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Abstract— A critical factor for expanding the adoption of

networked solutions is ensuring local data privacy of in-network

agents implementing a distributed algorithm. In this paper, we

consider privacy preservation in the distributed optimization

problem in the sense that local cost parameters should not be

revealed. Current approaches to privacy preservation normally

propose methods that sacrifice exact convergence or increase

communication overhead. We propose PrivOpt, an intrinsically

private distributed optimization algorithm that converges ex-

ponentially fast without any convergence error or using extra

communication channels. We show that when the number of

the parameters of the local cost is greater than the dimension

of the decision variable of the problem, no malicious agent,

even if it has access to all transmitted-in and -out messages in

the network, can obtain local cost parameters of other agents.

As an application study, we show how our proposed PrivOpt

algorithm can be used to solve an optimal resource allocation

problem with the guarantees that the local cost parameters of

all the agents stay private.

I. INTRODUCTION

Distributed optimization algorithms are enabling means
for optimal decision-making, distributed learning, and maxi-
mum likelihood estimation for distributed data in networked
systems. In many in-network operations, it is highly desired
that the parameters of the cost function of the agents stay
private because these parameters are often a reflection of
local privacy-sensitive data of the agents. For example, in
the distributed economic dispatch problem in a smart grid,
the cost function parameters of each individual generator
are privacy-sensitive information that allows others to know
the cost function of an agent [1]. The cost function is a
critical business information that if revealed can promote
other competitor to change their operational cost, e.g., to
establish themselves as the least-cost utility provider in the
market. Or, take the widely used machine learning problem
of distributed linear regression, where each agent i has access
to a part of the data (the data set and target points denoted
by Xi 2 Rn⇥m and Yi 2 Rm, respectively) and the goal is
to minimize the total empirical risk of fitting a model to this
data. In the distributed learning cost function formulation,
the parameters of the local cost of each agent i includes
(Xi>Yi, Xi>Yi). If these parameters are revealed, in some
scenarios where m is larger than n, i.e., dimension of the
weight vector is larger than the number of data points, there
is a concern regarding the privacy of local data (Xi,Yi) [2].

This paper considers the problem of private distributed
unconstrained convex optimization problem in the sense that
the parameters of the local cost, denoted by Ci should
stay private for each agent i with respect to a malicious
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agent, which is defined in Definition 2. In an unconstrained
convex optimization, a group of networked agents, each
endowed with a local cost f i(x, Ci), use local interactions
to obtain the minimizer of the global optimization problemPN

i=1 f
i(x, Ci). This problem is one of the most studied

ones in distributed optimization literature, for which there
are proposed algorithms as a solution. The main solutions
include EXTRA [3] and PI [4] algorithms; see [5] for a more
extensive literature review of the topic. Even though these
algorithms do not require the agents to communicate their
local costs or their local gradients, since they communicate
the decision variable that converges to the global minimizer,
there is a breach of privacy when all the incoming and
outgoing communication signals of an agent are known the
malicious agent. In Appendix A, we show how a malicious
agent can use a nonlinear least-squares observer [6] for
obtaining cost parameters of the agents, when implementing
the EXTRA algorithm.

Differential privacy and encryption are two popular meth-
ods to induce privacy in network operations. These methods,
respectively, are used in [7] and [8] for the unconstrained
distributed optimization problem. Differential privacy and
perturbation methods [9] conceal the exact local parameters,
however, in these stochastic privacy preservation mecha-
nisms, the malicious agent can obtain an estimate on the true
values with known quantifiable error covariance. In addition,
in differential privacy, there is a trade-off between exact
convergence and the level of privacy the method provides. On
the other hand, encryption demands overhead communication
and also a trusted third party to generate the public key. In
the class of papers using obfuscation noise to disguise sen-
sitive local data, [7] perturbs messages in order to preserve
privacy and, therefore, results in having a steady-state error
even when agents broadcast noiseless messages. To resolve
this issue, [10] suggests perturbing local costs instead of
messages, though exact convergence is still sacrificed for the
sake of privacy. [11] introduces an algorithm that employs
asynchronous updates and heterogeneous stepsizes among
agents where the malicious agent cannot obtain the local
cost. This method affects the rate of convergence since agents
apply updates only at specific iterations. There are also other
works where differential privacy is used to preserve privacy
for constrained in-network optimization problems [12]–[14].

