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QUANTITATIVE HILBERT IRREDUCIBILITY AND ALMOST PRIME VALUES OF

POLYNOMIAL DISCRIMINANTS

THERESA C. ANDERSON, AYLA GAFNI, ROBERT J. LEMKE OLIVER, DAVID LOWRY-DUDA, GEORGE SHAKAN,
AND RUIXIANG ZHANG

Abstract. We study two polynomial counting questions in arithmetic statistics via a combination of Fourier
analytic and arithmetic methods. First, we obtain new quantitative forms of Hilbert’s Irreducibility Theorem
for degree n polynomials f with Galpfq Ď An. We study this both for monic polynomials and non-monic
polynomials. Second, we study lower bounds on the number of degree n monic polynomials with almost
prime discriminants, as well as the closely related problem of lower bounds on the number of degree n

number fields with almost prime discriminants.

1. Introduction

The study of statistics for objects of algebraic interest has been a source of rich and deep advances in
mathematics. One of the goals of a recent AIM workshop was to make progress on counting problems by
further incorporating Fourier analytic techniques into arithmetic statistics. This project grew out of that
workshop and is an effort in that direction.

In this paper, we use analytic and arithmetic methods in tandem to study a variety of arithmetic statistics
related to polynomial counts. We hope to see further and more refined applications of similar ideas in other
counting problems in the future. We focus on two primary applications, both involving counting polynomials
of certain types. First, we study a quantitative version of Hilbert’s Irreducibility Theorem (HIT). A precise
statement follows below, but our version gives upper bounds for the number of degree n polynomials whose
Galois groups are subgroups of An. Our techniques apply equally well to monic and non-monic polynomials,
so we examine both.

To state our version of HIT, we need a few definitions. We let VnpZq denote the set of degree n polynomials
over Z, and let V mon

n pZq Ă VnpZq denote the set of monic degree n polynomials. We also define

VnpHq “ tfpxq P Zrxs : fpxq “ anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a0, an ‰ 0, htpfq ď Hu,

where we define the height of a polynomial f , htpfq, as the maximum of the absolute value of the coefficients.
Let V mon

n pHq Ă VnpHq denote the subset of monic polynomials. Finally, let

Emon
n pHq “ |tfpxq P V mon

n pHq,Galpfq ‰ Snu|.

Van der Waerden [vdW36] gave the first explicit bound for Emon
n pHq and conjectured that Emon

n pHq !n

|V mon
n pHq|{H . Gallagher [Gal73] used the large sieve to improve van der Waerden’s bound to Emon

n pHq !n

Hn´1{2plogHq1´γn , where γn is a sequence of positive numbers satisfying γn „ p2πnq´1{2. Zywina [Zyw10]
further improved this by removing the power of logH , and the record is work of Dietmann [Die13] who
shows that

(1.1) Emon
n pHq !n Hn´2`

?
2`ǫ,

and of Chow and Dietmann [CD20], who solve van der Waerden’s conjecture when n ď 4.
Significantly stronger bounds are known for the number Emon

n pHq1 of monic polynomials with Galois group
isomorphic to neither Sn nor An. There have been a number of recent results on this problem, including
work of Zywina [Zyw10] and Dietmann [Die12]. The record on this problem is the very recent work of Chow
and Dietmann [CD21], who show using the determinant method that

Emon
n pHq1 !n Hn´1.017, n R t7, 8, 10u,
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which resolves van der Waerden’s conjecture in these degrees, apart from bounding the number of polynomials
whose Galois group is An. Their methods also essentially apply when n P t7, 8, 10u, but save a power of H
smaller than 1.

Here, we improve the bounds on polynomials f where Galpfq Ď An. For H ě 1, define

EnpH ;Anq :“ |tf P VnpHq : Galpfq Ď Anu|.

We note that EnpH ;Anq counts a distinguished subset of polynomials counted byEnpHq. DefineEmon
n pH ;Anq

by restricting to monic polynomials. We use a combination of arithmetic and analytic techniques to prove
the following.

Theorem 1.1. Let n ě 3 be an integer and let H ě 2. Then for any ǫ ą 0,

EnpH ;Anq !n,ǫ H
n` 1

3
` 8

9n`21
`ǫ

and

(1.2) Emon
n pH ;Anq !n,ǫ H

n´ 2

3
` 2

3n`3
`ǫ.

For n ě 8, the bound (1.2) improves on Dietmann’s bound (1.1) for the number of monic polynomials
whose Galois group is contained in An. Combined with the work of Chow and Dietmann, this improves the

overall estimate on the error term in HIT to Emon
n pHq !n,ǫ H

n´ 2

3
` 2

3n`3
`ǫ. We also note that Bhargava has

announced a proof of van der Waerden’s conjecture using different methods.
Our approach to Theorem 1.1 is inspired by Gallagher’s sieve theoretic approach (which also underlies

Zywina’s work), but instead of using the large sieve, we introduce a modification to the classical Selberg
sieve in §4. This modification allows us to connect the local conditions appearing in the sieve more properly
to the Möbius function over finite fields, provided we count the relevant polynomials with certain arithmetic
weights, and is the key novelty in Theorem 1.1. We estimate the local density of the modified conditions by
means of Poisson summation, with work of Porritt [Por18] on bounds for the the Fourier transform of the
Möbius function appearing to control the error.

Our second application concerns lower bounds on the number of degree n polynomials with almost prime
discriminants, i.e. discriminants with relatively few distinct prime factors. We draw inspiration from the
following result of Taniguchi and Thorne [TT20a], who were in turn inspired by the folklore conjecture that
there should be infinitely many fields of prime discriminant in every degree; this is known only for quadratic
extensions, however.

Theorem ([TT20a]). There is an absolute constant C3 ą 0 such that for each X ą 2, there exist at least
C3X{ logX cubic fields whose discriminant is squarefree, bounded above by X, and has at most 3 prime
factors, and there is an absolute constant C4 ą 0 such that for each X ą 2, there exist at least C4X{ logX
quartic fields whose discriminant is squarefree, bounded above by X, and has at most 8 prime factors.

The cubic case improved an earlier result of Belabas and Fouvry [BF99] which had 3 prime factors replaced
by 7.

