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Abstract
In first-passage percolation (FPP), we let (τv) be i.i.d. nonnegative weights on the
vertices of a graph and study the weight of the minimal path between distant vertices.
If F is the distribution function of τv , there are different regimes: if F(0) is small,
this weight typically grows like a linear function of the distance, and when F(0) is
large, the weight is typically of order one. In between these is the critical regime in
which theweight can diverge, but does so sublinearly.We study a dynamical version of
critical FPP on the triangular lattice where vertices resample their weights according to
independent rate-one Poisson processes. We prove that if

∑
F−1(1/2+ 1/2k) = ∞,

then a.s. there are exceptional times at which the weight grows atypically, but if∑
k7/8F−1(1/2 + 1/2k) < ∞, then a.s. there are no such times. Furthermore, in the

former case, we compute the Hausdorff andMinkowski dimensions of the exceptional
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set and show that they can be but need not be equal. These results show a wider range
of dynamical behavior than one sees in subcritical (usual) FPP.

Mathematics Subject Classification Primary 60K35; Secondary 82B43

1 Introduction

First-passage percolation (FPP)was introduced in the 60s’ byHammersley–Welsh [18]
and is a prototypical example of a random growthmodel. Suchmodels give insight into
numerous reaction-limited growth phenomena like the spread of tumors or bacterial
colonies, and fluid flow in porous media [20]. In recent years, there has been much
effort to understand the main properties of FPP, and this has led to connections with
random matrices [22], particle systems [32], and the KPZ equation [8]. Nonetheless,
there are still many fundamental open questions; see [1] for a recent survey.

In 2015, Ahlberg introduced a dynamical version of FPP in which vertices resam-
ple their weights according to independent rate-one Poisson processes. His work is
motivated by a number of important examples (including the dynamical web [14, 33],
dynamical sensitivity of random sequence properties [5], and dynamical Bernoulli
percolation [17]) where the behavior at random “exceptional” times can be dramati-
cally different from the behavior at deterministic times. Ahlberg’s result in [2, Thm. 4]
is that in the usual (subcritical) regime of FPP, there are no exceptional times when
the passage time has an atypical linear growth rate. A natural question is whether the
critical or supercritical regimes have exceptional times. In this paper, we focus on this
question in critical FPP in two dimensions, where recent advances [9, 10, 37] have
allowed an exact characterization of the asymptotic growth rate in the static model.

Our results for dynamical critical FPP are stated in terms of the distribution function
F of the vertexweights.Writingak = F−1(1/2+1/2k), wefind thatwhen

∑
ak = ∞,

the model exhibits exceptional times (Theorem 1.1), and when
∑

ak < ∞, under a
weak decay condition on ak , there are no exceptional times (Theorem 1.3). Further-
more, in the former case, we compute the Hausdorff dimension of the exceptional set
and show that its Minkowski dimension has a transition (Theorem 1.2) depending on
the behavior of the sequence kak . This implies that for some distributions, the excep-
tional set has the same Hausdorff and Minkowski dimensions, but for others, these
dimensions are different.

1.1 Critical FPP

We consider the model on the triangular lattice T, embedded in R
2 with vertex set Z

2

and edges between points of the form (v1, w1) and (v2, w2)with either (a) ‖(v1, w1)−
(v2, w2)‖1 = 1 or (b) both v2 = v1 + 1 and w2 = w1 − 1. We define i.i.d. vertex
weights (τv)v∈Z2 with some common distribution function F satisfying F(0−) = 0.
It is typical to do this by letting (ωv)v∈Z2 be a family of i.i.d. uniform [0, 1] random
variables, and setting τv = F−1(ωv), where F−1 is the generalized inverse
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Transitions for exceptional times in dynamical first-passage percolation 1041

F−1(t) = inf{y ∈ R : F(y) ≥ t} for t ∈ (0, 1).

A path is a sequence of vertices (v1, . . . , vn) with vi being adjacent to vi+1 for all
i = 1, . . . , n − 1. For a path γ = (v1, . . . , vn), we define its passage time by

T (γ ) =
n∑

i=2

τvi

(this definition naturally extends to infinite paths), and for vertex sets A, B ⊂ Z
2, we

define the first-passage time from A to B by

T (A, B) = inf{T (γ ) : γ is a path from a vertex in A to a vertex in B}.

If A or B is a singleton {v}, we replace it by v in the notation: for instance, we
write T (v,w) for T ({v}, {w}). Last, we put B(n) = {v ∈ Z

2 : ‖v‖∞ ≤ n} and
∂B(n) = {v ∈ Z

2 : ‖v‖∞ = n}.
Of prime importance in FPP is the leading order growth rate of the passage time

T between distant vertices. An elementary argument using Fekete’s lemma implies
that for x ∈ Z

2, the limit g(x) = limn→∞ ET (0, nx)/n exists under a mild moment
condition on τv . This can be improved to a.s. and L1 convergence using Kingman’s
subadditive ergodic theorem. Kesten proved [23, Thm. 6.1] that g is identically zero
when F(0) > 1/2 (supercritical) or F(0) = 1/2 (critical), and that g(x) > 0 for all
nonzero x when F(0) < 1/2 (subcritical). In the supercritical regime, (T (x, y))x,y∈Z2

forms a tight family, and in the subcritical regime, T grows linearly. The limit g does
not give precise information about the growth of T in the critical regime.

Thefirst step toward quantifying the growth in the critical casewasmade byChayes-
Chayes-Durrett [7, Thm. 3.3]. They showed that when the τv’s are Bernoulli(1/2)
random variables, the sequence ET (0, ∂B(n)) is of order log n. Kesten–Zhang [25] in
’97 went further, showing that Var T (0, ∂B(n)) is of order log n and that T (0, ∂B(n))

satisfies a Gaussian central limit theorem. The results of [25] hold for a wider class
of critical F : those satisfying F(0) = F(δ) = 1/2 for some δ > 0. In these cases,
Yao [37] and Damron–Hanson–Lam [9] found the precise leading order behavior of
T (0, ∂B(n)) and its variance: for instance

T (0, ∂B(n))

log n
→ I

2
√
3π

a.s.,

where I is the infimum of all δ with F(δ) > 1/2. All of these works leave open the
growth rate for F satisfying F(0) = 1/2 but I = 0.

Zhang was the first to show in the case I = 0 that the model displays “double
behavior.” In [38], he exhibited examples of F for which F(0) = 1/2 but the sequence
T (0, ∂B(n)) remains bounded. Specifically, for a > 0, if we define

Fa(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ≥ ( 1
2

) 1
a

1
2 + xa if 0 ≤ x ≤ ( 1

2

) 1
a

0 if x < 0,
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1042 M. Damron et al.

then [38, Thm. 8.1.1] states that if a is small enough, then the sequence T (0, ∂B(n))

is a.s. bounded. Zhang also gave examples of F with I = 0 but such that T (0, ∂B(n))

diverges a.s.
In ‘17, Damron-Lam-Wang [10] found an explicit condition that characterizes this

double behavior. Assuming

F(0) = 1

2
(1.1)

and Eτα
v < ∞ for some α > 1/6, we have

ET (0, ∂B(n)) 

�log2 n�∑

k=2

F−1
(
1

2
+ 1

2k

)

, (1.2)

where 
 means that the ratio of the left and right sides is bounded away from zero
and infinity as n → ∞. Furthermore, under only (1.1), if we define

ρ = lim
n→∞ T (0, ∂B(n)), (1.3)

which can be written equivalently as

ρ = inf {T (
) : 
 is an infinite self-avoiding path starting at 0} , (1.4)

then by the Kolmogorov zero-one law, P(ρ = ∞) ∈ {0, 1} and

ρ < ∞ a.s. ⇔
∞∑

k=2

F−1
(
1

2
+ 1

2k

)

< ∞. (1.5)

These results were stated on the square lattice but the proofs remain valid on T.

1.2 Dynamical critical FPP

In this section, we introduce Ahlberg’s version of dynamical FPP. Let (sv) = (sv(t) :
v ∈ Z

2, t ∈ [0,∞)) be a family of i.i.d. rate one Poisson processes and let (ω
(n)
v :

v ∈ Z
2, n ≥ 0) be a family of i.i.d. uniform [0, 1] random variables. For a distribution

function F satisfying F(0−) = 0, set

τv(t) = F−1(ω(n)
v ) for t ∈ [0,∞) such that sv(t) = n.

For fixed t , the family (τv(t))v∈Z2 is i.i.d. with common distribution function F . We
will also define Tt (v,w) and Tt (A, B) as the corresponding passage times in the
environment (τv(t))v∈Z2 . Last we set ρt = limn→∞ Tt (0, ∂B(n)).

Wewill be interested in “exceptional times,” or times at which the dynamical model
behaves differently than the static one. Such questions were studied in [2], where it
was shown that in the subcritical regime, a.s. there are no times at which T displays
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atypical leading order growth. Precisely, for any ε > 0, under amildmoment condition
on τv , one has

∑

z∈Z2

P

(

sup
t∈[0,1]

|Tt (0, z) − g(z)| > ε|z|
)

< ∞.

This result extends to dimensions bigger than two. Ahlberg’s work on the subcritical
regime motivates the question of whether exceptional times exist for critical or super-
critical FPP. The present paper initiates the study of the dynamical behavior of critical
FPP.

Due to the dichotomy in (1.5), exceptional has a different meaning depending on
which of the conditions ∞∑

k=2

F−1
(
1

2
+ 1

2k

)

< ∞ (1.6)

and ∞∑

k=2

F−1
(
1

2
+ 1

2k

)

= ∞ (1.7)

holds. Namely, under (1.1), we define the exceptional sets

{t ≥ 0 : ρt = ∞} under (1.6) and
{t ≥ 0 : ρt ≤ x} under (1.7) for x ∈ [0,∞).

(1.8)

Note that by time-stationarity and (1.5), any fixed t ≥ 0 a.s. is not in any of these
exceptional sets: under (1.1), for any t ≥ 0, P(ρt ≤ x) = 0 for x ∈ [0,∞) when
(1.7) holds, and P(ρt = ∞) = 0 when (1.6) holds. We can therefore apply Fubini’s
theorem to find that their Lebesgue measures are zero a.s. Thus we are led to consider
their fractal dimensions.

We recall the different notions of dimension that we will consider; we quote their
definitions from [29, Sec. 14.1]. If E is a bounded subset of R

d for some d ≥ 1 and
ε > 0, let N (E, ε) be the minimum number of balls of diameter at most ε required to
cover E . Then the upper and lower Minkowski dimensions of E are

dimM(E) = lim supε→0
log N (E,ε)

log 1
ε

dimM(E) = lim infε→0
log N (E,ε)

log 1
ε

.

For α > 0 and E ⊂ R
d that is possibly unbounded, the Hausdorff α-dimensional

(outer) measure of E is

Hα(E) = lim
ε→0

inf

{ ∞∑

i=1

(diam Ei )
α : E ⊂

∞⋃

i=1

Ei and diam Ei < ε for all i

}

.

(1.9)
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For any E ⊂ R
d , there is a number α0 such that if α < α0 then Hα(E) = ∞ and if

α > α0 then Hα(E) = 0. This number is called the Hausdorff dimension of E , and
we write it as dimH(E). It is standard that for bounded E ,

dimM(E) ≥ dimM(E) ≥ dimH(E). (1.10)

Furthermore, Hausdorff dimension has the “countable stability” property, which states
that if E1, E2, . . . are subsets of R

d , then

dimH

( ∞⋃

i=1

Ei

)

= sup {dimH(Ei ) : i ≥ 1} .

1.3 Main results

To state our results, we use the shorthand

ak = F−1
(
1

2
+ 1

2k

)

for k ≥ 2,

so that (1.6) and (1.7) become
∑

ak < ∞ and
∑

ak = ∞ respectively. The first
theorem gives the Hausdorff dimension of the set of exceptional times when ak is not
summable.

Theorem 1.1 If F satisfies (1.1) and (1.7), then

dimH ({t ≥ 0 : ρt < ∞}) = 31

36
a.s.

We will prove Theorem 1.1 in Sect. 3.2. Alternatively, one can consider the subset
Ex = {t ≥ 0 : ρt ≤ x} for x ≥ 0. In the case x = 0, this is the same as the set of
exceptional times for critical Bernoulli percolation, which has Hausdorff dimension
31/36 a.s. [15, 34]. By monotonicity and Theorem 1.1, we also obtain dimH Ex =
31/36 for all x ∈ [0,∞) a.s.

The next theorem shows that the upper Minkowski dimension of the set of excep-
tional times can differ from the Hausdorff dimension if ak is not summable, but
decays quickly enough to 0. Because Minkowski dimension is defined for bounded
sets (although there are some modifications for unbounded sets), we intersect the set
of exceptional times with [0, s] and take s to infinity.

Theorem 1.2 Suppose that F satisfies (1.1) and (1.7).

1. If kak → ∞, then for any x ∈ [0,∞),

P

(

dimM ({t ∈ [0, s] : ρt ≤ x}) = 31

36

)

→ 1 as s → ∞.
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Transitions for exceptional times in dynamical first-passage percolation 1045

2. If lim infk→∞ kak = 0, then for any x ∈ (0,∞),

P

(
dimM ({t ∈ [0, s] : ρt ≤ x}) = 1

)
→ 1 as s → ∞.

