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QUANTITATIVE HILBERT IRREDUCIBILITY AND ALMOST PRIME VALUES OF
POLYNOMIAL DISCRIMINANTS

THERESA C. ANDERSON, AYLA GAFNI, ROBERT J. LEMKE OLIVER, DAVID LOWRY-DUDA, GEORGE SHAKAN,
AND RUIXIANG ZHANG

ABSTRACT. We study two polynomial counting questions in arithmetic statistics via a combination of Fourier
analytic and arithmetic methods. First, we obtain new quantitative forms of Hilbert’s Irreducibility Theorem
for degree n polynomials f with Gal(f) € An. We study this both for monic polynomials and non-monic
polynomials. Second, we study lower bounds on the number of degree n monic polynomials with almost
prime discriminants, as well as the closely related problem of lower bounds on the number of degree n
number fields with almost prime discriminants.

1. INTRODUCTION

The study of statistics for objects of algebraic interest has been a source of rich and deep advances in
mathematics. One of the goals of a recent AIM workshop was to make progress on counting problems by
further incorporating Fourier analytic techniques into arithmetic statistics. This project grew out of that
workshop and is an effort in that direction.

In this paper, we use analytic and arithmetic methods in tandem to study a variety of arithmetic statistics
related to polynomial counts. We hope to see further and more refined applications of similar ideas in other
counting problems in the future. We focus on two primary applications, both involving counting polynomials
of certain types. First, we study a quantitative version of Hilbert’s Irreducibility Theorem (HIT). A precise
statement follows below, but our version gives upper bounds for the number of degree n polynomials whose
Galois groups are subgroups of A,,. Our techniques apply equally well to monic and non-monic polynomials,
so we examine both.

To state our version of HIT, we need a few definitions. We let V;,(Z) denote the set of degree n polynomials
over Z, and let V,;?°*(Z) < V,,(Z) denote the set of monic degree n polynomials. We also define

Vi (H) = {f(2) € Z[z] : f(z) = anz™ + ap_12" ' 4+ - + ag,a, # 0,ht(f) < H},

where we define the height of a polynomial f, ht(f), as the maximum of the absolute value of the coefficients.
Let V™ (H) < V,,(H) denote the subset of monic polynomials. Finally, let

EJONH) = |[{f(2) € V" (H), Gal(f) # Sn}.

Van der Waerden [vdW36] gave the first explicit bound for EX°"(H) and conjectured that EX°"(H) <,
|[V.men(F)|/H. Gallagher [Gal73] used the large sieve to improve van der Waerden’s bound to EP°"(H) <.,
H"2(log H)' 7, where 7, is a sequence of positive numbers satisfying 7, ~ (27rn)~ 2. Zywina [Zyw10]
further improved this by removing the power of log H, and the record is work of Dietmann [Diel3] who
shows that

(1.1) E™"(H) «,, H"2+VZte,

and of Chow and Dietmann [CD20], who solve van der Waerden’s conjecture when n < 4.

Significantly stronger bounds are known for the number EX°"(H)’ of monic polynomials with Galois group
isomorphic to neither S,, nor A,,. There have been a number of recent results on this problem, including
work of Zywina [Zyw10] and Dietmann [Diel2]. The record on this problem is the very recent work of Chow
and Dietmann [CD21], who show using the determinant method that

E™Y(HY «, HY 1O ¢ {7,8,10},
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which resolves van der Waerden’s conjecture in these degrees, apart from bounding the number of polynomials
whose Galois group is A,. Their methods also essentially apply when n € {7,8,10}, but save a power of H
smaller than 1.

Here, we improve the bounds on polynomials f where Gal(f) € A,,. For H > 1, define

En(H; An) = |[{f € Vo (H) : Gal(f) < An}l.

We note that F,,(H; A,,) counts a distinguished subset of polynomials counted by F,,(H). Define EX°"(H; A,,)
by restricting to monic polynomials. We use a combination of arithmetic and analytic techniques to prove
the following.

Theorem 1.1. Let n = 3 be an integer and let H = 2. Then for any € > 0,
En(H; Ay) <p,e H' 3T omiante

and

(1.2) EMM(H; Ay) e H' 5 anste,

For n = 8, the bound (1.2) improves on Dietmann’s bound (1.1) for the number of monic polynomials
whose Galois group is contained in A,,. Combined with the work of Chow and Dietmann, this improves the
overall estimate on the error term in HIT to Ef*"(H) <p e H" 5375+ We also note that Bhargava has
announced a proof of van der Waerden’s conjecture using different methods.

Our approach to Theorem 1.1 is inspired by Gallagher’s sieve theoretic approach (which also underlies
Zywina’s work), but instead of using the large sieve, we introduce a modification to the classical Selberg
sieve in §4. This modification allows us to connect the local conditions appearing in the sieve more properly
to the Mobius function over finite fields, provided we count the relevant polynomials with certain arithmetic
weights, and is the key novelty in Theorem 1.1. We estimate the local density of the modified conditions by
means of Poisson summation, with work of Porritt [Por18] on bounds for the the Fourier transform of the
Mobius function appearing to control the error.

Our second application concerns lower bounds on the number of degree n polynomials with almost prime
discriminants, i.e. discriminants with relatively few distinct prime factors. We draw inspiration from the
following result of Taniguchi and Thorne [TT20a], who were in turn inspired by the folklore conjecture that
there should be infinitely many fields of prime discriminant in every degree; this is known only for quadratic
extensions, however.