In §5, we first study the number of polynomials whose discriminants are almost prime. We prove an almost
prime discriminant result for all n ě 3 that obtains discriminants with fewer prime factors than [TT20a] if
n “ 4.

Theorem 1.2. Let n ě 3, and let H ě 2. For any r ě 2n ´ 3, we have

#tf P V mon
n pHq : ωpDiscpfqq ď ru "n,r

Hn

logH
,

where ωpDiscpfqq denotes the number of distinct primes dividing the discriminant of the polynomial f .

As the discriminant of a number field cut out by an irreducible polynomial divides that of the polynomial,
we can use lower bounds for counts of almost prime polynomial discriminants to get lower bounds for almost
prime number field discriminants. To make this comparison effective, we use results from [LT20b] that bound
the number of different polynomials of a given height that cut out the same number field. This allows us to
prove the following theorem. We state a more precise version as Theorem 5.2.
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Theorem 1.3. Let n ě 3, and let X ě 2. There is a constant δn ą 0 depending only on n, such that for
any r ě 2n ´ 3, we have

#tF {Q : rF : Qs “ n,DiscpF q ď X,ωpDiscpF qq ď ru "n X
1

2
`δn ,

where ωpDiscpF qq denotes the number of distinct primes dividing the discriminant of the field F .

In the quartic case n “ 4, Theorem 1.3 improves on the quality of the almost primes produced by
Taniguchi and Thorne (achieving r “ 5 as opposed to r “ 8), but at the expense of obtaining a worse lower
bound on the number of such fields. In fact, the lower bounds obtained by Taniguchi and Thorne are of the
expected order of magnitude for the number of prime discriminant fields, which is —n X{ logX for every n,
while Theorem 1.3 falls short. The reason for this is that to prove their theorem, Taniguchi and Thorne use
group actions on prehomogeneous vector spaces. They are then able to count certain lattice points related to
the desired field counts, utilizing deep parametrization theorems and Poisson summation. Their method is
powerful, but as it relies on parametrizations via prehomogeneous vector spaces, it is only currently available
for degrees less than or equal to 5. It is interesting to note that they are sometimes able to explicitly compute
all Fourier transforms [TT20b], but can prove their results using rougher estimates.

To get a result for all n ě 3, we use a different approach that involves studying an underlying Fourier
transform directly and the almost prime sieve. Our analysis centers on the Fourier transform of the squarefree
indicator function. For small degrees, it may be possible to include additional arithmetic ingredients to
improve our results.

Finally, to reach a wide audience, we have erred on the side of writing more details and explanations. We
hope for this to be an engaging, understandable paper.
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2. Polynomials over finite fields

We begin in this section by collecting some basic facts from algebraic number theory on the reduction
modulo primes of integer polynomials. (See for example [Jac85, §4.16] as a reference).

Lemma 2.1. Let fpxq P Zrxs be a polynomial, and let Discpfq P Z denote its polynomial discriminant. Then
Discpfq “ 0 if and only if fpxq has a repeated factor (which happens over C if and only if it happens over
Z). Moreover if p is a prime number not dividing the leading coefficient of f , then p | Discpfq if and only if
fpxq pmod pq has repeated factors.

Notice that if fpxq P Zrxs is irreducible, then it has no repeated factors (since it has only one!). It follows
that Discpfq must be non-zero, and thus can be divisible by only finitely many primes. In particular, it will
have repeated factors (mod p), or be of smaller degree, only for those finitely many primes. For all of the
others, we have the following connection between factorization types and Galois groups.

Lemma 2.2. Suppose fpxq P Zrxs is irreducible with degree n. Let G Ď Sn be its Galois group, thought of
as permuting the roots of fpxq. Suppose p is a prime not dividing the leading coefficient of fpxq for which
fpxq pmod pq has no repeated factor. Write

fpxq “ f1pxq . . . frpxq pmod pq,

where each fipxq is irreducible (mod p).
Then there is an element of G with cycle type pdeg f1qpdeg f2q ¨ ¨ ¨ pdeg frq. In fact, this is true for any of

the Frobenius elements associated to p.
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In particular, if Galpfq Ď An, then the reduction of f at any prime subject to Lemma 2.2 must correspond
to an even cycle type. As we are approaching our main theorem via sieves, it is the complementary notion
that is of most interest to us:

Definition 2.3. We say a polynomial fpxq P Fprxs is odd if it has no repeated roots and the permutations
with cycle type corresponding to the factorization type of fpxq are odd. Equivalently, fpxq is odd if it has
no repeated factors and the number of its irreducible factors with even degree is odd.

Lemma 2.4. A degree n polynomial f over Fp is odd precisely if µppfq “ p´1qn`1, where µppfq is the
Möbius function over Fprxs.

Proof. Suppose a squarefree polynomial f of degree n over Fp has factorization type λ1 ¨ ¨ ¨λr . Let Nodd “
#ti : λi oddu and Neven “ #ti : λi evenu count the number of odd and even λi. Then f is odd if Neven is
odd, i.e. if

p´1qNeven “ ´1.

However, notice that Neven “ r ´ Nodd and that Nodd ” n pmod 2q. Thus

p´1qNeven “ p´1qr´n “ µpfqp´1qn.

The result follows. �

Since we are primarily interested in the reduction of integer polynomials f , when the leading coefficient of
f is not ˘1 the degree of the reduction of f may be smaller than that of f . Consequently, for a polynomial
f P Fprxs, we define

(2.1) µp,npfq “

#
µppfq, if degpfq “ n,

0, if degpfq ‰ n,

Given an integer polynomial f P Zrxs, we define µp,npfq in the expected manner by means of the reduction
of f pmod pq. It follows from the above discussions that µp,npfq “ 0 if and only if p divides the product of
the leading coefficient of f with discriminant of f . Consequently, we define the quantity LDiscpfq to be this
product.

To end this section, we summarize the above discussion in the following lemma.

Lemma 2.5. Let f P Zrxs be a polynomial of degree n ą 0 with Galpfq Ď An. Then µp,npfq ‰ p´1qn`1 for
every prime p.

