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Abstract— This paper reports a novel Random Sample Con-
sensus (RANSAC) algorithm for robust identification of second-
order plant dynamical model parameters in the presence
of unmodeled plant dynamics and noisy experimental data.
Accurate plant dynamical models are essential to model-based
control system design and for accurate numerical simulation of
plant response. Studies of RANSAC approaches for plant model
identification have been extremely limited and have not explored
performance improvements in the presence of unmodeled dy-
namics. The performance of the proposed approach, evaluated
in a preliminary simulation study of a planar aerial rotorcraft
model, is found to be significantly more robust to the effects of
unmodeled vehicle dynamics and outlier noise than conventional
least squares parameter identification. We conjecture that the
proposed approach may be broadly applicable to robust model
parameter identification for a wide variety of plants that exhibit
noisy sensor data and/or unmodeled dynamics.

I. INTRODUCTION

Accurate and robust model identification is essential for
model-based control system design and accurate numerical
simulation of dynamic land, air, space, and undersea vehicles.
Robust model identification enables precise, dynamic posi-
tion control, essential to many applications, including safely
maneuvering around people and in complex environments.

State estimates are inherently noisy due to sensor dropout,
varying operational conditions, and discrepancies between
the true vehicle dynamics and the modeled dynamics, i.e.
unmodeled dynamics. Unmodeled dynamics can add severe
non-Gaussian uncertainty to the sensor data that many model
identification approaches are not equipped to address.

Random Sample Consensus (RANSAC) is an iterative
algorithm designed to estimate parameters of a mathematical
model from noisy experimental data while rejecting outlier
data. RANSAC iteratively evaluates parameters, estimated
based on minimal samples of a data set, and outputs the
parameters for the model that best matches the data [11].
Dynamical Plant Identification RANSAC (DIRANSAC) was
recently developed to apply the RANSAC approach to dy-
namical model identification [22]. Reported herein is (a)
a simulation study motivating the use of RANSAC based
approaches in the challenging case of unmodeled dynamics
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and (b) Inlier-Biased DIRANSAC (I-DIRANSAC), which
adds greater emphasis on inliers to strengthen DIRANSAC.

We formulated I-DIRANSAC to internally utilize any
parameter estimation algorithm. As a demonstrative example
of the improvement I-DIRANSAC can provide to the internal
estimator, we used Ordinary Least Squares (OLS) in this
evaluation. OLS is the most common approach used for
model identification, but assumes all noise is Gaussian and
that large data sets will smooth gross errors. Without these
significant assumptions, the goal of I-DIRANSAC is to
identify reliable parameters that result in an input-output
response most representative of the true vehicle.

To evaluate model identification performance, we used a
planar rotorcraft model. We considered a widely used base-
line plant model for parameter identification and formulated
an extended plant model, which incorporates commonly ig-
nored mechanical and aerodynamic imbalances, to represent
the real-world unknown plant. These models are disjoint
to allow for evaluating the algorithms in the presence of
unmodeled dynamics. Due to this formulation, trajectory
tracking error with the identified parameters is the primary
performance metric since there are not “true” parameters to
recover due to the intended mismatch in the models.

For evaluation, the identified parameters are employed in
model-based closed-loop control, tracking trajectories span-
ning 4 meters, with data that contains significant outliers and
unmodeled dynamics. The controller using I-DIRANSAC-
identified parameters exhibits improved trajectory tracking
performance of up to 1 meter and 3.5 meters of position error
in comparison to the controllers using DIRANSAC-identified
and OLS-identified parameters, respectively. This significant
of an improvement enables precise control for increased
maneuverability and operational safety. Furthermore, the
improvement compared to OLS motivates using RANSAC
based approaches when vehicles have sensors or complicated
dynamics that may result in non-Gaussian noise.

II. RELATED WORK

Dynamical model parameter identification has been widely
studied. Classical methods such as least squares, which is
most commonly used, and maximum likelihood methods
utilize observed behavior to estimate parameters of a fixed
model [13], [25]. Adaptive methods utilize sensor data to
improve the estimate online [18]. Data with non-Gaussian
noise can significantly skew the results from these methods,
which is one of the challenges I-DIRANSAC was designed to
overcome. Recently numerical and learning techniques have
been investigated [2], [4], [28]. These methods often require
a large quantity of data, highly accurate simulations, and
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often necessitate local linearity assumptions. I-DIRANSAC
utilizes one data set, either from simulation or a real system,
and can find a global or local solution for a nonlinear model.

