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a b s t r a c t

Joint utility-maximization problems for multi-agent systems often should be addressed by distributed
strategy-selection formulation. Constrained by discrete feasible strategy sets, these problems are
broadly formulated as NP-hard combinatorial optimization problems. In many cases, these problems
can be cast as constrained submodular set function maximization problems, which also belong to
the NP-hard domain of problems. A prominent example is the problem of multi-agent mobile sensor
dispatching over a discrete domain. This paper considers a class of submodular optimization problems
that consist of maximization of a monotone and submodular set function subject to a partition matroid
constraint over a group of networked agents that communicate over a connected undirected graph. We
work with the value oracle model. Consequently, the only access of the agents to the utility function
is through a black box that returns the utility function value given a specific strategy set. We propose
a distributed suboptimal polynomial-time algorithm that enables each agent to obtain its respective
strategy via local interactions with its neighboring agents. Our solution is a fully distributed gradient-
based algorithm using the submodular set functions’ multilinear extension followed by a distributed
stochastic Pipage rounding procedure. This algorithm results in a strategy set that when the team
utility function is evaluated at the worst case, the utility function value is in 1

c (1 � e�c � O(1/T )) of
the optimal solution with c being the curvature of the submodular function. An example demonstrates
our results.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Modern industries such as transportation, supply chain, en-
ergy, and finance are moving fast towards modular and dis-
tributed operations where communicating smart sub-systems are
expected to coordinate their actions for the optimal operation
of the entire system. Optimal strategy selection problems for
these networked systems often appear as combinatorial opti-
mization problems where the objective function is a submodular
set function. Some example cases include sensor and actuator
placement problems (Mehr & Horowitz, 2018; Summers, Cortesi,
& Lygeros, 2016), energy storage placement (Bucciarelli, Paoletti,
Dall’Anese, & Vicino, 2020; Qin, Yang, & Rajagopal, 2019), mea-
surement scheduling (Jawaid & Smith, 2015), voltage control in
smart grid (Liu et al., 2016), persistent monitoring via mobile
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robots (Rezazadeh & Kia, 2021a). For reasons such as robustness,
scalability, privacy preservation, and avoiding a single failure
point, these optimal decision-making problems are highly desired
to be solved in a distributed manner.

While there has been a plethora of work in developing central
solutions for submodular maximization, satisfactory distributed
algorithmic solutions for in-network submodular maximization
problems where agents communicate over a graph have re-
mained elusive. In this paper, we consider a distributed strategy
selection problem that is modeled as submodular maximiza-
tion subject to partition matriod. We seek a distributed solu-
tion in which the agents communicate over a connected undi-
rected graph.

Submodular function maximization: A set function f : 2P ! R�0
defined on the ground set P is submodular if 8 S ⇢ T ⇢ P , and
p 2 P \ T we have

f (S [ {p})� f (S) � f (T [ {p})� f (T ). (1)

Submodular set functions naturally possess the diminishing re-
turns property, i.e., the gain of adding a new element p to a
set decreases or stays the same as the size of the set increases.
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Submodularity is an inherent property in many practical util-
ity/objective functions such as weighted coverage functions, fa-
cility location service function, entropy, and mutual information
functions, which appear in strategy selection problems such as
sensor placement, measurement scheduling, workforce hiring,
and database sampling (Krause & Golovin, 2014).

Unlike minimization of submodular functions that can be
done in polynomial time (Fujishige & Iwata, 2001; Schrijver,
2000), submodular function maximization problems are NP-hard
(Nemhauser, Wolsey, & Fisher, 1978). Luckily, submodularity is
a property of set functions with deep theoretical consequences
that enables establishing constant factor approximate (subopti-
mal solutions) for submodular maximization problems. Research
on problems involving the maximization of monotone submod-
ular functions dates back to the work of Nemhauser, Wolsey,
and Fisher in the 1970s (Fisher, Nemhauser, & Wolsey, 1978;
Nemhauser & Wolsey, 1978; Nemhauser et al., 1978). A funda-
mental result by Nemhauser et al. (1978) establishes that the
simple sequential greedy algorithm is guaranteed to provide a
constant 1/2-approximation factor solution for submodular max-
imization subject to matroid constraints. The sequential greedy
algorithm reaches the final solution by sequentially finding the
best current decision based on the decisions made previously and
without considering the consequences or interactions with future
decisions. These bounds can be made tighter with additional
knowledge on the diminishing return property of the submodular
objective function quantified by total curvature c 2 [0, 1]. For
example Conforti and Cornuéjols (1984) show that the constant
factor approximation for submodular maximization subject to a
matroid constraint is 1

1+c .
More recently, another suboptimal solution for submodular

maximization subject to matroid constraints with an improved
optimality gap is proposed in the literature using the multilin-
ear continuous relaxation of a submodular set function (Bian,
Mirzasoleiman, Buhmann, & Krause, 2017; Mokhtari, Hassani, &
Karbasi, 2020; Sadeghi & Fazel, 2020; Vondrák, 2008, 2010). The
relaxation transforms the discrete problem into a continuous
optimization problem with linear constraints. Then, a continu-
ous gradient-based optimization algorithm referred to as con-
tinuous greedy algorithm, is used to solve the continuous opti-
mization problem. A suboptimal solution for submodular max-
imization subject to the matroid constraint with the improved
constant-factor approximation of (1 � 1/e) then is obtained by
proper rounding of the continuous-domain solution (Vondrák,
2008, 2010). This approach however requires a central authority
to solve the problem. It is worth noting that the literature has
shown that for monotone submodular functions, it is computa-
tionally hard to approximate this problem within a factor better
than 1� 1/e ⇡ 0.63% (Feige, 1998).

Distributed submodular function maximization: In multi-agents
setting, for example, multi-agent sensor placement problems
where the agents are self-organizing autonomous mobile agents
with communication and computation capabilities, it is desired
to solve the strategy selection problems modeled as constrained
submodular maximization problems in a distributed way without
involving a central authority. The problems in distributed settings
can be divided into two categories: distributed constraint prob-
lems and distributed utility problems. In a distributed constraint
problem there is a shared utility but each agent has to choose
its strategy from a local constraint set that is disjoint from other
agents’ and is only known to the agent. An example is the
heterogeneous coverage problem where each agent has a set of
heterogeneous sensors while the area to cover is shared among
them. The agents should decide what sensor(s) each to deploy
to maximize the area coverage as a team. In distributed utility
problems, however, the team’s utility function is the sum of the

separable local utilities and agents choose their strategies from
a shared strategy set. An example case is the optimal Welfare
problem (Vondrák, 2008) where each agent should make strategy
choices from a joint set such that the sum of local utilities is max-
imized. Our focus in this paper is on distributed solution design
for a distributed constraint (fragmented constraint) submodular
maximization problem.

For distributed constraint problems, the sequential greedy
algorithm can be implemented in a decentralized way through
sequential message-passing or via sequential message-sharing
through a cloud (Rezazadeh & Kia, 2021a). However, a decen-
tralized sequential greedy algorithm comes with communication
routing overhead. For agents communicating over a connected
graph, implementing sequential message-passing requires find-
ing the Hamiltonian path (a connected path that visits every
agent on the graph only once) which is an NP-hard problem
to solve. If Hamiltonian path does not exist in a graph, a path
that visits the agents in least frequent times should be iden-
tified for communication-efficient sequential message-passing.
Moreover, it is shown that the order of sequence changes the
actual approximation factor of the solution obtained by the se-
quential greedy algorithm (Konda, Grimsman, & Marden, 2021).
The complexity of finding the sequence that delivers the best
solution increases exponentially as the size and the connectivity
of the communication network increase. Several attempts have
been also undertaken to adapt the sequential greedy algorithm
for large-scale submodular maximization problems by reducing
the size of the problem through approximations (Wei, Iyer, &
Bilmes, 2014) or using several processing units to achieve a
faster sequential greedy algorithm, but with some sacrifices on
the optimality bound (Kumar, Moseley, Vassilvitskii, & Vattani,
2015; Mirzasoleiman, Karbasi, Sarkar, & Krause, 2013; Mirza-
soleiman, Zadimoghaddam, & Karbasi, 2016; Raut, Sadeghi, &
Fazel, 2020). However, these decentralized implementations are
mainly intended for parallel processing purposes and are not ex-
tendable to decentralized operations when agents communicate
over connected graphs.

Some attempts have also been made in devising distributed
solutions for submodular maximization using multi-linear ex-
tension approaches. For the class of distributed utility functions
semi-distributed and fully distributed solutions with an opti-
mality gap close to (1 � 1/e) are studied in Mokhtari, Has-
sani, and Karbasi (2018), Xie, Zhang, Shen, Mi, and Qian (2019)
and Ye and Sundaram (2020). However, for the class of dis-
tributed constraint problems, the results in the literature are
rather limited. For the special class of submodular set func-
tions with curvature c = 1, and when each agent is limited to
choose only a single strategy from its own strategy set, Robey,
Adibi, Schlotfeldt, Pappas, and Hassani (2021) have proposed
an average consensus-based distributed algorithm to the maxi-
mization problem over connected graphs. The solution of Robey
et al. (2021) requires a closed-form expression of the multi-linear
extension function. However, the computational complexity of
constructing the closed-form of multi-linear extension of a sub-
modular function and its derivatives increases exponentially with
the size of the strategy set. Moreover, the result also depends on
a centralized rounding scheme.