3. Fourier transforms of polynomials over finite fields

Given a squarefree integer d, let VnpZ{dZq denote the vector space of polynomials over Z{dZ with degree at
most n, and let V mon

n pZ{dZq denote the subset of those that are monic of degree equal to n. We identify the
dual of VnpZ{dZq with pZ{dZqn`1 and the dual of V mon

n pZ{dZq with pZ{dZqn. We define the pairing between
VnpZ{dZq and pZ{dZqn`1 coefficient-wise; namely, if fpxq “

řn
i“0 aix

i and u “ pu0, . . . , unq P pZ{dZqn`1,
we define

xf,uy :“
nÿ

i“0

aiui.

We define the pairing x¨, ¨ymon between V mon
n pZ{dZq and pZ{dZqn analogously. We will typically omit “mon”

from the notation if it’s clear that we are working with monic polynomials. If ψ : VnpZ{dZq Ñ C is a function,
we define its Fourier transforms

pψpuq :“
1

dn`1

ÿ

fPVnpZ{dZq
ψpfqedpxf,uyq, edpxq :“ e

2πix
d

for u P pZ{dZqn`1 and

pψmonpvq :“
1

dn

ÿ

fPV mon
n pZ{dZq

ψpfqedpxf,uyq

for v P pZ{dZqn. Exploiting the natural map VnpZ{dZq Ñ
ś

p|d VnpFpq, we will be primarily interested in

functions of the form ψd :“
ś

p|d ψp, where ψp : VnpFpq Ñ C. For such functions, the Fourier transform has

a corresponding factorization.
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Lemma 3.1. Let d be a squarefree integer. For each prime p | d, let ψp : VnpFpq Ñ C, and for any
f P VnpZ{dZq, define ψdpfq :“

ś
p|d ψppfq. There are units αp P Fˆ

p such that for any u P Zn`1 and any

v P Zn,
pψdpuq “

ź

p|d

pψppαpuq and pψmon
d pvq “

ź

p|d

pψmon
p pαpvq.

Proof. This follows from the Chinese remainder theorem, and the proof is the same in the general and monic
cases. We give the proof for the general case. It suffices to prove the lemma for a squarefree factorization
d “ d1d2. A polynomial f P VnpZ{dZq projects to f1 P VnpZ{d1Zq and f2 P VnpZ{d2Zq. Conversely, given
two such polynomials f1, f2, there is a unique polynomial f P VnpZ{dZq congruent to each, namely

f “ f1d2d2 ` f2d1d1,

where d2 is any choice of the multiplicative inverse of d2 pmod dq1, with d1 defined analogously. Then

pψdpuq “
1

dn`1

ÿ

f1PVnpZ{d1Zq

ÿ

f2PVnpZ{d2Zq
ψd1

pf1qψd2
pf2qedpxf1d2d2 ` f2d1d1,uyq

“ pψd1
pd2uq pψd2

pd1uq.

The lemma follows. �

In subsequent sections, Fourier transforms of this type will naturally appear after an application of Poisson
summation on the integer lattices Zn`1 and Zn. The next two lemmas will be used to control the Fourier
side of this application.

Lemma 3.2. Let d be squarefree and suppose ψdpfq “
ś

p|d ψppfq is a function where each ψp satisfies

pψppuq ! p´α for some 0 ă α ă n and every u ı 0 pmod pq, and furthermore pψpp0q ! 1. Then for any
X ě 1, ÿ

uPZn`1z0
|ui|ďX @i

| pψdpuq| ! Xn`1d´α.

Here, the sum is over u “ pu0, u1, . . . , unq P Zn`1z0 where each coordinate satisfies |ui| ď X. Each vector u

is regarded in pZ{dZqn`1 via the projection map.

Similarly, if for each prime p | d, pψmon
p p0q ! 1 and pψmon

p pvq ! p´β for some 0 ă β ă n ´ 1 and every
v ı 0 pmod pq, then ÿ

vPZnz0
|vi|ďX @i

| pψmon
d pvq| ! Xnd´β .

Proof. We prove only the general case, the monic case following mutatis mutandis. There are fewer than
Xn`1 choices of u such that u ı 0 pmod pq for each prime divisor p of d. Thus the total contribution from

these u is no larger than the asserted quantity, by Lemma 3.1 and our assumption that pψppuq ! p´α.
It only remains to consider those u that are congruent to 0 modulo at least one prime divisor of d. For

each divisor m ‰ 1 of d, let Um denote the set of u P Zn`1z0 such that m is the maximal divisor of d with
u ” 0 pmod mq. Stated differently, to each u we associate the maximal m | d such that u ” 0 pmod mq and
thereby partition these u into sets Um.

For each u P Um, Lemma 3.1 gives that

pψdpuq “ pψmp0q pψd{mpcuq ! mαd´α,

where c is some unit depending on d and m. As #Um ! pX{mqn`1, it follows that

ÿ

uPUm

|ui|ďX @i

| pψdpuq| !
´m

d

¯α
ˆ
X

m

˙n`1

!
Xn`1

dαmn`1´α
.

As d is squarefree, we have that

ÿ

m|d

1

mn`1´α
“

ź

p|d

ˆ
1 `

1

pn`1´α

˙
,
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which is absolutely bounded since α ă n. This proves the claim. �

Lemma 3.3. Make the same assumptions as in Lemma 3.2. If φ : Rn`1 Ñ R is Schwartz, then for any
X ą 0, ÿ

uPZn`1

pψdpuqφpu{Xq “ pψdp0qφp0q ` Oφ,npXn`1d´αq,

and if φ : Rn Ñ R is Schwartz, then
ÿ

vPZn

pψmon
d pvqφpv{Xq “ pψmon

d p0qφp0q ` Oφ,npXnd´βq

for any X ą 0.