The RANSAC approach to model parameter identification,
originally reported in the seminal paper by Fischler and
Bolles, is designed to robustly fit model parameters in the
presence of noise and outliers commonly encountered in a
wide variety of modeling problems involving experimental
data [11]. Fundamentally, RANSAC takes a minimal sample
of the total data and then expands this sample, where pos-
sible, based on inliers to the identified model. RANSAC is
an iterative, brute force algorithm, reporting the best solution
found after evaluating sufficient random samples. This yields
significant improvements for model fitting in the presence
of both Gaussian and non-Gaussian noise. RANSAC was
introduced in the context of scene analysis and automated
cartography and has since been widely used in the field
of computer vision for regression problems and estimating
transformation models between correlated images [11].

Numerous variations on the original RANSAC algorithm,
including Locally optimized RANSAC [8], Maximum Likeli-
hood SAC [27], and Progressive Sample Consensus [7], have
been reported to optimize speed, accuracy, and robustness
[6]. Recursive RANSAC seeks to estimate the parameters
of multiple signals [19], [20]. RANSAC has been used for
motion estimation [21] and for geometric shape detection
in point clouds [24]. In the application space of dynamical
systems, RANSAC has been investigated to improve state
estimation as a Kalman smoother [10]. To the best of our
knowledge, the first reported RANSAC approach for dynami-
cal model identification is the DIRANSAC algorithm, which
was applied to a single degree-of-freedom plant model in
the presence of outliers [22]. In the present paper, we report
a novel extension of DIRANSAC, informed by previously
reported variants of RANSAC, and demonstrate that this
approach shows significant identification improvement in the
presence of unmodeled dynamics.

III. TECHNICAL APPROACH

We propose a RANSAC algorithm, with a novel technique
to inlier biasing, for robust identification of second-order dy-
namical model parameters with experimental data corrupted
by noise and significant unmodeled dynamics. We refer to
this algorithm, expressed in Algorithm 1, as Inlier-Biased
DIRANSAC (I-DIRANSAC) due to its significant weighting
of inliers to the identified models and focus on robust evalua-
tion of the identified parameters. We also present results with
a previously unreported version of DIRANSAC that extends
the algorithm for use with higher dimensional systems and
evaluates performance in the presence of a common form of
non-Gaussian noise, i.e. unmodeled dynamics.

The squared model fit error function originally proposed
in DIRANSAC [22] is modified for I-DIRANSAC to be a
root mean squared (RMS) error to reduce the bias of gross
errors. The original acceptance metric in [22] for storing the
identified parameters when error is minimal was expanded
to simultaneously minimize error and maximize inliers. To
further inlier bias, the inliers in samples that pass a broader

inlier acceptance metric (Algorithm 1 line 19) are now used
to compute a new, potentially further refined, model. Lastly,
the termination criteria have been modified from the original
formulation of DIRANSAC [22] to minimize overall evalu-
ation time, adding thresholds for sufficient performance to
terminate and a user-defined maximum number of iterations.

A. I-DIRANSAC Algorithm Methodology
In the statement of I-DIRANSAC, Algorithm 1, the num-

ber of control inputs, sensor outputs, and model parameters
are nU , nY , and nP , respectively. The total number of
observations is N . The main input to I-DIRANSAC is sensor
and control input data collected from the dynamical system
of interest, such as velocities, accelerations, and commanded
thrusts and moments, depending on the vehicle and sensor
suite. The algorithm samples a minimal subset of the ob-
servations based on a user specified size, s, and computes
the design matrices, W, b, defined in (1), for that sample.
More observations are added to the sample as needed until
the internal parameter estimator solution is well-defined with
the resulting design matrices. We utilize minimal samples to
reduce the likelihood of outliers and to avoid over-fitting
to the data. The parameter hypothesis, p̂, for the sample is
then computed. If that hypothesis passes a preliminary test
verifying the feasibility of the parameters, then the plant is
simulated forward using the hypothesized parameters and the
control inputs, time step, and initial state from the data. If
the error and inlier fraction minimizes the acceptance metric,
the new parameters are stored. If there is an improvement in
either the model fit error or inlier fraction, the set of inliers,
I, is used as the next sample. Once the iteration limit is
met or the inlier fraction is above a specified threshold, the
parameters with the lowest acceptance metric are returned.