Statement of contributions: In this paper, motivated by the im-
proved optimality gap of the multilinear continuous relaxation-
based algorithms, we develop a distributed implementation of the
algorithm of Vondrák (2010) over a connected undirected graph.
Particularly, we consider a distributed submodular set function
maximization problem formulated by a shared utility function
and disjoint strategy sets (fragmented constraint class). Moreover,
in our setup, the agents may want to choose multiple strategies
from their strategy sets.
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We propose a gradient-based algorithm, constructed on multi-
linear extension function of a submodular function, which uses
a maximum consensus scheme over the communication graph
and results in a distributed implementation of the continuous
greedy algorithm. The multi-linear extension function of a sub-
modular function is equivalently the expected value of the sub-
modular function evaluated at random sets obtained by picking
strategies from the strategy set independently with a probability.
This stochastic interpretation allows us approximating the multi-
linear extension function and its derivatives empirically with a
reasonable computational cost via sampling from the strategy
set (Vondrák, 2010). We analyze the effect of stochastic interpre-
tation of the multilinear extended function and sampling on our
algorithm’s optimality gap.

We complete our solution by designing a lossless distributed
rounding procedure that allows each agent to compute its final
suboptimal strategy. The purpose of a rounding procedures is to
convert a fractional solution of a relaxed continuous represen-
tation of a combinatorial optimization problem into an integer
solution for the origional combinatorial optimiozation problem.
In a distributed setting, generally an attempt to implement a cen-
tralized rounding procedure (Ageev & Sviridenko, 2004; Vondrák,
2010) requires extra coordinating communication between the
agents. However, our choice of maximum consensus algorithm as
the agreements protocol between the agents removes the need
for further communication. We show that after the coordination
of the agents through maximum consensus for a given period of
time, each agent can use a local randomized Pipage procedure
to reach a deterministic set of strategies as its local solution
without the necessity to interact with other agents. Furthermore,
our algorithm guarantees the resulting global suboptimal strategy
lies in the feasible constraint set.

Through rigorous analysis which takes into account the total
curvature of the utility function, we show that our proposed
distributed algorithm in finite time T achieves, with a known
probability, a 1

c (1�e�c)�O(1/T ) optimality bound, where 1/T is
the step size of the algorithm and the frequency at which agents
communicate over the network. A numerical example demon-
strates our results. Using various scenarios, this numerical study
highlights the higher computational cost of a solution based on
a continuous-relaxation in comparison to the sequential greedy
algorithm. But, this high cost is paid off by an improved optimal-
ity gap, no overhead to determine message passing sequence and
independence of the result from the message passing sequence.

Notation and definitions: We denote the vectors with bold small
font. The pth element of vector x is denoted by [x]p. We denote
the inner product of two vectors x and y with appropriate di-
mensions by x.y. We use 0 and 1 as a vector of zeros and ones
respectively, whose dimension is understood from the context.
We denote sets with the capital curly font. Given a ground set
P = {1, . . . , n}, we define the membership probability vector
x 2 [0, 1]n to obtain Rx ⇢ P as a random set where p 2 P

is in Rx with the probability [x]p. For R ⇢ P , 1R 2 {0, 1}n is
the vector whose pth element is 1 if p 2 R and 0 otherwise;
we call 1R the membership indicator vector of set R. Given a
finite countable set R ⇢ R and integer  , 1   < |R|,
max(R, ) returns the  largest elements of R. For x 2 R, |x| is
its absolute value. By overloading the notation, we also use |R| as
the cardinality of set R. For a set function f : 2P ! R, we define
�f (p|R) = f (R[{p})� f (R), R ⇢ P . A set function is normalized
if f (;) = 0. A set function f : 2P ! R�0 is monotone increasing
if f (P1)  f (P2) for any P1 ⇢ P2 ⇢ P .

2. Problem definition and preliminaries

Consider a group of A = {1, . . . ,N} agents with communica-
tion and computation capabilities, interacting over a connected
undirected graph G(A, E) where E ⇢ A⇥A is the edge set. Recall
that G is undirected if and only if (i, j) 2 E means that agents i
and j can mutually exchange information. An undirected graph is
connected if there is a path from each node to every other node
in the graph.

Each agent i 2 A has a distinct discrete strategy set Pi, known
only to agent i, and wants to choose at most i 2 Z>0 strategies
from Pi such that a monotone increasing and submodular utility
function f : 2P ! R�0, P =

S
i2A Pi, evaluated at all

the agents’ strategy selection is maximized. In other words, the
agents aim to solve in a distributed manner the discrete domain
optimization problem

max
R2I

f (R) (2a)

I =
�
R ⇢ P

�� |R \ Pi|  i, 8i 2 A

 
. (2b)

The agents’ access to the utility function is through a black box
that returns f (R) for any given set R ⇢ P (value oracle model).
The constraint set (2b) is a partition matroid, which restricts
the number of strategy choices of each agent i 2 A to i.
In a distributed solution, each agent i 2 A should obtain its
respective component R

?
i ⇢ Pi of R

? = [
N
j=1R

?
j , the optimal

solution of (2), by interacting only with the agents that are in its
communication range.

In the remainder of this paper, without loss of generality, we
assume that global strategy set is given by P =

S
i2A Pi =

{1, . . . , n}. Also, we assume that the agents’ local strategies each
are non-empty consecutive integers and ordered such that if Pi =

{p, p + 1, . . . , q} ⇢ P , then p� 1 2 Pi�1 and q + 1 2 Pi+1.
The distributed solution we propose for solving (2) relies on a

multilinear extension relaxation approach and a rounding proce-
dure. In what follows, we introduce the notation and definitions
needed for this approach.

2.1. Multilinear relaxation

The utility function f assigns values to all the subsets of P =S
i2A Pi = {1, . . . , n}. Thus, equivalently, we can regard the set

value utility function as a function on the Boolean hypercube
{0, 1}n, i.e., f : {0, 1}n ! R. For a submodular function f : 2P !
R�0, its multilinear extension F : [0, 1]n ! R�0 in the continuous
space is (Vondrák, 2008)

F (x) =

X

R⇢P

f (R)
Y

p2R

[x]p
Y

p62R

(1� [x]p), x 2 [0, 1]n. (3)

Given x 2 [0, 1]n we can define Rx to be the random subset of
P in which each element p 2 P is included independently with
probability [x]p and not included with probability 1� [x]p. Then
the multilinear extension F in (3) is simply (Vondrák, 2008)

F (x) = E[f (Rx)], (4)

where E[.] indicates the expected value. Taking the derivatives of
F (x) yields (Vondrák, 2008)
@F

@[x]p
(x) = E[f (Rx [ {p})� f (Rx \ {p})], (5)

and
@2F

@[x]p@[x]q
(x) = E[f (Rx [ {p, q})� f (Rx [ {q} \ {p})

� f (Rx [ {p} \ {q}) + f (Rx \ {p, q})]. (6)

Multilinear-extension function F (x) expands the function
evaluation of the utility function over the space between the
vertices of the Boolean hypercube {0, 1}n. For a solution via a
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continuous relaxation method, the effect of partition matroid con-
straint should also be considered. To do so, the matroid polytope
for partition matroid is defined as

M = {x 2 [0, 1]n
��
X

p2Pi

[x]p  i,8i 2 A}. (7)

The matroid polytope M is the convex hull of the vertices of
the hypercube {0, 1}n that satisfy the partition matroid con-
straint (2b). Additionally, note that according to (3), F (x) for any
x 2M is a weighted average of values of F at the vertices of the
matriod polytope M. Then, equivalently, F (x) at any x 2 M is
a normalized-weighted average of f on the strategies satisfying
constraint (2b). As such,

f (R?) � F (x), x 2M,

which is equivalent to f (R?) = maxx2M F (x), where R
? is the

optimizer of problem (2) (Vondrák, 2008). Therefore, solving the
continuous domain optimization problem

max
x2M

F (x), (8)

can lead to finding the R
?.

A practical implementation of a gradient-based method to
solve (8) is achieved by using an Euler discretized implemen-
tation with stepsize of 1

T in T 2 Z>0 steps. A significant challenge
in implementing a gradient-based method is the exponential cost
of computing the gradient rF (x) whose calculation requires the
knowledge of f at each R ⇢ 2P . The stochastic interpretation (4)
of the multilinear extension and its derivatives however offer a
mechanism to estimate them with a reasonable computational
cost via sampling.

3. Distributed submodular maximization subject to partition
matroid

In this section we propose a distributed algorithm for the
submodular maximization problem defined in Section 2. Our
solution relies on the continuous relaxation of the discrete op-
timization (2). We first find a suboptimal solution to the re-
laxed problem and then propose a rounding method to map this
solution to a feasible suboptimal solution for (2).