Proof. We briefly describe the general case, as the monic case is nearly identical. The idea is to use the rapid
decay of φ and a form of annular partial summation. As φ is Schwartz, we have that |φpuq| !φ |u|´n´3,
hence ÿ

uPZn`1

pψdpuqφpu{Xq ´ pψdp0qφp0q “
ÿ

uPZnz0

pψdpuqφpu{Xq !φ

ÿ

kě0

ÿ

uPZnz0
kXď|u|ďpk`1qX

| pψdpuq||φpu{Xq|

!φ Xn`1d´α `
ÿ

kě1

´ ÿ

uPZnz0
kXď|u|ďpk`1qX

| pψdpuq|
¯
k´n´3

!φ Xn`1d´α `
ÿ

kě1

`
pk ` 1qX

˘n`1
d´αk´n´3 !φ,n Xn`1d´α,

where we have repeatedly applied Lemma 3.2. �

Finally, we consider the functions that will be of interest to us in the next section, recalling relatively
recent work of Porritt [Por18] on the function field analogue of bounds for sums maxθ|

ř
nďx µpnqepnθq|.

There is also work of Bienvenu and Lê [BL19] that is qualitatively of the same quality as Porritt’s, but less
precise for our particular purpose. Additionally, there is also work of Dietmann, Ostafe, and Shparlinski
[DOS19] that exploits cancellation in the Fourier transform of the Möbius function in a closely related sieve
problem; see in particular [DOS19, Lemma 2.7, Lemma 3.4].

Lemma 3.4. Let n ě 3, p be prime, and define

ψppfq :“
1 ` p´1qn`1µp,npfq

2
,

where µp,n is as in (2.1). Then pψpp0q “ pψmon
p p0q “ 1{2 and pψppuq, pψmon

p puq !n p
1´n
4 for u ı 0 pmod pq.

Proof. The claim about pψpp0q and pψmon
p p0q follows from the classical fact that
ÿ

fPVnpFpq
µppfq “

ÿ

fPV mon
n pFpq

µppfq “ 0

for any n ě 2. For u ı 0, the claim about pψmon
p puq follows from [Por18, Theorem 1]. For pψppuq, we note

that if fpxq “ anx
n ` ¨ ¨ ¨ ` a0 P Fprxs with an P Fˆ

p , then µppfq “ µppf{anq. Consequently,

pψppuq “
1

p

ÿ

cPFˆ
p

pψmon
p pcuq,

which again may be bounded by [Por18, Theorem 1]. �

Combining Lemma 3.3 with Lemma 3.4, we immediately obtain the following corollary.

Corollary 3.5. Let n ě 3, let ψppfq “
1`p´1qn`1µp,npfq

2
for each prime p, and for squarefree d, let ψdpfq “ś

p|d ψppfq. If φ : Rn`1 Ñ R is Schwartz, then for any X ą 0 and any squarefree d,

ÿ

uPZn`1

pψdpuqφpu{Xq “
φp0q

2ωpdq ` Oφ,npXn`1d
1´n
4 q,
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where ωpdq denotes the number of distinct prime divisors of d. Similarly, if φ : Rn Ñ R is Schwartz, then
for any X ą 0 and any squarefree d,

ÿ

vPZn

pψdpvqφpv{Xq “
φp0q

2ωpdq ` Oφ,npXnd
1´n
4 q.

4. A modified Selberg sieve

In this section, we introduce a modified version of the classical Selberg sieve. Our goal is to prove the
following version, which we later specialize using the results from the previous section.

Proposition 4.1. Let n be a positive integer, H and D be real with H,D ě 1, φ : VnpRq Ñ R be a non-
negative Schwartz function, and tλdu be a sequence of real numbers indexed by squarefree integers d ď D,
with λ1 “ 1. Then

(4.1)
ÿ

fPVnpZq
GalpfqĎAn

LDiscpfq‰0

φpf{Hq

2ωpLDiscpfqq ď
ÿ

d1,d2

λd1
λd2

ÿ

fPVnpZq
φpf{Hq

ź

p|rd1,d2s

ˆ
1 ` p´1qn`1µp,npfq

2

˙
.

This proposition can be viewed as a generalization of the Selberg sieve. Before giving the proof, we first
describe what can be obtained by the classical Selberg sieve. (For a treatment of the classical Selberg sieve,
see [FI10, §7].) As in the statement of the proposition, we’ll assume λd is a sequence of real numbers indexed
by squarefree d ď D with λ1 “ 1.

Using the classical Selberg sieve, we would start with the fact that

(4.2)
ÿ

fPVnpZq
φpf{Hq

¨
˝ ÿ

d:f pmod pq is odd,@p|d
λd

˛
‚
2

ě 0.

On one hand, expanding the left hand side of (4.2) we see it is equal to
ÿ

d1, d2

λd1
λd2

ÿ

fPVnpZq:f pmod pq is odd for everyp|rd1,d2s
φpf{Hq.

On the other hand, when f P VnpZq and Galpfq Ď An, by Lemma 2.2 we see that f pmod pq is never odd
for prime p and thus

ř
d:f pmod pq is odd,@p|d λd “ λ1 “ 1. By the non-negativity of φ, we see (4.2) is at least

ÿ

fPVnpZq
GalpfqĎAn

φpf{Hq.

Hence we have

(4.3)
ÿ

fPVnpZq
GalpfqĎAn

φpf{Hq ď
ÿ

d1,d2

λd1
λd2

ÿ

fPVnpZq:f pmod pq is odd for everyp|rd1,d2s
φpf{Hq.

The inequality (4.1) in Proposition 4.1 should be compared with (4.3).
We initially attempted to use (4.3) instead of (4.1), but the results are less satisfactory. The main reason

is that the characteristic function 1oddp,n of odd polynomials in Fprxs of degree n have very large Fourier
coefficients away from 0.

This is due to the fact (following from Lemma 2.4) that 1oddp,n “
p´1qn`1µp,n`µ2

p,n

2
, since µ2

p,n is supported
on square-free polynomials of degree exactly n. As noted in Section 3, we expect the Fourier transform of
µp,n to behave well (i.e. be small) away from 0, but one can show that µ2

p,n has large Fourier coefficients
away from 0 (see Remark 5.5 for a similar phenomenon in the monic case).

In order to circumvent this issue, we modify the Selberg sieve to produce the key inequality (4.1). The right
hand side of (4.1) maintains the strong Fourier decay of µp,npfq (as shown in Lemma 3.4 and Corollary 3.5)
in the local computations after Poisson summation.

