bkr · (q − 2) ·

(
br

q

)α−k

· a
r

q

α−1∑
i=0

(
ar

q

)i−1

+bkr · b
(α+1−k)r

qα+1−k
·
α−1∑
i=0

(
ar

q

)i

+bkr · a
r

q
· (q − 1) ·

α−k−1∑
i=0

(
br

q

)i

≤ bkr
[
Bα−k
1 Bα

2 + (q − 2)B2 + B1

1 − B2
+ (q − 1)B2

1 − B1

]
≤ bkr

[
1 + (q − 2)B2 + B1

1 − B2
+ (q − 1)B2

1 − B1

]
(since 0 < B1,B2 < 1.)

= C4 · bkr,

where we denote

C4 := 1 + (q − 2)B2 + B1

1 − B2
+ (q − 1)B2

1 − B1

and therefore, (8.2) holds in this case with the constant C = C
1
r
4 .

Case V: I = Iα�

� . One one hand, we have

 
I
α�
�

wµ = µ(Iα�

� )

|Iα�

� | = 1.

Other the other hand

 
I
α�
�

wr
u = q − 2

q
·
 
E(0)

wr
µ + 1

q
·
 
H(1)

wr
µ + 1

q
·
 
G(1)

wr
µ

≤ (q − 2)ar

q
+ C2a

r

q
+ C4b

r

q

= (q − 2 + C2)B2 + C4B1,
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50 T. C. Anderson and B. Hu

where in the second to last line, we use the estimate from Case II and Case IV above.

Hence in this case, (8.2) holds with the constant C = C
1
r
5 , where we denote

C5 := (q − 2 + C2)B2 + C4B1.

General case. Finally, we consider the case when I contains one or more Iα� . By

our construction, it is clear that

 
I
wµ = 1.

Let us assume there are indices �1, . . . , �M̃ , such that

I
α�j
�j

� I, j = 1, . . . , M̃.

Without loss of generality, we may assume M̃ < ∞. The key point is that the constant

we get here is independent of the choice of any finite M̃; therefore, the estimate for the

case when I contains infinitely many Iα�

� follows by a standard limiting argument.

From the proof of the case when I ⊂ Iα�

� , we see that 
I
α�j
�j

wr
µ


1
r

≤ C′
 
I
α�j
�j

wµ, j = 1, . . . , M̃

where we set

C′ := max
{
C

1
r
1 , . . . ,C

1
r
5

}
.

Let us put

ωj :=
∣∣∣Iα�j

�j

∣∣∣
|I| , j = 1, . . . , M̃.

In particular, this suggests that

M̃∑
j=1

ωj ≤ 1.

Finally, we denote

Ic := I\
 M̃⋃

j=1

I
α�j
�j

 , and ωM̃+1 = 1 −
M̃∑
j=1

ωj.

Note that ωM̃+1 = |Ic|
|I| .
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Intersections of General Doubling Measures 51

Therefore, we have

 
I
wr

µ = 1

|I| ·
ˆ
I
wr

µ = 1

|I| ·
 M̃∑

j=1

ˆ
I
α�j
�j

wr
µ +

ˆ
Ic
wr

µ


=

M̃∑
j=1

ωj

 
I
α�j
�j

wr
µ + ωM̃+1

 
Ic
wr

µ

≤
M̃∑
j=1

ωj · (C′)r ·
 

I
α�j
�j

wµ

r

+ ωM̃+1

= (
C′)r ·

M̃∑
j=1

ωj + ωM̃+1

≤ (C′)r + 1

that is, in general, we have( 
I
wr

µ

) 1
r ≤ C

 
I
wµ, for any q-adic interval I,

with Cr := (C′)r + 1 if 1 < r <
lnq
lnb . The proof is complete. �

Proposition 8.4. The weight wµ ∈ RHp
1 .

Proof. This proof of this proposition is an application of the exhaustion procedure

and Proposition 8.3. We reference the structure and setup in Sections 4 and 5 often.

Recall that for each Iα�

� , J� is the smallest p-adic interval that contains Iα�

� with

J� ⊂ [0, 1) and the J�’s are pairwise disjoint.

Let J be the p-adic interval to be tested. There are several reductions that we

can make.

Reduction I: To begin with, we may assume again that J coincides with some

J� or some of its p-adic offspring. Otherwise, if J contains some J� properly or contains

more than two J�, we can argue as we did for Proposition 8.3.