B. I-DIRANSAC Dynamical System Functions
For the dynamical system of interest, we define a function

to compute the design matrix and a preliminary test to eval-
uate the resulting identified parameters. For a system that is
linear in terms of the parameters, p ∈ RnP×1, we can use the
“regressor matrix” form [15]. The equations of motion can be
expressed as Wip = bi, where Wi ∈ Rr×nP and bi ∈ Rr×1,
for each observation, i. Then in “ComputeDesignMatrix” in
Algorithm 1, for a set of s observations, the design matrix,
W , and the observational vector b can be defined,

W =


W1

W2

...
Ws

 ∈ Rsr×nP , b =


b1
b2
...
bs

 ∈ Rsr×1, (1)

such that Wp = b. The preliminary test of the parameters,
specified as “PreliminaryTest” in Algorithm 1, performs a
basic check that the parameters are feasible, such as verifying
the sign of parameters, e.g. mass must be strictly positive.

C. I-DIRANSAC Parameter Estimation Functions
Any parameter estimation method could be used within

I-DIRANSAC for the parameter hypothesis step, such as or-
dinary least squares (OLS) or total least squares (TLS). This
paper presents results using OLS internal to I-DIRANSAC.
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Algorithm 1 Inlier-Biased DIRANSAC (I-DIRANSAC)

Input:
U Matrix of observed plant control inputs ∈ RnU×N
Y Matrix of observed sensor data ∈ RnY ×N
dt Time step of the sampled data (sampling frequency)
ε Vector of inlier thresholds for each signal ∈ RnY ×1
ξ Number of signals needed to classify as an inlier
w Vector of weights for model fit error ∈ RnY ×1
ν Vector of acceptance metric weights: [νe, νfI ]
s Minimum number of observations used in a sample
km Maximum number of major iterations to perform
fI,t Inlier fraction threshold for early termination

Output:
p Final parameter estimate ∈ RnP×1
fI Fraction of inliers for the parameter estimate

1: e =∞, fI = 0, k = 0
2: GetNewSample = true
3: while k < km and fI < fI,t do
4: if GetNewSample then
5: S = Set of (s− 1) randomly sampled observations

from U and Y
6: while Solution is not well-defined

and {U, Y } 6= S do
7: S = S + Randomly sampled observation from U

and Y
8: W, b← ComputeDesignMatrix(S)
9: CheckWellDefined(W, b)

10: end while
11: k = k + 1
12: end if
13: p̂← ComputeParameterHypothesis(W, b)
14: GetNewSample = true
15: if PreliminaryTest(p̂) then
16: Yp̂ ← ForwardSimulation(p̂, dt, U, Y0)
17: ep̂ ← ComputeModelFitError(Yp̂, Y, w)
18: fI,p̂, I ← ComputeFractionOfInliers(Yp̂, Y, ε, ξ)
19: if fI,p̂ > fI or ep̂ < e then
20: if AcceptanceMetric(ep̂, e, fI,p̂, fI , ν) then
21: e = ep̂
22: fI = fI,p̂
23: p = p̂
24: end if
25: if S 6= I then
26: S = I
27: W, b← ComputeDesignMatrix(S)
28: CheckWellDefined(W, b)
29: if Solution is well-defined then
30: GetNewSample = false
31: end if
32: end if
33: end if
34: end if
35: end while
36: return p, fI

For the internal parameter estimator, the function “Check-
WellDefined,” as specified in Algorithm 1, verifies that
the parameters are observable. For OLS, the condition for
observability is that WTW is full rank. Since this matrix
is Hermitian Positive Semi-Definite, the eigenvalues are
real and non-negative. Thus we check that the smallest
eigenvalue is above a threshold to verify it is not numerically
close to zero. The parameters can then be estimated with
the “ComputeParameterHypothesis” function based on the
design matrices. For example, the Moore-Penrose inverse
computes the standard OLS solution, p = (WTW )−1Wb.