We will prove Theorem 1.2 in Sect. 3.3. We note that for any F satisfying (1.1), the
set ∪x∈N{t ∈ [0, s] : ρt ≤ x} = {t ∈ [0, s] : ρt < ∞} contains the set of t ∈ [0, s]
for which there exists an infinite component of vertices of weight 0. By results of [15,
34], the latter is a.s. dense in [0, s] for s > 0 and therefore has Minkowski dimension
1. Because Minkowski dimension is not countably stable, this fact does not contradict
Theorem 1.2.

The proofs of Theorems 1.1 and 1.2 can also be used in the intermediate regime
where kak does not converge to 0 or ∞. From them, we obtain that for some F
satisfying (1.1) and (1.7),

(†)
the set of exceptional times has different upper and lower Minkowski dimensions,
and the upper Minkowski dimension of the set of t where ρt ≤ x depends on x .

We give formal statements of these facts in Sect. 4 and briefly indicate how to obtain
them from the above proofs.

Our last result covers the case when
∑

ak < ∞. Here, we find the set of exceptional
times is empty if ak does not decay very slowly.

Theorem 1.3 Suppose that F satisfies (1.1) and (1.6). Then

∞∑

k=2

k
7
8 ak < ∞ ⇒ a.s., {t ≥ 0 : ρt = ∞} = ∅.

We will prove Theorem 1.3 in Sect. 3.1.
The proof of Theorem 1.3 gives a slightly stronger result than what is listed above:

there exists ς > 0 such that if
∑

k7/8−ςak < ∞, then a.s. there are no excep-
tional times. One simply needs to modify the second to last line of the proof (below
(3.31)) in a straightforward manner. Also, if one uses the conjectured value 17/48 for
the monochromatic two-arm exponent α′

2 listed above (3.3), then α = min{α′
2, 1/3}

becomes 1/3. Inserting this value into the argument below (3.31) produces the fol-
lowing result. If

∑
k5/6+ςak < ∞ for some ς > 0, then a.s. there are no exceptional

times.
Most of our arguments go through for general lattices (and half planes or sectors

with the triangular lattice), but at some key points, we use properties of percolation
on the triangular lattice derivable from the description of its scaling limit. Versions
of our main results hold for, say, first-passage percolation on the edges of the square
lattice, but they are weaker. For example, we have the following two theorems whose
proofs are very similar to those in this paper. The constant 3/4 in Theorem 1.4 comes
from [36, Thm. 10.1] and the term kak (as opposed to k7/8ak) in Theorem 1.5 comes
from using the bound α > 0 in (3.3).
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Theorem 1.4 Consider dynamical critical first-passage percolation on the square lat-
tice Z

2 with weights on the edges. If (1.1) and (1.7) hold, then a.s.,

dimH({t ≥ 0 : ρt < ∞}) ∈
(
3

4
, 1

)

.

Theorem 1.5 Consider dynamical critical first-passage percolation on the square lat-
tice Z

2 with weights on the edges. If (1.1) and (1.6) hold, then

∞∑

k=2

kak < ∞ ⇒ a.s., {t ≥ 0 : ρt = ∞} = ∅.

Statement about constants. Various constants (C1,C2, . . . ) appear in the paper.
Their dependence on variables such as n, k, p etc. is usually made explicit; all others
are assumed to be independent of all relevant parameters.

2 Preliminaries

In this section we record various definitions and preliminary results that we will ref-
erence later. A circuit is a path (v1, . . . , vn) with v1 = vn . Any circuit defines a plane
curve by connecting its vertices in sequence with line segments. If the circuit is ver-
tex self-avoiding, then this curve is a Jordan curve and therefore splits R

2 into two
components. The bounded component is referred to as the circuit’s interior.

Given p ∈ [0, 1], we say that a vertex w is p-open in the configuration (ωv)v∈Z2 if
ωw ≤ p; otherwise we say it is p-closed. Because the variables ωv are i.i.d. and have
uniform [0, 1] distribution, the collection of p-open vertices has the same distribution
as the collection of open vertices in Bernoulli site-percolation with parameter p. We
say that a path or circuit is p-open if all its vertices are p-open, and p-closed if all
its vertices are p-closed. A circuit C in an annulus Ann(m, n) = B(n) \ B(m) for
integers n ≥ m ≥ 1 is said to be the innermost p-open circuit around 0 in this annulus
if C is p-open, the origin is in the interior of C, and any other p-open circuit in this
annulus containing the origin in its interior has interior which contains the interior of
C. It is a well-known and often-used fact that if there is a p-open circuit around 0 in
Ann(m, n), then there is a unique innermost one (similar to [16, p. 317]).

We will heavily use tools from critical and near-critical percolation. To describe
these we consider the probability of box crossings. A path in B(n) is a left-right
crossing if it is contained in B(n), begins on the left side {−n} × [−n, n], and ends
on the right side {n} × [−n, n]. It is known that 1/2 is a critical value in the sense that
P(B(n) contains a left-right p-open crossing) converges to 0 if p < 1/2 and to 1 if
p > 1/2, but remains bounded away from 0 and 1 if p = 1/2. The finite-size scaling
correlation length is defined by letting ε > 0 and setting

L(p, ε)=min{n : P(B(n) contains a left-right p-open crossing)>1−ε} for p >
1

2
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Transitions for exceptional times in dynamical first-passage percolation 1047

and

L(p, ε) = min{n : P(B(n) contains a left-right p-open crossing) < ε} for p <
1

2
.

For a given ε, one has L(p, ε) → ∞ as p → 1/2 and it is proved [24, Eq. (1.24)] that
for some ε0, one has L(p, ε1) 
 L(p, ε2) for any fixed ε1, ε2 ∈ [0, ε0], as p → 1/2.
We then define

L(p) = L(p, ε0).

As p → 1/2, L(p) → ∞, and in fact

L(p) =
∣
∣
∣
∣p − 1

2

∣
∣
∣
∣

− 4
3+o(1)

as p → 1

2
. (2.1)

This follows from the scaling relation [24, Eq. (4.5)] and the exact value 5/4 of the
four-arm exponent (see (2.5)). With this definition of L(p), one can use the Russo-
Seymour-Welsh theorem to show that for positive integers k, l, n, and p such that
L(p) ≥ n, one has

1 − δk,l > P([0, kn] × [0, ln] contains a left-right p-open crossing) > δk,l (2.2)

for some positive constants δk,l depending only on k and l.
We also set

pn = sup{p : L(p) > n} for n ≥ 1.

Although there are two values of pn , one above 1/2, and one below 1/2, the one we
are using will be made clear in applications, and the ensuing remarks are valid for
both. This pn is nearly an inverse for L(p): as in [21, Eq. (2.10)], there is c1 ∈ (0, 1)
such that for all n ≥ 1,

c1n ≤ L(pn) ≤ n. (2.3)

Furthermore, from (2.1), one has

∣
∣
∣
∣pn − 1

2

∣
∣
∣
∣ = n− 3

4+o(1) as n → ∞. (2.4)

Many of our arguments involve arm events, which are percolation events defined by
the existence of paths (“arms”) emanating from a fixed region of space. The one-arm
probability is defined as

π1(p;m, n) = P (∃ p-open path crossing Ann(m, n))
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1048 M. Damron et al.

and we use the shorthand

π1(p; n) = π1(p; 0, n), π1(n) = π1

(
1

2
; n
)

, and

π1(m, n) = π1

(
1

2
;m, n

)

.

We make similar definitions for multi-arm events. π2(n) is the probability that there
are two disjoint paths connecting 0 to ∂B(n), one which is 1/2-open, and one which is
1/2-closed, and π4(m, n) is the probability that there are four disjoint paths crossing
Ann(m, n), two ofwhich are 1/2-open, and two ofwhich are 1/2-closed. Furthermore,
the paths alternate (open, closed, open, closed), as we proceed around the annulus in
a clockwise fashion. The critical exponents for these events are known: for

α1 = 5

48
, α2 = 1

4
, α4 = 5

4
, (2.5)

one has [35]

πk(n) = n−αk+o(1) as n → ∞,

and, more generally [6, Lem. 2.5], for any ε > 0, there exist c2,C1 > 0 such that for
all m, n with n > m ≥ 1,

c2
(m

n

)αk+ε ≤ πk(m, n) ≤ C1

(m

n

)αk−ε

. (2.6)

Arm probabilities also satisfy a “quasimultiplicativity” property: for k = 1, 2, 4, there
exist c3,C2 such that for any m, n, r satisfying n > r > m ≥ 0,

c3πk(m, r)πk(r , n) ≤ πk(m, n) ≤ C2πk(m, r)πk(r , n). (2.7)

Furthermore, arm event probabilities remain nearly constant as p changes, so long as
it is near critical. Specifically, from [31, Thm. 27], for k = 1, 2, 4, there exist c4,C3
such that for any m, n with n > m ≥ 0 and any p with L(p) ≥ n,

c4πk(m, n) ≤ πk(p;m, n) ≤ C3πk(m, n). (2.8)

Measurability of all exceptional sets and their dimensions follows from routine
arguments; see [17, p. 504] for an analogous discussion in the context of dynamical
percolation.

We close this section with an elementary lemma that will be used in the proofs of
Theorems 1.1 and 1.3.

Lemma 2.1 Suppose that (an), (bn), and (cn) are nonnegative sequences such that
(bn) is nonincreasing. Writing An = ∑n

k=1 ak for n ≥ 1 (and similarly for Cn),
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Transitions for exceptional times in dynamical first-passage percolation 1049

suppose that An ≤ Cn for all n. Then

n∑

k=1

akbk ≤
n∑

k=1

ckbk for all n ≥ 1.

Proof Because Ak(bk − bk+1) ≤ Ck(bk − bk+1), we can apply summation by parts
for

n∑

k=1

akbk = Anbn +
n−1∑

k=1

Ak(bk − bk+1) ≤ Cnbn +
n−1∑

k=1

Ck(bk − bk+1) =
n∑

k=1

ckbk .

��

3 Proofs

3.1 Proof of Theorem 1.3

In this section, we assume (1.1) and (1.6). By time-stationarity, we can show that a.s.,
there are no times t ∈ [0, 1] for which ρt < ∞. To do this, we define a sequence
(T(n)) of random variables with the property that

∞∑

n=1

T(n) < ∞ ⇒ ρ < ∞. (3.1)

The tails of the distributions of the T(n)’s are well-controlled, so we can give sufficient
conditions for their sum to be finite for all times t .

For n ≥ 1, define

T(1)(n) = min
{
T(
) : 
 is a circuit around 0 in B(2n+1) \ B(2n)

}

and

T(2)(n) = min
{
T(
) : 
 is a path that connects B(2n) to ∂B(2n+2) in B(2n+2) \ B(2n)

}
.

Next, put
T(n) = T(1)(n) + T(2)(n). (3.2)

As usual, we add a subscript t to these variables when they are evaluated in the
configuration (τv(t)). To see that (3.1) holds, suppose that

∑∞
n=1 T(n) < ∞. Then

for each n, choose 
(1)(n) and 
(2)(n) to be minimizing for the definitions of T(1)(n)

and T(2)(n). By planarity, the union ∪n≥1,i=1,2

(i)(n) is an infinite, connected set of

vertices with finite total passage time. We can then choose an infinite self-avoiding
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1050 M. Damron et al.

path starting at 0 that is contained in this union except for finitely many vertices. This
path has finite passage time and so by (1.4), this shows (3.1).

The rest of the proof will be split into two sections. In the first, we give a tail bound
for the T(n)’s, and in the second, we use this bound to argue that if

∑
k7/8ak < ∞,

then a.s., for all t ∈ [0, 1], one has∑n Tt (n) < ∞, and therefore by (3.1), there are
no exceptional times.

3.1.1 Tail bound for T(n)

To estimate the probability that T(n) is large, we need to use more arm exponents than
just those associated to 1, 2, and 4-arm events. For m ≤ n,

1. πH
1 (m, n) (one-arm half-plane probability) is the probability that there is a 1/2-

open path connecting B(m) to ∂B(n), butwith all its vertices v satisfying v·e2 ≥ 0,
and

2. ρ2(m, n) (monochromatic two-armprobability) is the probability that there are two
disjoint 1/2-openpaths connecting B(m) to ∂B(n) (without any second-coordinate
restriction).

Regarding these arm probabilities, we need the following facts:

• The half-plane one-arm exponent is 1/3; see [31, Thm. 22].
• The monochromatic two-arm exponent α′

2 satisfies α′
2 ∈ (1/4, 2/3) [4, Thms. 2

and 5]. In fact, numerical evidence suggests α′
2 = 17/48, but there is no rigorous

proof — see [3].
• Let α = min{α′

2, 1/3}. Similarly to (2.6), for any ε > 0, there exists C4 > 0 such
that for all m1 ≤ m2,

max{πH
1 (m1,m2), ρ2(m1,m2)} ≤ C4

(
m1

m2

)α−ε

. (3.3)

Our tail inequality for T(n) will follow from a similar tail inequality for a rectangle
passage time, after applying a straightforward gluing argument. Let T (n) be the mini-
mal passage time among all paths which remain in R(n) = [−2n+1, 2n+1]×[−2n, 2n]
and connect the left side of R(n) to the right side of R(n).

