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Abstract—This paper proposes a distributed solution for an
optimal resource allocation problem with a time-varying
cost function and time-varying demand. The objective is to
minimize a global cost, which is the summation of local
quadratic time-varying cost functions, by allocating time-
varying resources. A reformulation of the original problem
is developed and is solved in a distributed manner using only
local interactions over an undirected connected graph. In the
proposed algorithm, the local state trajectories converge to a
bounded neighborhood of the optimal trajectory. This bound is
characterized in terms the parameters of the cost and topology
properties. We also show that despite the tracking error, the
trajectories are feasible at all times, meaning that the resource
allocation equality constraint is met at every execution time.
Our algorithm also considers the possibility of some generators
going out of production from time to time and adjusts the
solution so that the remaining generators can meet the demands
in an optimal manner. Numerical examples demonstrate our
results.

Keywords—Resource Allocation, Distributed Optimization, Time-
varying Optimization

I. INTRODUCTION

This paper considers the well-known resource allocation
problem where a group of agents seeks to solve a dis-
tributed constrained optimization problem where the equal-
ity constraint is met by the summation of local decision
variables. This problem can either be solved centrally or
in a distributed manner. Some centralized solutions can be
found in [1] and [2] where one agent or a trusted third
party collects all the information from each agent, solves
the problem locally and then distributes the solution to other
agents. However, in smart grid systems, due to the scalability
and robustness of networked systems, it is more desirable to
solve this problem in a distributed fashion [3], [4]. Economic
dispatch (ED) is a practical example in smart grid systems
where agents solve a resource allocation problem. For time-
invariant local costs, [5] implements frequency control in
an electric grid to solve an ED problem in continuous-
time which is later extended to discrete-time. Considering
the case where transmission line losses and generator con-
straints are present, in [5], agents use two consensus-based
algorithms to reach the optimal load. Authors of [6]-[8]
have also used a consensus-based approach to solve the
ED problem. Particularly in [6], the incremental cost of
each generator is found by using the first order optimality
conditions, and then the agents use that to derive the optimal
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local load. Moreover, [9] employs consensus protocols and
saddle point dynamics to propose a solution. In a time-
invariant setting, [10] proposes two algorithms to solve the
resource allocation problem that are free of initialization
constraints regarding the distribution of resources. Using
a control theoretic approach, [11] guarantees convergence
even over switching topologies.

The works mentioned above consider the case of time-
invariant costs and resources. We now seek to review optimal
resource allocation problems where cost function parameters
or resource constraints are time-varying. In this setting,
instead of converging to an equilibrium point to reach the so-
lution, agents track an optimal trajectory. Some recent works
[12] and [13] introduce resource allocation algorithms in
continuous-time. [12] studies two cases where the Hessian of
local costs are common among the agents and, for otherwise,
proposes a second algorithm where the average Hessian is
estimated to find the solution. In both works, finite-time
convergence is attained by implementing sign functions in
the algorithm. In most applications, sign functions cause
chattering and are impractical in a discrete-time setting.
Note that [12] does not take into account time-varying
resources. In contrast, [14] achieves asymptotic convergence
by incorporating a correction and a prediction term. These
former consist of a continuous-time version of Newton’s
method, and the latter assures a vanishing optimality gap.
[15] also implements a prediction—correction scheme to
achieve asymptotic convergence where time-varying costs
are sampled in specific sampling periods.

In this paper, we propose to use a dynamic weighted average
consensus algorithm to solve the resource allocation problem
in a discrete-time manner. Cost parameters are time-varying
and are sampled with a sampling rate over time. In addition,
the total demand or resource is time-varying which suits
more practical scenarios. Our algorithm can also take into
account the possibility that agents might stop participating
in the resource allocation problem. In smart grid systems,
specifically in a time-varying fashion, network generators
may stop responding at times and, therefore, cannot generate
any load. The proposed algorithm is flexible to track the new
optimal trajectory in a distributed manner. In our main result,
we prove that the tracking error is bounded with respect to
local parameters and topology properties. Our simulations
show how the algorithm copes with switching agents and
still tracks the optimal solution.