3.1. Distributed discrete gradient ascent solution

In the distributed setting described in our problem definition,
every agent initially has access only to its own strategy set. Let
every agent i 2 A maintain and evolve a local copy of the mem-
bership probability vector as xi(t) 2 Rn. Since P = {1, . . . , n}
is sorted agent-wise, we denote xi(t) = [x̂>i1(t), . . . , x>ii (t), . . . ,
x̂>iN (t)]> 2 Rn where xii(t) 2 R|Pi|

�0 is the membership probability
vector of agent i’s own strategy with entries of [xi(t)]p, p 2 Pi

at iteration t 2 {0, 1, . . . , T }, T 2 Z>0, while x̂ij(t) 2 R|Pj|
�0 is the

local estimate of the membership probability vector of agent j by
agent i with entries of [xi(t)]p, p 2 Pj, j 2 A \ {i}. Every agent
i 2 A initializes at xi(0) = 0 and implements the propagation and
update steps

x�i (t + 1) = xi(t) +
1
T
evi(t), (9a)

xi(t + 1) = max
j2Ni[{i}

x�j (t + 1), (9b)

where

evi(t) = argmax
w2Mi

w.frF (xi(t)) (10)

with

Mi =

n
w 2 [0, 1]n

��� 1>.w  i , [w]p = 0, 8p 2 P\Pi

o
. (11)

The vector frF (xi(t)) is the empirical estimate of rF (xi(t)). At
time step t , each agent i 2 A generates Ki independent samples
{R

k
i (t)}

Ki
k=1 of random set Rxi(t) drawn according to membership

probability vector xi(t) from P and empirically computes gradi-
ent vector rF (xi(t)) 2 Rn

�0, which according to (5) is defined
element-wise as

⇥frF (xi(t))
⇤
p =

 KiX

k=1

f (Rk
i (t) [ {p})� f (Rk

i (t) \ {p})

!.
Ki, (12)

p 2 P = {1, . . . , n}.
In the propagation step (9a) agent i takes a step along a

feasible gradient ascent direction in its own local polytope (11).
Because the propagation is only based on the local information
of agent i, in the update step (9b), the propagated x�i (t + 1)
of each agent i 2 A is updated by element-wise maximum
seeking among its neighbors. Lemma 1, whose proof is given
in Appendix D, shows that, as expected,

xii(t) = x�ii (t), i 2 A,

i.e., the corrected component of xi corresponding to agent i it-
self is the propagated value maintained at agent i, and not the
estimated value of any of its neighbors.

Lemma 1. Let the agents propagate and update their local mem-
bership probability vector according to (9a) and (9b). Let

x̄(t) = max
i2A

xi(t). (13)

Then, at any t 2 {0, 1, . . . , T }, we have

x̄(t) = [x>11(t), . . . , x
>

NN (t)]
>. (14)

We interpret x̄(t) as the global probability membership vec-
tor of the network. Next lemma, whose proof is given in Ap-
pendix D, states that both xi(t) and x̄(t) belong to M for any t 2
{0, . . . , T }, i.e., the trajectories of the local and global membership
probability vectors never leave the matroid polytope.

Lemma 2. Let the agents propagate and update their local mem-
bership probability vector according to (9a) and (9b). Then, (a)
xi(t), x̄(t) 2 M at any t 2 {0, 1, . . . , T }; (b) 1.xii(T ) = i,
1.x̂ij(T )  j, j 2 A \ {i}, and xi(T ) 2 [0, 1]n.

The following result, whose proof is given in Appendix D,
establishes the difference between each agent i’s local copy of
the membership probability vector xi(t) and the global probability
membership vector of the network x̄(t). It also shows how the
global probability membership vector evolves when agents im-
plement (9). This result is instrumental in establishing proof of
Theorem 4.

Proposition 3. Let the agents propagate and update their local
membership probability vector according to (9a) and (9b). Then, the
membership probability xi(t), t 2 {0, . . . , T }, for each agent i 2 A

satisfies

0 
1

1.(x̄(t)� xi(t)) 

1
T
d(G), (15a)

x̄(t + 1)� x̄(t) =
1
T

X

i2A

evi(t), (15b)

1
i
1.(x̄(t + 1)� x̄(t)) =

1
T

, (15c)

where  =
P

i2A i and d(G) is the diameter of graph G and x̄(t) is
given by Eq. (14).

4
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The following theorem, whose proof is given in Appendix E,
quantifies the optimality gap of F (x̄(T )) with respect to the solu-
tion of the main problem (2). To characterize this optimality gap
we take into account the total curvature of the utility function,
defined as

c = 1� min
S⇢P, p62S

�f (p|S)
�f (p|;)

. (16)

The total curvature c 2 [0, 1] of a submodular set function f :

2P ! R�0 shows the worst-case increase in the value of the
function when member p is added.

Theorem 4 (Optimality Gap). Let the agents propagate and update
their local membership probability vector according to (9). Let  =P

i2A i, Ki be number of samples agent i used to compute frF (xi(t)),
and R

? be the optimizer of problem (2). Then, with the proba-

bility of at least
⇣Q

i2A(1� 2e�
1

8T2
Ki )|Pi|

⌘T
, the global probability

membership vector x̄(T ) satisfies

F (x̄(T )) � � f (R?), (17)

where

� =
1
c
(1� e�c)(1� (2 c  d(G) +

c 

2
+ 1)



T
). (18)

and d(G) is the diameter of graph G.

Notice that since

1� 2T n e�
1

8T2
K


 
Y

i2A

(1� 2e�
1

8T2
Ki )|Pi|

!T

,

where K = min{K1, . . . , KN}, the probability of the bound (17)
improves as T , and the number of the samples collected by the
agents K increase.

3.1.1. Distributed pipage rounding procedure
The final output of a distributed solver for problem (2) must be

a set R̄ that belongs to I defined in (2b). Recall that strategies cor-
responding to the vertices of the matroid polytope M correspond
to admissible strategy set I. However, x̄(T ) is a fractional point in
M. Moreover, only part of x̄(T ) is available at each agent i 2 A.
In what follows, we propose a distributed rounding procedure
that without any communication among the agents, enables each
agent i 2 A to round its xii(T ), and use this rounded probability
membership vector to make its local strategy choice R̄i such that
[i2AR̄i = R̄ 2 I.

Let each agent i 2 A initialize its local rounded membership
vector yii 2 R|Pi| at yii(0) = xii(T ). Then, by virtue of Lemma 2,
we have yii(0) 2 [0, 1]|Pi|, i 2 A. Following a stochastic Pi-
page rounding procedure, each agent i 2 A at each rounding
iteration ⌧ uniformly random selects two fractional elements
[yii(⌧ )]p, [yii(⌧ )]q of yii(⌧ ), i.e., [yii(⌧ )]p, [yii(⌧ )]q 2 (0, 1), and
performs the randomized swapping/update
⇢
[yii(⌧ + 1)]p = [yii(⌧ )]p � �p(⌧ ),
[yii(⌧ + 1)]q = [yii(⌧ )]q + �p(⌧ ),

w.p.
�q(⌧ )

�p(⌧ ) + �q(⌧ )
,

⇢
[yii(⌧ + 1)]q = [yii(⌧ )]q � �q(⌧ ),
[yii(⌧ + 1)]p = [yii(⌧ )]p + �q(⌧ ),

w.p.
�p(⌧ )

�p(⌧ ) + �q(⌧ )
, (19)

where �p(⌧ ) = min([yii(⌧ )]p, 1 � [yii(⌧ )]q) and �q(⌧ ) = min(1 �
[yii(⌧ )]p, [yii(⌧ )]q); see Fig. 1 for an illustration. Here, ‘w.p.’ stands
for ‘with probability of’. The following proposition whose proof is
in Appendix D gives the convergence result of distributed Pipage
rounding (19).

Fig. 1. The first two steps of the stochastic Pipage rounding (19) for an agent i
with xii(T ) = [0.15, 0.25, 0.1, 0.2, 0.1, 0.8, 0.05, 0.35]> that should choose two
strategies from Pi .

Proposition 5. Starting from yii(0) = xii(T ), let each agent i 2 A

implement the rounding procedure (19). Then, yii(|Pi|) 2 {0, 1}|Pi|,
and 1.yii(|Pi|) = i. Moreover, ȳ = [y11(|P1|), y22(|P2|), . . . ,
yNN (|PN |)] is a vertex of M.

It is worth noting that 1.xii(T ) = i, guaranteed by Lemma 2
for our proposed algorithm (9), has a significant importance in
enabling a rounding procedure without the necessity for coordi-
nation among the agents. As we discuss in the numerical example
of Section 4, 1.xii(T ) = i is not the case for the distributed
continuous greedy algorithm of Robey et al. (2021), which uses an
average consensus algorithm to coordinate the local probability
membership choices of the agents.

Our distributed stochastic Pipage rounding procedure con-
cludes by each agent i 2 A choosing its suboptimal strategy set
according to

R̄i = Rȳi , where (20)
ȳi = [0>

|P1|⇥1, . . . , yii(|Pi|)>, . . . , 0>|PN |⇥1]
>,

with yii(|Pi|) obtained from (19), initialized at yii(0) = xii(T ).
The following result, whose proof is given in Appendix E, shows
that our proposed distributed rounding procedure (19) results in
a strategy selection (20) that is loss-less in the expected value
sense. That is, it results in not only a feasible selected strategy
set but also strategies that are selected in a distributed way with
no loss in the utility function compared to the fractional solution.

Theorem 6 (Utility Evaluation After Distributed Pipage Rounding).
Let each agents i 2 A choose its strategy set R̄i ⇢ Pi according
to (20). Let R̄ =

S
i2A R̄i. Then,

F (x̄(T ))  E[f (R̄)]. (21)

3.2. Distributed implementation

Our proposed suboptimal solution to solve problem (2) con-
sists of iterative propagation step (9a) and update step (9b),
which requires local interaction between neighbors to exchange
information. After T steps, once xi(T ) is obtained, each agent
i 2 A computes its suboptimal solution from (20) after running
Pipage procedure (19) locally for at most |Pi| steps to compute
yii(|Pi|). In the propagation step agents should draw Ki samples of
Rxi ⇢ P to compute frF (xi(t)), requiring access to the elements
of P corresponding to the non-zero elements of xi(t).