D. General I-DIRANSAC Functions
In I-DIRANSAC we define a “ForwardSimulation” func-

tion to simulate the dynamical system with the identified
parameter estimates. The initial state is set to be the first
state in the set of observations, Y0, and the plant is simulated
forward using the control input data, U , at the data sampling
time step, dt. This outputs the simulated sensor data, Yp̂
for the given parameter estimate, p̂. The model fit error is
calculated in the “ComputeModelFitError” function using a
weighted root mean squared (RMS) error,

ep̂ =

nY∑
i=1

wi
√√√√ 1

N

N∑
j=1

(Yp̂,i,j − Yi,j)2

 , (2)

where the indices i, j indicate the matrix position of the
observed or simulated sensor data. The weights, wi, on each
signal can be set to ignore certain signals and/or weight
others higher. The fraction of inliers for the proposed model
is computed in “ComputeFractionOfInliers.” For each signal
i and time step j, the corresponding data point, Yp̂,i,j , is
considered a signal inlier when |Yp̂,i,j−Yi,j | < εi. An overall
estimated state at time step j, Yp̂,j , which consists of signals
Yp̂,i,j for i from 1 to nY , is considered an inlier (∈ I) if it
has at least ξ, specified by the user, signal inliers. The overall
inlier fraction, fI,p̂, is the total number of inliers divided by
the total number of estimated states. The inlier thresholds
can be set to ignore certain signals in this calculation.

We designed the “AcceptanceMetric” in Algorithm 1 to
simultaneously minimize the error and maximize the number
of inliers. We define it using the acceptance metric weights
for error, νe, and fraction of inliers, νfI , as follows

νee
2
p̂ + νfI

(
1

fI,p̂

)2

< νee
2 + νfI

(
1

fI

)2

. (3)

This is a binary valued function comparing performance
with the current hypothesis, ep̂, fI,p̂, versus the stored best
estimate, e, fI . Each side of the inequality is a weighted
quadratic cost of the model fit error and inverse of the frac-
tion of inliers. If the current hypothesis minimizes this cost
function, then this metric returns “True” and the hypothesis
will be stored as the current best estimate.

IV. ROTORCRAFT PLANT MODEL
A. Baseline Plant Model

We selected a 3-degree-of-freedom (DOF) planar rotor-
craft model, as depicted in Fig. 1, as a representative
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Fig. 1: Diagram of the planar rotorcraft model

dynamical system with which to evaluate the algorithm’s
performance in simulation. This model represents a 3-DOF
version of the 6-DOF model commonly used in practice in
quadrotor controller design [16]. We define the system state
to be position (x, z) in the world frame and body angle θ in
the plane. The distance from the vehicle’s center of gravity
(CG) to each rotor is L and was treated as a known constant.
The control inputs are total thrust, u1, defined along the
body Z axis, zB , and total moment, u2, defined as a positive
moment around the body Y axis, as depicted in Fig. 1.
Induced drag due to the backward inclination of aerodynamic
force with respect to airfoil motion, as modeled in [16], was
additionally considered with coefficient of induced drag, CD.
The vehicle has a total mass, m, with a center of mass located
at the body-frame origin, and moment of inertia, I , about the
Y axis. By summing the forces and moments on the system
in the world frame, the equations of motion areẍz̈

θ̈

 =

 −
1
mu1 sin θ

1
mu1 cos θ − g

L
I u2

− CD
m
|u1|

ẋ cos θ

ż sin θ

0

 . (4)

The plant parameters to be identified for this model are mass,
m, moment of inertia, I , and the coefficient of induced
drag, CD. Mass is included as a parameter to identify
since the vehicle could carry an object or have frequent
instrumentation changes which would vary the overall mass.
We can rewrite (4) so that the model parameter vector to be
identified, p = [m, I, CD]T , appears linearly in the form
Wip = bi, from which W and b from (1) can be computed
for a set of observations, ẍ 0 |u1|ẋ cos θ

z̈ + g 0 |u1|ż sin θ

0 θ̈ 0

 mI
CD

 =

−u1 sin θ
u1 cos θ
u2L

 . (5)

We formulated an extension to this baseline plant model,
(4), to include imbalance terms, or frequently unmodeled
dynamics, that may be more representative of a real-world
rotorcraft. In practice, these effects are commonly ignored
in favor of the simpler baseline plant model, (4). However,
unmodeled dynamics can cause a periodic disturbance, which
presents as severe non-Gaussian noise in the sensor data.
Discrepancies between the modeled dynamics and the true
vehicle dynamics are inherent to the modeling of real-world
systems; all mathematical plant models are approximate.
Thus the disturbance caused by unmodeled dynamics must be
overcome to enable precise control of a vehicle. Formulation
of these disjoint models allows the parameter identification
techniques to be evaluated in the presence of unmodeled
dynamics. We considered aerodynamic imbalance and mass

imbalance as two common forms of unmodeled dynamics.
Aerodynamic imbalance is due to a difference in the coeffi-
cient of thrust across propellers [1], [17]. Mass imbalance is
due to a difference in mass between the blades of a propeller.