Theorem 3.1 Let ε ∈ (0, α). There exist c5,C5 > 0 such that the following holds. For
all n ≥ 1 and p > 1/2 with L(p) ≤ 2n,

P

(

T (n) ≥ λF−1(p)

(
2n

L(p)

)2−α+ε
)

≤ exp

(

−c5
2n

L(p)

)

+

⎧
⎪⎨

⎪⎩

exp
(
−c5λ

2
α−ε

)
if λ ≤ C5

(
2n
L(p)

)α−ε

exp

(

−c5
(

2n
L(p)

)2−α+ε

λ

)

if λ ≥ C5

(
2n
L(p)

)α−ε

.
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Remark 3.1 When λ ≥ C5 (2n/L(p))α−ε , the term exp(−c5(2n/L(p))2−α+ελ)

is less than exp(−c5(2n/L(p))). We write the above form of the inequality
because the second summand is actually an upper bound for the probability
P
(
#Vn(p) ≥ λ(2n/L(p))2−α+ε

)
; see (3.6).

Proof For the proof, we follow [13, Prop. 1], but with improvements using ideas from
the combinatorial argument of Kiss [26]. Let S(n) = [−2n+2, 2n+2] × [−2n, 2n] and
for p > 1/2 and n ≥ 1, define En(p) as the event that there exists a p-open path in
S(n) connecting the left side of S(n) to the right side. By the RSW theorem and [21,
Eq. (2.8)], we have, for some c6 > 0,

P(En(p)
c) ≤ exp

(

−c6
2n

L(p)

)

for n ≥ 1, p >
1

2
. (3.4)

On the event En(p), we let Tp(n) be the minimal passage time among all paths in
S(n) that are p-open and connect the left side of S(n) to the right side. Because we
are interested in crossings of R(n) only, we set

T̂p(n) = max

⎧
⎨

⎩

∑

v∈γ∩R(n)

τv : γ is a p-open path in S(n), it connects the left side
of S(n) to the right side, and T (γ ) = Tp(n)

⎫
⎬

⎭
.

By definition,
T (n)1En(p) ≤ T̂p(n)1En(p). (3.5)

Vertices whose weights contribute to T̂p(n) must satisfy certain conditions like
those in arm events. For v ∈ R(n), let An(p, v) be the event that all of the following
occur:

1. ωv ∈ (1/2, p],
2. there exist two disjoint p-open paths in S(n) from v to ∂B(v, L(p)), the boundary

of the box v + [−L(p), L(p)]2, and
3. there exist two disjoint 1/2-closed paths from v to ∂S(n), one touching the top

side of S(n) and one touching the bottom.

Also, let

Vn(p) = {v ∈ R(n) : An(p, v) occurs}.

Exactly the same argument as in [13, Lem. 1] gives that for all n ≥ 1 and p > 1/2
with L(p) ≤ 2n ,

T̂p(n)1En(p) ≤ F−1(p)#Vn(p)1En(p).

By this inequality, (3.5), and (3.4), we obtain for λ ≥ 0, and n, p as above,

P

(

T (n) ≥ λF−1(p)

(
2n

L(p)

)2−α+ε
)

≤ P

(

T (n)1En(p) ≥ λF−1(p)

(
2n

L(p)

)2−α+ε

1En(p)

)
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+P(En(p)
c)

≤ P

(

#Vn(p) ≥ λ

(
2n

L(p)

)2−α+ε
)

+ exp

(

−c6
2n

L(p)

)

.

Comparing this with the statement of the theorem,we are therefore reduced to showing
that for n ≥ 1 and p > 1/2 with L(p) ≤ 2n ,

P

(

#Vn(p) ≥ λ

(
2n

L(p)

)2−α+ε
)

≤

⎧
⎪⎨

⎪⎩

exp
(
−c5λ

2
α−ε

)
if λ ≤ C5

(
2n
L(p)

)α−ε

exp

(

−c5
(

2n
L(p)

)2−α+ε

λ

)

if λ ≥ C5

(
2n
L(p)

)α−ε

.
(3.6)

To prove (3.6), we will estimate the moments of #Vn(p). The argument of [13,

Lem. 3] gives the upper bound E#Vn(p)k1{#Vn(p)≥k} ≤ (
C6k(2n/L(p))2

)k
for integer

k, but we will improve this to

E#Vn(p)
k1{#Vn(p)≥k} ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

C6k
α−ε
2

(
2n
L(p)

)2−α+ε
)k

for k ≤
(

2n
L(p)

)2

(

C6k
5
4+ε

2

(
2n
L(p)

)2− 5
4−ε

)k

for k ≥
(

2n
L(p)

)2
(3.7)

for n ≥ 1 and p > 1/2 with L(p) ≤ 2n . We do this by a rather involved counting
argument, with many parts similar to the proof of [26, Thm. 1.4]. Let k ≥ 1 be an
integer and write

E#Vn(p)
k1{#Vn(p)≥k} ≤ kkE

(
#Vn(p)

k

)

1{#Vn(p)≥k} = kk
∑

V⊆R(n)

#V=k

P(Vn(p) ⊇ V ).

(3.8)
The main task in the proof of (3.7) is therefore to bound P(Vn(p) ⊇ V ) in the right

side of (3.8). To do this, we fix V = {v1, . . . , vk} and introduce a growing sequence
of graphs (Gi ). Let G0 be the graph (V ,∅); that is, it has vertex set V and empty edge
set. We start growing an �∞-box at each point of V at unit speed; at time r , we have
the boxes B(v, r), v ∈ V . We will stop at time r = 2n+1, at which point all boxes
touch.

As r increases, the boxes intersect each other. Let r1 be the smallest r when the
first pair of boxes touch. Pick one such pair of boxes in some deterministic way with
centers u1, v1. We draw an edge e1 between u1 and v1 and label it with �(e1) = r1,
and obtain the graph G1. Note that ‖u1 − v1‖∞ = 2r1. We then construct the graphs
Gi , i = 1, . . . , k − 1 inductively: once Gi is constructed, we continue the growth
process, and stop at time ri+1 ≥ ri if we find a pair of vertices ui+1, vi+1 with the label

123



Transitions for exceptional times in dynamical first-passage percolation 1053

Fig. 1 Depiction of the argument in the proof of Theorem 3.1. The solid horizontal crossing of the rectangle
is a p-open path. The dotted vertical crossings of the rectangle are 1/2-closed paths. The largest rectangle
is S(n) and the second largest is R(n). The red boxes have sidelength L(p). The vertex v1 illustrates the
case when s2 < s1. The vertex v2 illustrates the case when s1 < s2

�(ei+1) = ri+1. The ri ’s as constructed are elements of the set {1/2, 1, 3/2, . . . , 2n+1}.
Also, Observation 2.1 of [26] gives an important property of the numbers r1, . . . , rk−1:
they satisfy rk− j ≤ 2n+1

�√ j� for j = 1, . . . , k − 1. This implies that

rk− j ≤ 2n+1−� for all j with 4� ≤ j < 4�+1. (3.9)

For r ≤ 2n+1 and v ∈ R(n), let π̂4(p; v, r) be the probability that the following
hold:

1. v is connected inside S(n) to ∂B(v, s1) by two disjoint p-open paths, where

s1 = min{L(p), r}.

2. v is connected inside S(n) to ∂B(v, s2) by a 1/2-closed path, where

s2 = min{dist(v, ∂S(n)), r},

and dist is the �∞-distance.
3. v is connected inside S(n) to ∂B(v, s3) by a 1/2-closed path, where

s3 = min{2n, r}.

4. The paths referenced in items 1–3 are alternating: open, closed, open, closed, as
we proceed in a clockwise fashion around v.

This is the same definition as that of π̂4 in [13, p. 121]. So, just as in Eq. (14) there,
if we put π̂4(p, r) := maxv∈R(n) π̂4(p; v, r), then there exists C7 such that for all
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integers k, n ≥ 1 and p > 1/2 with L(p) ≤ 2n ,

P(Vn(p) ⊇ V ) ≤ C7

(

p − 1

2

)k

π̂4(p, 2
n)

∏

r∈R(V )

(C7π̂4(p, r)) . (3.10)

Here,R(V ) is the multiset containing r1, . . . , rk−1 (that is, it is a set whose elements
can be repeated). The argument that shows (3.10) uses only that our probabilities π̂4
have a quasi-multiplicative property.

We claim that there is C8 > 0 such that

π̂4(p; r) ≤ C8π4(s1)

(
s1
s3

)α−ε

(3.11)

for all n ≥ 1, r ≤ 2n+1, and p > 1/2 satisfying L(p) ≤ 2n . Here, π4(s1) is the usual
four-arm probability. The proof of (3.11) is almost the same as that of [13, Eq. (15)]
except there the s1/s3 term does not appear. We will follow along that proof with some
details omitted. First observe that since L(p) ≤ 2n , and so both s1 and s2 are ≤ s3,
the event defining π̂4(p; v, r) for v ∈ R(n) implies that v is connected to distance s1
by two disjoint p-open paths and one disjoint 1/2-closed path, and that v is connected
to distance min{s1, s2} by another disjoint 1/2-closed path, all in such a way that the
paths alternate (see Fig. 1). Furthermore, ∂B(v,min{s1, s2}) is connected to ∂B(v, s2)
by two disjoint 1/2-closed paths, and ∂B(v,max{s1, s2}) is connected to ∂B(v, s3)
by a 1/2-closed path. By independence, then, we have

π̂4(p; v, r) ≤ π ′
4(p,min{s1, s2})πH

3 (p,min{s1, s2}, s1)
× ρ2(min{s1, s2}, s2)πH

1 (max{s1, s2}, s3).
(3.12)

Here, π ′
4(p,m) is the probability that 0 is connected by two disjoint p-open paths

to distance m and by two disjoint 1/2-closed paths to distance m (alternating), and
πH
3 (p,m1,m2) is the probability that ∂B(m1) is connected to ∂B(m2) in the upper

half-plane by two disjoint p-open paths and a 1/2-closed path (alternating). By [11,
Lem. 6.3], there exists C9 such that for all n ≥ 1, r ≤ 2n+1, and p > 1/2 with
L(p) ≤ 2n ,

π ′
4(p,min{s1, s2}) ≤ C9π4(min{s1, s2}).

A similar argument as in [11, Lem. 6.3] also holds for half-plane three-arm (annulus)
events, and we find

πH
3 (p,min{s1, s2}, s1) ≤ C10π

H
3 (min{s1, s2}, s1),

where πH
3 (m1,m2) is the probability that ∂B(m1) is connected by two disjoint 1/2-

open paths and a 1/2-closed path to ∂B(m2) in such a way that all vertices w on
these paths satisfy w · e2 ≥ 0. Just as in [13, p. 112], we also have πH

3 (m1,m2) ≤
C11(m1/m2)

2 and π4(m1,m2) ≥ c7(m1/m2)
2, so using quasimultiplicativity of the
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Transitions for exceptional times in dynamical first-passage percolation 1055

four-arm probability and the two inequalities listed above, for some C12 > 0, we
obtain from (3.12)

π̂4(p; v, r) ≤ C12π4(s1)ρ2(min{s1, s2}, s2)πH
1 (max{s1, s2}, s3)

for all n ≥ 1, r ≤ 2n+1, p > 1/2 with L(p) ≤ 2n , and v ∈ R(n). This is the same as
[13, Eq. (15)], except we retain the extra two factors on the right. To finish, we simply
bound them using (3.3) to obtain (3.11).

Having established (3.11),we simplify the notation by recalling that each si depends
on r (as well as n, p) and put

θ(r) = π4(s1)

(
s1
s3

)α−ε

. (3.13)

Place this in (3.10) to obtain

P(Vn(p) ⊇ V ) ≤ C13

(

p − 1

2

)k

θ(2n)
∏

r∈R(V )

(C13θ(r)) . (3.14)

Furthermore, by [27, Prop. 15], for any multiset R with k − 1 elements, we have

#{V ⊂ R(n) : #V = k,R(V ) = R} ≤ C14O(R)22n
∏

r∈R

(C14r), (3.15)

where O(R) is the number of different ways the elements of R can be ordered. We
use both these bounds in our previous inequalities. First, putting (3.14) in (3.8), we
obtain

E#Vn(p)
k1{#Vn(p)≥k} ≤ kk

∑

V⊆R(n)

#V=k

⎛

⎝C13

(

p − 1

2

)k

θ(2n)
∏

r∈R(V )

(C13θ(r))

⎞

⎠

= kk
∑

V⊆R(n)

#V=k

(
∑

R

(

C13

(

p − 1

2

)k

θ(2n)
∏

r∈R

(C13θ(r))

)

1R(V )=R

)

.

Next, we restrict the sum over R only to those multisets of size k − 1 with elements
from {1/2, 1, 3/2, . . . , 2n+1} such that, if we write their elements in nondecreasing

order as r1, . . . , rk−1, then they satisfy (3.9). Writing
∑̂

R for this restricted sum, we
obtain

E#Vn(p)
k1{#Vn(p)≥k} ≤ kk

∑

V⊆R(n)

#V=k

(
∑̂

R

(

C13

(

p − 1

2

)k

θ(2n)
∏

r∈R

(C13θ(r))

)

1R(V )=R

)

.
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Last, we interchange the order of summation and use (3.15) to find, for someC15 > 0,

E#Vn(p)
k1{#Vn(p)≥k} ≤ Ck

15k
k22n

(

p − 1

2

)k

θ(2n)
∑̂

R

(

O(R)
∏

r∈R

(rθ(r))

)

.