Reduction II: We may assume α = α� > 2N where we recall that N = � logp
logq � + 1

is constant we fixed at the beginning of the exhaustion procedure. Otherwise, we can

simply estimate (8.1) crudely, as all the weights here only depend on a, b, q, and p.

Reduction III: The third reduction would be that we may assume

J ∩ (J�

)
1 	= ∅ or J ∩ (J�

)
2 	= ∅,
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52 T. C. Anderson and B. Hu

otherwise, the measure equipped on J is the standard Lebesgue measure and (8.1) holds

trivially. Without loss of generality, let us assume the intersection of J and
(
J�

)
1 is

nonempty, the other case can be argued similarly as the “mirror symmetric” argument

in Section 7.1.

Reduction IV:Recall the points Z and ϒ defined in Section 4. Note that it suffices

to consider the case when Z > l(Jp). Otherwise, by Reduction III, we have

Jp ⊂ [Z,ϒ ],

in particular,

|Jp| ≤ |[Z,ϒ ]| <
|I|

q100α
.

where I = Iα�

� . This implies that J ⊂ H(2α) ∪ G(2α) since
∣∣H(2α)

∣∣ = ∣∣G(2α)
∣∣ = |I|

q2α . Therefore,

the estimate (8.1) is again trivial with the constant C = 1.

Reduction V: Furthermore, we may assume that Jp ⊂ I, that is, there exists some

K ∈ {1, . . . , 2α}, such that l(Jp) ∈ E(K). Again, the case when such a K does not exist is

even easier.

We first bound the term

	1 :=
( 

J
wr

µ

) 1
r

from above.

Here comes the key observation: if l(Jp) ∈ E(K), then by the exhaustion procedure,

J ∈ H(K−N), and we may assume J ⊆ H(K−N′) (N′ ∈ {0, 1, . . . ,N}), where H(K−N′) is the

shortest H(k)-interval that contains J.

Reduction VI: Without loss of generality, we may assume K−N′ ≥ 1. Otherwise,

we let J ′ be the unique p-adic child that contains l
(
H(1)

)
, and group the p-adic children

of J as follows:

(1).
{
Ji : Ji is on the left of J ′} ∪ {J ′};

(2).
{
Ji, Ji is on the right of J ′}.

The first group either is weighted by 1 or a, and the second group can be dealt

with it by using the argument for K − N′ ≥ 1. Finally, we glue both groups together, and

we may argue again as in the proof of the general case in Proposition 8.3.
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I nt e r s e cti o n s of  G e n e r al  D o u bli n g  M e a s u r e s 5 3

Fi g. 9. E x a m pl e s of all t h r e e  p o s si biliti e s of J ∗ wit h E (K ) i f 1 ≤ K ≤ α − 1,  w h e r e  w e r e c all f r o m

Fi g u r e 4 t h at t h e  w ei g ht o n t h e ri g ht  h a n d si d e of t h e r e d  p oi nt i s a K + 1 , a n d i s b a K o n t h e l eft

h a n d si d e, r e s p e cti v el y.  M o r e o v e r, t h e  w ei g ht o n t h e  p a rt of E (K − 1 ) t h at i s a dj a c e nt t o E (K ) i s a K .

T h e r ef o r e,  w e  h a v e

r
1 =

 

J
w r

μ =
1

|J |

ˆ

J
w r

μ ≤
1

|J |

ˆ

H (K − N )
w r

μ . ( 8. 4)

O n t h e ot h e r  h a n d, l et

2 :=

 

J
w μ ,

a n d  w e  w o ul d li k e t o  b o u n d it f r o m  b el o w.  T o  b e gi n  wit h,  w e  d e n ot e J ∗ t o  b e t h e

ri g ht m o st p - a di c c hil d r e n a m o n g t h e s et {J 1 , . . . , J p − 1 } s u c h t h at t h e r e i s o nl y o n e v al u e

a s si g n e d t o t h e  w ei g ht o n J ∗ , t h at i s, d μ
J ∗ c a n  b e  w ritt e n a s a n 1 b n 2 d x f o r s o m e

n 1 , n 2 ∈ { 0, . . . , α }.  N ot e t h at  b y t h e g e o m et ri c g r o wt h of t h e E (k ) ’ s, J ∗ i s eit h e r J p − 1 , J p − 2

o r J p − 3 ( s e e  Fi g u r e 9 f o r e x a m pl e s).  T hi s s u g g e st s  u s t o t r e at J ∗ a s a v e r y s m all s hift of

J p ,  h o w e v e r,  wit h a  m u c h e a si e r e x p r e s si o n t o  w o r k  wit h.