Compared to the classical Selberg sieve, the right hand side of (4.1) has more complicated local factors
1`p´1qn`1µp,npfq

2
that can take the value 1{2 in addition to the typical 1 and 0. On the left hand side, we have

a mild divisor-bound-type loss 2´ωpLDiscpfqq. This factor does not meaningfully detract from this application.
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We now prove Proposition 4.1.

Proof. The fundamental idea of this proof is to use certain non-negative definite quadratic forms instead of
the complete square p

ř
λdq2.

For each f P VnpZq, define the quadratic form Qf in the variables tλdu

Qf ptλduq “
ÿ

d1,d2

ź

p|rd1,d2s

ˆ
1 ` p´1qn`1µp,npfq

2

˙
λd1

λd2
.

We claim that each Qf is non-negative definite. To see this, temporarily extend Qf to a form on more
variables tλd : d squarefree, every prime factor of d is ď Du using the same definition above. By definition

the pd1, d2q-entry qf,d1,d2
of the matrix of Qf is equal to

ś
p|rd1,d2s

´
1`p´1qn`1µp,npfq

2

¯
. In other words, if we

write ψppfq “
1`p´1qn`1µp,npfq

2
, then

qf,d1,d2
“

ˆ ź

pďD,p∤d1,p∤d2

1

˙
¨

ˆ ź

pďD,p∤d1,p|d2

ψppfq

˙
¨

ˆ ź

pďD,p|d1,p∤d2

ψppfq

˙
¨

ˆ ź

pďD,p|d1,p|d2

ψppfq

˙
.

Hence the matrix of the (extended) form Qf is a tensor product of matrices Mppp ď D primeq with Mp “ˆ
1 ψppfq

ψppfq ψppfq

˙
. More explicitly, Mp “

ˆ
1 1
1 1

˙
for µp,npfq “ p´1qn`1, Mp “

ˆ
1 0
0 0

˙
for µp,npfq “ p´1qn

and Mp “

ˆ
1 1{2
1{2 1{2

˙
for µp,npfq “ 0. From this we see the (extended) form Qf is non-negative definite.

Since the original Qf is obtained by specifying all λd “ 0 for d ą D in the extended form, the original form
is also non-negative definite.

We now show that whenever Galpfq Ď An and LDiscpfq ‰ 0, we haveQf ě 2´ωpLDiscpfqqλ2
1 “ 2´ωpLDiscpfqq.

It suffices to show this for the extended form Qf as described just above. When Galpfq Ď An and

LDiscpfq ‰ 0, Lemma 2.5 gives that µp,npfq ‰ p´1qn`1. Hence Mp “

ˆ
1 0
0 0

˙
for p ∤ LDiscpfq and

Mp “

ˆ
1 1{2
1{2 1{2

˙
for p | LDiscpfq. Note that as matrices

ˆ
1 1{2
1{2 1{2

˙
ě

ˆ
1{2 0
0 0

˙
ě 0, where A ě B

means that A ´ B is non-negative definite. Hence as a tensor product, the matrix of the (extended) form

Qf is ě

¨
˚̊
˝

2´ωpLDiscpfqq 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 0 ¨ ¨ ¨ 0

˛
‹‹‚, which shows that

(4.4) Qf ě 2´ωpLDiscpfqqλ2
1.

The remainder of the proposition is now straightforward. The right hand side of (4.1) is equal toř
fPVnpZq φpf{HqQf . On the other hand, applying the lower bound (4.4) gives precisely the left hand side

of (4.1). �

A similar proof gives also the monic version, which we record as the following proposition.

Proposition 4.2. Let n be a positive integer, H and D be real with H,D ě 1, φ : V mon
n pRq Ñ R be non-

negative, and tλdu be a sequence of real numbers indexed by squarefree integers d ď D, with λ1 “ 1. Then

ÿ

fPV mon

n pZq
GalpfqĎAn

Discpfq‰0

φpf{Hq

2ωpDiscpfqq ď
ÿ

d1,d2

λd1
λd2

ÿ

fPV mon
n pZq

φpf{Hq
ź

p|rd1,d2s

ˆ
1 ` p´1qn`1µppfq

2

˙
.

Proof of Theorem 1.1

In the proof, we will use a slightly atypical form of Poisson summation. We first state this and give its
proof.
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Lemma 4.3. Fix d ě 2. Let φ : Rn ÝÑ C be Schwartz, and let ψd : pZ{dZqn ÝÑ C be any function. Let
pφ : Rn ÝÑ C and pψd : pZ{dZqn ÝÑ C denote the Fourier transforms

pφpuq “

ż

Rn

epxx,uyqφpxqdx and pψdpuq “
1

dn

ÿ

xPpZ{dZqn
edpxx,uyqψdpxq,

where epxq “ e´2πix and edpxq “ e2πix{d. Then
ÿ

xPZn

φpxqψdpxq “
ÿ

uPZn

pφ
`u
d

˘ pψdpuq.

Proof. Each x P Zn can be written uniquely as x “ dy ` z where y P Zn and z “ pz1, . . . , znq satisfies
0 ď zi ď d ´ 1. Then using the fact that ψd is pZ{dZqn-periodic,

ÿ

xPZn

φpxqψdpxq “
ÿ

zPZn

0ďziďd´1

´ ÿ

yPZn

φpdy ` zq
¯
ψdpzq “

ÿ

zPZn

0ďziďd´1

1

dn

ÿ

uPZn

edpxz,uyqpφ
`u
d

˘
ψdpzq

“
ÿ

uPZn

pφ
`u
d

˘´ 1

dn

ÿ

zPZn

0ďziďd´1

edpxz,uyqψdpzq
¯

“
ÿ

uPZn

pφ
`u
d

˘ pψdpuq.

The second equality uses classical Poisson summation on Zn, and the last equality follows from the definition

of pψd and embedding z into pZ{dZqn. �

Next, we use Lemma 4.3 and Proposition 4.1 to prove Theorem 1.1.