B. Aerodynamic Imbalance
The relation between torque and thrust on each propeller

can be formulated as follows, as in [1],

T = CT ρn
2D4, (6)

Q = 2πCP ρn
2D5, (7)

where T is thrust, CT is the coefficient of thrust, ρ is fluid
density, n is propeller rps, D is propeller diameter, Q is
torque, and CP is the coefficient of power. Clearly, Q can
be expressed linearly in terms of T

Q =

(
2πCPD

CT

)
T. (8)

In the case of the planar rotorcraft, the control input u1 is
the total thrust. Using the total moment, u2, the thrust on
each propeller, T1, T2, can be solved for as follows

T1 =
1

2
(u1 −

u2
L

), (9)

T2 =
1

2
(u1 +

u2
L

). (10)

Thus, for each propeller i, the propeller rps, ni, can be solved
for using (6)

ni =

√
Ti

CT ρD4
. (11)

Consider a thrust due to the imbalance between the blades
of a propeller, e.g. slightly different CT and D for each blade.
The difference in these constants results in some imbalance
term, γ. For one propeller with two blades, α and β,

γ = CTαD
4
α − CTβD4

β . (12)

The magnitude of gamma controls the amount of vibration
or noise in the system due to aerodynamic imbalance. The
thrust due to aerodynamic imbalance for propeller i, Tai , is

Tai = γiρn
2
i . (13)

The resulting torque has a varying lever arm due to the
rotating propeller in the 2D plane. The projected radius,
rproji , depends on the true radius r = D

2 and is projected
into the plane using the relation rproji = r cosφi. Here, the
angle of projection is φi = ωit, where ωi is the angular
velocity and relates to the propeller rps, ωi = 2πni. Thus,
the projected radius can be expressed as

rproji = r cos (2πnit). (14)

Finally, the torque on the system due to the imbalance of
each propeller, Qai , can be solved for using (8) and (14)

Qai =
2πCPDproji

CT
γiρn

2
i (15)

=
4πCP
CT

γiρn
2
i rproji . (16)

These imbalance terms for each propeller are injected into
the dynamics through the sum of moments and forces.
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C. Mass Imbalance
Consider a propeller to be two point masses, of mass

mα and mβ , each a distance rproji from the center of the
propeller. The difference in mass between the two blades of
the propeller is ∆m = mα −mβ .

The torque due to the centrifugal type force on the rotating
propeller and the difference in mass, ∆m, causes a rotational
mass imbalance. This torque on propeller i can be expressed
as follows

τci = ∆mω2
i rprojiLz, (17)

where Lz is the distance along the zB axis from the center
of gravity to the propeller as depicted in Fig. 1.

Another form of mass imbalance is due to the gravitational
loading of the masses mα and mβ on propeller i. The
difference in mass, ∆m, between each blade of the propeller
causes a force, Fgi , and torque, τgi , on the system. These
can be expressed as

Fgi = mαg −mβg = ∆mg (18)
τgi = ∆mgrproji . (19)

A sensitivity analysis showed the effect of these terms to be
small in comparison to the rotational mass imbalance.

D. Extended Plant Model
Combining the aerodynamic and mass imbalance terms for

the system’s two propellers with the baseline plant model,
(4), yields the extended plant model’s dynamics

ẍz̈
θ̈

 =


− 1
mu1 sin θ − CD

m |u1|ẋ cos θ

1
mu1 cos θ − g − CD

m |u1|ż sin θ +
2∑
i=1

(Tai + Fgi)

L
I u2 +

2∑
i=1

(Qai + τci + τgi)

 .
(20)

We also considered blade flapping as a form of commonly
unmodeled dynamics for a rotorcraft. Blade flapping is due
to a higher absolute tip velocity of the advancing blade
generating more lift than the retreating blade when a rotor
translates horizontally through air [16]. A sensitivity analysis
of the dynamics in (20) with blade flapping included showed
its overall effect to be negligible for this system.