Theorem ([TT20a]). There is an absolute constant Cs > 0 such that for each X > 2, there exist at least
CsX/log X cubic fields whose discriminant is squarefree, bounded above by X, and has at most 3 prime
factors, and there is an absolute constant Cy > 0 such that for each X > 2, there exist at least C4 X /log X
quartic fields whose discriminant is squarefree, bounded above by X, and has at most 8 prime factors.

The cubic case improved an earlier result of Belabas and Fouvry [BF99] which had 3 prime factors replaced
by 7.

In §5, we first study the number of polynomials whose discriminants are almost prime. We prove an almost
prime discriminant result for all n > 3 that obtains discriminants with fewer prime factors than [T'T20a] if
n=4.

Theorem 1.2. Letn > 3, and let H = 2. For any r = 2n — 3, we have

n

#F € VI H)  w(Dise(f)) < 1 2y o

where w(Disc(f)) denotes the number of distinct primes dividing the discriminant of the polynomial f.

As the discriminant of a number field cut out by an irreducible polynomial divides that of the polynomial,
we can use lower bounds for counts of almost prime polynomial discriminants to get lower bounds for almost
prime number field discriminants. To make this comparison effective, we use results from [LT20b] that bound
the number of different polynomials of a given height that cut out the same number field. This allows us to
prove the following theorem. We state a more precise version as Theorem 5.2.
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Theorem 1.3. Let n = 3, and let X = 2. There is a constant 6, > 0 depending only on n, such that for
any r = 2n — 3, we have

#{F/Q: [F : Q] = n, Disc(F) < X,w(Disc(F)) < r} », X2,
where w(Disc(F')) denotes the number of distinct primes dividing the discriminant of the field F'.

In the quartic case n = 4, Theorem 1.3 improves on the quality of the almost primes produced by
Taniguchi and Thorne (achieving r = 5 as opposed to r = 8), but at the expense of obtaining a worse lower
bound on the number of such fields. In fact, the lower bounds obtained by Taniguchi and Thorne are of the
expected order of magnitude for the number of prime discriminant fields, which is =,, X/log X for every n,
while Theorem 1.3 falls short. The reason for this is that to prove their theorem, Taniguchi and Thorne use
group actions on prehomogeneous vector spaces. They are then able to count certain lattice points related to
the desired field counts, utilizing deep parametrization theorems and Poisson summation. Their method is
powerful, but as it relies on parametrizations via prehomogeneous vector spaces, it is only currently available
for degrees less than or equal to 5. It is interesting to note that they are sometimes able to explicitly compute
all Fourier transforms [TT20b], but can prove their results using rougher estimates.

To get a result for all n > 3, we use a different approach that involves studying an underlying Fourier
transform directly and the almost prime sieve. Our analysis centers on the Fourier transform of the squarefree
indicator function. For small degrees, it may be possible to include additional arithmetic ingredients to
improve our results.

Finally, to reach a wide audience, we have erred on the side of writing more details and explanations. We
hope for this to be an engaging, understandable paper.
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2. POLYNOMIALS OVER FINITE FIELDS

We begin in this section by collecting some basic facts from algebraic number theory on the reduction
modulo primes of integer polynomials. (See for example [Jac85, §4.16] as a reference).

Lemma 2.1. Let f(z) € Z[x] be a polynomial, and let Disc(f) € Z denote its polynomial discriminant. Then
Disc(f) = 0 if and only if f(x) has a repeated factor (which happens over C if and only if it happens over
Z). Moreover if p is a prime number not dividing the leading coefficient of f, then p | Disc(f) if and only if
f(z) (mod p) has repeated factors.

Notice that if f(x) € Z[z] is irreducible, then it has no repeated factors (since it has only one!). It follows
that Disc(f) must be non-zero, and thus can be divisible by only finitely many primes. In particular, it will
have repeated factors (mod p), or be of smaller degree, only for those finitely many primes. For all of the
others, we have the following connection between factorization types and Galois groups.

Lemma 2.2. Suppose f(x) € Z[x] is irreducible with degree n. Let G < S, be its Galois group, thought of
as permuting the roots of f(x). Suppose p is a prime not dividing the leading coefficient of f(x) for which
f(z) (mod p) has no repeated factor. Write

f(x) = fi(z)... fr(z) (mod p),
where each f;(x) is irreducible (mod p).
Then there is an element of G with cycle type (deg f1)(deg f2) - - - (deg f). In fact, this is true for any of
the Frobenius elements associated to p.
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In particular, if Gal(f) S A, then the reduction of f at any prime subject to Lemma 2.2 must correspond
to an even cycle type. As we are approaching our main theorem via sieves, it is the complementary notion
that is of most interest to us:

Definition 2.3. We say a polynomial f(z) € F,[z] is odd if it has no repeated roots and the permutations
with cycle type corresponding to the factorization type of f(z) are odd. Equivalently, f(z) is odd if it has
no repeated factors and the number of its irreducible factors with even degree is odd.

Lemma 2.4. A degree n polynomial f over F, is odd precisely if u,(f) = (=1)"*, where p,(f) is the
Mébius function over Fp[z].