In what follows, by relying on the properties of the updated
local copies of the probability membership vector, we outline the
information exchange that is needed for implementation of our
distributed solution. The resulted implementation is summarized
as the distributed multilinear-extension-based iterative greedy
algorithm presented as Algorithm 1.

Observe that since in (10) we have w 2 Mi, to carry out the
propagation step (9a), each agent should only compute
[frF (xi(t))]p, p 2 Pi from (12) using Ki samples of {R

k
i (t)}

Ki
k=1,

where each sample satisfies q 2 R
k
i (t) with the probability of [xi]q

for all q 2 P for which [xi]q 6= 0. It follows from submodularity
of f that f (Rk

i (t) [ {p}) � f (Rk
i (t)) \ {p} � 0. Thus, for any

5
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Algorithm 1 Discrete distributed implementation of the continu-
ous greedy algorithm.
1: Init: F1  ;, · · · ,FN  ;, t  1,
2: while t  T do
3: for i 2 A do
4: Draw Ki sample strategy sets, {Rk

i }
Ki
k=1 such that

q 2 Rk
i w.p. ↵ for all (q, ↵) 2 Fi.

5: for p 2 Pi do
6: Compute

[frF (xi(t))]p⇡E[f (R [ {p})� f (R \ {p})]
using the sample strategy sets of step 4 via (12).

7: end for
8: compute {p?

1, · · · , p?
i
} ⇢ Pi via (22)

9: F�i  Fi �
�
(p?

1,
1
T )
 
� · · ·�

�
(p?

i
, 1

T )
 

10: Broadcast F�i to the neighbors Ni.
11: Fi  MAX

j2Ni[{i}
F�j

12: end for
13: t  t + 1.
14: end while
15: for i 2 A do
16: R̄i = {p̄1, · · · , p̄i } DistStochPipage(Fi)
17: end for
18: Return R̄1, · · · , R̄N

Algorithm 2 DistStochPipage( )
1: Input: Fi
2: Init: R̄i = ;

3: while |R̄i| < i do
4: pick any (↵p, p), (↵p, p) 2 Fi such that p, q 2 Pi

5: Set:

(
�p = min{↵p, 1� ↵q}

�q = min{↵q, 1� ↵p}

6: Update

8
>>>>>><

>>>>>>:

(
↵p  ↵p � �p

↵q  ↵q + �p
w.p. �q

�p+�q

or(
↵q  ↵q � �q

↵p  ↵p + �q
w.p. �p

�p+�q

7: if ↵p = 1 then R̄i  R̄i [ {p}, Fi  Fi\{(↵p, p)}
8: if ↵q = 1 then R̄i  R̄i [ {q}, Fi  Fi\{(↵q, q)}
9: end while
10: Return R̄i

p 2 Pi we have [frF (xi(t))]p � 0. Consequently, one realization
ofevi(t) of optimization problem (10) is 1{p?

1,...,p?
i }
, where the set

{p?
1, . . . , p

?
i
} ⇢ Pi is obtained from

{p?
1, . . . , p

?
i
} = argmax({frF (xi(t))}p2Pi , i), (22)

i.e., {p?
1, . . . , p

?
i
} ⇢ Pi corresponds to the ki largest elements of

{frF (xi(t))}p2Pi .
Usingevi(t) = 1{p?

1,...,p?
i }
, it follows from (9a) that at each prop-

agation step only the value of i elements of xi(t) corresponding
to {p?

1, . . . , p
?
i
} changes and increases by 1

T .
Now let us define the local information set of each agent i at

time step t as

Fi(t) =
�
(p, ↵) 2 P ⇥ [0, 1]

���[xi(t)]p 6= 0 and ↵ = [xi(t)]p
 
. (23)

Fi(t) is a set of couples representing which element p 2 P has
an associated non-zero probability membership vector element
in xi(t). Since xi(0) = 0, then Fi(0) = ;. Introduction of
the information set Fi(t) provides a framework through which
the agents only store and communicate the necessary informa-
tion. Furthermore, it enables the agents to carry out their local
computations using the available information in Fi(t).

As we discussed earlier, since we use evi(t) = 1{p?
1,...,p?

i }
the

corresponding realization of propagation rule (9a) over the infor-
mation set Fi(t) is

F
�

i (t + 1) = Fi(t)� {(p?
1,

1
T
)}� · · ·� {(p?

i
,
1
T
)}, (24)

where the addition operator � is defined as follows.

Definition 7. Given a set F ⇢ P ⇥ R and a member (p, ↵) 2
P ⇥ R, we define the addition operator � as F

0 = F� {(p, ↵)}
such that

F
0
=

⇢
F [ {(p, ↵)} (p, � ) 62 F,

(F \ {(p, � )}) [ {(p, � + ↵)} (p, � ) 2 F .

Per definition operator � inserts (p?
j ,

1
T ), j 2 {1, . . . , i} in

agent i’s information set if there exists no element (p?
j , ↵), ↵ 6= 0

in Fi(t); otherwise, operator � pops out (p?
j , ↵) and replaces it

with (p?
j , ↵ +

1
T ). Therefore, F

�

i (t + 1) is consistent with the
realization of x�i (t + 1) through the membership probability
vector to information set conversion relation (23).

Instead of the agents sharing x�i (t), i 2 A with their neigh-
bors, they can share their local information set with their neigh-
boring agents and execute a max operation over their local and
received information sets as

Fi(t + 1) = MAX
j2Ni[{i}

F
�

j (t + 1), (25)

where the MAX operator is defined as follows.

Definition 8. Given a collection of sets Fi 2 P ⇥ R, i 2 A, we
define the max-operation over these collection as MAXi2A Fi =

{(u, � ) 2 P ⇥ R|(u, � ) 2 F̄ s.t. � = max(u,↵)2F̄↵}, where F̄ =S
i2A Fi.

Consequently, through the membership probability vector to
information set conversion relation (23), Fi(t + 1) is consistent
with a realization of xi(t + 1). Notice that sharing Fi(t) not only
enables sharing non-zero components of x�i (t + 1) but also the
corresponding strategies, which are what is needed to preform
the next step of the algorithm. Moreover, because at each prop-
agation step of the algorithm only, at most, i zero elements of
xi(t) will become non-zero when x�i (t + 1) is computed, the size
of Fi at worst case grows linearly with

PN
j=1 j after each update.

Finally, given the definition of Fi(t) in (23) and in light of
Proposition 5, the stochastic rounding procedure (19) and (20)
can be implemented according to Algorithm 2.

In light of the discussion above, Algorithm 1 gives our dis-
tributed multilinear extension based suboptimal solution for
problem (2). The following theorem, whose proof is given in
Appendix E establishes the optimality bound of f (R̄) where R̄ =S

i2A{R̄i} is generated through the decentralized Algorithm 1.

Theorem 9 (Convergence Guarantee and Suboptimality Gap of Algo-
rithm 1). Let f : 2P ! R�0 be normalized, monotone increasing and
submodular set function. Let R? to be the optimizer of problem (2).
Following the distributed Algorithm 1, the admissible strategy set R̄
with probability of at least 1�2T n e�

1
8T2

K
, K = mini2A Ki satisfies

E[f (R̄)] � � f (R?),

where � is given in (18).

The constant approximation factor � is characterized in terms
of the total curvature c of the utility function f . Curvature c
represents a measure of the diminishing return of a set function.
The curvature of c = 0 means that the function is modular,
i.e., f ({p1, p2}) = f ({p1}) + f ({p2}), p1, p2 2 P . We can see

6
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Fig. 2. Set of information sources D and set of sensor placement point B.

from (18) that when c = 0, � = 1, meaning that for modular
functions our algorithm can find the optimal solution in finite
time. On the other hand, c = 1 means that there is at least a
member that adds no value to function f in a special circum-
stance. Whenever the total curvature is not known, it is rational
to assume the worst case scenario and set c = 1.

Remark 10 (Extra Communication for Improved Optimality Gap).
Replacing the update step (9b) with xi(t + 1) = yi(d(G)) where
yi(0) = x�i (t + 1) and

yi(m) = max
j2Ni[{i}

yj(m� 1), m 2 {1, . . . , d(G)},

i.e., starting with x�i (t + 1) and recursively repeating the update
step (9b) using the output of the previous recursion for d(G)
times, each agent i 2 A arrives at xi(t + 1) = x̄(t + 1) (recall
Lemma 1). Hence, for this revised implementation, following
the proof of Theorem 4, we observe that (48) is replaced by��� @F
@[x]p (x̄(t))�

@F
@[x]p (xi(t))

��� = 0, which consequently, leads to

1
c
(1� e�c)(1� (

c 

2
+ 1)



T
)f (R?)  F (x̄ii(T )), (26)

with the probability of at least
⇣Q

i2A(1� 2e�
1

8T2
Kj )|Pi|

⌘T
. This

improved optimality gap is achieved by (d(G)�1)T extra commu-
nication per agent. The optimality bound (26) is the same bound
that is achieved by the centralized algorithm of Vondrák (2010).
To implement this revision, Algorithm 1’s step 11 (equivalent
to (24)) should be replaced by Fi = Hi(d(G)), where Hi(0) = F

�

i ,
and

Hi(m) = MAX
j2Ni[{i}

H
�

j (m� 1), m 2 {1, . . . , d(G)}. (27)

4. Numerical example

We demonstrate our algorithm’s performance using a multi-
agent information harvesting problem. Consider a countable set
of information sources D ⇢ R2 that are spread in a two-
dimensional area without any prior information on their spread
density function. In the same area, a countable set of prespecified
information retrieval points B ⇢ R2 are available for placing
information harvester devices. We assume that the information is
best transferred from an information point d 2 D to a harvester
device dispatched at b 2 B if the distance between b and d is
minimized. Hence, for each information point d 2 D the closest

information retrieval point b 2 B with a deployed device is
assigned to harvest information.