Similarly to [26, Eq. (3.4)], for j = �log4 k� and m = k − 4 j ,

E#Vn(p)
k1{#Vn(p)≥k} ≤ Ck

15k
k22n

(

p − 1

2

)k

θ(2n)

(
k − 1

3, 3 · 4, . . . , 3 · 4 j−1,m

)

×
j−1∏

i=0

⎛

⎝
2n+1−i
∑

r=1

rθ(r)

⎞

⎠

3·4i ⎛

⎝
2n+1− j
∑

r=1

rθ(r)

⎞

⎠

m

.

The multinomial coefficient is bounded as

(
k − 1

3, 3 · 4, . . . , 3 · 4 j−1,m

)

=
(
k − 1

m

)(
k − 1 − m

3 · 4 j−1

)

· · · ·

≤ 2k−1+(k−1−m)+(k−1−m−3·4 j−1)+··· ≤ Ck
16,

so we obtain

E#Vn(p)
k1{#Vn(p)≥k} ≤ C17

kkk22n
(

p − 1

2

)k

θ(2n)

j−1∏

i=0

⎛

⎝
2n+1−i
∑

r=1

rθ(r)

⎞

⎠

3·4i ⎛

⎝
2n+1− j
∑

r=1

rθ(r)

⎞

⎠

m

. (3.16)

To bound the right side, we use the fact that there is C18 > 0 such that for all n ≥ 1
and integers s with 1 ≤ s ≤ 2n+1,

s∑

r=1

rθ(r) ≤ C18s
2θ(s). (3.17)

We split into cases to verify (3.17). First, if s ≥ 2n , then the definition θ(r) =
π4(min{L(p), r})

(
min{L(p),r}
min{2n ,r}

)α−ε

gives

s∑

r=1

rθ(r) =
L(p)∑

r=1

rπ4(r) +
2n−1∑

r=L(p)+1

rπ4(L(p))

(
L(p)

r

)α−ε

+
s∑

r=2n
rπ4(L(p))

(
L(p)

2n

)α−ε
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≤ C19

[

L(p)2π4(L(p)) + s2
(
L(p)

s

)α−ε

π4(L(p))

+s2
(
L(p)

2n

)α−ε

π4(L(p))

]

= C19s
2θ(s)

[(
L(p)

s

)2 ( 2n

L(p)

)α−ε

+
(
2n

s

)α−ε

+ 1

]

≤ 3C19s
2θ(s).

To go from the first line to the second line, we used
∑r ′

r=1 rπ4(r) ≤ C(r ′)2π4(r ′), as
in [26, Lem. 3.1].

If L(p) < s ≤ 2n − 1, then

s∑

r=1

rθ(r) ≤
L(p)∑

r=1

rπ4(r) +
s∑

r=L(p)+1

rπ4(L(p))

(
L(p)

r

)α−ε

≤ C20

[

L(p)2π4(L(p)) + s2
(
L(p)

s

)α−ε

π4(L(p))

]

≤ C20s
2θ(s)

[(
L(p)

s

)2−α+ε

+ 1

]

,

≤ 2C20s
2θ(s).

Last, if 1 ≤ s ≤ L(p), then

s∑

r=1

rθ(r) =
s∑

r=1

rπ4(r) ≤ C21s
2π4(s) = C21s

2θ(s).

This shows (3.17).
Putting (3.17) into (3.16) produces

E#Vn(p)
k1{#Vn(p)≥k}

≤ Ck
17k

k22n
(

p − 1

2

)k
⎡

⎣θ(2n)
j−1∏

i=0

(
C182

2(n+1−i)θ
(
2n+1−i

))3·4i
⎤

⎦

(
C182

2(n+1− j)θ
(
2n+1− j

))m

≤ C22
kkk22nk

(

p − 1

2

)k

θ(2n)4−mjθ
(
2n+1− j

)m
⎡

⎣
j−1∏

i=0

4−i3·4i
⎤

⎦

⎡

⎣
j−1∏

i=0

θ
(
2n+1−i

)3·4i
⎤

⎦ .
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We can further simplify this by using 4−mj ∏ j−1
i=0 4−i3·4i ≤ Ck

23k
−k and

θ(2n)θ(2n+1− j )m
j−1∏

i=0

θ(2n+1−i )3·4i ≤ θ

(
2n√
k

)k

to obtain

E#Vn(p)
k1{#Vn(p)≥k} ≤

[

C242
2n
(

p − 1

2

)

θ

(
2n√
k

)]k
.

The definition of θ(2n/
√
k) implies then that

E#Vn(p)
k1{#Vn(p)≥k}

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

C2422n
(
p − 1

2

)
π4(L(p))

(
L(p)
2n√
k

)α−ε
]k

if k ≤
(

2n
L(p)

)2

[
C2422n

(
p − 1

2

)
π4

(
2n√
k

)]k
if k ≥

(
2n
L(p)

)2
.

Applying the inequality (p − 1/2)L(p)2π4(L(p)) ≤ C from [24, Eq. (4.5)] yields

E#Vn(p)
k1{#Vn(p)≥k} ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

C25k
α−ε
2

(
2n
L(p)

)2−α+ε
]k

if k ≤
(

2n
L(p)

)2

[

C25

(
2n
L(p)

)2 π4

(
2n√
k

)

π4(L(p))

]k

if k ≥
(

2n
L(p)

)2
.

(3.18)

To convert this into (3.7), in the bottom expression we apply quasimultiplica-
tivity in the form π4(2n/

√
k)/π4(L(p)) ≤ C/π4(2n/

√
k, L(p)) and the exact

value 5/4 of the four-arm exponent from (2.5), which gives π4(2n/
√
k, L(p)) ≥

c(2n/(
√
kL(p)))5/4+ε . Together these imply

π4

(
2n√
k

)

π4(L(p))
≤ C26k

5
4+ε

2

(
2n

L(p)

)− 5
4−ε

.

Putting this in (3.18), we obtain (3.7).
It will be more convenient to use the following consequence of (3.7):

E#Vn(p)
k ≤ kkE1{#Vn(p)<k} + E#Vn(p)

k1{#Vn(p)≥k}

≤

⎧
⎪⎨

⎪⎩

[

C27k
α−ε
2

(
2n
L(p)

)2−α+ε
]k

if k ≤
(

2n
L(p)

)2

(C27k)k if k ≥
(

2n
L(p)

)2
.

(3.19)
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Although we have proved this inequality for integer k ≥ 1, by using the inequality

E#Vn(p)k ≤ (
E#Vn(p)�k�

)k/�k�
, one can extend it to real k ≥ 1, after possibly

increasing C27.
Using the moment bound (3.19), we will now prove the tail bound (3.6) for #Vn(p).

We recall that this will suffice to complete the proof of Theorem 3.1. To do that, we
may now apply Markov’s inequality to (3.19). For any λ > 0, and n ≥ 1, p > 1/2
with L(p) ≤ 2n ,

P(#Vn(p) ≥ λ)

≤ min

⎧
⎪⎪⎨

⎪⎪⎩
min

k≤
(

2n
L(p)

)2

⎛

⎜
⎝
C27

(
2n
L(p)

)2−α+ε

λ
k

α−ε
2

⎞

⎟
⎠

k

, min
k≥

(
2n
L(p)

)2

(

C27
k

λ

)k

⎫
⎪⎪⎬

⎪⎪⎭
.

We make the choice

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

λ

C27e
(

2n
L(p)

)2−α+ε

) 2
α−ε

if λ ≤ C27e
(

2n
L(p)

)2

λ
C27e

if λ ≥ C27e
(

2n
L(p)

)2

to produce the bound

P(#Vn(p) ≥ λ) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp

⎛

⎝−
(

λ

C27e
(

2n
L(p)

)2−α+ε

) 2
α−ε

⎞

⎠ if λ ≤ C27e
(

2n
L(p)

)2

exp
(
− λ

C27e

)
if λ ≥ C27e

(
2n
L(p)

)2
.

Replacing λ by λ(2n/L(p))2−α+ε , we obtain (3.6). ��
As a result of Theorem 3.1, we can prove a similar tail inequality for our original

variables T(n).

Corollary 3.2 Let ε ∈ (0, α). There exist c8,C28 > 0 such that for any n ≥ 2 and
p > 1/2 with L(p) ≤ 2n−1

P

(

T(n) ≥ λF−1(p)

(
2n

L(p)

)2−α+ε
)

≤ 65 exp

(

−c8
2n

L(p)

)

+

⎧
⎪⎨

⎪⎩

65 exp
(
−c8λ

2
α−ε

)
if λ ≤ C28

(
2n
L(p)

)α−ε

65 exp

(

−c8
(

2n
L(p)

)2−α+ε

λ

)

if λ ≥ C28

(
2n
L(p)

)α−ε

.

Proof The construction we give is similar to that in [13, Prop. 2]. We will build a
circuit around the origin in B(2n+1) \ B(2n) (whose passage time is an upper bound
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Fig. 2 Depiction of the argument in the proof of Corollary 3.2. The five rectangles with crossings are
translates and rotates of the rectangle R′(n) = [−8·2n−1, 8·2n−1]×[−2n−1, 2n−1]. Each curve represents
a crossing in the long direction of its containing rectangle with minimal passage time

for T(1)(n)) and a path connecting B(2n) to ∂B(2n+2) in B(2n+2) \ B(2n) (whose
passage time is an upper bound for T(2)(n)). It is possible to do this within the union
of long-direction crossings of five rectangles which are translates and rotates of the
rectangle R′(n) = [−8 · 2n−1, 8 · 2n−1] × [−2n−1, 2n−1] (see Fig. 2). By a union
bound,

P

(

T(n) ≥ λF−1(p)

(
2n

L(p)

)2−α+ε
)

≤ 5P

(

T ′(n) ≥ λ

5
F−1(p)

(
2n

L(p)

)2−α+ε
)

,

(3.20)
where T ′(n) is the minimal passage time among all paths that remain in R′(n) and
connect its left side to its right side.

The variable T ′(n) is bounded using a similar geometric construction. Let

1, . . . , 
7 be paths such that 
i is in [−8 · 2n−1 + 2(i − 1)2n−1,−8 · 2n−1 + 2(i +
1)2n−1] × [−2n−1, 2n−1], connects the left side of the rectangle to its right side, and
hasminimal passage time among all such paths. Let 
̂1, . . . , 
̂6 be paths such that 
̂i is
in [−8 ·2n−1+2i2n−1,−8 ·2n−1+2(i+1)2n−1]×[−2n−1, 3 ·2n−1], connects the top
side of the rectangle to the bottom side, and has minimal passage time among all such
paths. By planarity, there is a path remaining in [−8 · 2n−1, 8 · 2n−1]× [−2n−1, 2n−1]
which starts on the left side of this rectangle, ends on the right, and is contained in the
union of the 
i ’s and the 
̂i ’s. We therefore find, for T (n− 1) defined as below (3.3),

P

(

T ′(n) ≥ λ

5
F−1(p)

(
2n

L(p)

)2−α+ε
)

≤ 13P

(

T (n − 1) ≥ λ

65
F−1(p)

(
2n

L(p)

)2−α+ε
)

.

We apply Theorem 3.1 to the right side and combine this with (3.20) to complete the
proof. ��
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3.1.2 Ruling out exceptional times

Now that we have the tail bound for T(n) in Corollary 3.2, we can return to the proof
of Theorem 1.3. Suppose that

∑∞
k=2 k

7/8ak < ∞. Recall that if Tt (n) is the variable
T(n) evaluated in the configuration (τv(t)), it suffices by (3.1) to prove that

a.s., for all t ∈ [0, 1],
∞∑

n=1

Tt (n) < ∞. (3.21)

To do this, we will bound partial sums of Tt (n) by partial sums of
∑

k k
7/8ak . We will

need a simple tool that helps us bound Tt (n) for all t simultaneously.

Lemma 3.3 For eachn, let An bean event dependingon theweights (τv) forv ∈ B(2n).
If P(An) ≤ 18−n for all large n, then

∞∑

n=1

P (An occurs in (τv(t)) for some t ∈ [0, 1]) < ∞.

By the Borel–Cantelli Lemma, the above lemma implies that a.s., for all large n, Ac
n

occurs for all t ∈ [0, 1] simultaneously.

Proof There is no harm in assuming P(An) ≤ 18−n for all n. To prove the lemma, we
will use a union bound over a fine subdivision of times. For this purpose, we define
times 0 = t (n)

0 < t (n)
1 < · · · < t (n)

pn = 1 with

t (n)
i − t (n)

i−1 ≤ 17−n and pn ≤ 17n + 1.

Note that if An occurs at some time t ∈ [0, 1] but not at any t (n)
i , then a.s., at least

one interval

(

t (n)
i−1, t

(n)
i

]

must contain at least two times at which vertices in B(2n)

resample their values. Recalling that (sv(t))t≥0 is the Poisson process associated with
vertex v, and setting s(t; n) = ∑

v∈B(2n) sv(t) (which is a Poisson process of rate
r(n) = (2n + 1)2), then, we obtain

P(An occurs in (τv(t)) for some t ∈ [0, 1])
≤ P(An occurs in (τv(t

(n)
i )) for some i)

+ P

(
s(t (n)

i ; n) > s(t (n)
i−1; n) + 1 for some i

)

≤ (pn + 1)P(An) + pnP(s(17−n; n) ≥ 2)

≤ (
17n + 2

) (
18−n +

(
1 − e−17−nr(n) − 17−nr(n)e−17−nr(n)

))

≤ (
17n + 2

) (
18−n + (17−nr(n))2

)
.