This paper proposes a novel algorithm, called PrivOpt, to
solve the distributed optimization problem while preserving
privacy of in-network agents against a malicious agent in
the network which without perturbing/interrupting the ex-
ecution of the algorithm, wants to obtain the private cost
parameters of other agents. Unlike encryption and noise
obfuscation methods like differential privacy, PrivOpt does
not require any overhead communication channel, tagged
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messages which are not practical in broadcast applications,
or noisy messages which may sacrifice exact convergence for
privacy. We also show that state-of-the-art algorithms such
as EXTRA and PI cannot guarantee privacy preservation.
Contrarily, PrivOpt can conceal the local cost parameters. To
demonstrate our results, we show how PrivOpt can be used
to solve an in-network economic dispatch problem (EDP)
in a way that the parameters of local quadratic costs of
all the agents is preserved, even if the malicious agent has
access to all the transmitted in and out signals of the agent.
We compare our solution to the distributed solver proposed
in [15] and show not only PrivOpt preserves privacy of the
agents but also it converges faster.

Notations: We follow [16] for graph theoretic termi-
nologies. The interaction topology of N in-network agents
is modeled by the undirected connected graph G(V, E ,A)
where V is the node set, E ⇢ V ⇥ V is the edge set
and A = [aij ] is the adjacency matrix defined such that
aij > 0, if (i, j) 2 E , otherwise aij = 0. A graph is
undirected if aij = aji for all i, j 2 V . Moreover, a graph
is connected if there is a directed path from every node
to every other node. The degree of each node i 2 V is
di =

PN
j=1 aij and the Laplacian matrix of a graph G is

L = Diag(d1, · · · , dN ) � A. Furthermore, For a connected
graph, we denote the eigenvalues of L by �1, · · · ,�N , where
�1 = 0 and �i  �j , for i < j and �2 and �N are,
respectively, the smallest nonzero eigenvalue and maximum
eigenvalue of L. Finally, given an edge (i, j), i is called a
neighbor of j, and vice versa. We let 1N denote the vector
of N ones, and denote by IN the N ⇥ N identity matrix.
We also define r = 1p

N
1N and R 2 RN⇥(N�1), such that

[ r R ]
h

r>

R>

i
=

h
r>

R>

i
[ r R ] = IN .

II. PROBLEM SETTING

Let the interaction topology of the agents be an undirected
and connected graph G=(V, E ,A). Consider the distributed
optimization problem where the set of N agents commu-
nicate over the graph G to obtain the global minimizer of
the total cost

PN
i=1 f

i(x, Ci), where x 2 Rn is the decision
variable and Ci = {qi1, qi2, · · · , qini} denotes the set of local
cost parameters of agent i with ni representing the number
of elements in Ci. We assume that the local cost function
of the agents is separable, i.e., f i(x, Ci) =

Pn
l f

i
l (xl, Ci). In

short, the collective goal is for each agent i 2 V to obtain

x? = argminx2Rn

XN

i=1
f i(x, Ci)

using local interactions by its neighbors, while having the
guarantees that its local cost parameters Ci stay private. Note
that each local cost f i(x, Ci) is convex. To study privacy-
preservation properties of an algorithm against a malicious
agent let us present the following two definitions.

Definition 1 (Privacy Preservation). Privacy of an agent i
is preserved from a malicious agent if the malicious agent
cannot obtain the exact value of the local cost parameters of
agent i, i.e., Ci = {qi1, qi2, · · · , qini}. ⇤

Throughout this paper, we assume that Ci excludes the

local cost’s possible additive constant scalar term. Such an
additive term never appears in gradient-based algorithms.
Thus, there is no way for a malicious agent to obtain any
information about it.