Notations: We follow [16] for graph theoretic terminologies.
The interaction topology of N in-network agents is modeled
by the undirected connected graph G(V, £, A) where V is the
node set, £ C V x V is the edge set and A = [a;;] is the
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adjacency matrix defined such that a;; > 0, if (i,7) € &,
otherwise a;; = 0. A graph is undirected if a;; = a;; for all
1,7 € V. Moreover, a graph is connected if there is a directed
path from every node to every other node. The degree of
eachnode i € V is d* = Z;V:1 a;; and the Laplacian matrix
of a graph G is L = Diag(d',---,d"V) — A. Furthermore,
For a connected graph, we denote the eigenvalues of L by
Aty-- 5, AN, where Ay = 0 and A\; < Ay, for 7 < j and Ao
and Ay are, respectively, the smallest nonzero eigenvalue
and maximum eigenvalue of L. Finally, given an edge (3, j),
1 is called a neighbor of j, and vice versa. We let 1y denote
the vector of N ones, and denote by Iy the N x N identity
matrix. We also define v = #NlN, M € RVXV-1) and

T=[c ], suchthat [« 9] [9‘;} = |:J{TT:| [+ ®=]=1In.
Note that T'T = TT' = I, and for a connected graph,
TLT = [8 LOJr], where LT = RTL9R. LT is a positive
definite matrix with eigenvalues {\;}¥, € R-g.

II. PROBLEM SETTING

In this section, we present the resource allocation problem
with time-variant cost parameters and total demand where
we then use its Lagrangian multiplier to form an uncon-
strained optimization problem. In central solvers, we show
that using the gradient descent method as a solution results in
maintaining a tracking error. We later in the section present
solutions that utilize a prediction-correction term to avoid
this tracking error.

A. Resource Allocation Problem

We study the resource allocation problem over an undirected
connected graph G. Agents of the network, denoted as V =

{1,2,---, N}, are endowed with a decision variable p(t)
and a corresponding local cost function
o 1 . .
Fipi(t),t) = ———(p'(t) + a'(t))?, i€V
W (0.1) = e (1) + 0¥ (0)

where () € R and B%(t) € Ry are time-variant local
cost parameters. Moreover, agents meet the total time-variant
demand D(t), i.e., p'(t) +p*(t) +- -+ p™(t) = D(t). This
optimal resource allocation problem is formulated as a con-
strained optimization problem, minimizing 3>~ | f*(p'(t), t)
while maintaining a total demand D(t), V¢ > 0, i.e.,

: N i
min -} FE0.), (1a)
st PO 4P 4+ =3 di(), (b

N

> dt)=D(), (Ic)

where p(t) = [p'(t),p%(t), - ,pN(t)]T. Note that to sat-
isfy (lc), either each agent i € V chooses d'(t) = +D(t)
or without loss of generality, d'(t) = D(t) and d’(t) = 0
for j € V/1. Let us now use the KKT conditions in
[17] to obtain the dual form of (1) which is an uncon-
strained optimization problem. In this setting, agents of the
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network track a common signal, which is the solution to
the unconstrained optimization problem, and then obtain
p™* locally by only using local information. We later show
that this reformulation aids us to solve the unconstrained
optimization problem by implementing a dynamic weighted
average consensus algorithm. Let us consider the Lagrangian
for the optimization problem in (1) as

N N N

L(p(t), ult),t) = D F/ (0 (8),0) + u(Y_d' ()= p'(1)),
i=1 i=1 i=1

where p(t) is the Lagrange multiplier corresponding to the

equality constraint (1b). Using the first order optimality

conditions, we have

af’b 7% * _
5" (0 = (1) =0

O CED DA

where by substituting (2b) in (2a), it is then concluded that

D DT L OB SRR ()
S T
P = B OuH () —a'(t), eV, ()

In section III, we propose an algorithm where agents track
the common signal p* and derive p** locally. This solution
only applies when all agents are participating in the resource
allocation problem, e.g., a smart grid system where all
generators are generating power at all times. In a time-
varying setting, agents may not participate in the network
at all times. For example, a generator may shut down at
specific periods of time and therefore, cannot produce any
power due to its absence. Therefore, the solution presented
in (3) is no longer valid since p’(t) = 0 for i € V?, where
V) denotes the set of absent agents at time ¢. Moreover,
let us denote the set of agents participating in the network
as V} = V/V?. The following lemma presents the solution
to the resource allocation problem when the set V) is not
empty.