Because r(n) ≤ 4 · 4n , the bound is summable and this completes the proof. ��
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Our next task is to use Lemma 3.3 in conjunction with the tail bound Corollary 3.2
to truncate the variables Tt (n). To do this, we first reformulate the inequality of the

corollary in a more useful way. Use λ = C28

(
2n
L(p)

) α−ε
2

to obtain for n ≥ 2 and

p > 1/2 with L(p) ≤ 2n−1

P

(

T(n) ≥ C28F
−1(p)

(
2n

L(p)

)2− α−ε
2
)

≤ C29 exp

(

−c9
2n

L(p)

)

.

If we set p = p�2n/u� in this equation and write

η = 2 − α − ε

2
(3.22)

for simplicity, we obtain from (2.3) that

P

(

T(n) ≥ c10u
ηF−1

(

p⌈ 2n
u

⌉

))

≤ C29 exp (−c10u) for u ∈ [
4, 2n

]
.

Substituting u1/η for u, this becomes

P

⎛

⎜
⎝T(n) ≥ c10uF

−1

⎛

⎜
⎝p⌈

2n

u
1
η

⌉

⎞

⎟
⎠

⎞

⎟
⎠ ≤ C29 exp

(
−c10u

1
η

)
for u ∈ [

4η, 2nη
]
.

As long as u ≤ (4/3)nη, we have 1.5n ≤ 2n/u1/η, so we obtain for n ≥ 2

P

(
T(n) ≥ c10uF

−1 (p�1.5n�
)) ≤ C29 exp

(

−c10u
1
η

)

for u ∈
[

4η,

(
4

3

)nη]

. (3.23)

Equation (3.23) is our more useful version of the bound of Corollary 3.2. Because
it only applies for u ≤ (4/3)nη, we truncate our variables at this level. Set

Xn,t = Tt (n)

c10F−1
(
p�1.5n�

) and Yn,t = Xn,t1{Xn,t≤
(
4
3

)nη}.

For future reference, we record that

P
(
Yn,0 ≥ u

) ≤ C29 exp
(
−c10u

1
η

)
for u ≥ 0 and n ≥ 2. (3.24)

We now claim ∞∑

n=1

P(Xn,t �= Yn,t for some t ∈ [0, 1]) < ∞. (3.25)
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To prove this, we apply Lemma 3.3. For some c11 > 0,

P(Xn,0 �= Yn,0) ≤ P

(

T(n) ≥ c10F
−1 (p�1.5n�

)
(
4

3

)ηn)

≤ P

⎛

⎝T(n) ≥ c11

(
4

3

) α−ε
2 n

F−1 (p�1.5n�
)
(

2n

L
(
p�1.5n�

)

)2−α+ε
⎞

⎠ .

We use Corollary 3.2 to get

P(Xn,0 �= Yn,0) ≤ 65 exp

(

−c8
2n

L
(
p�1.5n�

)

)

+ 65 exp

(

−c12

(
4

3

)n)

. (3.26)

Because this is ≤ 18−(n+2) for all large n, and the variables Xn,0,Yn,0 depend only
on weights associated to vertices in B(2n+2), Lemma 3.3 implies (3.25).

Because of (3.25), to prove (3.21), we are reduced to showing that

a.s., for all t ∈ [0, 1],
∞∑

n=1

[
F−1 (p�1.5n�

)
Yn,t

]
< ∞. (3.27)

To do this, we apply Lemma 2.1 with ak = Yk,t and bk = F−1
(
p�1.5k�

)
, so we must

bound the partial sum
∑n

k=1 Yk,t . We will show that for some C30 > 0,

P
(
Y2,0 + · · · + Yn,0 ≥ C30n

η
) ≤ 18−(n+2) for all large n. (3.28)

Because the event {Y2,0 + · · · + Yn,0 ≥ C30nη} depends only on weights associated
to vertices in B(2n+2), Lemma 3.3 will then imply that a.s.,

Ct := sup
n≥1

1

nη

n∑

k=1

Yk,t < ∞ for all t ∈ [0, 1].

That is, we will obtain the following partial sum bound: a.s.,

n∑

k=1

Yk,t ≤ Ctn
η ≤ C31Ct

n∑

k=1

kη−1 for all t ∈ [0, 1] and n ≥ 1. (3.29)

To prove (3.28), we give the following lemma:

Lemma 3.4 Let ξ j , j = 1, 2, . . . be i.i.d. random variables withEξ1 = 0 andVar ξ1 =
1. Assume that ξ1 has a continuous distribution with density p(x) such that p(x) ∼
e−x1−δ

as x → ∞ for some δ ∈ (0, 1) and E|ξ1|k < ∞ for some k ≥ �1/δ − 2� + 3.
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If (xn) is a sequence with xn/n1/(2δ) → ∞, then

P(ξ1 + · · · + ξn > xn)

nP(ξ1 > xn)
→ 1 as n → ∞. (3.30)

Proof This is [30, Thm. 3] with the condition p(x) ∼ e−|x |1−δ
as |x | → ∞ in [30,

Eq. (2)] replaced by the stated condition, which appears in item 1 of the footnote of
[30, p. 51]. ��

Below, we will apply the lemma with δ = 1 − 1/η and xn of order nη = n1/(1−δ).
Then xn/n1/(2δ) will be of order n1/(1−δ)−1/(2δ) → ∞ so long as δ > 1/3, and this
holds because η ≥ 11/6. We conclude that for random variables as in the lemma with
p(x) ∼ e−x1/η and xn of order nη, (3.30) holds.

To use Lemma 3.4 to prove (3.28), we first observe that although the sequence
(Yn,0)n≥2 is not independent, it is only 1-dependent, so (Y2n,0)n≥1 consists of inde-
pendent random variables, as does (Y2n−1,0)n≥2. By splitting into contributions from
these subsums, we may assume that the original sequence (Yn,0)n≥2 is independent.
Assuming this, by the bound (3.24), (Yn,0)n≥2 is stochastically dominated by the
sequence (C32(1 + ξn))n≥2, where C32 is a positive constant, and the ξi ’s are as in
Lemma 3.4. Therefore for large n, the left side of (3.28) is no larger than

P(Y2,0 + · · · + Yn,0 > C30n
η − 1) ≤ P(ξ2 + · · · + ξn > C−1

32 (C30n
η − 1) − n)

≤ P

(

ξ1 + · · · + ξn >
C30

2C32
nη

)

.

Applying Lemma 3.4 with xn = nηC30/(2C32), for large n we obtain the upper bound

2nP

(

ξ1 ≥ C30

2C32
nη

)

≤ 18−(n+2),

so long as C39 is large enough. This gives (3.28).
We now use the consequence (3.29) of (3.28) to apply Lemma 2.1 with ak =

Yk,t ,bk = F−1
(
p�1.5k�

)
, and ck = C30Ctkη−1. We conclude that a.s., for all t ∈

[0, 1] and n ≥ 1,

n∑

k=1

[
F−1

(
p�1.5k�

)
Yk,t

]
≤ C30Ct

n∑

k=1

[
F−1

(
p�1.5k�

)
kη−1

]
. (3.31)

Finally (2.4) gives for some c13 > 0

F−1
(
p�1.5k�

)
≤ F−1

(
1

2
+ 1

2�c13k�

)

= a�c13k�

for all large k. Comparing to (3.31), we see that (3.27) holds as long as
∑

k(a�c13k� ∧
1)kη−1 < ∞. Recall that our assumption is that

∑
akk7/8 < ∞. Because η − 1 =

123



Transitions for exceptional times in dynamical first-passage percolation 1065

1 − (α − ε)/2 and α > 1/4, there is ε small enough that η − 1 < 7/8. This implies
(3.27) and completes the proof.

3.2 Proof of Theorem 1.1

In this section we suppose that F satisfies (1.1) and (1.7). We first outline the idea. To
prove that the Hausdorff dimension equals 31/36 a.s., we will prove that

dimH({t ≥ 0 : ρt < ∞}) ≥ 31

36
a.s., (3.32)

and

dimH({t ≥ 0 : ρt < ∞}) ≤ 31

36
a.s. (3.33)

The lower bound, (3.32), follows quickly from the proof of [15, Thm. 1.4(1)].
Specifically, [15, p. 92] states “The above discussion therefore gives dimH(E) ≥ 31/36
a.s.” Here, E is defined at the bottom of [15, p. 91] as “the set of exceptional times
t ∈ [0,∞) for the event that the origin is in an infinite open cluster.” The term “infinite
open cluster” corresponds here to an infinite connected set of verticeswithweight zero,
so a.s. dimH({t ≥ 0 : ρt = 0}) = 31/36 and

dimH({t ≥ 0 : ρt < ∞}) ≥ dimH({t ≥ 0 : ρt = 0}) = 31

36
a.s.

In other words, (3.32) holds.
The outline of the other inequality (3.33) begins with a definition of events Ak(t)

that there is a circuit around 0 in the annulus Ann(Lk−1, Lk) (here L > 1 is an integer)
whose weights at time t are at least qk , where qk is defined in (3.35). We first show that
if for some t , ρt is finite, then zero lower density of the Ak(t) occur (see (3.37)). Next,
we define auxiliary weights (σ k

v (t)) which are constant on intervals �k (see (3.39))
and are dominated by the weights (ωv(t)). These newweights are used to define events
Bk(t) that there is a path between the boundaries of Ann(Lk−1, Lk) whose vertices v

have σ k
v (t) = 0. Because Bk(t) ⊃ Ak(t)c, we obtain in (3.40) that if for some t , ρt is

finite, then upper density one of the Bk(t) occur. We then construct a covering (3.41)
of the set of t for which the upper density of Bk(t) which occur is at least x . The rest
of the proof consists of showing in (3.47) that the α-dimensional Hausdorff content
of this covering for values of α close to 31/36 is zero.

We now begin the proof of (3.33). Note that by time stationarity and countable
stability, it suffices to prove that

dimH({t ∈ [0, 1] : ρt < ∞}) ≤ 31

36
a.s. (3.34)

We will build an explicit cover using an integer L > 1, which we take large later in
the proof. For k ≥ 1, let Ak(t) denote the event that there is a circuit around 0 in the
annulus Ann(Lk−1, Lk) such that each of its vertices v satisfy ωv(t) ≥ qk > 1/2,
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where

qk = 1

2
+ 1

2

(

pLk − 1

2

)

. (3.35)

We observe that every infinite, self-avoiding path starting at 0 must cross each of these
annuli, and so by (1.4),

∞∑

k=1

F−1(qk)1Ak (t) ≤ ρt . (3.36)

We claim that for any t and any outcome,

ρt < ∞ ⇒ lim inf
n→∞

1

n

n∑

k=1

1Ak (t) = 0. (3.37)

We argue by contrapositive. Assume that for some c14 > 0, we have
∑n

k=1 1Ak (t) ≥
c14n if n is larger than some n0. Then set ck = 1Ak (t) if k ≥ n0 and 1 otherwise, so
that

∑n
k=1 ck ≥ c14n for all n ≥ 1. Lemma 2.1 with ak = c14 and bk = F−1(qk)

implies that for all n ≥ 1,

c14

n∑

k=1

F−1(qk) ≤
n∑

k=1

ck F−1(qk). (3.38)

By (2.4), we have for some ε2 > 0, F−1(qk) ≥ a�ε2k� if k is large. Because we have
assumed (1.7), this is not summable, and therefore (3.38) implies that

∑
ck F−1(qk)

diverges. By (3.36), ρt = ∞, and this shows (3.37).
To bound the dimension of the set of exceptional times, we will cover the set of t

for which the right side of (3.37) holds. Our cover will consist of intervals of different
sizes. Let

�k = pLk − 1
2

2
(3.39)

and let �k be the collection of half-open intervals I of the form

I = [ih, (i + 1)h) for i = 0, . . . , ��−1
k � − 1

and h = 1/�1/�k�. To decide which of these intervals to include in our covering, we
define auxiliary weights σ k

v (t) for vertices v and t ∈ [0, 1), k ≥ 1 by σ k
v (t) = 1 if

ωv(t) ≥ qk and sv does not increment on the interval I , where I is the unique element
of �k that contains t . Otherwise, we set σ k

v (t) = 0. Let Bk(t) be the event that there
is a path connecting the inner and outer boundaries of Ann(Lk−1, Lk) whose vertices
v satisfy σ k

v (t) = 0. We observe that Ac
k(t) ⊂ Bk(t) for t ∈ [0, 1) and k ≥ 1. Indeed,

if Bk(t) does not occur, then by duality, there is a circuit around 0 in Ann(Lk−1, Lk)

whose vertices v satisfy σ k
v (t) = 1, and therefore ωv(t) ≥ qk , implying occurrence of
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Ak(t). Because of this,

lim inf
n→∞

1

n

n∑

k=1

1Ak (t) = 0 ⇒ lim sup
n→∞

Wn(t) = 1, (3.40)

whereWn(t) = (1/n)
∑n

k=1 1Bk (t). Therefore if x ∈ (0, 1) is fixed, and the left side of
(3.40) holds for some t ∈ [0, 1), thenWn(t) ≥ x for infinitely many n. This motivates
our covering: we set

CN (x) = {
I ∈ �n : n ≥ N ,Wn(t) ≥ x for some t ∈ I

}
, (3.41)

so that by (3.37) and (3.40),

for any N and x ∈ (0, 1), {t ∈ [0, 1) : ρt < ∞} ⊂
⋃

I∈CN (x)

I .