Definition 2 (Malicious Agent). A malicious agent j is
an agent in the network who wants to obtain the local
parameters Ci = {qi1, qi2, · · · , qini} of another agent i 2
V\{j} without perturbing/interrupting the execution of the
algorithm. The knowledge set of this malicious agent consists
of (a) the network topology G(V, E ,A), (b) its own local
states and parameters Cj , (c) all transmitted signals to and
from an agent i, (d) Agent j also knows that the minimizer
state xi(k) of each agent i 2 V converges asymptotically
to x?, (e) the malicious agent knows any special initialization
condition of the algorithm if one exists. ⇤

In most algorithms in the literature, e.g., the EXTRA [3]

xi(1) =
XN

j=1
wijx

j(0)� �rf i(xi(0), Ci),

xi(k + 2) = xi(k+1)+
NX

j=1

wijx
j(k+1)�

NX

j=1

w̃ijx
j(k+1)

� ↵(rf i(xi(k+1), Ci)�rf i(xi(k), Ci)),

i 2 V, k 2 Z>0,

and PI [4] algorithms, agents communicate the local min-
imizer decision variable xi. The reader can easily con-
firm that in both EXTRA and PI algorithms, the value
of rf i(xi(k), Ci) at each step k 2 Z>0 can be trivially
obtained by a malicious agent whose knowledge set is as
in Definition 2 and trivially knows xi(k). After a sufficient
number of steps, the malicious agent can construct a sys-
tem of consistent nonlinear equations where the number
of equations (values of rf i(xi(k), Ci) at each step k) are
equal to or greater than the number of variables (Ci), i.e.,
there exists a finite l 2 Z>0, such that n ⇥ k � ni.
Obviously, l is the smallest positive integer that satisfies
l � max{1, ni/n}. When the number of equations are equal
to or greater than the number of unknowns, there are multiple
methods to solve the nonlinear system of equations [6],
[17], [18]. In the special case of quadratic cost functions,
cost coefficients can be derived by the malicious agent
by constructing a linear system of equations. An example
observer that the malicious agent can use is the nonlinear
least squares observer [6] which is presented in Algorithm 1
in Appendix A. A numerical example in which a malicious
agent uses this least square observer to obtain the parameters
of one of its neighbors is also given in Appendix A. The
breach of privacy in the EXTRA and similarly in the PI
algorithm then can be traced back to trivial availability of the
agents’ decision variable xi(k) through the communication
messages. In light of this observation, in what follows, we
propose an alternative distributed optimization algorithm that
employs a communication message that does not trivially
reveal xi(k).
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III. PRIVOPT ALGORITHM

We propose the algorithm below, referred to as PrivOpt,
as a solution to the private distributed unconstrained opti-
mization problem,

vi(k + 1)=vi(k)+�
XN

j=1
aij(z

i(k)�zj(k)), (1a)

pi(k + 1)=pi(k)+�
⇣
� pi(k) +rf i(xi(k), Ci)

�
XN

j=1
aij(z

i(k)�zj(k))� vi(k)
⌘
, (1b)

xi(k + 1)=xi(k)���i(k)pi(k), (1c)

where zi=pi�xi and vi(0) = 0 and xi(0),pi(0) 2 Rn, for
i 2 V . Moreover, � > 0 and 0 < �i(k)  I are the stepsize
and a diagonal local weight matrix, respectively. In PrivOpt,
instead of xi, agents communicate zi. This algorithm is
inspired by consensus-based distributed optimal resource
allocation algorithms [19], [20] where a dynamic average
consensus, here represented by (1a) and (1b), enables the
local state pi of every agent i 2 V to track

PN
i=1 rf i(xi, Ci)

scaled by 1/N , while in (1c), pi is used as descend direction
to drive the local state xi to the optimal solution x?. vi(k) is
an integrator type feedback to correct the tracking error of
pi. In PrivOpt, the local diagonal weight matrix �i changes
the local step size in (5b) and consequently, and, as will
be shown later, helps disguise the exact value of the local
states. This is because �i is chosen locally by each agent
and is not shared with other agents. The reader should note
that use of a local step size in EXTRA and PI algorithm
will change the final convergence point of the algorithm.
Intuitively, one can see that in PrivOpt algorithm since (1a)
and (1b) generate the descent direction, each agent is able to
choose a local weighted step size. The next result establishes
the exponential convergence of PrivOpt to x?.