Theorem 4.4. Let n ě 3 be an integer and let H ě 2 be real. Define VnpZ;Hq to be the set of polynomials
f “

ř
aix

i in VnpZq with max |ai| ď H. Define V mon
n pZ;Hq similarly. Then

ÿ

fPVnpZ;Hq
GalpfqĎAn

LDiscpfq‰0

1

2ωpLDiscpfqq !n Hn` 1

3
` 8

9n`21 plogHq
4

3n`7

and ÿ

fPV mon

n pZ;Hq
GalpfqĎAn

Discpfq‰0

1

2ωpDiscpfqq !n Hn´ 2

3
` 2

3n`3 plogHq
4

3n`3 .

Proof. Choose a Schwartz function φ : VnpRq Ñ R that is greater than or equal to 1 on polynomials whose
coefficients lie in r´1, 1s. For f P VnpZq, we let

ψdpfq “
ź

p|d

ˆ
1 ` p´1qn`1µp,npfq

2

˙
.

We apply Proposition 4.1. The sum over f on the right-hand side of (4.1) can be written as
ÿ

fPVnpZq
φpf{Hqψrd1,d2spfq.

To apply Poisson summation as in Lemma 4.3, we identify VnpZq with Zn`1, write f “ x P Zn`1, and define
Φpxq :“ φpx{Hq. Applying Lemma 4.3 to

ř
x
Φpxqψrd1,d2spxq then gives that

ÿ

fPVnpZq
φpf{Hqψrd1,d2spfq “ Hn`1

ÿ

uPZn`1

pφ
ˆ

uH

rd1, d2s

˙
pψrd1,d2spuq.

By Corollary 3.5, the right-hand side is equal to

Hn`1pφp0q

2ωprd1,d2sq ` Oφ,nprd1, d2s
3n`5

4 q.
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As d1 and d2 are squarefree, one can check that 2ωprd1,d2sq “ τpd1qτpd2q{τppd1, d2qq, where τ is the divisor
function. Substituting this into the full expression from Proposition 4.1, we obtain

(4.5)
ÿ

fPVnpZ;Hq
GalpfqĎAn

LDiscpfq‰0

1

2ωpLDiscqpfq ď Hn`1 pφp0q
ÿ

d1,d2

λd1
λd2

τpd1qτpd2q
τ

`
pd1, d2q

˘
` Oφ,n

´ ÿ

d1,d2

|λd1
λd2

|rd1, d2s
3n`5

4

¯
.

As in the classical Selberg sieve, we diagonalize the quadratic form appearing in the first term to obtain

ÿ

d1,d2

λd1
λd2

τpd1qτpd2q
τ

`
pd1, d2q

˘
“

ÿ

d1,d2

λd1
λd2

τpd1qτpd2q

ÿ

e|pd1,d2q
1

“
ÿ

e

¨
˝ ÿ

d”0 pmod eq

λd

τpdq

˛
‚
2

“:
ÿ

e

ξ2e ,

say, where the ξe are again supported on squarefree integers e ď D. A Möbius inversion argument shows
that

(4.6) λd “ µpdqτpdq
ÿ

e”0 pmod dq
µpeqξe.

Thus the constraint that λ1 “ 1 becomes the condition
ÿ

e

µpeqξe “ 1.

This prompts us to choose ξe proportional to µpeq,

ξe “
µpeq

C
, C :“

ÿ

eďD

µpeq2,

so that ÿ

e

ξ2e “ 1{C ! 1{D.

The first term in (4.5) is thus

Oφ,n

`Hn`1

D

˘
.

To understand the second term, we note that the choice ξe “ µpeq{C in (4.6) shows that the terms λd satisfy

|λd| ď τpdq
ÿ

eďD
e”0 pmod dq

µpeq2

C
!

τpdq

d
.

Therefore, the second term in (4.5) is

!φ,n

ÿ

d1,d2ďD

τpd1qτpd2qrd1, d2s
3n`5

4

d1d2
!φ,n

´ ÿ

dďD

τpdqd
3n`1

4

¯2

!φ,n D
3n`5

2 plogDq2,

where the final bound follows from the (crude) estimate on the Dirichlet divisor problem,
ř

nďX τpnq “
OpX logXq. Combining these two bounds, we find that

ÿ

fPVnpZ;Hq
GalpfqĎAn

LDiscpfq‰0

1

2ωpLDiscqpfq !φ,n

Hn`1

D
` D

3n`5

2 plogDq2.

This is optimized by choosing D “ H
2n`2

3n`7 plogHq
´4

3n`7 , which yields the first claim.
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For the monic case, an analogous proof using Proposition 4.2 instead of Proposition 4.1 shows that

ÿ

fPV mon

n pZ;Hq
GalpfqĎAn

Discpfq‰0

1

2ωpDiscpfqq !φ,n

Hn

D
` D

3n`1

2 plogDq2.

Choosing D “ H
2n

3n`3 plogHq
´4

3n`3 gives the second claim. �

5. Almost prime discriminants

In this section, we apply a weighted almost prime sieve as in [FI10, §25] to obtain lower bounds on
almost prime values of polynomial discriminants, in a manner in spirit with the earlier sections of this paper.
Specifically, we prove

Theorem 5.1. Let n ě 3, and let H ě 2. For any r ě 2n ´ 3, we have

#tf P V mon
n pZq : htpfq ď H,ωpDiscpfqq ď ru "n,r

Hn

logH
,

where ωpDiscpfqq denotes the number of distinct primes dividing the discriminant of the polynomial f .

Since the discriminant of a field cut out by an irreducible polynomial divides that of the polynomial, this
also yields lower bounds for the number of degree n number fields with almost prime discriminant.

Theorem 5.2. Let n ě 3, and let X ě 2. For any r ě 2n ´ 3, we have

#tF {Q : rF : Qs “ n,DiscpF q ď X,ωpDiscpF qq ď ru "n,r

X
1

2

plogXqn
,

where ωpDiscpF qq denotes the number of distinct primes dividing the discriminant of the polynomial F .
Moreover, if cn ě 1 is any constant for which

#tF {Q : rF : Qs “ n,Galp rF {Qq » Sn,DiscpF q ď Xu !n Xcn ,

then we additionally have

#tF {Q : rF : Qs “ n,DiscpF q ď X,ωpDiscpF qq ď ru "n,r,ǫ X
1

2
` 1

2cnnpn´1q´2
´ǫ
.