T h e r ef o r e,  w e  h a v e

2 =
1

|J |

ˆ

J
w μ =

1

|J |
· μ( J 1 ) + · · · + μ( J p )

=
1

|J |

μ( J 1 )

μ( J ∗ )
+ · · · +

μ( J p )

μ( J ∗ )
· μ( J ∗ )

≥
p

C |J |
· μ( J ∗ ), ( 8. 5)
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54 T. C. Anderson and B. Hu

where in the last estimate, we use the exhaustion procedure and we assume the constant

there is C̃.

Therefore, to prove the estimate (8.1) with respect to the p-adic interval J, it

suffices to show that

	1

	2
≤ C̃

p
·

∣∣∣H(K−N′)

∣∣∣
|J|


1
r

·
( 

H(K−N′)
wr

µ

) 1
r · |J|

µ(J∗)

is bounded above by some absolute constant, where in the above estimate, we use (8.4)

and (8.5). To this end, let us denote

	3 :=

∣∣∣H(K−N′)

∣∣∣
|J|


1
r

·
( 

H(K−N′)
wr

µ

) 1
r · |J|

µ(J∗)
.

Let us start with analysing the term

∣∣∣H(K−N′)
∣∣∣

|J| .

Note that for most cases, H(K−N′) is the q-adic interval that essentially has the “same”

size of J, priorly, we should expect

∣∣∣H(K−N′)
∣∣∣

|J| � 1, (8.6)

where the implicit constant here only depends on q. More precisely, we consider several

possibilities.

(i). If N′ ≥ 2, then since J ⊆ H(K−N′), we also have E(K−N′+1) ⊂ J (by the

geometric structure, since l(Jp) ∈ E(K), otherwise J would have to be

contained in H(K−1), contradicting the choice of N′). Therefore, we get the

desired equation (8.6), where the implicit constant in the above equation

only depends on q;

(ii). If N′ = 0 or 1 and Jp ⊂ E(K) ∩ E(K+1), then the weight on J will be one of the

following situations:
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Intersections of General Doubling Measures 55

• If 1 ≤ K ≤ α − 2, then these weights are

baK−1,aK , baK ,aK+1, baK+1,aK+2;

• If α + 1 ≤ K ≤ 2α, then these weights are

aα+1bK−1−α,aα+1bK−α,aα+1bK+1−α;

• If K = α, then these weights are

baα−1,aα,aα+1,aα+1b;

• If K = α − 1, then these weights are

baα−2,aα−1, baα−1,aα,aα+1.

The key point here is that for each of the situations above, the weights are

comparable, in the sense the ratios between them are bounded above and

below by some constant only depending on a and b, independent of the

choices of K and α. This allows us to establish the estimate (8.1);

(iii). If N′ = 0 or 1 and E(K+1) ⊂ Jp, then since E(K+1) takes a large portion

of either H(K) or H(K−1), we can conclude again that (8.6) holds, with the

implicit constant there depending only on q.

From now on, we assume the ratio in (8.6) is approximately 1.

Completing the argument:

Now we turn to estimate the rest two terms in 	3, that is,( 
H(K−N′)

wr
µ

) 1
r

and
|J|

µ(J∗)
.

Our goal is to show that ( 
H(K−N′)

wr
µ

) 1
r · |J|

µ(J∗)
� 1, (8.7)

where the implicit constant above should only depend on a, b, p, and q, and independent

of α and K.

We again need to consider several different cases.
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56 T. C. Anderson and B. Hu

Case I: 1 ≤ K ≤ α − 1. First of all, we note that according to the choice of J∗, the
value of µ(J∗) is

either aK |J∗|, baK |J∗|, or aK+1|J∗|.

Since these three quantities differ by a constant multiple that only depends on a and b,

we may write

µ(J∗) � aK |J∗|.
This means

|J|
µ(J∗)

= p|J∗|
µ(J∗)

� 1

aK .

On the other hand, recall that in this case we have 1 ≤ K−N′ ≤ α−1, by the computation

in Case II of Proposition 8.3, we have 
H(K−N′)

wr
µ ≤ C2 · a(K−N′)r (8.8)

Therefore ( 
H(K−N′)

wr
µ

) 1
r · |J|

µ(J∗)
� aK−N′ · 1

aK ≤ 1

aN ,

which implies the estimate (8.7).