Proposition III.1. Initialized at xi(0),pi(0) 2 Rn and
vi(0) = 0n, i 2 V , let the agents implement the PrivOpt
algorithm (1) over an undirected connected graph G using
diagonal local weights0<�i(k)I. Suppose that f i(xi, Ci)
is mi-strongly convex and li-lipschitz. Then, the trajectories
of (1) converge exponentially fast to

v̄i = rf i(x?, Ci), p̄i = 0, x̄i = x?, i 2 V, (2)

provided 0 < � < �̄ < 1, and

�̄ = max
�1,�2

min
n 1

4(1+4l+(1+l)�2)
,
m�2��1l2� 1

4�3l2

4+�1+2�2
,

2 + 3
4�1

2 + 2(5 + �2)l +
2+l
2 �1

,
�2�2 � 1

�N�2(�N + 1)

o
, (3)

where 0 < �1 < m�2�3l2�1
4l2 , �2 > 1

�2
, m = min{mi}i2V

and l = max{li}i2V .

Due to limited space the proof of Proposition III.1 will ap-
pear elsewhere. In comparison to algorithms like EXTRA [3]
and PI [4], in PrivOpt, zi = pi � xi is communicated
with neighbors instead of the local minimizer state xi. As
we discussed in Section II knowing xi by the malicious
agent leads to breach of privacy in the EXTRA and PI

algorithms. As we show below, because of this difference in
the communication message, PrivOpt can guarantee privacy
preservation for all agents in the network in the sense of
Definition 1. In what follows without loss of generality, we
assume that agent 1 is the malicious agent. In our analysis,
according to Definition 2, the malicious agent knows the
special initialization of the algorithm, i.e., vi(0) = 0.

Let

Fi(k) =
XN

j=1
aij(z

i(k)�zj(k)). (4)

Then, PrivOpt algorithm equivalently also reads as

zi(k + 1)=zi(k)+�
⇣
rf i(xi(k), Ci)�Fi(k)��

kX

l=0

Fi(l)
⌘
,

(5a)
xi(k)= ⇧k�1

l=0

�
I� ��i(l)

�
xi(0)

� �
k�1X

l=0

⇣
⇧k�1

l0=l+1

�
I� ��i(l0)

�
�i(l)zi(l)

⌘
, (5b)

for i 2 V . We show our privacy preservation by analyzing
the extreme case that agent i 2 V\{1} and all the neighbors
of agent i are neighbors of agent 1, i.e., agent 1 has access to
all the messages transmitted in or out of agent i. At each step
k the information available for agent 1 are � and {zj(l)}kl=1
for all j 2 N i[{i}. At each time step k, because of (5b), to
know xi(k) agent 1 needs xi(0) and {�i(l)}kl=1. At each time
step k+1, agent 1 can obtain the value of rf i(xi(k), Ci) by
rearranging (5a) as

rf i(xi(k), Ci) =
1

�
(zi(k + 1)�zi(k))+Fi(k)+�

kX

l=1

Fi(l).

(6)

Proposition III.2. Let the agents of an undirected connected
graph implement PrivOpt. Using the knowledge set in Defi-
nition 2, agent 1 almost always cannot obtain the exact value
of xi(k) and Ci of any agent in finite time.

Proof: Given (6), at each finite time k+1 agent 1 knows
the value of rf i(xi(l), Ci) for all l = {0, · · · , k}. Then, at
each finite time k + 1, by substituting for xi(k) from (5b)
in (6), agent 1 can form k+1 set of n equations of the form

Fi(k) = Fi(xi(0), {�i(l)}kl=1, Ci) = 0. (7)

Therefore, agent 1 has (k + 1) ⇥ n equations but ni +
n + (k + 1) ⇥ n unknowns, which are Ci, xi(0), and
{�i(l)}kl=0. Therefore, the system of equations agent 1 has is
underdetermined. As a result, almost always agent 1 cannot
find a unique solution for its system of equations, unless the
set of solutions of this system of nonlinear equations is a
singleton. ⇤

The privacy preservation study in infinite time should take
into account that xi(k) converges to x? as k ! 1, and thus
the only unknown in (6) is Ci after convergence.

Theorem III.3. Let the agents of an undirected connected
graph implement PrivOpt. Using the knowledge set in Defi-
nition 2, agent 1 almost always cannot obtain the exact value
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of Ci of any agent i 2 V\{1} provided ni > n.