Proof. Suppose a squarefree polynomial f of degree n over F,, has factorization type Ay -+ A,. Let Nogq =
#{i : \; odd} and Neyen = #{i : \; even} count the number of odd and even A;. Then f is odd if Neyen is
odd, i.e. if

(71)Neven = 1.
However, notice that Neyen = 7 — Noda and that Nogq = n (mod 2). Thus

(=)o = (1) = ()1
The result follows. O

Since we are primarily interested in the reduction of integer polynomials f, when the leading coefficient of
f is not =1 the degree of the reduction of f may be smaller than that of f. Consequently, for a polynomial
f e Fplx], we define

pp(f), if deg(f) =n,
0, if deg(f) # n,

Given an integer polynomial f € Z[xz], we define p1p, ,(f) in the expected manner by means of the reduction
of f (mod p). It follows from the above discussions that p,.,(f) = 0 if and only if p divides the product of
the leading coefficient of f with discriminant of f. Consequently, we define the quantity LDisc(f) to be this
product.

To end this section, we summarize the above discussion in the following lemma.

Lemma 2.5. Let f € Z[z] be a polynomial of degree n > 0 with Gal(f) = A,,. Then p,,(f) # (—=1)"*1 for
every prime p.

(2.1) fipn(f) = {

3. FOURIER TRANSFORMS OF POLYNOMIALS OVER FINITE FIELDS

Given a squarefree integer d, let V,,(Z/dZ) denote the vector space of polynomials over Z/dZ with degree at
most n, and let V™" (Z/dZ) denote the subset of those that are monic of degree equal to n. We identify the
dual of V,,(Z/dZ) with (Z/dZ)"** and the dual of V;°%(Z/dZ) with (Z/dZ)"™. We define the pairing between
Vi(Z/dZ) and (Z/dZ)"*' coefficient-wise; namely, if f(z) = > ja;z* and u = (uo,...,uy,) € (Z/dZ)"*?,
we define

(fiu) := Z a;u;.
i=0

We define the pairing (-, )mon between V,?°(Z/dZ) and (Z/dZ)"™ analogously. We will typically omit “mon”
from the notation if it’s clear that we are working with monic polynomials. If ¢: V,,(Z/dZ) — C is a function,
we define its Fourier transforms

M= Y wDeafw), eals) = o

feVi, (2/d7)

for u e (Z/dZ)" ' and
)= N el w)
fevmen(Z/dz)
for v € (Z/dZ)". Exploiting the natural map V;,(Z/dZ) — ], 4 Va(Fp), we will be primarily interested in
functions of the form vq := [ ], ;¢p, where ¢,: V,,(F;) — C. For such functions, the Fourier transform has
a corresponding factorization.
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Lemma 3.1. Let d be a squarefree integer. For each prime p | d, let ¥,: V,,(F,) — C, and for any
f e Vu(Z/dZ), define v¥q(f) = Hp‘dwp(f). There are units oy, € ) such that for any u € Z"' and any
veZzn,
va(w) = [ [plapu) and $7(v) = [ [ (opv).
pld pld

Proof. This follows from the Chinese remainder theorem, and the proof is the same in the general and monic
cases. We give the proof for the general case. It suffices to prove the lemma for a squarefree factorization
d = dids. A polynomial f € V,(Z/dZ) projects to f1 € V,(Z/d1Z) and fy € V,,(Z/d2Z). Conversely, given
two such polynomials fi, fo, there is a unique polynomial f € V,,(Z/dZ) congruent to each, namely

f = fidady + fodidy,

where d is any choice of the multiplicative inverse of da (mod d);, with d; defined analogously. Then

dw=—r XY (e (el + i w)

f1€VR(Z/d1Z) f2€Vn(Z/d2Z)
= {b\dl (d_Qu) 'lng (d_lu)

The lemma follows. O

In subsequent sections, Fourier transforms of this type will naturally appear after an application of Poisson
summation on the integer lattices Z"*! and Z". The next two lemmas will be used to control the Fourier
side of this application.

Lemma 3.2. Let d be squarefree and suppose q(f) = Hp|d1/)p(f) is a function where each v, satisfies

{b\p(u) & p~® for some 0 < a < n and every u # 0 (mod p), and furthermore 1Zp(0) « 1. Then for any
X>1,
D a(u)] « X Fde

uEZn+1\0
|ui| <X Vi

Here, the sum is over u = (ug,u1, ..., u,) € Z"™1\0 where each coordinate satisfies |u;| < X. Fach vector u
is regarded in (Z,/dZ)"*' via the projection map.

Similarly, if for each prime p | d, 121\;,“0“(0) <1 and @gon(v) & p~P for some 0 < B <n—1 and every
v #£ 0 (mod p), then

> 1)« Xmd P,
veZ™\0
lvs|<X Vi
Proof. We prove only the general case, the monic case following mutatis mutandis. There are fewer than
X"+ choices of u such that u % 0 (mod p) for each prime divisor p of d. Thus the total contribution from
these u is no larger than the asserted quantity, by Lemma 3.1 and our assumption that ﬂp(u) L p~*

It only remains to consider those u that are congruent to 0 modulo at least one prime divisor of d. For
each divisor m # 1 of d, let U,, denote the set of u € Z"*1\0 such that m is the maximal divisor of d with
u =0 (mod m). Stated differently, to each u we associate the maximal m | d such that u = 0 (mod m) and
thereby partition these u into sets U,,.