E. Plant Parameters
We selected the plant parameters based on DJI’s Mavic

Mini [9] and wind tunnel data [5]. Table I lists the plant
parameters used for this evaluation. Feasible magnitudes
of the imbalance terms were estimated based on the plant
parameters. A 1.5% to 2.5% difference between the blades
in both coefficient of thrust, CT , and diameter, D, yielded
an estimate for the bounds of aerodynamic imbalance, γ,
as defined in (12). To estimate a feasible range for mass
imbalance, we considered a propeller with two blades, each
weighing about 0.01 kg [9], with a mass imbalance between
the blades of about 0.6% to 1.4%. The resulting ranges
of imbalances are shown in Table II. A sensitivity analysis
confirmed these estimates to be a reasonable magnitude.

We added two forms of noise to the extended plant
model: Gaussian noise and outlier, or salt and pepper, noise.
We applied Gaussian noise, based upon the Pixhawk 2’s
internal gyroscope and accelerometer [3], [26], directly to the
acceleration and angular velocity terms and the covariance
was integrated for the lower order terms. We added outliers
to each signal with a probability πo. Outliers were sampled
from a uniform distribution that ranged from −ao to ao. The
selected noise parameter ranges are shown in Table III.

TABLE I: Rotorcraft Plant Parameters for the Baseline and
Extended Plant Models

Variable Value Description

g 9.81 m/s2 Gravity
m 0.249 kg Mass
I 0.004 kg m2 Moment of inertia
CD 0.025 s/m Coefficient of induced drag
CT 0.06 Coefficient of thrust
CP 0.06 Coefficient of power
D 0.127 m Propeller diameter
L 0.177 m Distance rotor to CG along X axis
Lz 0.01 m Distance rotor to CG along Z axis

TABLE II: Rotorcraft Imbalance Parameter Value Ranges for
the Extended Plant Model

Variable Min Value Max Value Imbalance Type

γ 1.0 × 10−6 1.8 × 10−6 Aerodynamic (m4)
∆m 6.0 × 10−5 1.4 × 10−4 Mass (kg)

TABLE III: Noise Parameter Value Ranges for the Extended
Plant Model

Variable Min Value Max Value Description

µ 0 0 Mean of Gaussian noise
σθ̇ 0.003 1.0 Covariance of Gaussian

noise on angular velocity
(rad/s)

σẍ,z̈ 0.04 2.5 Covariance of Gaussian
noise on acceleration
terms (m/s2)

ao 0 100 Maximum absolute mag-
nitude of outliers

πo 0.05 0.5 Probability of outliers

V. NUMERICAL PERFORMANCE EVALUATION
A. Numerical Simulation Setup

We implemented a numerical simulation of the extended
plant model, (20), together with a model-based trajectory
tracking controller utilizing the baseline plant model, (4). In
the simulations reported herein, we employed three reference
trajectory types: a “square” trajectory, a “star” trajectory, and
a “sine” trajectory. For a square trajectory, the vehicle starts
at the origin and plans to four waypoint XZ positions spaced
equidistant from each other and the origin and then back
to the first waypoint. Each side of the square is 4 meters.
A star trajectory follows the same waypoints as the square
trajectory, returns to the origin, and then repeats the square
trajectory with a 45 degree rotation. A sine trajectory mini-
mizes the distance between a sine wave reference trajectory
with amplitude 2 meters and the vehicle’s XZ position.
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For trajectory generation, the nonlinear optimization prob-
lem is formulated using direct transcription [23]. This prob-
lem is solved using the Sparse Nonlinear Optimizer (SNOPT)
[12]. To control to the generated trajectory, we use a time-
varying linear quadratic regulator (TVLQR) [14].

The simulation process begins with numerically simulating
rotorcraft flight with the extended plant model, (20). The
system is controlled through a star trajectory to fully excite
the model’s state space. The plant parameters are identified
using this data and the expression of the baseline plant model
in (5). It is desired to minimize the difference between
the input-output behavior of the plant with the identified
parameters and the real plant. Thus, the identified parameters
are evaluated by generating square and sine trajectories with
the baseline plant model, (4), and then executing the baseline
plant based controller on the extended plant model, (20).
Root mean squared (RMS) error between the generated
reference trajectory and the extended plant’s true path is used
as a performance metric.