Proof: Following through the proof of Proposition III.2,
notice that at each time step k+1 agent 1 adds n equations
to its k⇥n equations with ni+n+k⇥n unknowns to make
its equations (k + 1) ⇥ n. But it also adds n unknowns,
which make its total unknowns ni+n+(k+1)⇥n. Only at
infinite time when xi converges to x? that agent 1 can add
n equations without adding a new set of unknowns. But still
the set of equations it has to solve to obtain all its unknowns
is under-determined. Also if agent 1 only considers

Fi(1) = Fi(x?, Ci) = 0,

if ni > n, then the set of unknowns Ci are larger than the
number of equations. As a result, almost always agent 1
cannot find a unique solution for its system of equations,
unless the set of solutions of this system of equations is a
singleton. ⇤

In the EXTRA and PI algorithms, the malicious agent
knows rf i(xi(k), Ci) and xi(k) at any k 2 Z�0. Therefore,
beyond the first step of the algorithm, at each iteration
any equation the malicious agent adds to its set of equa-
tions, similar to (7), introduces no new unknowns. Thus, as
mentioned earlier, after l � max{1, ni/n} finite steps, the
malicious agent can form an over-determined set of algebraic
equations, and can use e.g., a least-square observer [6],
[17], [18] to obtain local cost parameters in finite time. For
example, in the problem of distributed linear regression, local
data points may be revealed to the malicious agent in a
finite number of steps [2]. This is in contrast to PrivOpt
where as shown in Theorem III.3, there is always more
unknowns than equations due to the use of time-varying
local diagonal weight matrix �i(k) at every k 2 Z�0. When
implementing PrivOpt, the malicious agent needs to solve
for ni + (k + 2)n unknowns with (k + 2)n equations in
each finite time k + 1. Solving under-determined set of
equations is a complicated problem in which even if the set
of equations formed by knowing the value of rf i(xi(k), Ci)
has a single real solution {qi1, qi2, · · · , qini}, the numerical
solvers often have a difficult time in solving the problem and
may require additional conditions on the under-determined
set of nonlinear equations [21], [22].

IV. PRIVACY PRESERVATION IN DISTRIBUTED OPTIMAL
ECONOMIC DISPATCH VIA PRIVOPT

Consider the quadratic optimal resource allocation prob-
lem

p? =argmin{pi}N
i=1⇢R

XN

i=1

1

2bi
(pi + ai)2, s.t. (8a)

p1 + p2 + · · ·+ pN = PD, i 2 V, (8b)

where agents {1, · · · , N} interacting over a connected graph
G want to find their corresponding component of p? =
(p1?, p2?, · · · , pN?). We seek a distributed solution that
ensures every agent i 2 V can keep its corresponding
local cost parameters ai and bi private. A practical example
case is the distributed optimal economic dispatch problem
where a group of N generator stations with quadratic costs,
interacting over a connected graph, as for example shown

1

2 3

45

Fig. 1: An undirected connected graph with adjacency weights of
aij = 1, if (i, j) 2 E , otherwise aij = 0.

in Fig. 1, seek to find their optimal dispatch power that
collectively meets the demand PD for all i 2 V while
resulting in minimum cost for the group [15]. As discussed
in the opening paragraph of the introduction, in the economic
dispatch problem, agents may want to keep the parameters
of their local cost private.

Using the KKT condition [23], the reader can confirm that
the optimal solution for (8) is given by

pi? = biµ? � ai, i 2 V, (9)

where

µ? =
PD +

PN
i=1 a

i

PN
i=1 b

i
, (10)

is the Lagrange multiplier corresponding to equality con-
straint (8b). The distributed solution proposed in [15] (in the
context of optimal power dispatch problem), which here we
denote as EDP algorithm, is

µi(k + 1) =µi(k)� b(k)
XN

i=1
wij(µ

i(k)� µj(k))

� a(k)(biµi(k)� ai � P̄D), (11)

in which µi(k) ! µ?, i 2 V , a(k), b(k) ! 0 as k ! 1
and P̄D = PD

N . The reader can easily confirm that if an
agent has access to all the incoming and outgoing signals
of any agent i 2 V , in 3 number of steps, it can obtain ai

and bi. In Fig. 1 for example, agent 1 is the malicious agent
that can derive ai and bi of any i 2 V\{1}. An alternative
distributed solution for (8), studied in [24], proposes to find
µ? in a distributed manner using two PI average consensus
algorithms that compute