Remark 5.3. It is expected that the choice cn “ 1 is admissible for every n in Theorem 5.2, but this
known only for n ď 5. For n ě 6, the smallest known admissible constants are due to Schmidt [Sch95] and
Lemke Oliver and Thorne [LT20a]. It follows from these that the choices cn “ n`2

4
and cn “ 1.6plognq2 are

admissible for every n ě 6, for example.

In preparation to apply the almost prime sieve, we recall from Lemma 2.1 that given a monic polynomial
fpxq P Zrxs, a prime p divides the discriminant of f if and only if f pmod pq is not squarefree.

Lemma 5.4. Let n ě 3 and let p be prime. Define ψp : V
mon
n pFpq Ñ C by setting ψppfq “ 1 if f is not

squarefree and 0 otherwise. Then pψmon
p p0q “ 1{p, where pψmon

p is defined as in §3, and

pψmon
p pvq ! p´2

for v ‰ 0.

Proof. For n ě 2, the number of monic, squarefree polynomials of degree n over Fp is pn ´ pn´1. Thus the

number of polynomials that are not squarefree is pn´1, which yields the claim about pψmon
p p0q, since

pψmon
p p0q “

1

pn

ÿ

fPV mon

n

f not squarefree

1.

For v ‰ 0, we note that ψppfq “ 1´1sfpfq, where 1sf is the characteristic function of squarefree polynomials.

Thus for v ‰ 0, pψmon
p pvq “ ´p1mon

sf pvq. Mimicking the combinatorial, inclusion-exclusion proof counting
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squarefree integers, we obtain

pψmon
p pvq “

´1

pn

ÿ

fPV mon

n pFpq
f squarefree

eppxf,vymonq

“
´1

pn

ÿ

0ďdďn{2

ÿ

gPV mon

d
pFpq

µpgq
ÿ

fPV mon

n´2d
pFpq

eppxfg2,vymonq

“
´1

pn

ÿ

0ďdďn{2

ÿ

gPV mon

d
pFpq

µpgq
ÿ

fPV mon

n´2d
pFpq

eppxf, Tg2vymonq,

where Tg2 : Fn
p Ñ Fn´2d

p is the map adjoint to the (linear) map corresponding to multiplication by g2. The
interior sum is a complete sum over all polynomials of degree n´ 2d, and hence is 0 unless Tg2v “ 0. When

Tg2v “ 0, the interior summation is pn´2d. Noting also that T1v “ v ‰ 0, it follows that

pψmon
p pvq “ ´

ÿ

1ďdďn{2

ÿ

gPV mon

d pFpq
T
g2

v“0

µpgq

p2d
.

We can trivially bound the sum over d ě 2 by ignoring the condition that Tg2v “ 0,

ÿ

2ďdďn{2

ÿ

gPV mon

d
pFpq

1

p2d
ď

ÿ

2ďdďn{2

1

pd
!

1

p2
,

which is sufficient. If d “ 1, then g “ x ` α for some α P Fp, and the pn ´ 2q ˆ n matrix Tg2 may be written
as

Tpx`αq2 “

¨
˚̊
˚̋

α2 2α 1 0 ¨ ¨ ¨ 0
0 α2 2α 1 ¨ ¨ ¨ 0
... 0

. . .
. . .

. . . 0
0 ¨ ¨ ¨ 0 α2 2α 1

˛
‹‹‹‚.

Since v ‰ 0, the equation Tg2v “ 0 becomes a system of at most quadratic equations in α. This system may
or may not have any solutions in α, but by considering a single non-zero equation, it follows that it admits
at most 2. Thus the contribution from terms with d “ 1 is at most 2p´2, which is sufficient. �

Remark 5.5. Using the argument of Lemma 5.4 but being more careful, it is possible to be more precise

about the phases v at which the Fourier transform | pψmon
p pvq| " p´2, and in general, to identify the phases at

which the Fourier transform admits worse than the expected square-root cancellation. We do not presently
see a way to exploit this in our proof of Theorems 5.1 and 5.2, however.

We are now ready to prove Theorem 5.1. We apply the almost prime sieve as described by Friedlander
and Iwaniec [FI10, Theorem 25.1]. For convenient reference, we restate that result here.

Proposition 5.6 (Theorem 25.1 of [FI10]). Let tanu be a sequence of non-negative numbers which satisfy
the linear sieve conditions [FI10, (1.2), (5.38)],

(5.1)
ÿ

mďx
m”0 pmod dq

am “ gpdqX ` Rdpxq, and
ź

wďpăz

`
1 ´ gppq

˘´1
ď K

´ log z

logw

¯
,

for a constant K ą 1 and any z ą w ě 2, where X is to be regarded as an approximation to
ř

mďx an, the
index p runs over primes, and gpdq is a multiplicative function. Suppose that the remainder terms Rdpxq
satisfy [FI10, (25.7)]

(5.2) Rpx,D|Nq :“
ÿ

dďD

∣

∣

∣

ÿ

nďN

αnRdnpxq
∣

∣

∣
! Xplog xq´3

for any complex coefficients |αn| ď 1, and where D, N satisfy [FI10, (25.25)]

(5.3) D ě N3r , DN ě x1{∆r`ǫ,
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in which

∆r :“ r `
1

log 3
log

`
3
4

p1 ` 3´rq
˘
.

Let P pzq :“
ś

păz p and V pzq :“
ś

păzp1 ´ gppqq. Then
ÿ

nďx
pn,P pzqq“1

ωpnqďr

an — XV pxq

for z “ pDNq
1

4 , and the implied constant depends on r and ǫ.

Remark 5.7. There is a small typo in the statement of this theorem in [FI10]. In their theorem statement,
D and N need to satisfy (25.25), and not (25.27). Note also that they use the notation νp¨q instead of ωp¨q.

Proof of Theorem 5.1. We apply the almost prime sieve as stated in Proposition 5.6.
Let φ : Rn Ñ R be a non-negative Schwartz function supported on r´1, 1sn. For H ě 2, let φHpvq “

φpv{Hq. Abusing notation, by identifying V mon
n pRq with Rn, we may regard φ and φH as Schwartz functions

on V mon
n pRq. For any integer m ě 1, let

am :“
ÿ

fPV mon

n pZq
Discpfq“˘m

φHpfq.