We note that since the extended plant model, (20), is
utilized to simulate the rotorcraft dynamics, and the pa-
rameter identifiers employ the baseline plant model, (4),
the simulated extended plant model data contains signals
due to dynamics, e.g. the imbalances, that are unmodeled
in the identified baseline plant model. Thus exact identifi-
cation of “true” parameters cannot be accomplished. This
is intentional, as our goal is to investigate the comparative
performance of the parameter identifiers in the presence of
realistic unmodeled dynamics.

B. I-DIRANSAC Setup

Table IV shows the I-DIRANSAC parameters we used for
evaluation with this dynamical system. OLS was used as the
parameter estimator internal to I-DIRANSAC. The generated
data sets were comprised of about 2500 observations sampled
at 100 Hz. Based on these data sets, the minimal sample
size, s, was set to 75. As expected, more iterations of the
algorithm covers a larger portion of the sample space, which
results in a higher potential to identify robust parameters.
We empirically determined 1000 iterations to be sufficient,
with more iterations showing diminishing returns. In the-
ory, evaluating all possible samples (greater than a googol
iterations) could improve the solution further, but would be
computationally impractical. We selected the weights, w, for
the RMS model fit error in (2), as seen in Table IV, such that
only the velocity and acceleration terms would be considered.

With the drag term, the system is an open loop observer of
itself and thus velocity will converge even when the initial
conditions between the collected data and simulation differ.

TABLE IV: I-DIRANSAC Parameters

Variable Value Description

km 1000 Maximum number of major iterations

fI,t 0.85 Inlier fraction threshold for early termination

s 75 Minimum number of observations in a sample

εx,z,θ 0 Inlier threshold for position

εẋ,ż,θ̇,ẍ,z̈,θ̈ 0.5 Inlier threshold for velocity and acceleration

ξ 3 Number of signals within inlier threshold
needed to classify an observation as an inlier

wx,z,θ 0 Model fit error weight for position

wẋ,ż,θ̇ 1 Model fit error weight for velocity

wẍ,z̈,θ̈ 0.1 Model fit error weight for acceleration

νe 1 Acceptance metric weight for model fit error

νfI 0.06 Acceptance metric weight for inlier fraction

C. Performance Evaluation of I-DIRANSAC

Figures 2 - 5 show summary plots comparing the results of
I-DIRANSAC, DIRANSAC, and OLS parameter identifica-
tion for tracking square and sine trajectories in the presence
of non-Gaussian noise: outliers and unmodeled dynamics in
the form of aerodynamic and mass imbalances. We varied
one independent variable at a time while all other imbalance
and noise terms were set to zero. In Figures 2, 3, and 4,
the X axis corresponds to the independent variable: outlier
magnitude, aerodynamic imbalance, and mass imbalance,
respectively. The Y axis is the RMS trajectory tracking error
for a particular signal. From left to right these signals are
position in X (x), position in Z (z), orientation (θ), velocity
in X (ẋ), velocity in Z (ż), and angular velocity (θ̇). Each data
point is the mean of the RMS error across 50 iterations of the
specified algorithm. For each iteration new data was collected
with the extended plant model, (20). The error bars show
one standard deviation in either direction. In Figures 3 and
4, the error bars for OLS have zero length due to the analytic
formulation of the imbalance terms causing the data at each
iteration to be constant. Thus OLS produces a constant result
since there are no other forms of randomization. This is
in contrast to the RANSAC based approaches which have
inherent randomization. In these figures, lower RMS error
denotes better performance.

1) Robustness to Data Outliers: Fig. 2 shows trajectory
tracking performance evaluated on a square trajectory for a
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Fig. 2: Trajectory tracking RMS error for various outlier magnitudes evaluated on a square trajectory.
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Fig. 3: Trajectory tracking RMS error for various aerodynamic imbalances evaluated on a sine trajectory.
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Fig. 4: Trajectory tracking RMS error for various mass imbalances evaluated on a sine trajectory.

magnitude of outliers varying from 0 to 100 with constant
probability of 0.1. Clearly, as outlier magnitude increased,
the RMS error for trajectory tracking steadily increased when
using the parameters identified by OLS and DIRANSAC. In
contrast, I-DIRANSAC had consistent performance for each
outlier magnitude with minimum RMS error.

The greater focus on model inliers in I-DIRANSAC
compared to DIRANSAC allows I-DIRANSAC to find a
maximal sample without outliers, thus allowing for parameter
estimates with improved trajectory tracking performance
over DIRANSAC up to 1 meter in position and up to 3 meters
in comparison to OLS, without sacrificing performance in the
presence of imbalances.