Using the definition of Hausdorff outer measure in (1.9) and the fact that {1} has
diameter 0, for any α ∈ (0, 1),

Hα ({t ∈ [0, 1] : ρt < ∞}) ≤ lim inf
N→∞

∑

I∈CN (x)

(diam I )α. (3.42)

To bound the right side of (3.42), we note that the weights σ k
v (t) are constant for t

in any interval in �k , so

∑

I∈CN (x)

(diam I )α =
∑

n≥N

��−1
n �−1∑

i=0

��−1
n �−α1{Wn(i��−1

n �−1)≥x},

and
E

∑

I∈CN (x)

(diam I )α =
∑

n≥N

��−1
n �1−α

P(Wn(0) ≥ x). (3.43)

For any vertex v, and integer k ≥ 1,

P(σ k
v (0) = 0) = 1 − (1 − qk)e

−��−1
k �−1 ≤ qk + ��−1

k �−1 ≤ pLk ,

so from (2.8), for all L, k ≥ 1,

P(Bk(0)) ≤ C3π1(L
k−1, Lk).

Usingquasimultiplicativity from (2.7) andα1 = 5/48 from (2.5), given any δ1 < 5/48,
there exists C33 > 0 such that for all L, k, π1(Lk−1, Lk) ≤ C33L−δ1 . Therefore,
calling

p = p(L) = C3C33L
−δ1, (3.44)
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we have P(Bk(0)) ≤ p for all k, L ≥ 1, and so

P
(
Wn(0) ≥ x

) ≤ P(X1 + · · · + Xn ≥ nx), (3.45)

where X1, . . . , Xn are i.i.d. random variables having the Bernoulli distribution with
parameter p. Standard large deviation results dictate that if we define the rate function

I (x) = I (x, p) = x log
x

p
+ (1 − x) log

1 − x

1 − p
, (3.46)

then for x ≥ p,

P(X1 + · · · + Xn ≥ nx) ≤ e−I (x)n .

Putting this in (3.45) and then back in (3.43), we obtain

E

∑

I∈CN (x)

(diam I )α ≤ 21−α
∑

n≥N

�α−1
n e−I (x)n = 21−α

∑

n≥N

(
pLn − 1

2

2

)α−1

e−I (x)n .

By (2.4), if ε1 > 3/4, the sum is at most 41−α
∑

n≥N e−nI (x)Lnε1(1−α) for large N .
If I (x) > ε1(1 − α) log L , then this converges to 0 as N → ∞, so we apply Fatou’s
lemma in (3.42) to deduce that

α > 1 − I (x)

ε1 log L
⇒ EHα({t ∈ [0, 1] : ρt < ∞}) = 0.

If we let x ↑ 1, we see in (3.46) that I (x) → log(1/p), and so this implies

α > 1 − log(1/p)

ε1 log L
⇒ Hα({t ∈ [0, 1] : ρt < ∞}) = 0 a.s. (3.47)

The definition of p in (3.44) along with the definition of Hausdorff dimension gives

dimH({t ∈ [0, 1] : ρt < ∞}) ≤ 1 + logC3C33 − δ1 log L

ε1 log L
a.s.

Letting L → ∞, we obtain an upper bound of 1 − δ1/ε1. If we take δ1 → 5/48
and ε1 → 3/4, this shows (3.34) and completes the proof of (3.33). Since we have
established both the lower bound (3.32) and the upper bound (3.33), this finishes the
proof of Theorem 1.1.

3.3 Proof of Theorem 1.2

The proof of Theorem 1.2 will be split into two parts. Throughout, we assume that F
satisfies (1.1) and (1.7).
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3.3.1 Theorem 1.2(1)

We begin the lower bound in the first item of Theorem 1.2. It again uses [15], but now
the fact that on the event {∃t ∈ [0, 1] : ρt = 0}, a.s. one has dimH({t ∈ [0, 1] : ρt =
0}) ≥ 31/36. This follows from the discussion at the bottom of [15, p. 91] along with
the statement on [15, p. 92] that supR Mγ (R) < ∞ for any γ < 31/36. Using time
stationarity, we deduce the same claim for general intervals: if s ≥ 1, then on the event
{∃t ∈ [0, s] : ρt = 0}, one has dimH({t ∈ [0, s] : ρt = 0}) ≥ 31/36.

Because {t ≥ 0 : ρt = 0} is a.s. nonempty (its Hausdorff dimension is a.s. 31/36),
we can, given δ > 0, choose s ≥ 1 such that

P ({t ∈ [0, s] : ρt = 0} �= ∅) > 1 − δ.

Therefore for any x ∈ [0,∞),

P

(

dimM({t ∈ [0, s] : ρt ≤ x}) ≥ 31

36

)

≥ (1 − δ)P

(

dimH ({t ∈ [0, s] : ρt = 0}) ≥ 31

36

∣
∣
∣
∣ ∃t ∈ [0, s] : ρt = 0

)

= 1 − δ,

and so we obtain one half of our desired result: for any x ∈ [0,∞),

lim
s→∞ P

(

dimM({t ∈ [0, s] : ρt ≤ x}) ≥ 31

36

)

= 1. (3.48)

To prove the upper bound, we assume that kak → ∞ and apply a covering argument
inspired by the proof of [34, Thm. 6.3], which shows that the Hausdorff dimension of
the set of exceptional times in dynamical percolation is at most 31/36. We give the
main estimate as a lemma.

Lemma 3.5 There exists C34 > 0 such that the following holds. For any ε > 0,
x, s ∈ [0,∞), and n ≥ 1 such that

2n ≤ L

(

1 − e−ε

(
1

2
− ε

))

, (3.49)

the expected covering number satisfies

EN ({t ∈ [0, s] : ρt ≤ x}, ε) ≤ Cy+1
34

⌈ s

ε

⌉(n

y

)

π1(2
n),

where

y = min

{⌊
x

F−1
( 1
2 + ε

)

⌋

, n

}

. (3.50)
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Proof Pick ε, x, s, n satisfying the conditions in the statement of the lemma. By cov-
ering our set with intervals of length ε, we see that

N ({t ∈ [0, s] : ρt ≤ x}, ε)
≤ N ({t ∈ [0, s] : Tt (0, ∂B(2n)) ≤ x}, ε)
≤ #

{
i = 1, . . . ,

⌈ s

ε

⌉
: ∃t ∈ [(i − 1)ε, iε] for which Tt (0, ∂B(2n)) ≤ x

}
.

Taking expectation and using time stationarity of our process, we obtain

EN ({t ∈ [0, s] : ρt ≤ x}, ε) ≤
⌈ s

ε

⌉
P
(∃t ∈ [0, ε] for which Tt (0, ∂B(2n)) ≤ x

)
.

(3.51)
Tobound the probability on the right of (3.51),we introduce an auxiliary percolation

process. For v ∈ Z
2, define

σv =
{
1 if ωv(0) ≥ 1

2 + ε and sv does not increment in [0, ε)
0 otherwise.

The vertices v with σv = 1 are those whose weights are initially sufficiently large and
also do not update until at least time ε. The family (σv)v∈Z2 is i.i.d. and satisfies

P(σv = 1) = e−ε

(
1

2
− ε

)

= 1 − P(σv = 0).

The important property of the variables σv is that if there is a t ∈ [0, ε] such that
Tt (0, ∂B(2n)) ≤ x (from the right side of (3.51)), then there must be a path γ con-
necting 0 and ∂B(2n) such that

#{v ∈ γ : σv = 1, v �= 0} ≤ x

F−1
( 1
2 + ε

) . (3.52)

Indeed, if there is such a t , then there is a path γ connecting 0 and ∂B(2n) such that∑
v∈γ,v �=0 τv(t) ≤ x . But because any v with σv = 1 has τv(0) = τv(t), we find

x ≥
∑

v∈γ,v �=0

τv(t)σv =
∑

v∈γ,v �=0

τv(0)σv ≥ F−1
(
1

2
+ ε

) ∑

v∈γ,v �=0

σv.

The σ variables are 0/1-valued, so this implies (3.52). In other words,

P
(∃t ∈ [0, ε] for which Tt (0, ∂B(2n)) ≤ x

) ≤ P
(∃γ : 0 → ∂B(2n) satisfying (3.52)

)
.

(3.53)
Now we use percolation tools to bound the right side of (3.53). Such a path γ has

at most x/F−1(1/2 + ε) many nonzero vertices with σ -weight equal to 1, and each
of these vertices must be in an annulus of the form Ann(2 j−1, 2 j ) for some integer j
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satisfying 0 ≤ j ≤ n. Because all other vertices on γ have sigma-weight 0, we can
therefore find a sequence (k j )

y+1
j=0 with

y ≤ x

F−1
( 1
2 + ε

) and 1 = k0 ≤ k1 < k2 < · · · < ky ≤ ky+1 = n

such that for each � = 0, . . . , y, B(2k� ) is connected to ∂B(2k�+1−1) by a path whose
vertices v have σv = 0. (If k� = k�+1, as might be the case for � = 0 or � = y, we use
the convention throughout that the corresponding connection always exists.) In fact,
this statement remains true if we assume that y takes the value (3.50). So, by a union
bound and independence, we find

P
(∃γ : 0 → ∂B(2n) satisfying (3.52)

)

≤
∑

1≤k1<···<ky≤n

y∏

�=0

π1

(

1 − e−ε

(
1

2
− ε

)

; 2k� , 2k�+1−1
)

. (3.54)

By (2.8) and (3.49), we can bound each factor on the right of (3.54)
by C3π1(2k� , 2k�+1−1). Because we can find c15 > 0 such that for all m ≥ 0, one
has π1(2m, 2m+1) ≥ c15 (see (2.2)), the right side of (3.54) is bounded as

∑

1≤k1<···<ky≤n

y∏

�=0

π1

(

1 − e−ε

(
1

2
− ε

)

; 2k� , 2k�+1−1
)

≤
(
C3

c15

)y+1 ∑

1≤k1<···<ky≤n

[ y∏

�=0

π1

(
2k� , 2k�+1−1

)
π1

(
2k�+1−1, 2k�+1

)
]

. (3.55)

We apply quasimultiplicativity from (2.7) in the right side 2y+2 many times to obtain

∑

1≤k1<···<ky≤n

y∏

�=0

π1

(

1 − e−ε

(
1

2
− ε

)

; 2k� , 2k�+1−1
)

≤
(

C3

c15c23

)y+1
∑

1≤k1<···<ky≤n

π1
(
2, 2n

)
.

≤ π1
(
2, 2n

)
(
n

y

)(
C3

c15c23

)y+1

≤ Cy+1
34

(
n

y

)

π1(2
n).

We place this bound in (3.54), and then go back through (3.53) and (3.51) to arrive
at the statement of Lemma 3.5. ��
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Returning to the upper bound for the Minkowski dimension, we let x and s in
[0,∞), with a fixed δ > 0, and we choose C35 so large that

x ≤ C35

2

(
4

3
− δ

2

)

. (3.56)

Because we have assumed kak → ∞, we have kak ≥ C35 for all large k. For such k,
we make the choices

ε = 2−k, n =
⌈(

4

3
− δ

2

)

k

⌉

for use in Lemma 3.5. One can check that (3.49) holds for large k and the parameter
y in (3.50) satisfies

y ≤ min

{
x

ak
,

⌈

k

(
4

3
− δ

2

)⌉}

≤ min

{
x

C35
k,

⌈

k

(
4

3
− δ

2

)⌉}

= x

C35
k,

which is ≤ n/2. This implies that if k is large,

(
n

y

)

≤
(

n⌊
x

C35
k
⌋
)

≤
⎛

⎝
e
⌈( 4

3 − δ
2

)
k
⌉

⌊
x

C35
k
⌋

⎞

⎠

⌊
x

C35
k
⌋

≤
(
4eC35

( 4
3 − δ

2

)

x

) x
C35

k

.

Plugging these into Lemma 3.5, we obtain for large k

EN ({t ∈ [0, s] : ρt ≤ x}, 2−k) ≤ C
x

C35
k+1

34

⌈
s2k

⌉
(
4eC35

( 4
3 − δ

2

)

x

) x
C35

k

π1

(

2

(
4
3− δ

2

)
k
)

.

We choose C6 so large that this implies

EN ({t ∈ [0, s] : ρt ≤ x}, 2−k) ≤
⌈
s2k

⌉
2

δ
2 kπ1

(

2

(
4
3− δ

2

)
k
)

(3.57)

whenever k is large enough. Use the value 5/48 of the one-arm exponent from (2.5)
to obtain for large k

EN ({t ∈ [0, s] : ρt ≤ x}, 2−k) ≤
⌈
s2k

⌉
2
−
(

5
36− 3δ

4

)
k
. (3.58)

Markov’s inequality and the Borel–Cantelli lemma give a.s.