Since the discriminant of a polynomial in V mon
n pZq of height at most H is OnpH2n´2q, the sequence am

is supported on integers m ď x for some x —n H2n´2. Let d ě 1 be a squarefree integer and define
ψd :“

ś
p|d ψp, where ψp is as in Lemma 5.4. Lemma 2.1 implies that p | Discpfq exactly when ψppfq “ 1.

It follows from Poisson summation that
ÿ

mďx
d|m

am “
ÿ

fPV mon
n pZq

φHpfqψdpfq

“ Hn
ÿ

vPZn

φ̂

ˆ
vH

d

˙
pψmon
d pvq

“
Hn

d
φ̂p0q ` Oφpdn´2q,

where the last line follows from Lemma 5.4 and Lemma 3.3. Recalling Mertens’ famous theorem thatś
pďxp1´ 1

p
q “ pe´γ `op1qq{ logx, we see that tamu satisfies the linear sieve conditions (5.1) with gpdq “ 1{d

and X “ Hnφ̂p0q.
Moreover, the remainders

Rdpxq :“
ÿ

mďx
d|m

am ´
Hn

d
φ̂p0q

evidently satisfy

Rpx,D|1q ď
ÿ

dďD

|Rdpxq| !φ Dn´1

for any D ě 1. These remainders are !φ,n X{plogxq3 provided that D !n Hn{pn´1q{plogHq3{pn´1q —

xn{2pn´1q2{plog xq3{pn´1q. For any such D and N “ 1, we thus have that tamu satisfies (5.2).
The almost prime sieve (Proposition 5.6) then shows that for any r for which (5.3) is satisfied, we have

the asymptotic
ÿ

mďx
ωpmqďr

am ě
ÿ

mďx
pm,P pzqq“1

ωpmqďr

am —n,φ

Hn

logH
,

and (5.3) is satisfied when

(5.4)
1

∆r

ă
n

2pn ´ 1q2
, ∆r :“ r `

1

log 3
log

ˆ
3

4
p1 ` 3´rq

˙
.
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Noting that r ` logp3{4q
log 3

ă ∆r ă r, and that logp3{4q
log 3

“ ´0.26 . . ., the condition (5.4) is satisfied if

r ą
2pn ´ 1q2

n
` 0.27 “ 2n ´ 3.73 `

2

n
.

In particular, for n ě 3, this is true when r ě 2n ´ 3. Since

#tf P V mon
n pZq : htpfq ď H,ωpDiscpfqq ď ru "φ

ÿ

mďx
ωpmqďr

am,

the theorem follows. �

To go from Theorem 5.1 to Theorem 5.2, notice that the lower bound in Theorem 5.1 is larger than the
error term in the Hilbert irreducibility theorem bounds (1.1) and (1.2). Consequently, the same lower bound
holds for the number of irreducible polynomials with almost prime discriminant, as well as for the number
of Sn polynomials with almost prime discriminant. In particular, almost all of the polynomials produced by
Theorem 5.1 cut out Sn fields of degree n with almost prime discriminant. To prove Theorem 5.2, the key
is to understand the number of different polynomials that cut out the same field. For this, we recall a result
of Lemke Oliver and Thorne [LT20b].

Lemma 5.8. Let F be a number field of degree n, and let

MF pHq “ #tf P Zrxs : Qrxs{pfpxqq » F, htpfq ď Hu.

Then MF pHq !n HplogHqn´1 DiscpF q
´1

n2´n , and in particular MF pHq !n HplogHqn´1.

Proof. This follows by combining [LT20b, Theorem 2.1] and [LT20b, Lemma 3.1]. �

Proof of Theorem 5.2. We first prove the statement with the lower bound "n,r X1{2{plogXqn, as it is
almost immediate from Theorem 5.1, which produces "n,r Hn{ logH irreducible polynomials with Galois
group Sn whose discriminants have at most r prime factors, and Lemma 5.8, which implies that at most
HplogHqn´1 of these polynomials can cut out the same field. In particular, there will be "n,r H

n´1{plogHqn

different fields produced, each of which has discriminant OnpH2n´2q. ChoosingH “ cX1{p2n´2q for a suitable
constant c yields the claim.

To obtain the second claim of the theorem, let cn be as in the statement of the theorem and suppose
H ě 2. Then for any Y ě 1, there holds

ÿ

rF :Qs“n

Galp rF {Qq»Sn

DiscpF qďY

MF pHq !n HplogHqn´1
ÿ

rF :Qs“n

Galp rF {Qq»Sn

DiscpF qďY

DiscpF q
´ 1

n2´n !n HplogHqn´1Y
cn´ 1

n2´n

from Lemma 5.8 and partial summation, where we have used that cn ě 1 ą 1
n2´n

. For any ǫ ą 0, it follows
there is a choice of Y satisfying

Y —n,ǫ H
npn´1q2

cnnpn´1q´1
´ǫ

such that ÿ

rF :Qs“n
DiscpF qďY

MF pHq !n,ǫ H
n´ǫ.

This is smaller than the lower bound produced by Theorem 5.1 on the number of polynomials with almost
prime discriminant, almost all of which are irreducible with Galois group Sn by Hilbert irreducibility. Thus,
almost all of the polynomials produced by Theorem 5.1 cut out degree n Sn extensions F {Q of discriminant

at least Y . For such fields F , we have MF pHq !n HplogHqn´1Y
´ 1

n2´n by Lemma 5.8. Dividing the total
number of polynomials by this upper bound on the multiplicity, we find

#tF {Q : rF : Qs “ n,Galp rF {Qq » Sn, ωpDiscpF qq ď r,DiscpF q !n H2n´2u

"n,r,ǫ H
n´1plogHq´nY

1

n2´n

"n,r,ǫ H
n´1` n´1

cnnpn´1q´1
´ǫ
.

Again choosing H “ cX
1

2n´2 for a suitable constant c, the result follows. �
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