Case II: α ≤ K ≤ 2α. Again, we start with estimating µ(J∗), and as before, we

collect all the possible values of µ(J∗) and this gives us

µ(J∗) � aαbK−α|J∗|,

where the implicit constant only depends on a and b. This means

|J|
µ(J∗)

= p|J∗|
µ(J∗)

� 1

aαbK−α
.

While for the upper bound of the term

( 
H(K−N′)

wr
µ

) 1
r

,

we consider two sub-cases.
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Intersections of General Doubling Measures 57

• If 1 ≤ K − N′ ≤ α − 1, then as in (8.8), we have

 
H(K−N′)

wr
µ ≤ C2 · a(K−N′)r.

Moreover, we notice that in this case, we have

0 ≤ K − α ≤ N′ − 1 ≤ N,

and hence

1

bK−α
� 1,

where the implicit constant above only depends on b, p and q. Therefore,

( 
H(K−N′)

wr
µ

) 1
r · |J|

µ(J∗)
� 1

aN′ · 1

bK−α
� 1

aN ,

which again implies the desired estimate (8.7);

• If α ≤ K − N′ ≤ 2α, then using the computation in Case I of Proposition 8.3,

we have

 
H(K−N′)

wr
µ ≤ C1 · aαrb(K−N′−α)r.

Therefore,

( 
H(K−N′)

wr
µ

) 1
r · |J|

µ(J∗)
� b−N′ ≤ 1.

This implies the desired estimate (8.7) for this case.

As a conclusion, we have shown that

	3 � 1,

where the implicit constant above only depends on a, b, p, and q, independent of α and

K. The proof is complete. �

Corollary 8.5. For any r > 1 and {p,q} being a pair of distinct primes, RHr � RHp
r ∩RHq

r .

In particular, RH1 � RHp
1 ∩ RHq

1 .
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58 T. C. Anderson and B. Hu

Proof. Note that from the proof of Proposition 8.4, we indeed have if wµ ∈ RHq
r for

some r with 1 < r <
ln q
ln b , then for the same choice of r, there holds wµ ∈ RHp

r .

To proof the desired claim, it suffices to take 0 < a < 1 < b satisfying

1 − a,b − 1 � 1 and (q − 1)a + b = q.

This suggests that we can make the ratio lnq
lnb arbitrarily large. The desired claim then

follows easily from Proposition 8.3 and Proposition 8.4. �

Finally, we can prove analogous statements about the Muckenhoupt Ap weights

(which we will call Ar weights to prevent confusion with p being used for a prime). We

recall the definition first.

Definition 8.6. Let 1 < r < ∞, we say a weight w ∈ Ar if

sup
I

( 
I
w(x)dx

)( 
I
w(x)

−1
r−1dx

)r−1

< ∞,

where the supremum is taken over all intervals I. Moreover, we say w ∈ A∞ if w ∈ Ar

for some r > 1, that is,

A∞ :=
⋃
r>1

Ar.

We define the p-adic Ap
r , as well as p-adic Ap

∞, similarly by only allowing

averages along p-adic intervals. Note that the Ar condition implies doubling. An easy

modification of the proof of Proposition 8.3, Proposition 8.4, and Corollary 8.5 allows

us to conclude the following analog for Muckenhoupt Ap weights, which immediately

implies Theorem 1.3:

Corollary 8.7. For any r > 1 and {p, q} being a pair of distinct primes, Ar � Ap
r ∩Aq

r . In

particular, A∞ � Ap
∞ ∩ Aq

∞.

Proof. Note that since any reverse Hölder weight (of class r) is also an Ar1 weight for

some 1 < r1 < ∞, and similarly for the prime classes, Corollary 8.5 indeed directly

implies Corollary 8.7 holds for some r > 1.

However, it turns out that we can improve such a range to all r > 1 and the proof

is parallel to those in Proposition 8.3, Proposition 8.4, and Corollary 8.5. Let us mention
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the necessary modifications that we need to make to prove the result: recall that at the

beginning of Proposition 8.3, we pick r > 1, such that

1 < r <
lnq

lnb
.

Now we replace this by

1 − lna

lnq
< r < ∞.