Each agent i 2 A is only able to deploy at most i devices to
its admissible deployment locations Bi ⇢ B, where B1, . . . ,BN
are not necessarily disjoint sets. To make the strategy set of the
agents disjoint, we define the deployment strategy of each agent
i 2 A as Pi = {(i, b)|b 2 Bi}. Note that if b 2 Bi and b 2 Bj
then the strategies (i, b) 2 Pi and (j, b) 2 Pj will be placing one
sensors from agent i 2 A and one sensor from agent j 2 A

at the placement location b 2 B. The goal of the agents A is
to each choose a strategy set Ri ⇢ Pi, |Ri|  i such that
cumulative strategy of the team R =

S
i2A Ri results in smallest

total distance of information sources to the deployed devices,
i.e. minimizing

L(R) =

X

d2D

min
(i,b)2R

kd� bk . (28)

Taking a phantom placement location b0 to be a random point in
R2, the problem can be reformulated as problem (2) where the
utility function to maximize is

f (R) = L({b0})� L(R [ {b0}). (29)

This utility function (29) measures the decrease in the loss as-
sociated with the active set versus the loss associated with just
the phantom placement location and maximizing this function is
equivalent to minimizing the loss (28). It is known that the utility
function (29) is submodular and monotone increasing (Gomes &
Krause, 2010).

For our numerical study, we consider 4500 information
sources spread in a two-dimensional field where there are 15
deployment locations B = {b1, . . . , b15}, see Fig. 2. We consider
a set of ten agents A = {1, . . . , 10} whose goal is to deploy 1 =

2, 2 = 2, 3 = 2, 4 = 2, 5 = 2, 6 = 1, 7 = 1, 6 =

1, 9 = 1, 10 = 1 devices at B1 = {b1, b2, b3, b5, b6}, B2 =

{b4, b5, b6, b8, b9}, B3 = {b7, b8, b9, b11, b12}, B4 = {b10, b11, b12,
b14, b15}, B5 = {b2, b3, b13, b14, b15}, B6 = {b2, b3}, B7 = {b5, b6},
B8 = {b8, b9}, B9 = {b11, b12}, and B10 = {b14, b15}. Hence the
disjoint strategy sets are defined as P1 = {(1, b1), (1, b2), (1, b3),
(1, b5), (1, b6)}, P2 = {(2, b4), (2, b5), (2, b6), (2, b8), (2, b9)}, P3 =

{(3, b7), (3, b8), (3, b9), (3, b11), (3, b12)}, P4 = {(4, b10), (4, b11),
(4, b12), (4, b14), (4, b15)}, P5 = {(5, b2), (5, b3), (5, b13), (5, b14),
(5, b15)}, P6 = {(6, b2), (6, b3)}, P7 = {(7, b5), (7, b6)}, P8 =

{(8, b8), (8, b9)}, P9 = {(9, b11), (9, b12)}, and P10 = {(10, b14),
(10, b15)}. Although, the general form of the problem is NP-
hard, we have designed our numerical example such the optimal
solution is trivial. Recall that to maximize the utility (29) of
the group the deployed sensors must be placed such that the
distance between the information sources and deployed sensors
is minimized. Since there are |B| = 15 deployment locations
and

P5
j=1 j = 15 sensors to deploy, the optimal solution is to

place the deployed sensors to occupy all the sensor-placement
locations. This deployment scenario is only feasible if agent 1
deploys its 1 = 2 devices at locations {b1, b2} ⇢ B1, i.e. R1 =

{(1, b1), (1, b2)}, agent 2 deploys its 2 = 2 devices at locations
{b4, b5} ⇢ B2, i.e. R2 = {(2, b4), (2, b5)}, agent 3 deploys its 3 =

2 devices at locations {b7, b8} ⇢ B3, i.e. R3 = {(3, b7), (3, b8)},
agent 4 deploys its 4 = 2 devices at locations {b10, b11} ⇢ B4,
i.e. R4 = {(4, b10), (4, b11)}, agent 5 deploys its 5 = 2 devices
at locations {b13, b14} ⇢ B5, i.e. R5 = {(5, b13), (5, b141)}, agent
6 deploys its 6 = 1 devices at locations {b3} ⇢ B6, i.e. R6 =

{(6, b3)}, agent 7 deploys its 7 = 1 devices at locations {b6} ⇢ B7,
i.e. R7 = {(7, b6)}, agent 8 deploys its 8 = 1 devices at locations
{b9} ⇢ B8, i.e. R8 = {(8, b9)}, agent 9 deploys its 9 = 1 devices
at locations {b12} ⇢ B9, i.e. R9 = {(9, b12)}, and agent 10 deploys
its 10 = 1 devices at locations {b15} ⇢ B10, i.e. R10 = {(10, b15)}.

7
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Fig. 3. The communication graph of the agents is a ring graph. Six possible
communication sequences to implement a sequential greedy algorithm are
shown.

Fig. 4. The average number of sensor placement points covered by deployed
sensors when Algorithm 1 is implemented by different sample numbers and
T = 50.

This setting allows us to compare the outcome of the suboptimal
solutions against the optimal one. It is interesting to notice that
the total curvature of utility function (29) is c = 1. This is because
if we take the strategy set S = {(1, b1), (2, b2)} and the strategy
p = (6, b2), since, the strategies (1, b2) and (6, b2) place a sensor
at the same location then the utility equation (29) results in
�f (p|S) = 0. Thus, given the definition of the total curvature (16),
we obtain c = 1.

Let the communication topology of the agents be an undi-
rected ring graph, see Fig. 3. First, we solve the problem using
Algorithm 1. We generate 50 deployment scenarios, each cor-
responding to a set of 4500 randomly generated information
sources and 15 sensor locations. The results of implementing
Algorithm 1 for the different number of samples Ki (all agents use
the same number of samples) and iteration number T = 50 are
shown in Fig. 4. Observe that using a modest number of iterations
T = 50 and a modest number of samples Ki = 1000 Algorithm
1 finds almost the optimal solution in terms of occupying the
placement locations; the average number of locations occupied
is 14.3. For this setting, the expected outcome of Algorithm 1
over the 50 placement scenarios considered, measured by utility
function (29), is at 0.96 of the optimal solution. The run-time
of the algorithm, implemented using NumPy library, for each
agent is approximately 40 s on a computing device with Intel(R)
Xeon(R) CPU @ 2.30 GHz and 13 GB RAM.

Comparison with sequential greedy algorithm: Next, we solve the
problem using a decentralized message-passing sequential greedy
algorithm following Gharesifard and Smith (2017) and Rezazadeh
and Kia (2021a). That is, we choose a route SEQ that visits all the
agents on the communication graph. We then make the agents

Fig. 5. The average number of covered placement points over 50 different
randomly generated information sources and sensor placement locations. The
x-axis corresponds to the six SEQ in Fig. 3(a)–(f) and Algorithm 1 denoted by
Alg1. The y-axis corresponds to the average number of sensor placement points
covered by the deployed sensors.

perform the sequential greedy algorithm by sequential message-
passing according to SEQ. Fig. 3(a)–(f) gives 6 of the possible SEQ
depicted by the semi-circular arrow inside the networks. As Fig. 5
shows the performance (measured by the number of occupied
placement locations) of the sequential greedy algorithm depends
on what SEQ agents follow, with SEQ of Fig. 3(a) delivering the
worst performance. Moreover, the performance measured by util-
ity function (29) for SEQ (a),(b),(c),(d),(e), and (f) are respectively
0.78, 0.80, 0.82, 0.83, 0.92, 0.99 of the optimal utility value.
We can attribute this inconsistency to the heterogeneity of the
agents’ sensor numbers. When agents with a larger number of
choices pick first, this limits the options of the agents with a
lower number of sensors available. However, the performance
of Algorithm 1 is regardless of any particular path on the graph
since, through its iterative process, the agents get the chance
to readjust their choices, see Fig. 6 for a deployment outcome
via Algorithm 1 and the sequential greedy algorithm. Intuitively,
this explains the better optimality gap of the continuous greedy
algorithm over the sequential greedy algorithm. The sequential
greedy algorithm has a run-time of less than 1 s for each agent
on a device with Intel(R) Xeon(R) CPU @2.30 GHz and 13 GB
RAM, which is significantly less than 40 s that we reported for
our proposed Algorithm 1 using Ki = 1000 and T = 50.
Even though computationally efficient, as we discussed in the
introduction, the downsides of the sequential greedy algorithm
are in its worse optimality gap, the overhead associated with
identifying the message-passing sequence, and the dependence of
the results on the message-passing sequence (Konda et al., 2021).

