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Abstract—This article studies accelerating a Laplacian-
based dynamic average consensus algorithm by splitting
the conventional delay-free disagreement feedback into a
weighted summation of current and outdated terms. When
determining the weighted sum, there is a range of time
delay that results in a higher convergence rate for the al-
gorithm. For such weights, using the Lambert W function,
we obtain the rate-increasing range of the time delay, obtain
the maximum reachable rate, and characterize the value
of the corresponding maximizer delay. We also study the
effect of using the outdated feedback on the control effort
of the agents. We show that only for some specific affine
combination of the immediate and outdated feedback, the
control effort of the agents does not go beyond that of
the delay-free algorithm. In addition, we demonstrate that
using outdated feedback does not increase the steady-state
tracking error of the average consensus algorithm. Finally,
we determine the optimum combination of the current and
the outdated feedback weights to achieve the maximum
increase in the rate of convergence without increasing the
control effort of the agents. We demonstrate our results
through a numerical example.

Index Terms—Accelerated algorithms, average consen-
sus, distributed systems.

I. INTRODUCTION

THE average consensus problem for a group ofN networked
agents each endowed with a reference input ri (a static

reference value or a dynamic signal) is defined as designing a
distributed interaction policy for each agent i ∈ {1, . . . , N} such
that its local agreement statexi ∈ R converges asymptotically to
the average of the reference inputs across the network. For this
problem, in the continuous-time domain, when the reference
inputs of all the agents are static, the well-known distributed
solution is the Laplacian average consensus algorithm [1]–[4].
In the Laplacian average consensus, each agent i initializes its
first-order integrator dynamics with its local reference input and
uses the weighted sum of the difference between its local state
and those of its neighbors, i.e., a weighted sum of xi − xj with
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respect to every neighbor j, as the disagreement feedback to drive
its local dynamics to the average of the reference signals across
the network. When the reference inputs are dynamic signals,
agents use a combination of the disagreement feedback and
their local reference input signal and/or its derivative to drive
their local integrator dynamics; see [5] for examples of dynamic
average consensus algorithms. Average consensus algorithms
are of interest in various multiagent applications such as sensor
fusion [6], [7]; robot coordination [8]; formation control [9];
distributed optimal resource allocation [10], [11]; distributed op-
timization and learning [12], [13]; and distributed tracking [14].
For more details, see [5, pp. 47–55]. For these cooperative tasks,
it is highly desired that the consensus among the agents is
obtained fast, i.e., the consensus algorithm converges fast.

For a connected network with undirected communication,
it is well understood that the convergence rate of the average
consensus algorithms is associated with the connectivity of the
graph [3], specified by the smallest nonzero eigenvalue of the
Laplacian matrix [1], [5]. Given this connection, various efforts,
such as optimal adjacency weight selection for a given topology
to maximize the smallest nonzero eigenvalue of the Laplacian
matrix [2], [15] or rewiring the graph to create topologies
such as small-world networks [16], [17] with high connectivity,
have been proposed in the literature to accelerate the Laplacian
average consensus algorithm. In this article, we study the use
of outdated disagreement feedback, i.e., delayed feedback, to
increase the convergence rate of a dynamic average consensus
algorithm. In our study, we pay careful attention to the effect of
the use of outdated feedback on the agents’ control effort and
tracking performance. Our method can be applied together with
the aforementioned weight and topology designs to maximize
the convergence acceleration.

Our work is motivated by evidence in the literature on the
positive effect of time delay on increasing stability margin and
rate of convergence of time-delayed systems (see [18]–[23]).
Specifically, the positive effect of time-delayed feedback in
accelerating the convergence of the static Laplacian average
consensus algorithm is reported in [21]–[23]. The study in [22]
and [23] considers delaying the immediate disagreement feed-
back and shows that when the network topology is connected,
there always exists a range of delay (0, τ̃) such that the rate
of convergence of the modified algorithm is faster. The tech-
nical results also include specifying τ̃ and also showing that
the maximum attainable convergence rate due to employing
delayed feedback is the Euler number times the rate without
delay. Moradian and Kia [22] also specify the delay for which
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maximum convergence rate is attained. However, the effect of
using the outdated feedback on the control effort of the agents is
left unexplored in [22] and [23]. An effective acceleration mech-
anism should not increase the control effort of the agents because
one can always argue that the convergence rate of the original
Laplacian algorithm can be increased simply by multiplying the
agents’ input with a gain greater than 1. On the other hand, the
work in [21] studies a modified Laplacian algorithm, where the
immediate disagreement feedback is split equally, and one-half
is replaced by outdated feedback. For this modified algorithm,
the result of [21] shows that it is possible to increase the conver-
gence rate for some values of delay. However, [21] falls short of
specifying the exact range of delay for which the convergence
rate can be increased. Moreover, the study in [21] does not
provide information on the maximum rate and its corresponding
maximizer delay or the role of the relative size of the immediate
and outdated feedback, i.e., splitting the disagreement feedback
into other ratios of immediate and outdated components. This
article studies the use of outdated disagreement feedback to
increase the convergence rate of the dynamic average consensus
algorithm of [24]. When the agents’ reference input is all static,
this algorithm becomes the static Laplacian average consensus
algorithm [3]. In our study, we split the disagreement feedback
into immediate and outdated feedback components. However,
instead of equal contribution, we consider the affine combination
of the current and outdated feedback to investigate the effect
of the relative size of the outdated and immediate feedback
terms on the induced acceleration. Our comprehensive study
includes [21]–[23] as special cases and extends to a wider range
of settings. We note that the analysis methods used in [21]–[23]
do not generalize to study the case of the affine combination of
the immediate and outdated disagreement feedback. This is due
to the technical challenges involved with study of the variation
of the infinite number of the roots of the characteristic equation
of the linear time-delayed systems with delay,1 which often
are resolved via methods that conform closely to the specific
algebraic structure of the system under study.