Note that since 0 < a < 1, the term on the left hand side above is strictly bigger than 1, in

particular, this means that when proving the analog of Corollary 8.5 for Muckenhoupt

weights, we again choose a sufficiently close to 1, to make 1 − lna
lnq arbitrarily close

to the threshold 1. The rest of the proof then follows by interchanging the role of b

and a, and replacing the role of r in the proof of Proposition 8.3, Proposition 8.4, and

Corollary 8.5 by − 1
r−1 , for example, we may define

B3 := a− 1
r−1

q
and B4 := b− 1

r−1

q
,

to replace B1 and B2 there, respectively. We would like to leave the detail to the interested

reader. �

Appendix A. A Conjecture of Krantz

In Appendix A, we resolve a conjecture of Krantz that is loosely related to the contents

of this paper and reappeared in the work [5] that motivated our study. Here we are able

to completely resolve this conjecture using some machinery developed in our previous

result [2], that is different from, yet connected to, our number theoretic treatment

earlier. This part can be read independently from the rest of this paper.

We begin firstly with some explanations. The conjecture of Krantz [16] is the

following.

Conjecture A.1 ([16]). Let ε > 0 be arbitrarily small, and m ∈ N be sufficiently large.

For each positive integer k, does there exists a prime p, an integer β and an integer n

with 1/10 ≤ pn/2m ≤ 10, such that ∣∣∣∣ k

2m
− β

pn

∣∣∣∣ <
ε

2m
?
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Krantz then suggests that if the prime numbers were “strongly randomly

distributed,” then this conjecture would be true. This is not exactly the case; what

Krantz mentions would be true if the m in the conjecture is allowed to vary (i.e., m

can depend on ε). More precisely, if we replace the fixed m (which is n in Krantz’s

original notation) in the conjecture above by allowing m (and therefore p) to vary, then

the strong randomness property implies that this (new) statement is true. The strong

randomness property is indeed true via the strong form of the prime number theorem

(prime number theorem with error term), which is a classical result. Therefore, we

will interpret Krantz’s conjecture in the manner that he writes, but emphasize that the

strong randomness property is true and that this property implies a slightly different

statement than what Krantz wrote. This is a subtle, yet important difference.

While for Conjecture A.1, we can disprove it by showing the following result:

Proposition A.2. For any m ∈ N, there exists some constant C(m) > 0, which only

depends on m, such that

inf
β∈N, n,p prime: 1

10≤ pn

2m ≤10

∣∣∣∣ 1

2m
− β

pn

∣∣∣∣ ≥ C(m)

2m
.

Assuming Proposition A.2, we turn to disprove Conjecture A.1. To do this, we fix

a m sufficiently large, and let ε = C(m)
2 . Moreover, we let k = 1 there, which is why we

have 1
2m in the statement of Proposition A.2, instead of k

2m . The contradiction follows

immediately.

Proposition A.2 is an immediate consequence of our previous work [2]. To begin

with, we recall the definition of far numbers.

Definition A.3. A real number δ is n-far if the distance from δ to each given rational

k/nm is at least some fixed multiple of 1/nm, where m ≥ 0, k ∈ Z. That is, if there exists

C > 0 such that ∣∣∣∣δ − k

nm

∣∣∣∣ ≥ C

nm , ∀m ≥ 0,k ∈ Z, (A.1)

where C may depend on δ but independent of m and k.

Proof of Proposition A.2. Let us fix m ∈ N. First of all, since

1

10
≤ pn

2m
≤ 10, (A.2)

it is clear that there are only finitely many pairs (p,n) that satisfy (A.2), and such a

number only depends on m,
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Now let us take one of these pairs and denote it as (p,n). Observe that there are

only finitely many non-zero β such that the following holds:∣∣∣∣ 1

2m
− β

pn

∣∣∣∣ ≤ 1, (A.3)

and such a number of β’s only depends on p and n, and hence only depends on m. While

for those β that fail the estimate and β = 0, it suffices, for example, to take C(m) = 1.

To this end, we take a non-zero β that satisfies (A.3).

Now we apply [2,Corollary 2.10, (a)] to see that there exists a constant Cβ,p,n > 0,

which only depends on β,p, and n, such that∣∣∣∣ 1

2m̃
− β

pn

∣∣∣∣ ≥ Cβ,p,n

2m̃
, ∀m̃ ≥ 1,

since β
pn is far with respect to 2. In particular, letting m̃ = m, we have∣∣∣∣ 1

2m
− β

pn

∣∣∣∣ ≥ Cβ,p,n

2m
.

Finally, it suffices to take

C(m) := min

 min
β:β satisfies (A.2),β 	=0,

n,p prime: 1
10≤ pn

2m ≤10

Cβ,p,n, 1

 ,

which only depends on m. �
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