For each u € U,,, Lemma 3.1 gives that

"Zd(u) = /‘Zm(o)&;d/m(cu) < mad—a,
where c is some unit depending on d and m. As #U,, < (X/m)"*1, it follows that
. mae / X\ xnt+l
> law) « () (g) € Gamriisa
uel,,
|us| <X Vi
As d is squarefree, we have that

1 1
Z mntl—a = H (1 + pn+1a> ’

m|d pld
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which is absolutely bounded since v < n. This proves the claim. O

Lemma 3.3. Make the same assumptions as in Lemma 3.2. If ¢: R*T1 — R is Schwartz, then for any
X >0,

1 da(w)d(u/X) = $4(0)p(0) + Oy (X F1d™),
uezn+1

and if ¢: R™ — R is Schwartz, then
DD (V)o(v/X) = P(0)$(0) + O (X"d )
VvEeZ™

for any X > 0.

Proof. We briefly describe the general case, as the monic case is nearly identical. The idea is to use the rapid
decay of ¢ and a form of annular partial summation. As ¢ is Schwartz, we have that |p(u)| <4 |u|="73,
hence

> da(wé(w/X) - = D) va(wd(u/X) <4 Y] > [tha(w)[|$(u/X)|

uezn+1 uezZn™\0 k=0 uezZ™\0
EX<u|<(k+1)X

<oX"™aer 3 (Y [a(w)e

k=1 uez™\0
kX <|u|<(k+1)X

<o XA+ N ((k+1D)X) "R g, XU
k=1
where we have repeatedly applied Lemma 3.2. O
Finally, we consider the functions that will be of interest to us in the next section, recalling relatively
recent work of Porritt [Porl8] on the function field analogue of bounds for sums maxg|};], . p(n)e(nd)|.
There is also work of Bienvenu and Lé [BL19] that is qualitatively of the same quality as Porritt’s, but less
precise for our particular purpose. Additionally, there is also work of Dietmann, Ostafe, and Shparlinski

[DOS19] that exploits cancellation in the Fourier transform of the Mobius function in a closely related sieve
problem; see in particular [DOS19, Lemma 2.7, Lemma 3.4].

Lemma 3.4. Let n = 3, p be prime, and define
L+ ()" ppn (f)
1/}P(f) = 2 z )
where [, s as in (2.1). Then 121)(0) = 1@‘7“0“(0) =1/2 and 1$p(u), @gon(u) Knp T foru#0 (mod p).
Proof. The claim about 1%(0) and @;10“(0) follows from the classical fact that

Z pp(f) = Z pp(f) =0

F€Vn(Fp) feVmen(FF,)

for any n > 2. For u i 0, the claim about wm"“( ) follows from [Por18, Theorem 1]. For zzp(u), we note
that if f(x) = a2 + -+ + ag € Fy[x] with a,, € F)}, then p,(f) = pp(f/an). Consequently,

i 1 Amon
Dp(w) = = Y Uy (eu),
p CEF;
which again may be bounded by [Por18, Theorem 1]. O

Combining Lemma 3.3 with Lemma 3.4, we immediately obtain the following corollary.

Corollary 3.5. Let n =3, let ¥,(f) = w for each prime p, and for squarefree d, let v¥q(f) =
Hp|d¢p(f). If ¢: R**1 S R is Schwartz, then for any X > 0 and any squarefree d,

S dulwotu/x) = 2O

ueznt1

DX,
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where w(d) denotes the number of distinct prime divisors of d. Similarly, if ¢: R™ — R is Schwartz, then
for any X > 0 and any squarefree d,

> huwotv/x) = 29 o, (xmd ).

w(d
VEZL™ 2

4. A MODIFIED SELBERG SIEVE

In this section, we introduce a modified version of the classical Selberg sieve. Our goal is to prove the
following version, which we later specialize using the results from the previous section.

Proposition 4.1. Let n be a positive integer, H and D be real with H,D > 1, ¢: V,,(R) — R be a non-
negative Schwartz function, and {\q} be a sequence of real numbers indexed by squarefree integers d < D,
with \y = 1. Then

¢(f/H) L+ (=)™ pn(f)
(4.1) D oD < D dada, Y. (f/H) 5 :
FeVR(Z) dy,dz FeVL(2) pl[d1,d2]
Gal(f)cA,
LDisc(f)#0

This proposition can be viewed as a generalization of the Selberg sieve. Before giving the proof, we first
describe what can be obtained by the classical Selberg sieve. (For a treatment of the classical Selberg sieve,
see [FI10, §7].) As in the statement of the proposition, we’ll assume A, is a sequence of real numbers indexed
by squarefree d < D with A\; = 1.

Using the classical Selberg sieve, we would start with the fact that

2

(4.2) S o(f/H) > M| =0,

feVn(Z) d:f (mod p)is odd,Vp|d

On one hand, expanding the left hand side of (4.2) we see it is equal to
Z )\dl)\d2 Z ¢(f/H)

di,ds f€Vn(Z):f (mod p)is odd for every p|[d1,d2]
On the other hand, when f € V,,(Z) and Gal(f) € A,, by Lemma 2.2 we see that f (mod p) is never odd
for prime p and thus Zd:f (mod p) is odd,Vp|d Ad = A1 = 1. By the non-negativity of ¢, we see (4.2) is at least

> e(f/H).
feVL(Z)
Gal(f)SA,

Hence we have

(4.3) DU S(f/H) < D) Aa s > o(f/H).
feVL(Z) dy,da feVL(Z):f (mod p) is odd for every p|[d1,d2]
Gal(f)SAn
The inequality (4.1) in Proposition 4.1 should be compared with (4.3).
We initially attempted to use (4.3) instead of (4.1), but the results are less satisfactory. The main reason
is that the characteristic function 12?,? of odd polynomials in F,[z] of degree n have very large Fourier
coefficients away from 0.