We start our study by characterizing the admissible range of
delay for which the average consensus tracking is maintained.
Dynamic average consensus algorithms, including the one we
study, achieve their tracking with some nonzero steady-state
error (see [5]). It is natural to expect that any acceleration method
should not increase the tracking steady-state error. Therefore,
we carefully study the tracking performance of our proposed
accelerated algorithm. We show that for the delays in the
admissible range, the ultimate tracking error of our modified
average consensus algorithm of interest is not affected by the
use of outdated disagreement feedback regardless of the affine
combination’s split factor. However, we show that the control
effort of the agents does not increase only for a specific range
of the split factor of the affine combination of the outdated
and immediate feedback. Our results also specify: 1) for what
values of the system parameters, the rate of convergence in the

1Recall that the exact value of the worst convergence rate of a linear time-
invariant system, with or without delay, is determined by the magnitude of the
real part of the right most root of its characteristic equation [25], [26].

presence of delay can increase; 2) the exact values of delay for
which the rate of convergence increases; and 3) the optimum
value of τ corresponding to the maximum rate of convergence
in the presence of delay. We close our study with a remark
that discusses the tradeoff between the performance (maximum
convergence rate) and the robustness of the algorithm to the
delay and the level of control effort. Our study relies on using
the Lambert W function [27], [28] to obtain the exact value of
the characteristic roots of the internal dynamics of our dynamic
consensus algorithm. Via the careful study of variation of the
rightmost root in the complex plan with respect to delay, we
then proceed to establish our results.

Our work is different than the vast literature on the study
of distributed algorithms in the presence of delay (see, e.g., [1],
[12], and [29]–[31]). This literature mainly focuses on evaluating
the robustness of the algorithms against delay in communication
and specifying the admissible delay bound; see [1] and [31] for
robustness analysis of the average consensus algorithm against
delay. Our study, however, centers around how the rate of con-
vergence varies with delay and how one can take advantage of
delay for accelerating the algorithm. Moreover, contrary to the
abundance of results on determining the convergence rate of
linear time-delayed systems for a given amount of time delay
[32]–[38], there are few results on how the rate of convergence
varies with time delay. Therefore, our study also contributes to
expand the fundamental understanding of the internal dynamics
of linear time-delay systems and how their stability margin is
affected by nonzero time delay.

Organization: The rest of this article is organized as follows.
Notations and preliminaries, including a brief review of the
relevant properties of the Lambert W function and the graph-
theoretic definitions, are given in Section II. Problem definitions
and the objective statements are given in Section III, while
the main results are given in Section IV. The proofs of the
lemmas and the propositions of Section IV are given in Appendix
A. Numerical simulations to illustrate our results are given in
Section V. Finally, Section VI concludes this article. Appendixes
B and C contain the auxiliary lemmas that we use to develop our
main results.

II. NOTATION AND PRELIMINARIES

We let R, R>0, R≥0, Z, and C denote the set of real,
positive real, non-negative real, integer, and complex num-
bers, respectively. Given i, j ∈ Z with i < j, we define Zj

i =
{i, i+ 1, . . . , j}. For s ∈ C, Re(s) and Im(s) represent, re-
spectively, the real and imaginary parts of s. Moreover,
|s| =

√
Re(s)2 + Im(s)2 and arg(s) = atan2(Im(s),Re(s)).

For any vector x ∈ Rn, we let ‖x‖ =
√
x2
1 + · · ·+ x2

n

and ‖x‖∞ = max{xi}ni=1. For a measurable locally essen-
tially bounded function u : R≥0 → Rm, we define |u|∞ =
ess sup{‖u(t)‖∞, t ≥ 0}. For a matrix A, its ith row is denoted
by [A]i.