i€V (2a)

d'(t) = 0, (2b)

; (3a)

Lemma II.1. Let us consider a group of agents over the
network G solving the resource allocation problem (1). If
at time t, only agents i € V/V{ are participating in the
network, the optimal solution is

Sy dH() + Y ey @ (2)

(1) = . , 4
1y (t) v B(0) (4a)
py(t) = B (Opp(t) —a'(t), i€V}, (4b)
p(t) =0, i€V (4c)

Proof: If pi(t) = 0, for i € V}, then the optimal
resource allocation problem is formulated as

min Y0 FEO0 D S0,

pERN

st 30,70 = S d,

pi(t)=0, i€V
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where f9(0,t) = 251((”) for i € VY. For brevity, we omit
solving the new optimization problem and one can simply

show that the solution is (4). [ |

B. Centralized Solutions

In some scenarios, e.g., when the network is small or data is
shared globally, centralized algorithms are practical. Thus,
if local cost parameters o! and %, and the total demand
D(t) are available to a central agent, one can propose a
centralized solution. Consider the optimization problem

N

. i
w(t) = arg min > (38 (O (t) —
=1

(d'(t) +
97 ().

a'(t)ult)),

(6)

which induces the same solution as in (3a). The problem
above with time-variant costs g°(y(t),t) can be interpreted
as consecutive optimization problems with fixed costs. Note
that ¢*(u(t),t) is convex for all @ € V and therefore,
vazl g'(u(t),t) is also convex. If at time instants t; with
k=0,1,2,--- we sample the cost function, one can solve
the time-invariant problem

N

pt(ty) s=argmin > - g* (. )

HER

where t; is fixed [18]. However, this approach may not be
practical in some applications [19], [20]. Thus, [21] pro-
poses to implement the gradient descent algorithm to solve
the time-varying optimization problem. In this work, they
estimate an error bound of ||z (¢x) —x*(tx)|| = O(h), where
h = tj — ty—1, with respect to the optimal trajectory. On
the other hand, [18] proposes a prediction-correction scheme
that incorporates the time derivative of the cost function and
achieves an outperforming error bound ||z(t;) — z*(tx)|| =
O(hQ). In the next chapter, we address the distributed
version of this problem, where cost parameters o’(t) and
B%(t) are only locally available to the agents, hence a central
solution is impractical. Moreover, agents are not entitled to
participate in the resource allocation problem at all times,
which are denoted as switching agents. In this setting, due to
large-scale networks and privacy concerns, cost parameters
cannot be shared and we solve the constrained optimization
problem (1) in a distributed fashion.

III. MAIN RESULT

In this section, we introduce a new scheme to solve the time-
variant resource allocation problem with switching agents by
casting (4a) as the solution of a dynamic weighted average
consensus algorithm. To solve this problem in discrete-time,

a'(t), B%(t) and d(t) for i € V are considered continuous-
time signals that are sampled by each agent i € V at
sampling times ¢ = l6s € Rxo,l € Z>0,0s € Rso.
Also, agents of the network communicate at discrete-times
tf, = ké. € R,k € Z>0,0. € Rso. Here, we assume
that1f6 # 6c,thenﬁ( ) = Bi(l), a'(k) = oi(l) and
d'(k) = d'(l) where [ is the most up to date sampling time
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step such that tf < t5. Moreover, u;(k) is the discrete-
time representation of (4a). Here, we propose the following
dynamic weighted average consensus algorithm, originally
introduced in [22], where agents track (4a) to obtain (4b)-
(4c) locally.