This is due to the fact (following from Lemma 2.4) that 127‘1,‘3 = 5 , since ufm is supported
on square-free polynomials of degree exactly n. As noted in Section 3, we expect the Fourier transform of
tpn to behave well (i.e. be small) away from 0, but one can show that u;n has large Fourier coefficients
away from 0 (see Remark 5.5 for a similar phenomenon in the monic case).

In order to circumvent this issue, we modify the Selberg sieve to produce the key inequality (4.1). The right
hand side of (4.1) maintains the strong Fourier decay of upn(f) (as shown in Lemma 3.4 and Corollary 3.5)
in the local computations after Poisson summation.

Compared to the classical Selberg sieve, the right hand side of (4.1) has more complicated local factors

w that can take the value 1/2 in addition to the typical 1 and 0. On the left hand side, we have
a mild divisor-bound-type loss 2~«(:Pise(f)) " This factor does not meaningfully detract from this application.

1 2
(=) ppntps .,
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We now prove Proposition 4.1.

Proof. The fundamental idea of this proof is to use certain non-negative definite quadratic forms instead of
the complete square (3 A\g)?.
For each f € V,,(Z), define the quadratic form Q; in the variables {\4}

_1\n+1
Qr({\a}) = Z H <1 () 2+ ,Up.,n(f)) Adi Ads -

di,d2 p|[d1,d2]

We claim that each Qs is non-negative definite. To see this, temporarily extend @ to a form on more

variables {4 : d squarefree, every prime factor of d is < D} using the same definition above. By definition

( 1+(*1)";1up,n(f) )

the (di,dz)-entry qy,q,,q, of the matrix of Qy is equal to [ [, 14, 4,1 . In other words, if we

write 4, (/) = 1+(*1)”;1up,n(f)7 then
sae=( T (I wn)( I wn)( I wn)
p<D,ptdy,ptdz p<D,ptdy,p|d2 p<D,p|d1,ptd2 p<D,p|d1,p|d2

Hence the matrix of the (extended) form @ is a tensor product of matrices M,(p < D prime) with M, =

1 z/’p(f) .. (11 R (10 o
(d’p(f) ()" More explicitly, M, = 11 for ppn(f) = (—1)"+', M, = 0 0 for ppn(f) = (-1)
and M, = (1}2 %g) for ppn(f) = 0. From this we see the (extended) form @ is non-negative definite.

Since the original Q¢ is obtained by specifying all A\; = 0 for d > D in the extended form, the original form
is also non-negative definite.

We now show that whenever Gal(f) < A,, and LDisc(f) # 0, we have Q; > 2« (LPisc(£))\2 = g—w(LDisc(f)),
It suffices to show this for the extended form @ as described just above. When Gal(f) < A, and

LDisc(f) # 0, Lemma 2.5 gives that u,,(f) # (—1)""!. Hence M, = <(1) 8) for p t LDisc(f) and

M, = ( L 1/2> for p | LDisc(f). Note that as matrices ( L 1/2> > (1/2 O) > 0, where A > B

1/2 1/2 1/2 1/2 0 0
means that A — B is non-negative definite. Hence as a tensor product, the matrix of the (extended) form
9—w(LDisc(f)) o ...
Qyis = 0 0 O , which shows that
0 0 --- 0
(4.4) Qf = g~ w(LDisc(f) \2.

The remainder of the proposition is now straightforward. The right hand side of (4.1) is equal to
> feva(z) o(f/H)Qy. On the other hand, applying the lower bound (4.4) gives precisely the left hand side
of (4.1). O

A similar proof gives also the monic version, which we record as the following proposition.

Proposition 4.2. Let n be a positive integer, H and D be real with H,D > 1, ¢: V"°*(R) — R be non-
negative, and {\q} be a sequence of real numbers indexed by squarefree integers d < D, with Ay = 1. Then

H 1 f1n+1p
Y i s S X euym ] (FEEED).

fev, o (z) di,dz feviren(z) pl[d1,dz2]
Gal(f)cAn
Disc(f)#0

PrOOF OF THEOREM 1.1

In the proof, we will use a slightly atypical form of Poisson summation. We first state this and give its
proof.
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Lemma 4.3. Fiz d > 2. Let ¢: R" — C be Schwartz, and let ¢q: (Z/dZ)" — C be any function. Let
¢: R" — C and vq: (Z/dZ)" —> C denote the Fourier transforms

o) = | elxwiotode and daw) =g Y ealGuw)valx)
R d x€(Z/dZ)™

where e(z) = e 2™ and eq(z) = e2mie/d  Thep
~ U\ ~
D) e)ax) = Y, o(5
XEL™ uezm

Proof. Each x € Z™ can be written uniquely as x = dy + z where y € Z" and z = (21,...,2,) satisfies
0 < z; < d — 1. Then using the fact that 14 is (Z/dZ)™-periodic,

2, 609va = 3, (3 oty +2))vatm) = Y 2 D eallmw)d(3)vuz)

xXEL™ yEL™ zeZ"™ uezn™
0<21§d 1 0<z;<d—1
-5 Y clmwin@) = Y 60
uezn" zeZ"™ uezn"

Thg\ second equality uses classical Poisson summation on Z™, and the last equality follows from the definition
of g and embedding z into (Z/dZ)". O

Next, we use Lemma 4.3 and Proposition 4.1 to prove Theorem 1.1.