Fig. 5 shows an example of the trajectory tracking per-
formance evaluated on square and sine trajectories for 50
iterations of each algorithm with an outlier magnitude of
80. The axes represent the XZ plane. For each identified set
of parameters, the resulting generated reference trajectory
and vehicle tracking performance is plotted. In these figures,
minimal deviations between the vehicle and reference trajec-
tories denotes better performance. The parameters identified
by OLS and DIRANSAC result in a significant error in Z
when tracking the reference trajectories versus the param-
eters identified by I-DIRANSAC result in robust tracking
performance.

2) Robustness to Unmodeled Dynamics: RMS trajectory
tracking error evaluated on a sine trajectory is shown
for aerodynamic imbalance varying from 1 × 10−6 to
1.8 × 10−6 m4 in Fig. 3 and mass imbalance varying from
6 × 10−5 to 1.4 × 10−4 kg in Fig. 4. The RANSAC
based approaches performed comparably and show signifi-
cant improvement in comparison to OLS in the presence of
imbalance terms. These results motivate the use of RANSAC
based approaches in cases where there may be mismatches

between the true vehicle dynamics and model dynamics.
Fig. 3 shows that in position, the RANSAC based approaches
showed an improvement from OLS under the effect of
aerodynamic imbalance of up to about 0.3 meters in X. In the
presence of mass imbalance, the RANSAC based approaches
showed an improvement of up to about 3.5 meters in X, as
reflected in Fig. 4.

Tuning of the I-DIRANSAC algorithm parameters could
enhance performance further, but this serves as a preliminary
motivation for the improvement a RANSAC based approach
can provide to the internal parameter estimator, i.e. OLS in
this evaluation. Different internal estimators could be used
with I-DIRANSAC and could offer greater improvement.
These trajectory tracking improvements, particularly in posi-

Fig. 5: Trajectory tracking with an outlier magnitude of 80
and outlier probability of 0.1 over 50 iterations.
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tion, could make a significant difference in precision control.
We performed this analysis for various levels of Gaus-

sian noise as well which yielded comparable results from
I-DIRANSAC, DIRANSAC, and OLS, as expected.

The results using I-DIRANSAC were produced with the
new acceptance metric for storing a best parameter solution
defined in (3). In general, maximizing the fraction of inliers
alone performed best in cases where there were outliers
versus minimizing the model fit error alone performed best in
cases where there were imbalance terms. The proposed hy-
brid metric simultaneously maximizes the fraction of inliers,
minimizes the model fit error, and rejects cases where there
is a significant jump in either. Further improvements could
be seen from tuning the weights in this metric depending on
the operational scenario and data.

The identified parameters are not included in this analysis
of performance in the presence of imbalances since the “true”
plant parameters are unknown due to the intended mismatch
between the baseline and extended plant models. When
evaluating performance for various magnitudes of outliers,
as presented in Fig. 2, the true parameters are known since
the imbalance terms in the extended plant model, (20), are all
set to zero causing the resulting dynamics to be equivalent
to the baseline plant model, (4). In this case, the parameters
identified by I-DIRANSAC matched the true parameters
most closely, which is reflected in the tracking performance
in comparison to OLS depicted in Figures 2 and 5.

VI. CONCLUSION

This study reports a novel RANSAC algorithm for dy-
namical model identification in the presence of inherently
non-Gaussian noise arising from unmodeled dynamics and
outliers, and a numerical simulation study of the proposed
I-DIRANSAC approach and DIRANSAC in comparison to
OLS. The numerical simulation study shows that RANSAC
based approaches, using OLS as the internal parameter esti-
mator, offer improved robustness to unmodeled dynamics in
comparison to traditional OLS. Additionally, I-DIRANSAC
offers improved robustness to outliers in comparison to
DIRANSAC and OLS. In particular, the position tracking
improvements when using I-DIRANSAC in the presence of
unmodeled dynamics and non-Gaussian noise could enable
significant advancements in precise, dynamic position con-
trol. This could be valuable in a wide variety of robotic
applications, including for safety in human machine inter-
action and greater maneuverability in challenging environ-
ments. I-DIRANSAC could be utilized with many classes
of vehicles; however, vehicles with sensors or complicated
dynamics, that often result in data with outliers or other non-
Gaussian noise, would see the most benefit.
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