P(k) = B (k) — o () + — (2 (K + 1) — 2°(k))

S
(7a)
(k) = 2" (k) + d'(k) + ' (k) (7b)
Zk+1) =2"(k) = 6. (B (F)u' (k) — d' (k) — o' (k)
N
+ Zaij(u (k) +v' (k) — ! (k) =7 (K)),  (Tc)
vi(k+1 ) + 6. Z (' (k) = (K)), (7d)
2'(0),v (0) eER, ieV. (7e)

Here, (7b)-(7d) are inspired by the main algorithm in [22]
where agents track y5(k) and each agent i € V uses (7a) to
track the local decision variable p** (k). Note that compared
to the formulation in (3b), we have an additional term
M in the distributed proposed formulation. This
is to keep the total demand preserved at all times, i.e.,
21:11’ (k) = D(k:) for all k£ > 0. We can show that by
substituting (7¢) in (7a) to obtain the equivalent formulation
p'(k) = dl( ) 4 S50y @i (k) + 07 (k) — o7 () — 07 (k)
where Zz D (k:) = D(k). In most resource allocation
applications, it is important to maintain the total demand
at the expected value in order to avoid overload or system
collapse. In (7), if 8%(k) € R, each local state u® tracks
(3a), however, if we set 3(k) = ai(k) = 0 for i € VY, we
obtain the solution s (k).

The objective of algorithm (7) is to track the optimal tra-
jectory p™* (k) in real-time considering the switching agents.
To do that, we begin with reviewing some supporting results
for the proof of convergence. Afterwards, the main result
is presented which offers a bound on the convergence error
|lp* (k)—p™* (k)|| with respect to the optimal trajectory. Let us
first consider the following definitions. We define p*(k) =

pr(k)in, E(k) = diag(8'(k), N (k)., Aa(k) =

a(k + 1) — a(k) where a(k) = [a!(k),- aN(k)JT,

w(k) = a(k)—E(k)pw* (k) and Aw(k) = w(k+1) k)
We now present the compact form of (7) as

p(k) = z(k) + d(k) + a(k) (8a)

p(k) = d(k) + L(p(k) + v(F)) (8b)

2(k +1) = z(k) = 0. (B(k) (k) — d(k) — ex(k)

+ L(u(k) + v (k)), (8¢)

v(k+1) =v(k) + d.Lu(k), (8d)

z(0),v(0) e RN i eV, (8e)

which by using the change of variables & = T' (p — p*)
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and [ql q;z\/]T = TT(LV — w) is equivalent to

q(k+1)=q(k), (%a)
ek+1) | = e(k) = [Aa(k)—Ap*(k)
[qmuc + 1)] = (I+o:A (k) [qmm] +B { Aw(k) ]
(9b)

0
where A(k) = “TIEERALT -~ |:IN71:| and B =

[0 LTLT] 0

.

(-)r m? . In the next result, we prove that by choosing an

admissible step size &, every subsystem I+3.A (k) is Schur
under the following assumption.

Assumption 1. Every E(k) for k € Z>q is bounded, i.e.,
there exist 3 € R~ such that (k) < B for i € V. Thus,
0 < E(k) < BL k € Z>q. Note that E(k) # 0.

Lemma IIL.1. Let the agents of the network implement a
connected undirected graph G to communicate. If §. € (0,9)
where

_ Re(~;
0= min{{—2|e(%’k) 2N -1

i=1 }
77,]{:'2 k?eZZO

in which {~; x}22' are the set of eigenvalues of A(k),
then every subsystem I+ 8.A(k), k € Z>q is Schur:

Proof: Let us implement the results in [22, Lemma
2], provided that by using the Lyapunov stability analysis
and the LaSalle invariant principle, every subsystem A (k),
k € Zso is Hurwitz. Under the Assumption I, since
0 < E(k) < 8L k € Z>, the eigenvalues of A(k), denoted
as {vik 2N ! are upper bounded, i.e., there exist 7 € Rq
such that A(k) < 31 < 0. Therefore, by the virtue of
[22, Lemma 3], I+ 0,A(k), k € Z>¢ is Schur if we have
d. € (0,0). [ |

Provided the result above, we find the error bound of local
decision variables with respect to the optimal trajectory.
Before the final statement, let us present the following
assumption.

Assumption 2. The rate of change of signals a'(k) and
d'(k), i € V are bounded, i.e., there exist &,d € Rx,

such that Aa(k) < & and Ad(k) < d where Ad(k) =
[dM(k + 1) — d"(k), -+, d (k + 1) — d™ ()] |

Lemma III.1 discusses internal stability of system (9) with
no inputs. In the next theorem, we show that with bounded
inputs, i.e., trajectories of «f,3’ and d’, local decision
variables of algorithm (7) converge to a neighborhood of
the optimal solution. Furthermore, we determine this bound
by applying a Lyapunov analysis.