Theorem 4.4. Let n = 3 be an integer and let H = 2 be real. Define V,,(Z; H) to be the set of polynomials
f=>Ya;x" in V,,(Z) with max |a;| < H. Define V*°*(Z; H) similarly. Then

1
Z m Ln H"+%+9n8+21 (log I{)%Jr7
feVn(Z;H)
Gal(f)cAn
LDisc(f)#0

and

1
Z m Ln Hn_%—,—TZ‘F?’(lOgH)ﬁ
feV o™ (Z;H)

Gal(f)cA,

Disc(f)#0

Proof. Choose a Schwartz function ¢: V,,(R) — R that is greater than or equal to 1 on polynomials whose
coefficients lie in [—1,1]. For f € V,,(Z), we let

ot - T (L )

pld

We apply Proposition 4.1. The sum over f on the right-hand side of (4.1) can be written as
D S/ H)pa,an ().

fevn(2)

To apply Poisson summation as in Lemma 4.3, we identify V,,(Z) with Z"*!, write f = x € Z"*!, and define
®(x) := ¢(x/H). Applying Lemma 4.3 to D> ®(x)t[4, 4,](x) then gives that

Z O(f/H)Vpay an) (f) = H**T Z " < 7 ) Yy ,d0] (1)
feVa(Z) uezn+1 1d
By Corollary 3.5, the right-hand side is equal to

H"16(0)
2w([d1,dz2])

+

+ Opn([dr, d2) 770,
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As d; and dy are squarefree, one can check that 2<(41:42]) = 7(d,)7(dy)/7((dy,d2)), where T is the divisor
function. Substituting this into the full expression from Proposition 4.1, we obtain

1 ~ Ad; Ad 8nt5
(4.5) — < H""'$(0) — 72 1 ((dy,d2)) + Opon IAay A, |[d1, d2] 7T ).
fevnzmH) 2oL dlz,f:lz 7(d1)7(d2) ( ) <dlz.c:zz o )
Gal(f)cAn, '
LDisc(f)#0

As in the classical Selberg sieve, we diagonalize the quadratic form appearing in the first term to obtain

Ady Ad Ady Ad
S () B TS S
dy,do T(dl)T(d2) dy,do T(dl)T(d2) 8|(d1,d2)
2

) DV
e d=0 (mod e) T(d)
= )&,
€
say, where the & are again supported on squarefree integers e < D. A Mobius inversion argument shows

that

(4.6) M= pdr@) Y ek
e=0 (mod d)

Thus the constraint that Ay = 1 becomes the condition
Zﬂ(e)fe = 1.
This prompts us to choose &, proportional to u(e),
(e
ge = %7 C = Z N(e)27
e<D

so that
Y& =1/C«1/D.

The first term in (4.5) is thus
Hn+1
Opn(——).
(0
To understand the second term, we note that the choice £ = p(e)/C in (4.6) shows that the terms Ay satisfy

[Ad] < 7(d) Z M « ﬂ

e<D ¢ d
e=0 (mod d)
Therefore, the second term in (4.5) is
7(dy)7(da)[dy, do] T ( ane1 | 2 o )
Lén Lén Tdd4)<<nD210D,
on D d1dy om (X 7(d) s, (log D)

dy,da<D d<D

where the final bound follows from the (crude) estimate on the Dirichlet divisor problem, >} _y 7(n) =
O(X log X). Combining these two bounds, we find that

1 Hn+1 345 5
e, T e g+ D os D)
Gal(})é/\n
LDisc(f)#0

This is optimized by choosing D = H St (log H )3;—17, which yields the first claim.
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For the monic case, an analogous proof using Proposition 4.2 instead of Proposition 4.1 shows that

HTL 3n+1
gty on I+ D7 (log D)%
FEVPOM(Z:H)
Gal(f)=An
Disc(f)#0

Choosing D = H ETEE (log H )3;—33 gives the second claim. O

5. ALMOST PRIME DISCRIMINANTS

In this section, we apply a weighted almost prime sieve as in [FI110, §25] to obtain lower bounds on
almost prime values of polynomial discriminants, in a manner in spirit with the earlier sections of this paper.

Specifically, we prove
Theorem 5.1. Let n = 3, and let H = 2. For any r = 2n — 3, we have
HTL
#{f e V;'(Z) : ht(f) < H,w(Disc(f)) < r} Dn,r @,

where w(Disc(f)) denotes the number of distinct primes dividing the discriminant of the polynomial f.

Since the discriminant of a field cut out by an irreducible polynomial divides that of the polynomial, this
also yields lower bounds for the number of degree n number fields with almost prime discriminant.