The Lambert W function specifies the solutions of s es = z
for a given z ∈ C, i.e., s = W (z). This function is a multivalued
function with an infinite number of solutions denoted byWk(z),
k ∈ Z, whereWk is called the kth branch ofW function. For any
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Fig. 1. Connected graph of five nodes.

z ∈ C, Wk(z) can be evaluated in MATLAB or Mathematica.
Below are some of the intrinsic properties of the Lambert W
function, which we use (see [27] and [28])

lim
z→0

Wk(z)/z = 1 (1a)

dWk(z)/d z = 1/(z + eWk(z)), for z '= −1/ e (1b)

for k ∈ Z. For any z∈R, the value of all the branches of the
Lambert W function except for branches 0 and −1 is complex
(nonzero imaginary part). Moreover, the zero branch satisfies
W0(−1/ e)=−1, W0(0)=0, and

W0(z) ∈ R, z ∈ [−1/ e,∞) (2a)

Im(W0(z)) ∈ (−π,π)\{0}, z ∈ C\[−1/ e,∞) (2b)

Re(W0(z)) > −1, z ∈ R\{−1/ e}. (2c)

Lemma II.1 (Maximum real part of Lambert W func-
tion [27]): For any z ∈ C, the following holds:

Re(W0(z)) ≥ max {Re(Wk(z))|k ∈ Z\{0}} . (3)

The equality holds between branches 0 and −1 over z ∈
(−∞,− 1

e ), where we have Re(W0(z)) = Re(W−1(z)).
Lemma II.2 (W0(x) is an increasing function of x ∈ R>0):

For any x, y ∈ R>0 if x < y, then W0(x) < W0(y).
Proof: The proof follows from the fact that for x ∈ R>0,

W0(x) ∈ R>0. Therefore, dW0(x)
d x = 1

x+eW0(x) > 0. !
We follow [39] to define our graph-related terminologies

and notations. In a network of N agents, we model the inter-
agent interaction topology by the undirected connected graph
G(V, E ,A), where V is the node set, E ⊂ V × V is the edge
set, and A = [aij ] is the adjacency matrix of the graph. Recall
that aii = 0, aij ∈ R>0 if j ∈ V can send information to agent
i ∈ V , and zero otherwise. Moreover, a graph is undirected if the
connection between the nodes is bidirectional and aij = aji if
(i, j) ∈ E . Finally, an undirected graph is connected if there is a
path from every agent to every other agent in the network (see,
e.g., Fig. 1). The degree of node i ∈ V is di =

∑N
j=1 aij , and

the maximum degree of graph is dmax = max{di}Ni=1. Here,
L = Diag(A1N )− A is the Laplacian matrix of the graph G.
The Laplacian matrix of a connected undirected graph is a
symmetric positive-semidefinite matrix that has a simple λ1 = 0
eigenvalue, and the rest of its eigenvalues satisfy λ1 = 0 <
λ2 ≤ · · · ≤ λN . Moreover, L1N = 0. Since L of a connected
undirected graph is a symmetric and real matrix, its normalized
eigenvectors can be chosen to be mutually orthogonal. Let

v1 = 1√
N
1N , v2, . . . , vN , be a set of such normalized eigen-

vectors. Then, for

T =
[

1√
N
1N R

]
, R =

[
v2 · · · vN

]
(4)

we have T,LT = Λ = Diag(0, λ2, . . . , λN ). We note that for
any q ∈ RN , we have ‖R,q‖ = ‖(IN − 1

N 1N1,
N )q‖.

III. PROBLEM DEFINITION

We consider a group of N agents each endowed with a
one-sided time-varying measurable locally essentially bounded
signal ri : R≥0 → R, interacting over a connected undirected
graphG(V, E ,A). To obtain the average of their reference inputs,
ravg(t) = 1

N

∑N
i=1 ri(t), these agents implement the distributed

algorithm

ẋi(t) = − α
N∑

j=1

aij(x
j(t)−xi(t)) + ṙi, i ∈ V

xi(0) = ri(0) (5)

where α ∈ R>0. When the reference inputs of the agents are all
static, i.e., ṙi = 0 for all i ∈ V , (5) becomes the well-known
Laplacian static average consensus algorithm that converges
exponentially to xavg(0) = ravg = 1

N

∑N
j=1 rj , with the rate of

convergence ρ0 = αλ2 (for details, see [3]). When one or more
of the input signals are time varying, (5) is the dynamic average
consensus algorithm of [24]. The convergence guarantee of (5)
is as follows.