Comparison with the average consensus based algorithm of Robey
et al. (2021) : we compare our proposed Algorithm 1, which is
based on a maximum consensus communication to the algorithm
proposed in Robey et al. (2021), which is based on an average
consensus communication. Since the algorithm of Robey et al.
(2021) is designed for when agents choose only one strategy each,
we carry out this study for i = 1 for i 2 {1, 2, . . . , 10}. Moreover,
since no distributed rounding procedures are proposed in Robey
et al. (2021), we implemented a central rounding algorithm based
on the contention resolution schemes (Chekuri, Vondrák, & Zen-
klusen, 2014) to achieve a rounded solution from the relaxed
solution. Our analysis shows that the two algorithms do not have
any significant performance or running time advantage over one
another in finding the relaxed solution. Specifically, the given
number of iteration T = 50 and the given number of samples
Ki = 1000 (same for all agents) Algorithm 1 and the algorithm
in Robey et al. (2021) yield the final strategy set R̄ such that
E[f (R̄)] � 0.93f (R?) and E[f (R̄)] � 0.91f (R?) respectively.
Here, the optimal solution was computed by the brute force
search. Moreover the running time for both of the algorithms was
approximately 40 s per agent.
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Fig. 6. The left figure shows an instance of the placement result for Algorithm 1 and the right figure shows the placement results for the Sequential Greedy of SEQ
(a). Algorithm 1 is able to place the sensors such that all of the placement locations are occupied while the Sequential Greedy of SEQ (a) leaves out three unoccupied
placement locations.

Fig. 7. The deviation of probability vectors xi(T ), i 2 A from the convex hull
M for average consensus and maximum consensus communication protocols.

However, we focus our discussion on the trajectory of xi(t) on
both of Algorithm 1 and the algorithm in Robey et al. (2021) to
further discuss an inherent characteristic of xi(T ) resulted from
Algorithm 1 which greatly facilitates a distributed rounding pro-
cedure. The main difference between the two algorithms however
is in how xi(T ) of each agent i 2 {1, 2, . . . , 10} is placed with
respect to the edges of the matroid polytope M. Recall that
1.xii(T ) = i = 1 is of great importance for the rounding
procedure. Let

D(t) =

X

i2A

(1.xii(t)� 1)1((1.xii(t)� 1) � 0), (30)

where 1 : R! {0, 1} is the indicator function. The value of D(T )
shows the deviation of the local component of the membership
probability vector xii(T ) from the edges of matroid polytope M.
Fig. 7 shows this value for the different numbers of iterations for
the two algorithms; Algorithm 1, as ensured by Lemma 2, results
in D(T ) = 0 for any choice of iteration number T . However,
this is not the case for Algorithm of Robey et al. (2021). As the
results in Fig. 7 show this algorithm seems to satisfy D(T ) = 0
as the number of the iteration increases. Fig. 8 compares the
value of D(t) of Algorithm 1 and the algorithm of Robey et al.
(2021) for t 2 [0, T ] over 10 different instances of the utility
maximization problem (29). The former algorithm is based on
maximum consensus and D(t) for this algorithm converges to
0, as predicted by Lemma 2. The latter algorithm is based on
average consensus and D(t) converges to a number greater than
0, meaning that xi(T ) of some of the agents are outside M.

5. Conclusion

We proposed a distributed suboptimal algorithm to solve the
problem of maximizing a monotone increasing submodular set

Fig. 8. The value of D(t) calculated using xi(t), i 2 A for average consensus and
maximum consensus communication protocols. The value of D(t) was calculated
by running Algorithm 1 and the algorithm in Robey et al. (2021) with i = 1, i 2
A over 10 different instances of the utility maximization problem (29).

function subject to a partition matroid constraint when agents
communicate over a connected graph. Our problem of interest
was motivated by optimal multi-agent sensor placement prob-
lems in discrete space. Our algorithm was a practical decentral-
ization of a multilinear extension-based algorithm that achieves
1
c (1 � e�c � O(1/T )) optimally gap, which is an improvement
over 1

1+c optimality gap that the well-known sequential greedy
algorithm achieves. Our algorithm included a distributed contin-
uous greedy algorithm followed by a local rounding procedure
that required no inter-agent communication. Through a numer-
ical study, we compared the outcome obtained by our proposed
algorithm with a decentralized sequential greedy algorithm that
is constructed from assigning a priority sequence to the agents.
We showed that the outcome of the sequential greedy algorithm
is inconsistent and depends on the sequence. However, our algo-
rithm’s outcome, due to its iterative nature intrinsically tended
to be consistent, which also explains its better optimally gap over
the sequential greedy algorithm. We also compared our algorithm
to an existing distributed average consensus-based continuous
greedy algorithm. We showed that the main advantage of our
proposed algorithm is its strong guarantee of reaching the edges
of the constraint set’s matroid polytope by all agents in finite
time, which is of significance in the Pipage type rounding proce-
dures. Our future work is to study the robustness of our proposed
algorithm to message dropout.

Appendix

In the following sections, we outline the necessary preliminary
results and also the proofs of our technical results.

9
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Appendix A. Central continuous greedy algorithm

As Vondrák (2010) shows, the constrained gradient ascent
dx
dt

= v(x) where v(x) = argmax
w2M

(w.rF (x)), (31)

initialized at x(0) = 0 to solve the relaxed problem (8), can lead
to a suboptimal solution for problem (2). Since M is convex and
x(0) = 0 2 M, the trajectory t 7! x of (31) belongs to M for
t 2 [0, 1]. The following Lemma provides an essential property
of the multilinear extended function F which can be used in
quantifying the optimality gap of gradient ascent solver (31).

Lemma 11 (See Vondrák, 2010). Consider the set value optimization
problem (2). Suppose f : P ! R�0 is an increasing and submodular
set function with curvature c whose multilinear extension is F :

[0, 1]n ! R�0. Let R? be the maximizer of (2). Then,

1R? .rF (x) � f (R?)� c F (x), 8x 2M.

Due to Lemma 11, ascent direction in (31) satisfies
dF
dt

= v(x).rF (x) � f (R?)� c F (x). (32)

From (32), Vondrák (2010) shows that (31) results in F (x(1)) �
1
c (1� e�c) f (R?).

Appendix B. Stochastic estimation of the relaxed functions’
gradient

The stochastic interpretation (4) of the multilinear-extension
and its derivatives leads to empirical estimation of rF (x(t)) as
the equation given by (12). The Chernoff–Hoeffding’s inequality
can be used to quantify the quality of these estimates given the
number of samples.

Theorem 12 (Chernoff–Hoeffding’s Inequality Hoeffding, 1994). Con-
sider a set of K independent random variables X1, . . . , XK where
a < Xi < b. Let SK =

PK
i=1 Xi, then

P[|SK � E[SK ]| > �] < 2 e
�

2�2

K (b�a)2 ,

for any � 2 R�0.

The following lemma, whose proof relies on the Chernoff–
Hoeffding’s inequality, can quantify the quality of estimating the
gradient of a multilinear extension function by sampling from the
ground set.

Lemma 13. Consider the set value optimization problem (2). Sup-
pose f : P ! R�0 is an increasing and submodular set function and
consider its multilinear extension F : [0, 1]n ! R�0. Let frF (x) be
the estimate of rF (x) that is calculated by taking K 2 Z>0 samples
of set Rx according to membership probability vector x. Then,
����
⇥frF (x)

⇤
p �

@F
@[x]p

(x)
���� �

1
2T

f (R?), p 2 {1, . . . , n}, (33)

with the probability of at least 2e�
1

8T2
K , for any T 2 Z>0.

Proof. Define the random variable

X =

✓
(f (Rx [ {p})� f (Rx \ {p}))�

@F
@xp

(x)
◆.

f (R?),

and assume that we take K samples from Rx to construct {Xk}
K
k=1

realization of X . Since f is a submodular function, then we have
(f (Rx [ {p}) � f (Rx \ {p}))  f (R?). Consequently using Eq. (5),
we conclude that 0  X  1. Hence, using Theorem 12,

we have
���
PK

k=1 Xk � E[X]

��� � 1
2T K with the probability of at

least 2e�
1

8T2
K . Hence, the estimation accuracy of rF (x), is given

by
���
⇥frF (x)

⇤
p �

@F
@[x]p (x)

��� � 1
2T f (R

?), p 2 {1, . . . , n} with the

probability of at least 2e�
1

8T2
K . ⇤

Appendix C. Properties of the first and the second order
derivatives of the multilinear extension

In this section we derive some auxiliary results on the first and
the second order derivatives of the multilinear extension F which
are going to be used directly in the proof of the main theorems.

Lemma 14 (First and Second Derivatives of the Multilinear Ex-
tension). Let f : 2P ! R�0, P = {1, . . . , n}, be increasing
and submodular set function with curvature c, and the multilinear
extension function F (x) defined in (3). Then, @F

@[x]p � (1� c)f (p) for

all p 2 P and x 2 [0, 1]n. Moreover, �cf (R?)  @2F
@[x]p[x]q  0 for all

p, q 2 P and x 2 [0, 1]n.