Theorem 5.2. Letn > 3, and let X > 2. For any r = 2n — 3, we have

#{F/Q: [F: Q] = n, Dise(F) < X, w(Disc(F)) < r} »ny aogixw

where w(Disc(F)) denotes the number of distinct primes dividing the discriminant of the polynomial F.
Moreover, if ¢, = 1 is any constant for which

#{F/Q: [F: Q] = n,Gal(F/Q) ~ S, Disc(F) < X} «, X,
then we additionally have
#{F/Q: [F : Q] = n,Disc(F) < X,w(Disc(F)) < 1} »p e X7 zmmmn—2

Remark 5.3. It is expected that the choice ¢, = 1 is admissible for every n in Theorem 5.2, but this
known only for n < 5. For n > 6, the smallest known admissible constants are due to Schmidt [Sch95] and
Lemke Oliver and Thorne [LT20a]. It follows from these that the choices ¢, = 222 and ¢, = 1.6(logn)? are
admissible for every n = 6, for example.

In preparation to apply the almost prime sieve, we recall from Lemma 2.1 that given a monic polynomial
f(z) € Z|x], a prime p divides the discriminant of f if and only if f (mod p) is not squarefree.

n

squarefree and 0 otherwise. Then @}10“(0) = 1/p, where ¢°" is defined as in §3, and

Pmon(v) « p2

Lemma 5.4. Let n > 3 and let p be prime. Define 1, : V,2°"(F,) — C by setting ¥, (f) = 1 if f is not

for v #0.

Proof. For n > 2, the number of monic, squarefree polynomials of degree n over F, is p"™ — p"~!. Thus the
number of polynomials that are not squarefree is p”~!, which yields the claim about wgm“(O), since

~ 1
mon _
o= )L
feymon
f not squarefree

For v # 0, we note that ¢, (f) = 1—1(f), where 14 is the characteristic function of squarefree polynomials.
Thus for v # 0, ¢ (v) = figfmn(v). Mimicking the combinatorial, inclusion-exclusion proof counting
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squarefree integers, we obtain
~ -1
Yt (v) = p_" Z ep({fs V)mon)
JeV, o (Fy)
f squarefree

=— > 2 we Y &lfdVimen)

0<d<n/2 GEVITE,)  JEVI ()
- Z Z N(g) Z ep(<f7 ng V>m0n)7
0<d<n/2 qu““’“ Fp) fevénoznd(]Fp)

where Ty : FI — Fp~2? is the map adjoint to the (linear) map corresponding to multiplication by g®. The
interior sum is a complete sum over all polynomials of degree n — 2d, and hence is 0 unless Tg2v = 0. When
T,2v = 0, the interior summation is p" 2. Noting also that Tiv = v # 0, it follows that

- u(g)
frw-- 33 u
1<d<n/2 geVi"o» (F,) P>
T 2V= 0]
We can trivially bound the sum over d > 2 by ignoring the condition that Tj,2v = 0,
1 1 1
2 2 1< ) i<
p* p p
2<d<n/2 geVmon (Fp) 2<d<n/2

which is sufficient. If d = 1, then g = x + o for some a € ), and the (n —2) x n matrix Tj> may be written
as

a2 20 1 0 0
0 a® 2a 1 0
T(ac+a) = : 0 . . . 0
0O -+ 0 a2 2o 1

Since v # 0, the equation Ty2v = 0 becomes a system of at most quadratic equations in «. This system may
or may not have any solutions in «, but by considering a single non-zero equation, it follows that it admits
at most 2. Thus the contribution from terms with d = 1 is at most 2p—2, which is sufficient. 0

Remark 5.5. Using the argument of Lemma 5.4 but being more careful, it is possible to be more precise
about the phases v at which the Fourier transform |1$;n°“ (v)| » p~2, and in general, to identify the phases at
which the Fourier transform admits worse than the expected square-root cancellation. We do not presently
see a way to exploit this in our proof of Theorems 5.1 and 5.2, however.

We are now ready to prove Theorem 5.1. We apply the almost prime sieve as described by Friedlander
and Iwaniec [FI10, Theorem 25.1]. For convenient reference, we restate that result here.

Proposition 5.6 (Theorem 25.1 of [FI10]). Let {an} be a sequence of non-negative numbers which satisfy
the linear sieve conditions [F110, (1.2), (5.38)],

(5.1) Z am = g(d)X + Rq(z), and H (1- g(p))_1 < K(bﬁ»

mez wep<s log w
m=0 (mod d)

for a constant K > 1 and any z > w > 2, where X is to be regarded as an approzimation to stm an, the

index p runs over primes, and g(d) is a multiplicative function. Suppose that the remainder terms Rg(x)
satisfy [F110, (25.7)]

(5.2) R(z,DIN):= ) ‘ 3 anRan(z ‘ « X (logz)
d<D n<N

for any complex coefficients |ay,| < 1, and where D, N satisfy [FI10, (25.25)]
(5.3) D> N%, DN = gl/Ar+e
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in which
A =7+

og 1og( (1+37)).
Let P(z) :==[[,.,p and V(2) :=[[,_.(1 - g(p)). Then
Z an, = XV (x)

n<x
(n,P(2))=1

w(n)<r
for z = (DN)#, and the implied constant depends on r and €.

Remark 5.7. There is a small typo in the statement of this theorem in [FI10]. In their theorem statement,
D and N need to satisfy (25.25), and not (25.27). Note also that they use the notation v(-) instead of w(-).

Proof of Theorem 5.1. We apply the almost prime sieve as stated in Proposition 5.6.