PN
i=1 ai

N and
PN

i=1 bi

N , so agents can
use them to compute µ? and consequently pi?. The results in
[24] show that a malicious agent j cannot find (ai, bi) of any
other agent i 2 V/{j}, if an only if agent i has at least one
neighbor that is not a neighbor of the malicious agent. One
can also enable agents to obtain

PN
i=1 ai

N and
PN

i=1 bi

N using
the Laplacian average consensus algorithm augmented by an
additive noise based privacy mechanism proposed in [25].
For this solution, also, privacy is only preserved for agents
that have at least one incoming or outgoing signal that is
not available to the malicious agent. For such private agents,
however, the malicious agent can obtain an estimate on the
cost parameters with a known covariance, see Fig. 2.

To obtain a distributed solution that preserves the privacy
of all the agents, regardless of what communication messages
are available to the malicious agent, we propose to solve (8)
using the PrivOpt algorithm as shown next. Since PrivOpt
solves the unconstrained optimization problem, we need to
reformulate (8). We observe that µ? in (10) is the solution
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Fig. 2: Implementing the algorithm proposed in [25] for an average
consensus problem in an undirected connected graph showed in [Fig
1] [25]. The malicious agent 5 in this scenario knows that in 99.7%
of the times (3� rule) the error rate to obtain local parameters
a3 and b3 are respectively 0.071% and 0.879% according to the
computed normalized covariances Pii in the figure above. However,
local parameters of agent 4, which all signals transmitted to and
from it are accessible to agent 1, are fully revealed to the malicious
agent, unlike in PrivOpt.

Fig. 3: Convergence error of PrivOpt compared to the EDP al-
gorithm. PrivOpt converges exponentially fast, whereas EDP slows
down due to its decreasing stepsizes. Observe that �i(k) does not
affect convergence significantly.

of the unconstrained optimization problem

µ? = argmin
µ2R

XN

i=1

�1
2
biµ2 � (P̄D + ai)µ

�

| {z }
fi(µ,ai,bi)

,

where f i(µ, ai, bi) is the local cost of agent i 2 V with
parameters (ai, bi). Thus, we can implement PrivOpt to
obtain µ⇤ by choosing f i(µ, ai, bi) as the local costs of
the agents. Subsequently, every agent i 2 V obtains pi?

using its local parameters ai and bi from (9). Implementing
PrivOpt as the solution for (8) with local weights �i(k) =
1
2 (1 + sin(ik)), by virtue of Theorem III.3 since ni = 2 >
n = 1 and the parameters appear linearly in the gradient,
we have the guarantees that the privacy of all the agents
in the network is preserved. Figure 3 compares the conver-
gence performance of our proposed PrivOpt-based solution
of (8) with that of the EDP algorithm (11), where ef (k) =

log
qPN

i=1 k
pi(k)�pi?

pi? k2. As we can see, our solution not
only preserves privacy of the agents, but also converges
faster than the EDP algorithm. This is because even though
EDP converges faster at the beginning, eventually it slows
down due to the vanishing nature of its stepsizes a(k) and
b(k). On the other hand, PrivOpt-based solution converges

exponentially fast. Next, we conduct a series of simulations
to investigate whether the use of local weights �i enables
agent 5 to preserve privacy against the malicious agent.
Since the malicious agent cannot obtain an accurate estimate
of µ5(k) when k is relatively small due to (5b), we let
agent 1 estimate µ5(k) when k ! 1. If the malicious
agent forms an under-determined system of equations with
unknowns µ5(0) and {�5(l)}kl=0, it is computationally hard
to solve for C5 due to the huge number of unknowns if
multiple number of steps are used. Therefore, agent 1 uses a
practical value of µ1(1) in place of µ5(1) = µ?. Next, let
is consider practical stopping condition at various values of
ef < {10�2, 10�3, 10�4, 10�5}. For each of these scenarios,
agent 1 uses the last 1000 steps in each of the four scenarios
to obtain a5 and b5 using the linear least-squares method [6].
As we can see in the table below, where each row represents
the results of each case, the estimated values have significant
errors compared to the actual values of a5 = 2567.2 and
b5 = 208.2. In the best scenario, the error rate to obtain a5

and b5 are respectively 8.3% and 6.7%. We can also observe
that by using all the steps in the execution, less accurate
results is achieved due to the effect of µ5(0) in (5b). Note
that in this special case, since in earlier steps of the execution
µ1(k) and µ5(k) are significantly different, we let agent 1
use arbitrary values for µ5(0) and 0 < �5(k)  1 to estimate
the value of µ5(k) with µ̂5(k) at each step. Eventually, as
k ! 1, µ̂5(k) ! µ5(k).