Theorem IIL.2. Initialized at 2'(0),v*(0) € R, i € V,
let the agents implement algorithm (7) over an undirected
connected graph G. Under the Assumption | and 2, and
provided that 6. € (0,0), the trajectories of local states
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satisfy
¢+

I’ (k) — p™ (k)| < (B'(k) + )U (10)

¢2’
where U and ¢ are defined respectively in (11b) and (12).
Proof: Let us note that under the assumptions 1 and

2, we conclude that Ap*(k) and Aw(k) are bounded.
Therefore, there exist u* € R>¢ and U € R such that

HAM )| < (11a)
[ P
Let us now consider the candidate Lyapunov function
V(k) = X7 (k)X (k),
e(k)

for the system (9) where X (k) = N
N

]. We can show
that along the trajectories of (9), we have

AV(E) = X T (k) (T4 0.A(k) " (14 5. A(k))X (k)
+2X T (k)(I+6.A(k)) 'TBU(K)+U"(k)B"BU(k)
- X7 (k)X (k),
where AV(k) = V(k + 1) — V(k) and U =
[Aa(@;é¢*<k) . According to Lemma IIL1, if we

choose the admissible step size 6. € (0,6), then I+ 5,.A (k)
is Schur. Therefore, ||I + J.A(k)|| < 1. Let us define

o :max{||I—|—5cA(k)H}keZZm (12)

where we know that 0 < ¢ < 1. Also, since ||U|| < U and
IIB|| < 1, it is then concluded that

AV (k) < (¢ = DX (R)]* + 20U || X (k)| + T*.
If we prove that the right hand side of the inequality above
is always negative, we can conclude that AV(k) < 0
holds. Such as statement is true if ||X (k)| > U ¢+¢12 or

I1X (k)] < U1¢ (;2, which guarantees that AV (k) < 0 for
k € Zso. Note that since ¢ < 1 and || X(k)|| > 0, the
second inequality above is infeasible. Therefore, as long as
X&) > U1¢+¢12, V (k) is decreasing and consequently
||X (k)| is decreasing. Considering this result, we have
X k)| <U l‘i’f(; by using the Lyapunov stability analysis.
Given that |p'(k) — p*(k)| < ||X(k)|, and by using the
definition of p*(k) for i € V, we can establish the tracking
error in (10). [ ]

The following section considers an economic dispatch prob-
lem where algorithm (7) is implemented as a solution.
We investigate two scenarios with time-invariant and time-
variant cost parameters where in the latter some agents
participate only at specific times.
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Fig. 1: An undirected connected graph with adjacency weights of
a;; = 1, if (4,4) € &, otherwise a;; = 0. In second scenario of
the economic dispatch problem, agent 5 stop generating any load
and thus, p5(k) =0 for k > 2 x 10°.

IV. NUMERICAL EXAMPLE

In this section, we illustrate the performance of the proposed
algorithm and study its convergence. The resource allocation
problem studied here is an economic dispatch problem where
5 generators are interacting over an undirected connected
graph shown in Fig. | to track the optimal local load. In
the first scenario, local cost parameters « and (3, and the
total demand D are time-invariant. In addition, no generator
stops participating in the smart grid, i.e., all the generators
are available to generate load at all times. However, in
the second scenario, «, 3, and D are all time-varying
functions. Also, agent 1 stops participating after some time
and therefore, cannot generate any load.

A. Time-invariant Scenario

In this example, agents are assigned with time-invariant
costs. We use the IEEE bus 118 generator hst to set the

parameters of the local cost fi(p') = 2[31 (p" + ai)?,
for ¢ € {1,2,---,5}. The corresponding components
are {al}l, =  1188.3,592.5, 2567.2, 1793.3, 2567 2},

{Bi}o_, = {7.17,45.9,208. 2 166. 6 208. 2} where the sub-
scrlpt c represents constant values Here, the total demand
to meet is D, = 25000 and the distribution is equal
among the agents, i.e., di = 5000 for each agent i € V.
The optimal solution for the resource allocation problem is

* Bz D+%:;?:l o

> — o' which is asymptotically reached
by agents of the network. We let the agents implement
algorithm (7) to solve this problem. Fig. 2a indicates local
trajectories p'(k) at k € {0,---,5 x 10°, represented by
the blue lines. Moreover, the optimal trajectories p'*

represented by the bred lines. Fig. 2b studies the convergence

performance of the proposed algorithm by measuring the

error et (k) = % with respect to the optimal local

loads. As illustrated, the tracking error vanishes as k — co
and the steady-state error reaches zero asymptotically. This
is due to the fact that the cost and total demand are time-
invariant, whereas we show in the next scenario that agents
converge to a neighborhood of the optimal solution.