Let ¢: R" — R be a non-negative Schwartz function supported on [—1,1]". For H > 2, let ¢u(v) =
¢(v/H). Abusing notation, by identifying V,™°*(R) with R", we may regard ¢ and ¢ as Schwartz functions
on V™°™(R). For any integer m > 1, let

Am = Z ¢H(f)
FEVIon(2)
Disc(f)=xm
Since the discriminant of a polynomial in V;™°%(Z) of height at most H is O, (H?"~2), the sequence a,
is supported on integers m < z for some x =, H?""2. Let d > 1 be a squarefree integer and define
g = ]_[p‘dz/}p, where 9, is as in Lemma 5.4. Lemma 2.1 implies that p | Disc(f) exactly when v, (f) = 1.
It follows from Poisson summation that

Dlam= D>, ou(f)valf)

,,Zlif fevmon (Z
n vH ““mon
=H Z¢( )d (v)
vezn

= Z20(0) + 04l ?),

where the last line follows from Lemma 5.4 and Lemma 3.3. Recalling Mertens’ famous theorem that
[[<.(1- %) = (e77+0(1))/log x, we see that {a,,} satisfies the linear sieve conditions (5.1) with g(d) = 1/d
and X = H"$(0).
Moreover, the remainders
= 2, an = 9(0)
m<zx
djm
evidently satisfy
R(z,D[1) < ) |Ra(x)| «4 D"
d<D
for any D > 1. These remainders are <, , X/(logx)® provided that D «, H™™=1 /(log H)3"=1 =
2"/2(n=1)7 /(log ) (=1 For any such D and N = 1, we thus have that {a,,} satisfies (5.2).
The almost prime sieve (Proposition 5.6) then shows that for any r for which (5.3) is satisfied, we have

the asymptotic
H’n.
Z (o—— Z Am =n,¢p @a

m<zx m<x
w(m)<r (m,P(z))=1
w(m)<r

and (5.3) is satisfied when

1 n

1 3
A4 —_— <, A,:= 1 —(1 ).
(54) A, <2(n—1)27 T+log3 og<4( 3 )>
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Noting that r + % < A, <7, and that % = —0.26.. ., the condition (5.4) is satisfied if

2(n—1)2 2
e 20T 07— on 3734 2

n n
In particular, for n > 3, this is true when r > 2n — 3. Since

#{f € VIOUZ)  ht(f) < How(Dise(f) <1} >4 Y an,

m<x
w(m)<r

the theorem follows. O

To go from Theorem 5.1 to Theorem 5.2, notice that the lower bound in Theorem 5.1 is larger than the
error term in the Hilbert irreducibility theorem bounds (1.1) and (1.2). Consequently, the same lower bound
holds for the number of irreducible polynomials with almost prime discriminant, as well as for the number
of S, polynomials with almost prime discriminant. In particular, almost all of the polynomials produced by
Theorem 5.1 cut out S, fields of degree n with almost prime discriminant. To prove Theorem 5.2, the key
is to understand the number of different polynomials that cut out the same field. For this, we recall a result
of Lemke Oliver and Thorne [LT20b).

Lemma 5.8. Let F' be a number field of degree n, and let
Mp(H) = #{f € Z[x] : Q[x]/(f(x)) ~ F,ht(f) < H}.
Then Mp(H) <, H(log H)"~! Disc(F)n;—fln, and in particular Mp(H) «,, H(log H)"~!.
Proof. This follows by combining [LT20b, Theorem 2.1] and [LT20b, Lemma 3.1]. O

Proof of Theorem 5.2. We first prove the statement with the lower bound >, , X/2/(log X)", as it is
almost immediate from Theorem 5.1, which produces », , H"/log H irreducible polynomials with Galois
group S, whose discriminants have at most r prime factors, and Lemma 5.8, which implies that at most
H(log H)"~! of these polynomials can cut out the same field. In particular, there will be »,, ., H"~1/(log H)"
different fields produced, each of which has discriminant O,,(H?"~2). Choosing H = ¢X/(?"=2) for a suitable
constant c yields the claim.

To obtain the second claim of the theorem, let ¢, be as in the statement of the theorem and suppose
H > 2. Then for any Y > 1, there holds

N Mp(H) <, HlogH)"™" Y Dise(F) = «, H(log H)" 'Y w=

[FN:Q]:” [FN:Q]:n
Gal(F/Q)~S, Gal(F/Q)~S,
Disc(F)<Y Disc(F)<Y

from Lemma 5.8 and partial summation, where we have used that ¢, > 1 > ng—l_n For any € > 0, it follows

there is a choice of Y satisfying
n(n—1)>2

Y =, HennGt=1~¢
such that
> Mp(H) < H™.

[FiQ]=n
Disc(F)<Y

This is smaller than the lower bound produced by Theorem 5.1 on the number of polynomials with almost
prime discriminant, almost all of which are irreducible with Galois group .S,, by Hilbert irreducibility. Thus,
almost all of the polynomials produced by Theorem 5.1 cut out degree n S,, extensions F'/Q of discriminant

at least Y. For such fields F, we have Mp(H) «,, H(log H)" 'Y~ e by Lemma 5.8. Dividing the total
number of polynomials by this upper bound on the multiplicity, we find

#{F/Q: [F: Q] = n,Gal(F/Q) ~ Sy, w(Disc(F)) < r,Disc(F) «, H?}
Pn,re anl(log H)fnyﬁ
e HV T =17,

Again choosing H = c¢X 72 for a suitable constant ¢, the result follows. O
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