Case # Stopping Criteria â5 b̂5

1 ef < 10�2 4922 339
2 ef < 10�3 2205 150
3 ef < 10�4 2291 187
4 ef < 10�5 2780 222
5 k = {1, · · · , 5⇥105} 532 10

V. CONCLUSION

This paper considered the problem of privacy preservation
in an in-network unconstrained convex optimization, in the
sense of keeping local cost parameters of the agents private.
We showed that unlike the existing algorithms, e.g., EXTRA
and PI, our proposed distributed solution intrinsically pre-
serves the privacy of all the agents in the network, when the
number of private parameters is larger than the number of
decision variables of the optimization problem. Our proposed
algorithm, PrivOpt, provided this strong privacy-preservation
guarantee without requiring extra communication or using
additive perturbation noises that may perturb the algorithm’s
convergence. As an application study, we considered an in-
network optimal resource allocation problem. We showed
how our proposed PrivOpt could be used as a privacy-
preserving solution for this problem, while some known
distributed solutions fail to provide such guarantees.
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APPENDIX A
An example observer that the malicious agent can

use to obtain the private parameters of its neighbors
in EXTRA algorithm is the non-linear least squares ob-
server [6] given in Algorithm 1. In Algorithm 1, the no-

Algorithm 1: Nonlinear least-squares observer
initialize with q̂ 2 Rni

;
while t  T do

�yc = ỹ � f(q̂), Jt = y
>
c Wyc, H = @f

@x |q̂;
�q̂ = (H>

WH)�1
H

>
W�yc ;

if �J < ✏
||W|| then

STOP
else

q̂ = q̂+�q̂ ;
t = t+ 1 ;
end

end

Fig. 4: The least-squares observer of agent 1 results in q̂51 , q̂52 , q̂53
and q̂54 convergence to the true values of q5 = (0.34, 6.5, 3.1, 1.0).

tations are as follows: q̂ = {q̂i1, q̂i2, · · · q̂ini}> is the es-
timate of local parameters Ci = {qi1, qi2, · · · qini}>, ỹ =
{rf i(xi(1), Ci),rf i(xi(2), Ci), · · · ,rf i(xi(k + 1), Ci)}>
is the observations from k + 1 iterations, ✏ is a prescribed
small value, W 2 Rm⇥m is the weighting matrix used to
weight the relative importance of each measurement, and
�J = |Jt�Jt�1|

Jt
is a stopping condition.

Example: Let the agents of the network in Fig. 1 imple-
ment the EXTRA algorithm to solve the distributed optimiza-
tion problem where the local costs are given by f i(xi, Ci) =
qi1e

qi2x
i

+ qi3e
�qi4x

i

, i 2 {1, 2, 3, 4, 5}. Let the malicious
agent be agent 1. Because agent 1 is the neighbor of all the
agents in the network, it can use the nonlinear least-square
observer in Algorithm 1 to reconstruct the private parameters
of all the other agents in the network. For example, agent
1’s observer’s performance when it wants to obtain the
parameters of agent 5 is depicted in Fig. 4 for a scenario with
the following numerical values: q51 = 0.34, q52 = 6.5, q53 =
3.1, q54 = 1.0 and initial condition x5(0) = 0. Using the
knowledge about the graph topology and the communication
messages x5(0) = 0, x5(1) = 0.02, x5(2) = 0.07, x5(3) =
0.09, agent 1 obtains rf5(x5(0)) = �0.9,rf5(x5(1)) =
�0.53,rf5(x5(2)) = 0.57,rf5(x5(3)) = 1.11. We set
✏ = 0.01. As seen in Fig. 4, agent 1 can reconstruct all
the parameters of agent 5 using a least-square observer.
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