B. Time-variant Scenario

In the second scenario, we use time-varying functions for
local cost parameters and demands as in the original setting
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of the problem. Let us also consider a situation where one of
the generators shuts down at a specific time, and therefore
cannot generate any load. This is a realistic scenario in smart
grid systems where we plot it by setting o® = 3° = 0 at
time step k = 2 x 10°. For local costs and demands, we
perturb the constant values «, 3, and D, introduced in the
first scenario, by adding the following time-variant functions

i

al(k) = f{)osm(wzk)
(k) = L cos(wik),
di(k) = 100 S sin(wk), i€V,

where w = 10~°. Therefore, we have o'(k) = ol + ai(k),
B (k) = Bi+pBi(k) and d'(k) = d.+d;(k). Note that Bi and
d’ are positive at all times, and the rate of change of o and
d' are bounded. Let the agents of the network implement
algorithm (7) to solve the resource allocation problem and
track the optimal trajectories. Fig. 3a indicates the state
trajectories p’(k) and the optimal trajectories p** (k), repre-
sented by the blue and the red lines, respectively. Provided
by Theorem III.2, it is observed that the agents converge
to a neighborhood of the optimal solution. The rate of
change of cost parameters also affect the bound of the
neighborhood. As seen in Fig. 3a, agents 1 and 2 track
the optimal trajectory with less error compared to the other
agents, since a‘(t) and B%(t) for i = {1,2} have lower
frequencies. Note that p°(k) = 0 for k > 2 x 10° since
agent 5 shuts down at a certain point. Fig. 3b shows the

error e'(k) = W with respect to the time-varying
optimal trajectory. To avoid overfill, we omit to include
the legends in this plot. As expected, our results show that
by using the proposed algorithm, agents track the optimal
solution when cost and demand are time-variant. Moreover,
as in most smart grid systems where a generator is not
necessarily available at all times, our algorithm is capable
of handling such situations. This scenario is more noticeable
in time-varying resource allocation problems since it is not
a finite-time problem.

V. CONCLUSION

This paper studies the optimal resource allocation problem
with time-varying costs and resources. The proposed algo-
rithm tracks the optimal solution with a bounded tracking
error. This bound is obtained by a Lyapunov stability analy-
sis which is a function of local cost parameters and demands
and the network topology. Moreover, agents can stop or
start participating in the resource allocation problem at any
time of the execution, as in most practical scenarios, e.g.,
in smart grid systems where a generator is out of order
at some periods of time while the algorithm still tracks
the optimal trajectory. Interestingly, despite the tracking
error, the trajectories generated by our algorithm are feasible
at all times, meaning that the resource allocation equality
constraint is met at every execution time. Finally we demon-
strated the algorithm’s effectiveness in two scenarios, one
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Fig. 2: Trajectories of the proposed algorithm over the graph
in Fig. 1 to obtain p** when local cost parameters and demands
are time-invariant. The blue and the red lines represent the state
trajectories p’ (k) and optimal values p**, respectively. The tracking
error |p’(k) — p**| is vanished asymptotically.

—p'(k)
—p" (k)

®
log(e (1))

0 100 200 300 400 500 0 100 200 300 400 500
k x10° k x10°

(@) (b)

Fig. 3: Execution of algorithm (7) over the graph in Fig. 1
while o(k), 8%(k) and d’(k) are time-variant. As indicated, state
trajectories p’(k) are represented by the red lines, whereas optimal
trajectories p™* (k) are represented by the red lines. The tracking
error is bounded as seen in the figure.

in a time-invariant setting and the other with time-varying
costs, demands, and switching agents. It is observed that the
less frequent cost parameters change, the less tracking error
we have.
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