Proof. The derivative of F (x) can be written as
@F

@[x]p
(x) = �f (p |Rx \ {p}). (34)

Furthermore, by the definition of the total curvature (16) we can
write c � 1 � �f (p|Rx\p)

f (p) , and by conjunction with Eq. (34), we
have @F

@[x]p � (1 � c)f (p) which proves the first part of Lemma.
Since p 62 Rx [ {q} \ {p}, therefore by the definition of the total
curvature (16) we can write

(1� c) f ({p})  �f (p|Rx [ {q} \ {pi})  f ({p}). (35)

Moreover, Since p 62 Rx \ {p, q}, therefore by the definition of the
total curvature (16) we can write

(1� c)f ({p})  �f (p|Rx \ {p, q})  f ({p}). (36)

Knowing that �f (p|Rx[{q}\{p}) = f (Rx[{p, q})�f (Rx[{q}\{p})
and �f (p|Rx \ {p, q}) = f (Rx [ {p} \ {q}) � f (Rx \ {p, q}), the
definition of second order derivative of F (6), we can be written
as

@F
@[x]p@[x]q

= E[�f (p|Rx [ {q} \ {p})��f (p|Rx \ {p, q})]. (37)

Putting (35)–(37) together in conjunction with submodular prop-
erty of f results in �cf ({p})  @2F

@[x]q@[x]q  0. Knowing that
f ({p})  f (R?) results in proving the second part of Lemma. ⇤

Lemma 15 (Directional Convexity). Let f : 2P ! R�0, P =

{1, . . . , n}, be monotone increasing and submodular set function
with a multilinear extension function F (x) defined in (3). Then, for
any given x 2 [0, 1]n and w 2 {�1, 0, 1}n where wp = 1, wq =

�1 and wl = 0, l 2 {1, . . . , n}\{p, q} for some p, q 2 {1, . . . , n},
F (x + �w) : R! R�0 is a convex function of �.

Proof. Defining the vector w 2 Rn and wp = 1, wq = �1 and
wl = 0, l 6= p, q, then the multilinear extension of set function f
in the direction of w is defined as

F (x + �w) =
X

R⇢P\{p,q}

f ({p} [R)([x]p + �)(1� ([x]q � �))P(R)+

f ({q} [R)(1� ([x]p + �))([x]q � �)P(R)+
f (R)(1� ([x]p + �))(1� ([x]q � �))P(R)+
f (R)� f ({p, q} [R)([x]p + �)([x]q � �)P(R).

10



N. Rezazadeh and S.S. Kia Automatica 153 (2023) 111000

with P(R) =
Q

r2R xr
Q

r 62R(1� xr ). Taking the second derivative
of F (x + �w) with respect to � yields

@2F (x + �w)
@�2 =

X

R⇢P\{p,q}

2P(R)(f ({p} [R) + f ({q} [R)

� f (R)� f ({p, q} [R)).

The submodularity of f asserts that @2F (x+�w)
@�2

� 0 and conse-
quently, F (x + �w) is a convex function of �. ⇤

Lemma 16 (Interval Bound of Twice Differentiable Function). Con-
sider a twice differentiable function F (x) : [0, 1]n ! R which
satisfies

��� @2F
@[x]p@[x]q

���  ↵ for any p, q 2 {1, . . . , n}. Then for any

x1, x2 2 Rn satisfying x2 � x1 and 1.(x2 � x1)  � we have
����

@F
@[x]p

(x1 + ✏(x2 � x1))�
@F

@[x]p
(x1)

����  ✏↵�, (38a)

F (x2)� F (x1) � rF (x1).(x2 � x1)�
1
2
↵�2, (38b)

for ✏ 2 [0 1].

Proof. Let hp = [
@2F

@[x]p@[x]1
, . . . , @2F

@[x]p@[x]n ]>. Then, we can write
����

@F
@[x]p

(x1 + ✏(x2 � x1))�
@F

@[x]p
(x1)

����

=

����

Z ✏

0
hp(x1 + ⌧ (x2 � x1)).(x2 � x1)d⌧

����



Z ✏

0
↵1.(x2 � x1)d⌧ = ✏↵�, (39)

Furthermore, F (x2)� F (x1) =
R 1
0 rF (x1 + ✏(x2 � x1)).(x̄(t + 1)�

x̄(t))d✏ �
R 1
0 (rF (x1) � ✏↵�).(x2 � x1)d✏ = rF (x1).(x2 � x1) �

1
2↵�2, with the third line follow from Eq. (39), which concludes
the proof. ⇤

Appendix D. Convergence analysis

Proof of Lemma 1. Since f is monotone increasing and submod-
ular, we have f (Rxi(t)[{p})�f (Rxi(t)\{p}) � 0 and hence frF (xi(t))
has positive entries 8i 2 A. Thus, evi(t) 2 Mi, the optimizer of
the optimization (10) has nonnegative entries. Hence, according
to the propagation and update rule (9a) and (9b), we can conclude
that xii(t) has increasing elements and only agent i can update it
and other agents only copy this value as x̂ji(t). Therefore, we can
conclude that [x̂ji]p(t)  [xii]p(t) for all p 2 Pi which concludes
the proof. ⇤

Proof of Lemma 2. The proof follows from a mathematical
induction argument. The base case xi(0) = 0 2 M and x̄(0) =

0 2 M is trivially true. We take it to be true that at time t and
for each agent i 2 A it holds that xi(t) 2M with

1.xii(t) =
t
T

i, and 1.x̂ij(t) 
t
T

j, j 2 A \ {i}.

for t < T andevi(t) 2Mi satisfying
X

p2Pi

[evi(t)]p = i, and
X

p2Pj

[evi(t)]p = 0, j 2 A \ {i}.

Since [frF (xi(t))]p � 0 p 2 P , then by propagation rule (9a), we
establish that

1.x�ii (t + 1) =
t + 1
T

i,

1.x̂�ij (t + 1) 
t
T

j, j 2 A \ {i}.

As a result of Mi, i 2 A being disjoint convex subspaces of M,
the update rule (9b) leads to

1.xii(t + 1) =
t + 1
T

i,

1.x̂ij(t + 1) 
t + 1
T

j, j 2 A \ {i}.

Therefore, we conclude that xi(t + 1) 2 M. Moreover, by the
definition of x̄(t) in (14) and Mi, i 2 A being disjoint convex
subspaces of M, we deduct that

1.x̄(t) =

X

i2A

1.xii(t + 1) =
t + 1
T

i i 2 A,

for t < T and therefore, x̄(t + 1) 2M. We conclude the proof of
(a) by induction and trivially (b) follows. ⇤

Proof of Proposition 3. f is a monotone increasing and submod-
ular set function therefore f (Rxi(t) [ {p}) � f (Rxi(t) \ {p}) � 0
and hence frF (xi(t)) has positive entries 8i 2 A. Then, because
evi(t) 2Mi, it follows from (10) thatevi(t) has non-negative entries,
[evi(t)]p � 0 which satisfy

P
p2Pi

[evi(t)]p = i. Therefore, it follows
from (9a) and Lemma 1 that

1.xii(t + 1) = 1.xii(t) +
i

T
, i 2 A. (40)

Using (40) recursively for d(G) steps, we can also write

1.xii(t) = 1.xii(t � d(G)) +
i

T
d(G), i 2 A. (41)

Furthermore, it follows from Lemma 1 that for all 8p 2 Pi and
any j 2 A\{i}, we can write

[xi(t)]p � [xj(t)]p. (42)

Also, since every agent j 2 A\{i} can be reached from agent i 2 A

at most in d(G) hops, it follows from the propagation and update
laws (9a) and (9b), for all 8p 2 Pi, for any j 2 A\{i} that

[xj(t)]p � [xi(t � d(G))]p(t � d(G)). (43)

Thus, for i 2 A and j 2 A\{i}, (42) and (43) result in

1.xii(t) � 1.x̂ji(t) � 1.xii(t � d(G)). (44)

Next, we can use (41) and (44) to write

1.xii(t) � 1.x̂ji(t) � 1.xii(t)�
i

T
d(G), (45)

for i 2 A and j 2 A\{i}. Using (45) for any i 2 A we can write
X

l2A

1.xll(t) � 1.xii(t) +

X

j2A\{i}

1.x̂ij(t) �

X

l2A

1.xll(t)�
l

T
d(G). (46)

Then, using Lemma 1, from (46) we can write

1.x̄(t) � 1.xi(t) � 1.x̄(t)�


T
d(G),

with  =
P

i2A i, which ascertains (15a). Next, note that from
Lemma 1, we have xjj(t) = x�ii (t) for any i 2 A. Then, using (9a)
and invoking Lemma 1, we obtain (15b), which, given (40), also
ascertains (15c). ⇤

Proof of Proposition 5. Given the definition of �p(⌧ ) and �q(⌧ ),
at each iteration of (19), either [yii(⌧ + 1)]p 2 {0, 1} or [yii(⌧ +

1)]q 2 {0, 1}. Moreover, yii(⌧ + 1) 2 [0, 1]|Pi|. Consequently,
yii(|Pi|) 2 {0, 1}|Pi|. Next, note that since yii(0) = xii(T ), i 2 A, by
virtue of Lemma 2, we have 1.yii(0) = i. Therefore, because (19)
is a zero-sum iteration, we have 1.yii(⌧ ) = i, i 2 A for any
⌧ 2 Z�0, which confirms 1.yii(|Pi|) = i and ȳ 2 M. Lastly,
because [yii(|Pi|)]r 2 {0, 1}, r 2 Pi for any i 2 A, ȳ is a vertex of
M. ⇤

11
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Appendix E. Proof of the main results

Proof of Theorem 4. Knowing that
��� @2F
@[x]p@[x]q

���  cf (R?) from
Lemma 14, and (15c), it follows from Lemma 16 that F (x̄(t+1))�
F (x̄(t)) � rF (x̄(t)).(x̄(t+1)�x̄(t))� 2

2T2 cf (R
?), which, given (15b),

leads to

F (x̄(t + 1))� F (x̄(t)) �
1
T

X

i2A

evi(t).rF (x̄(t))�
2

2T 2 cf (R
?). (47)

By definition, x̄(t) � xi(t) for any 8i 2 A. Therefore, given (15a),
by invoking Lemma 16, for any i 2 A we can write
����

@F
@[x]p

(x̄(t))�
@F

@[x]p
(xi(t))

���� 


T
d(G)cf (R?), (48)

for p 2 {1, . . . , n}. Recall that at each time step t , the realization
ofevi(t) in (10) that Algorithm 1 uses for {p?