N ({t ∈ [0, s] : ρt ≤ x}, 2−k) ≤
⌈
s2k

⌉
2
−
(

5
36−δ

)
k
for all large k.
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This implies that a.s., dimM({t ∈ [0, s] : ρt ≤ x}) ≤ 31/36 + δ (and by taking δ ↓ 0
through a countable set we get the upper bound 31/36), and therefore

lim
s→∞ P

(

dimM({t ∈ [0, s] : ρt ≤ x}) ≤ 31

36

)

= 1. (3.59)

We combine this with (3.48) to complete the proof of Theorem 1.2(1).

3.3.2 Theorem 1.2(2)

The proof of Theorem 1.2(2) will be split into four steps.
Step 1: Constructing many time intervals in which Tt (0, ∂B(2n)) = 0.

To give a lower bound on the set of exceptional times, wemust show there are many
times t atwhichρt is small. First,we constructmany times atwhich Tt (0, ∂B(2n)) = 0,
for some large n, and later we connect these boxes to infinity by low-weight paths. To
glue connections together properly, we will need to ensure Tt (0, ∂B(2n)) = 0 for all
t in a small interval.

Define the event At = At (n, M) for t ∈ [0, 1] and n, M ≥ 1 by the existence of a
circuit C around 0 in Ann(2n, 2n+1) and a path γ connecting 0 to C in the interior of
C such that

1. Tt (γ ) = Tt (C) = 0, and
2. for each vertex v ∈ γ ∪C, the Poisson process sv does not increment in the interval

[t, t + 1/M).

Also let

N(n, M) = #
{
i = 0, . . . , M − 1 : A i

M
occurs

}
.

We will show that there is c16 > 0 such that for n, M ≥ 1 satisfying

L

(
1

2
e− 1

M

)

≥ 2n+1 and Mπ1(2
n+1) ≥ 1, (3.60)

one has
P

(
N(n, M) ≥ c16Mπ1(2

n+1)
)

≥ c16. (3.61)

To show (3.61), we apply the second moment method, using another auxiliary
percolation process. For v ∈ Z

2, set

σv =
{
1 if τv(0) > 0 or sv increments in [0, 1

M )

0 otherwise.

Then the σv’s are i.i.d. and satisfy

P(σv = 0) = 1

2
e− 1

M = 1 − P(σv = 1).
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Using the FKG inequality,

EN(n, M) = MP(A0) ≥ MP(0 → ∂B(2n+1) by a path of vertices v with σv = 0)

× P(some circuit around 0 in Ann(2n, 2n+1) has all vertices v with σv = 0)

Equation (2.2) implies that, under the assumption L(e−1/M/2) ≥ 2n+1, the first prob-
ability factor on the right is bounded below by c17π1(2n+1), and the second factor is
bounded below by c17. Therefore

EN(n, M) ≥ c217Mπ1(2
n+1) if L

(
1

2
e− 1

M

)

≥ 2n+1. (3.62)

To estimate the second moment of N(n, M), we write

EN(n, M)2 =
M−1∑

i, j=0

P

(
A i

M
∩ A j

M

)

≤ 2M
M−1∑

i=0

P

(
A0 ∩ A i

M

)
≤ 2M

M−1∑

i=0

P

(
B0 ∩ B i

M

)
,

where Bt is the event that Tt (0, ∂B(2n)) = 0. By [34, Eq. (5.4)], there is C36 > 0
such that

P(B0 ∩ Bt ) ≤ C36π1(2
n)2t−

7
8 for t ∈ [0, 1].

This gives

EN(n, M)2 ≤ 2Mπ1(2
n) + 2C36M

2π1(2
n)2 · 1

M

M−1∑

i=1

(
i

M

)− 7
8

≤ 2Mπ1(2
n) + 2C36M

2π1(2
n)2

∫ 1

0
t−

7
8 dt

≤ C37

[
Mπ1(2

n) + M2π1(2
n)2

]
.

Quasimultiplicativity of π1 from (2.7) along with (2.2) gives π1(2n) ≤ C38π1(2n+1).
Because Mπ1(2n+1) ≥ 1, we obtain the upper bound

EN(n, M)2 ≤ C39M
2π1(2

n+1)2,

which by (3.62) is≤ (
c417/C39

)
(EN(n, M))2. The Paley-Zygmund inequality finishes

the proof of (3.61).
Step 2: Constructing times at which Tt (B(2n),∞) is small.

In this step, we prove that intervals that are not too small have positive probability
to contain a time t at which B(2n) is connected to infinity by a low-weight path.
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Fig. 3 Depiction of the event Fm in Step 2 of the proof of Theorem 1.2(2). The circuit in the annulus
B(2nL )\B(2nL−1) surrounding the origin has zero passage time and corresponds to item 1. The (boldly
drawn) path from B(2n) to ∂B(2nL ) has low passage time, corresponding to item 2. The path which reaches
∂B(2m ) has zero passage time, corresponding to item 3

Precisely, we will show that there exist C40, c18, δ > 0 such that for all large n and all
L ≥ 1,

P

(

Tt
(
B(2n),∞) ≤ C40nLa�δn� for some t ∈

[

0, 2− nL
9

))

≥ c18. (3.63)

Here, Tt (B(2n),∞) = limm→∞ Tt (B(2n), ∂B(2m)). Because ρt = ∞ a.s. for any
fixed t , it will suffice to prove (3.63) with [0, 2−nL/9) replaced by the closed interval
[0, 2−nL/9].

To prove (3.63) we again use the second moment method and begin by approximat-
ing the event in question by one that depends on the state of finitely many vertices. For
m ≥ nL , let Fm = Fm(n, L, δ,C40) be the event defined by the following conditions
(see Fig. 3):

1. There is a circuit around 0 in Ann(2nL−1, 2nL) whose vertices v have τv = 0,
2. T (B(2n), ∂B(2nL)) ≤ C40nLa�δn�, and
3. T

(
B(2nL−1), ∂B(2m)

) = 0.

Let Ft
m be the event that Fm occurs in the configuration (τv(t)). Last, define

Y =
∫ 2− nL

9

0
1Ft

m
dt .
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The first moment of Y is estimated as

EY =
∫ 2− nL

9

0
P(Ft

m) dt = 2− nL
9 P(Fm),

and by the FKG inequality we obtain

EY ≥ 2− nL
9 P(item 1)P(item 2)P(item 3). (3.64)

(2.2) gives a c19 such thatP(item 1) ≥ c19 and quasimultiplicativity givesP(item 3) ≥
c19π1(2nL , 2m).

For item 2, we claim that for some C40, δ > 0,

P(item 2) ≥ 1

2
for n large and all L ≥ 1. (3.65)

We follow much of what was laid out in Sect. 3.1.2. First recall the definition of T(n)

from (3.2) and observe that for large n,

P(item 2 fails) ≤ P

(
nL∑

k=n

T(k) ≥ C40nLa�δn�

)

leqP

(
nL∑

k=n

T(k)
F−1(p�1.5k�)

≥ C40nL

)

,

so long as δ is small. By bounding the right side, we obtain

P(item 2 fails) ≤ P

(
nL∑

k=n

Yk ≥ C40

c10
nL

)

+ P(∃k ≥ n : Xk �= Yk), (3.66)

where

Xk = T(k)

c10F−1
(
p�1.5k�

) and Yk = Xk1{Xk≤(4/3)ηk },

with η = 2−α/4 (this choice corresponds to ε = α/2 in (3.22)). Just as in (3.24), we
have

P(Yk ≥ u) ≤ C29 exp
(
−c10u

1
η

)
for u ≥ 0 and k ≥ 2,

and so the sequence (EYk) is bounded. Therefore we can continue from (3.66) and
choose C40 > 0 such that

P(item 2 fails) ≤ 1

4
+ P(∃k ≥ n : Xk �= Yk). (3.67)

Like in (3.26), we have P(Xk �= Yk) ≤ 18−(k+2) for large k, so a union bound on the
right side of (3.67) shows (3.65).
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Putting (3.65) and the bounds on items 1 and 3 into (3.64) produces for our chosen
δ and C40,

EY ≥ c202
− nL

9 π1

(
2nL , 2m

)
for large n and all L ≥ 1,m ≥ nL. (3.68)

The second moment is

EY 2 =
∫ 2− nL

9

0

∫ 2− nL
9

0
P
(
Ft
m ∩ Fs

m

)
ds dt

≤ 2 · 2− nL
9

∫ 2− nL
9

0
P

(
F0
m ∩ Ft

m

)
dt

≤ 2 · 2− nL
9

∫ 2− nL
9

0
P

(
W0(2

nL , 2m) ∩ Wt (2
nL , 2m)

)
dt . (3.69)

Here, Wt (r , R) is the event that Tt (B(r), ∂B(R)) = 0. To estimate the probability in
the integral we give a lemma that closely follows [34, p. 647].

Lemma 3.6 There exists C41 > 0 such that for all large r , if R ≥ r and t ≤ r−1/9,
then

P (W0(r , R) ∩ Wt (r , R)) ≤ C41π1(r , R)2π1

(
r ,
⌈
t−9

⌉)−1
.

Proof The proof of this lemma uses discrete Fourier analysis and is similar to the
corresponding arguments of [34], so we only sketch the idea. With the notation f Rr =
1W (r ,R), where W (r , R) is the event that T (B(r), ∂B(R)) = 0, [34, Cor. 4.5] states
that

∑

#S=k

f̂ Rr (S)2 ≤ kro(1)π1(r , R)2π2(r) for 1 ≤ r ≤ R and k ≥ 1,

where f̂ Rr (S) is the Fourier-Walsh coefficient associated to a subset S of the vertices
of B(R), and the sum is over all such sets of cardinality k. The ro(1) factor depends
on r only and not on R, and o(1) is a term that converges to 0 as r → ∞. Exactly as
in [34, p. 647], we also have for any s ∈ [r , R]

P(W0(r , R) ∩ Wt (r , R)) ≤ π1(r , s)P(W0(s, R) ∩ Wt (s, R))

= π1(r , s)
∑

S

e−t#S f̂ Rs (S)2.

Combining these inequalities and using the fact that f̂ Rs (∅) = π1(s, R) produces the
bound

P(W0(r , R) ∩ Wt (r , R)) ≤ π1(r , s)

(

π1(s, R)2 + so(1)
∞∑

k=1

e−kt kπ1(s, R)2π2(s)

)

.
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Because
∑∞

k=1 ke
−kt ≤ C/t2, we obtain for s ∈ [r , R]

P(W0(r , R) ∩ Wt (r , R)) ≤ π1(r , s)π1(s, R)2

[

1 + so(1)π2(s)

t2

]

.

Applying quasimultiplicativity, we obtain for s ∈ [r , R]

P(W0(r , R) ∩ Wt (r , R)) ≤ c−1
3 π1(r , R)2π1(r , s)

−1

[

1 + so(1)π2(s)

t2

]

.

Although we had the restriction s ∈ [r , R], this inequality remains true for s ≥ R. We
can therefore take s = �t−9�, which is ≥ r by assumption, to obtain

P(W0(r , R) ∩ Wt (r , R)) ≤ c−1
3 π1(r , �t−9�)−1π1(r , R)2

[

1 + to(1)π2(�t−9�)
t2

]

.

(3.70)
The exact value 1/4 of the two-arm exponent from (2.5) impliesπ2(�t−9�) = t9/4+o(1)

as t ↓ 0. Placing this in (3.70) completes the proof of the lemma. ��
Returning to (3.69), we use the lemma under the assumption that n is large, L ≥ 1,

and m ≥ nL to find

∫ 2− nL
9

0
P

(
W0(2

nL , 2m) ∩ Wt (2
nL , 2m)

)
dt

≤ C41π1(2
nL , 2m)2

∫ 2− nL
9

0
π1

(
2nL ,

⌈
t−9

⌉)−1
dt . (3.71)

The exact value of the one-arm exponent in (2.5) provides, for any α > 5/48, a
constant c21 such that π1

(
2nL ,

⌈
t−9

⌉) ≥ c21
(
2nL t9

)α
and so

∫ 2− nL
9

0
π1

(
2nL ,

⌈
t−9

⌉)−1
dt ≤ c−1

21 2
−nLα

∫ 2− nL
9

0
t−9α dt = c−1

21 2
−nLα 2

− nL
9 (1−9α)

1 − 9α

assuming α ∈ (5/48, 1/9). Putting this estimate back in (3.71), and then back in (3.69)
produces, upon comparison to (3.68), the upper bound

EY 2 ≤ C42 ·
(
2− nL

9 π1(2
nL , 2m)

)2 ≤ C42

c220
(EY )2 for large n and all L ≥ 1,m ≥ nL.

(3.72)
Now that we have (3.72), we can apply the Paley-Zygmund inequality to find

c22 > 0 such that

P

(
Y ≥ c222

− nL
9 π1

(
2nL , 2m

))
≥ c22 for large n and all L ≥ 1,m ≥ nL.
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This implies

P

(
Ft
m occurs for some t ∈

[
0, 2− nL

9

])
≥ c22 for large n and all L ≥ 1,m ≥ nL

and so

P

⎛

⎝∪
t∈
[

0,2− nL
9

]Ft
m �= ∅ for infinitely many m

⎞

⎠ ≥ c22 for large n and all L ≥ 1.