1, . . . , p
?
i
} 2 Pi is

evi(t) = 1{p?
1,...,p?

i }
, (49)

for every i 2 A. Thus, 1.evi(t) = i, i 2 A. Consequently, using (48)
we can write
X

i2A

evi(t).rF (x̄(t)) �

X

i2A

evi(t).rF (xi(t))�
2

T
d(G)cf (R?). (50)

Next, we let v̄i(t) = argmaxv2Mi v.rF (x̄(t)) and v̂i(t) =

argmaxv2Mi v.rF (xi(t)). Then, using v̂i(t).rF (xi(t)) � v̄i(t).rF
(xi(t)) and v̂i(t).rF (xi(t)) � ṽi(t).rF (xi(t)), i 2 A, and (48) we
can also write
X

i2A

v̂i(t).rF (xi(t)) �
X

i2A

v̄i(t).rF (xi(t)) �

X

i2A

v̄i(t).rF (x̄(t))�
2

T
d(G)cf (R?), (51a)

X

i2A

v̂i(t).rF (xi(t)) �
X

i2A

ṽi(t).rF (xi(t)). (51b)

On the other hand, by virtue of Lemma 13,
⇥frF (xi(t))

⇤
p, p 2 Pi

that each agent i 2 A uses to solve optimization problem (22)
(equivalently (10)) satisfies
����
⇥frF (xi(t))

⇤
p �

@F
@[x]p

(xi(t))
���� 

1
2T

f (R?) (52)

with the probability of at least 1�2e�
1

8T2
Ki . Using (52) and (51b),

and because the samples are drawn independently, we obtain
X

i2A

evi(t).rF (xi(t)) �
X

i2A

evi(t).frF (xi(t))�


2T
f (R?), (53a)

X

i2A

evi(t).frF (xi(t)) �
X

i2A

v̂i(t).frF (xi(t)) �

X

i2A

v̂i(t).rF (xi(t))�


2T
f (R?), (53b)

with the probability of at least
Q

i2A(1� 2e�
1

8T2
Ki )|Pi|.

From (50), (51a), (53a), and (53b) now we can write
X

i2A

evi(t).rF (x̄(t)) �

X

i2A

v̄i(t).rF (x̄(t))� (2d(G) + 1)


T
f (R?), (54)

with the probability of at least 1� 2
P

i2A e�
1

8T2
Ki .

Next, let v?
i be the projection of 1R? into Mi. Knowing that

Mi’s are disjoint sub-spaces of M covering the whole space then
we can write

1R? =

X

i2A

v?
i . (55)

Then, using (54), (55), and invoking Lemma 11 and the fact that
v̄i(t).rF (x̄(t)) � v?

i (t).rF (x̄(t)) we obtain
X

i2A

evi(t).rF (x̄(t)) �

X

i2A

v?
i (t).rF (x̄(t))� (2cd(G) + 1)



T
f (R?) =

1R? .rF (x̄(t))� (2cd(G) + 1)


T
f (R?) �

f (R?)� cF (x̄(t))� (2cd(G) + 1)


T
f (R?), (56)

with the probability of at least
Q

i2A(1 � 2e�
1

8T2
Ki )|Pi|. Hence,

using (47) and (56), we conclude that

F (x̄(t + 1))� F (x̄(t)) �
1
T
(f (R?)� cF (x̄(t))�

(2cd(G)) +
c
2

+ 1)


T 2 f (R
?), (57)

with the probability of at least
Q

i2A(1 � 2e�
1

8T2
Ki )|Pi|. Next, let

g(t) = f (R?) � cF (x̄(t)) and � = (2cd(G) +
c
2 + 1) 

T2 f (R
?), to

rewrite (57) as

(f (R?)� cF (x̄(t)))� (f (R?)� cF (x̄(t + 1))) =

g(t)� g(t + 1) �
c
T
(f (R?)� cF (x̄(t)))� c� =

c
T
g(t)� c�. (58)

Then from inequality (58) we get

g(t + 1)  (1�
c
T
)g(t) + c� (59)

with the probability of at least
Q

i2A(1�2e�
1

8T2
Ki )|Pi|. Solving for

inequality (59) at time T yields

g(T )  (1�
c
T
)T g(0) + �

T�1X

k=0

(1�
c
T
)k

= (1�
c
T
)T g(0) + T�(1� (1�

c
T
)T ) (60)

with the probability of at least
⇣Q

i2A(1� 2e�
1

8T2
Ki )|Pi|

⌘T
. Substi-

tuting back g(T ) = f (R?)�cF (x̄(T )) and g(0) = f (R?)�cF (x(0)) =

f (R?), in (60) we then obtain
1
c
(1� (1�

1
T
)T )(f (R?)� T�) =

1
c
(1� (1�

1
T
)T )(1� (2cd(G) +

c
2

+ 1)


T
)f (R?)

 F (x̄(T )), (61)

with the probability of at least
⇣Q

i2A(1� 2e�
1

8T2
Ki )|Pi|

⌘T
. By

applying e�c � (1� (1� c
T )

T ), we get

1
c
(1� e�c)(1� (2cd(G) +

c
2

+ 1)


T
)f (R?)  F (x̄(T )), (62)

12
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with the probability of at least
⇣Q

i2A(1� 2e�
1

8T2
Ki )|Pi|

⌘T
. which

concludes the proof. ⇤

Proof of Theorem 6. Consider the distributed Pipage round-
ing (19). Let ⌧i be any arbitrary iteration stage of (19) for agent
i 2 A. Recall that we partitioned yi, i 2 A as yi(⌧i) = [ŷi1(⌧i), . . . ,
yii(⌧i), . . . , ŷiN (⌧i)]. Let

y(⌧ ) = [y11(⌧1), . . . , yii(⌧i + ⌧ ), . . . , yNN (⌧N )]

for any ⌧j 2 Z�0, j 2 A, and arbitrary i 2 A.
Distributed Pipage rounding (19) results in

y(⌧ + 1) =

8
<

:
y(⌧ ) + �p(⌧i) z, w.p. �q(⌧i)

�p(⌧i)+�q(⌧i)
2 [0, 1],

y(⌧ )� �q(⌧i) z, w.p. �p(⌧i)
�p(⌧i)+�q(⌧i)

2 [0, 1],

for a z 2 {�1, 0, 1}n that satisfies [z]p = 1, [z]q = �1 and
[z]r = 0, r 6= p, q. Next, note that the directional convexity of
the multilinear function in Lemma 15 yields

F (y(⌧ )) 
�q(⌧i)

�p(⌧i) + �q(⌧i)
F (y(⌧ ) + �p(⌧i)z)+

�p(⌧i)
�p(⌧i) + �q(⌧i)

F (y(⌧ )� �q(⌧i)z).

Hence, we can write

F (y(⌧ ))  E[F (y(⌧ + 1))
��y(⌧ )]. (63)

Next, taking expectation with respect to y(⌧ ), we get

E[F (y(⌧ ))]  E[F (y(⌧ + 1))]. (64)

Note that because y(0)|
{⌧j}

N
j=1={0}N = x̄(T ), we have

E[F (y(0)|
{⌧j}

N
j=1={0}N )] = F (x̄(T )). Consequently, since y(⌧ ) is de-

fined for any arbitrary {⌧j}
N
j=1, we can conclude that

F (x̄(T ))  E[F (ȳ)], (65)

where ȳ = [y11(|P1|), y22(|P2|), . . . , yNN (|PN |)].
Proposition 5 states that ȳ is a vertex of M, therefore F (ȳ) =

f (Rȳ). On the other hand, it follows from (20) that Rȳ =
S

i2A R̄i.
Consequently, (21) follows from (65). ⇤

Proof of Theorem 9. Given that the information set propagation
rules (22), (24), and (25) are a realization of the vector space
propagation rules (10), (9a), and (9b), we can conclude that the
vector y = [y>1 , . . . , y>N ]> defined as
⇢
[y]p = ↵, (p, ↵) 2 Fi(T ), p 2 Pi

[y]p = 0, Otherwise

is a realization of x̄(T ) and satisfies F (x̄(T )) = F (y).
Moreover, sampling a single strategy p̄i according to yi out of

Pi is equivalent to sampling rule (19). Noting that y is a realization
of x̄(T ), Theorem 4 and Theorem 6 leads us to concluding the
proof. ⇤
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