(3.73)
To complete the proof of (3.63) and therefore to move to step 3, we must show

that a.s., the event {∪t Ft
m �= ∅ for infinitely many m} in (3.73) implies the event in

the probability in (3.63). To do this, define the following sets of times corresponding
to items 1-3 of the definition of Fm :

1. F(1), the set of t ∈
[
0, 2− nL

9

]
such that

(a) there is a circuit around 0 in Ann(2nL−1, 2nL)whose vertices v have τv(t) = 0
and

(b) Tt (B(2n), ∂B(2nL)) ≤ C40nLa�δn�.

2. Fm(2) is the set of t ∈
[
0, 2− nL

9

]
such that Tt

(
B(2nL−1), ∂B(2m)

) = 0.

We also define a new process (τ̄v(t)) by setting, for every vertex v, the set {t : τ̄v(t) =
0} to be the closure of the set {t : τv(t) = 0}, and otherwise τv(t) = τ̄v(t). Then [17,
Lem. 3.2] states that a.s., for every vertex v,

{t ≥ 0 : v is in an infinite path of vertices w with τ̄w(t) = 0}
= {t ≥ 0 : v is in an infinite path of vertices w with τw(t) = 0}. (3.74)

Last, we need a consequence of the argument of [17, Lem. 3.2]: a.s., there are no
infinite clusters of zero-weight vertices at any times at which any vertex’s Poisson
process increments. That is,

P

(

∃t ≥ 0 : there is an infinite path whose vertices v have τv(t) = 0
and sw(t−) < sw(t) for some w

)

= 0.

(3.75)
Now fix an outcome in the intersection of the event in (3.73), the event that (3.74)

occurs for all v, and the complement of the event in the probability in (3.75). We
will argue that this outcome is in the event in the probability in (3.63). Because the
event in (3.73) occurs, we can find an increasing sequence (mk) of integers such
that Fmk (2) ∩ F(1) is nonempty. Let Smk be the closure of Fmk (2) ∩ F(1) and note
that the Smk ’s are compact and nested, so there exists a time t ∈ [0, 2−nL/9] in their
intersection.Wewill show that this t satisfies Tt (B(2n),∞) ≤ C40nLa�δn�. Due to the
bound (3.73), this will show (3.63). By planarity, it will suffice to prove that t ∈ F(1),
and that Tt (B(2nL−1),∞) = 0.
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To do this, we note that the closure of Fmk (2) equals the set defined by the same
conditions as those in the definition of Fmk (2), but with τ replaced by τ̄ . As t is in this
closure for all k, there is an infinite self-avoiding path intersecting B(2nL−1) whose
vertices w have τ̄w(t) = 0. This means that t is in the (equal) sets in (3.74) for some
v ∈ B(2nL−1), and therefore there is an infinite self-avoiding path whose vertices w

have τw(t) = 0. Aiming for a contradiction, if we assume t is not in F(1), then because
it is in the closure of F(1), a set of disjoint half-open intervals (except possibly the
point 2−nL/9), there must be some w such that sw(t−) < sw(t). Our outcome is in
the complement of the event in the probability in (3.75), so we obtain a contradiction.
Therefore t ∈ F(1) as well, and this completes step 2.
Step 3. Gluing.

In this step,we glue together the events from the previous two steps to producemany
times t for which ρt is small. Specifically, we find c23 > 0 such that for C40, δ > 0
from (3.63), if n is large, and M satisfies (3.60), then for all L ≥ 1, the covering
number N satisfies

P

(

N
({

t ∈ [0, 1] : ρt ≤ C40nLa�δn�
}
, 2− nL

9

)
≥ c23Mπ1(2

n+1)

⌊
2

nL
9

M

⌋)

≥ c23.

(3.76)
We begin with the event from step 1. Because M, n satisfy (3.60), if we define

S = S((xi )) = ∑
i xi for x0, . . . , xM−1 ∈ {0, 1}, then

c16 ≤ P

(
N(n, M) ≥ c16Mπ1(2

n+1)
)

=
∑

(xi ):S≥c16Mπ1(2n+1)

P

(

1A i
M

= xi for all i

)

.

(3.77)
For any i such that Ai/M occurs, we will need to decouple the configurations inside
and outside of the circuit C. To do this, we define, for any circuit C around the origin
in Ann(2n, 2n+1), the event Di/M (C) using the conditions

1. C is the innermost circuit in Ann(2n, 2n+1) such that for all v ∈ C, τv

( i
M

) = 0
and sv does not increment in [ i

M , i+1
M ), and

2. there exists a path γ from 0 to C in the interior of C such that for all v ∈ γ ,
τv

( i
M

) = 0 and sv does not increment in [ i
M , i+1

M ).

These conditions simply state that C is the innermost 0-circuit and 0 is connected to C
by a 0-path, all in the weights (σv) defined below (3.61). Therefore for distinct C, C′,
the events Di/M (C) and Di/M (C′) are disjoint, and Ai/M = ∪CDi/M (C). So we can
decompose (3.77) to obtain

c16 ≤
∑

(xi ):S≥c16Mπ1(2n+1)

∑

(Ci )
P

(

1A i
M

= 0 if xi = 0,D i
M

(Ci ) occurs if xi = 1

)

.

(3.78)
The inner ((xi )-dependent) sum is understood to be over all choices of circuits Ci for
those i such that xi = 1.

On the event in the sum of (3.78), we will create many times at which the circuits
Ci are connected to infinity by low-weight paths. So for i such that xi = 1, we split
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the interval [i/M, (i + 1)/M) into contiguous subintervals

[
i

M
,
i

M
+ 2− nL

9

)

,

[
i

M
+ 2− nL

9 ,
i

M
+ 2 · 2− nL

9

)

, . . . ,

so that the total number of subintervals obtained is �2nL/9/M�. The collection I =
I((xi )) of all such subintervals, for all i with xi = 1, satisfies

#I = S

⌊
2

nL
9

M

⌋

. (3.79)

Now for any I ∈ I, let i(I ) be the value of i such that I ⊂ [i/M, (i + 1)/M) and for
a circuit Ci in Ann(2n, 2n+1) around 0, let BI (Ci ) be the event that there exists t ∈ I
such that Tt (Ci ,∞) ≤ C40nLa�δn�. Because we have assumed that n is large, we can
apply inequality (3.63) from step 2 and the Paley-Zygmund inequality to obtain

P (BI occurs for at least c24#I many I ∈ I) ≥ c24 (3.80)

for some c24 > 0. Indeed, the expected number of such I is at least c18#I by (3.63),
but the second moment is at most (#I)2.

Next we observe that the event in the probability in (3.78) depends on τv(t) for (a)
v ∈ Ci or in the interior of Ci and t ∈ [i/M, (i + 1)/M) for all i such that xi = 1 and
(b) v ∈ B(2n+1) and t ∈ [i/M, (i + 1)/M) for all i such that xi = 0. On the other
hand, the event in the probability in (3.80) depends on τv(t) for v in the exterior of
Ci and t ∈ [i/M, (i + 1)/M) for all i such that xi = 1. Therefore these events are
independent, and we write

c16c24 ≤
∑

(xi ):S≥c16Mπ1(2n+1)

∑

(Ci )
P

(
1A i

M
= 0 if xi = 0,D i

M
(Ci ) occurs if xi = 1,

BI occurs for at least c24#I many I ∈ I

)

.

For any I ∈ I such that BI occurs and Di/M (Ci ) also occurs, there is a t ∈ I
such that ρt ≤ C40nLa�δn�. Indeed, Di/M (Ci ) occurs, so for all s ∈ [i/M, (i +
1)/M), Ts(0, Ci ) = 0 and Ts(Ci ) = 0, and furthermore for some t ∈ I we also have
Tt (Ci ,∞) ≤ C40nLa�δn�. Therefore after summing over (Ci ), we obtain

c16c24 ≤
∑

(xi ):S≥c16Mπ1(2n+1)

P

(
1A i

M
= xi for all i, at least c24#I many I ∈ I
contain a t such that ρt ≤ C40nLa�δn�

)

.

Using (3.79) and summing over (xi ) produces

c16c24

≤ P

⎛

⎝ at least c24c16Mπ1(2n+1)

⌊
2
nL
9
M

⌋

many disjoint intervals

[

a, a + 2− nL
9

)

in [0, 1] contain a t such that ρt ≤ C40nLa�δn�

⎞

⎠ .
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This implies (3.76) and completes step 3.

Step 4. Last, we use step 3 to lower bound the Minkowski dimension. Our assumption
is lim infn→∞ nan = 0, so we can find a subsequence (nk) such that nka�δnk� → 0,
where δ is from (3.63). For k ≥ 1, set M = M(nk) = �2αnk � for some α > 3/4, and
fix L ≥ 1. Using the asymptotics for L(p) in (2.1) and the exact value 5/48 of the
one arm exponent from (2.5), a direct computation shows that (3.60) holds for nk and
M , so we can apply inequality (3.76) of step 3. For any β > 5/48, we obtain with
probability ≥ c23

N
({

t ∈ [0, 1] : ρt ≤ C40nk La�δnk�
}
, 2− nk L

9

)
≥ c23�2αnk �2−βnk

⎢
⎢
⎢
⎣ 2

nk L
9

�2αnk �

⎥
⎥
⎥
⎦

holds for infinitely many k. So long as L is chosen to be> 9α, one has 2nk L/9/2αnk →
∞, and so the right side is ≥ (c23/2)2nk ((L/9)−β) for infinitely many k. Furthermore,
the term C40nk La�δnk� → 0 as k → ∞, so for any x > 0, with probability ≥ c23,

N
(
{t ∈ [0, 1] : ρt ≤ x}, 2− nk L

9

)
≥ c23

2
2
nk
(
L
9 −β

)

(3.81)

for infinitely many k. The definition of Minkowski dimension then implies

P

(

dimM({t ∈ [0, 1] : ρt ≤ x}) ≥ 1 − 9β

L

)

≥ c23. (3.82)

Because c23 does not depend on L or x , we can take L → ∞ for

P

(
dimM({t ∈ [0, 1] : ρt ≤ x}) = 1

)
≥ c23.

Because the sequence
(
dimM({t ∈ [m,m + 1] : ρt ≤ x}))m≥0 is ergodic (similar to

[17, p. 522] or [19, Lem. 2.3]), a.s.

there exists m ≥ 0 such that dimM({t ∈ [m,m + 1] : ρt ≤ x}) = 1,

and by monotonicity of Minkowski dimension, a.s., there exists s ≥ 0 such that
dimM({t ∈ [0, s] : ρt ≤ x}) = 1. This implies the statement of Theorem 1.2(2).

4 Intermediate cases

In this section, we explain how to prove the claims labeled (†), listed above the
statement of Theorem 1.3. Specifically, we give:

Theorem 4.1 Suppose that F satisfies (1.1) and (1.7).
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1. If lim supk→∞ kak = ∞, then for all x, s ≥ 0,

dimM ({t ∈ [0, s] : ρt ≤ x}) ≤ 31

36
a.s.

2. If lim infk→∞ kak > 0, then given ε > 0, there exists x > 0 such that for all
s ≥ 0,

dimM ({t ∈ [0, s] : ρt ≤ x}) ≤ 31

36
+ ε a.s.

3. If lim infk→∞ kak < ∞, then for any ε > 0, there exists x > 0 such that

lim
s→∞ P

(
dimM ({t ∈ [0, s] : ρt ≤ x}) > 1 − ε

)
= 1.

Assuming the veracity of this theorem for the moment, take F such that
lim supk→∞ kak = ∞ but lim infk→∞ kak ∈ (0,∞). Then by item 3, we can
choose x and s such that with probability at least 1/2, the upper dimension of
{t ∈ [0, s] : ρt ≤ x} is greater than 0.99. For this same x and s, item 1 implies
that the lower dimension is ≤ 31/36 a.s. Furthermore, for a different x > 0 but the
same s, item 2 implies that the upper dimension is at most 0.95 a.s. Therefore we
conclude the claims in (†).

Because the proof is nearly identical to those appearing earlier in the paper, we
only briefly indicate the necessary adjustments. For part 1, only cosmetic changes to
the proof of the upper bound of Theorem 1.2(1) are needed. Instead of applying the
argument that follows (3.56) to the entire sequence kak , we apply it to a subsequence
k�ak�

satisfying k�ak�
≥ C35 > 0 for some C35. In the end, this produces item 1 of

Theorem 4.1 instead of the estimate (3.59).
For item 2, we assume that kak ≥ C35 > 0 for some constant C35. Now we select

x such that (3.56) holds for this fixed C35, and then proceed through the ensuing
argument. To produce (3.57) from the display above it, instead of increasing C35, we
decrease x . The rest of the argument is the same, and we end up with an upper bound
of 31/36 + δ for the upper Minkowski dimension, as in item 2 of Theorem 4.1 with
ε = δ, instead of (3.59). This argument requires −x log x to be of order ε.

In item 3, we assume that lim infk→∞ kak < ∞, and so we can pick a subsequence
(nk) such that nka�δnk� is bounded. We follow the proof of Theorem 1.2(2) exactly
until step 4 where, in (3.81), we choose x larger than C40nk La�δnk�. We obtain (3.82)
with this choice of x . By ergodicity again, a.s. there exists s ≥ 0 such that dimM({t ∈
[0, s] : ρt ≤ x}) ≥ 1− (9β)/L . This is larger than 1− ε assuming we choose L large
enough. In the end, our choice of x is of order 1/ε.
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