Lemma III.1 (Convergence of (5) over an undirected con-
nected graph [5]): Let G be a connected undirected graph. Let
‖(IN − 1

N 1N1,
N )ṙ‖∞ = κ < ∞. Then, for any α ∈ R>0, the

trajectories of algorithm (5) are bounded and satisfy

lim
t→∞

∣∣∣xi(t)− ravg(t)
∣∣∣ ≤ ε0, i ∈ V (6)

where ε0= κ
ρ0

and ρ0=αλ2. Moreover, the rate of convergence
to this error neighborhood is no worse than ρ0.

In this article, with the intention of using outdated information
to accelerate the convergence, we alter the average consensus
algorithm (5) to (compact representation)

ẋ(t) = − α (1− k)Lx(t)− α kLx(t− τ) + ṙ (7a)

xi(0) = ri(0), xi(η) = 0 for η ∈ [−τ, 0), i ∈ V (7b)

for t ∈ R≥0, where k ∈ R and τ ∈ R≥0. For k = 0, (7) recovers
the original algorithm (5). We refer to k as split factor.

To analyze convergence, we implement the change of variable

z(t) = T,(x(t)− ravg(t)1N ) (8)

[recall (4)] to write (7) in equivalent form

ż1(t) = 0, z1(0) = 0 (9a)

ż2:N (t) = − α(1− k)Λ̄ z2:N (t)− αk Λ̄z2:N (t− τ)

+R, ṙ(t) (9b)

z2:N (0) = R,r(0), z2:N (η) = 0, for η ∈ [−τ, 0) (9c)
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where Λ̄ = Diag(λ2, . . . , λN ). Under the given initial condi-
tion, the tracking error then is

x(t)− ravg(t)1N = Rz2:N (t), t ∈ R≥0. (10)

Using the method that specifies the solution of linear time-
delayed systems [37], the trajectory of (9b) under initial con-
dition (9c) is

z2:N (t)=
∑

j∈Z
eSjt Cj z2:N (0)+

∫ t

0

∑

j∈Z
eSj(t−ζ) C′

jR
, ṙ(ζ)dζ

(11)

where

Sj = Diag(S1
j , . . . ,S

N−1
j ) (12a)

Si
j=

1

τ
Wj(−αkλi+1τ e

α(1−k)λi+1τ )−α(1− k)λi+1 (12b)

Cj = Diag(C1
j , . . . ,C

N−1
j ) (12c)

Ci
j =

1

1− αkλi+1τ e
−Si

jτ
(12d)

and C′
j = Cj because of the given initial conditions. When

the reference input signals satisfy the condition given in
Lemma III.1, it follows from (11) that z2:N in the admissi-
ble delay range should converge exponentially to some neigh-
borhood of zero, whose size is proportional to κ. More-
over, the rate of convergence2 of algorithm (7) is ρτ (k) =
min{{−Re(Si

j)}N−1
i=1 }∞j=−∞. By invoking Lemma II.1, ρτ (k)

simplifies to ρτ (k) = min{−Re(Si
0)}N−1

i=1 , which reads as

ρτ (k) = min

{
−Re(

1

τ
W0(−αkλiτ e

α(1−k)λiτ ))

+ α(1− k)λi}Ni=2 . (13)

For further discussion about the convergence rate of linear time-
delayed systems, see [26, Corollary 1].

Our objective in this article is to show that by splitting
the disagreement feedback into current −α (1− k)Lx(t) and
outdated −α (1− k)Lx(t− τ) components, it is possible to
increase the rate of convergence of algorithm (7). Specifically,
we determine for what values of k, there exists ranges of time
delay that the rate of convergence of (7) increases (ranges of
delay for which decay rate of the transient response of (7)
increases). We also specify the maximum reachable rate due
to delay and its corresponding maximizer delay.

Remark III.1 (Constraints on choosing k and τ to acceler-
ate algorithm (7)): One may argue that the rate of convergence
of (5) can be increased by “cranking up” the gain α in (5).
However, this choice leads to an increase in the control effort

2We recall that for a given τ ∈ R>0, a zero-input dynamical system with
state x is said to be exponentially stable if and only if there exists a k τ ∈
R>0 and an ρτ ∈ R>0 such that for the given initial conditions, the solution
satisfies the inequality below ‖x(t)‖ ≤ k τ e−ρτ t sup

η∈[−τ,0]
‖x(η)‖, t ∈ R≥0.

For linear systems, the tightest estimate on, ρτ , referred to as rate of convergence
is determined by the magnitude of the real part of the rightmost root of its
characteristic equation [25], [26].

of the agents. Motivated by this observation, we set to identify
values of split factor k for a fixed α for which the increase in
the convergence rate of (7) due to delay in comparison to (5)
does not lead to an increase in the control effort. On the other
hand, it is also expected that accelerating delay value should not
have an adverse effect on the tracking error of (7) to make it go
beyond ε0 in (6). Therefore, our study also includes a formal
study of the ultimate tracking error of (7) for different values
of k and admissible ranges of delay. These assertions increase
the appeal of the modified average consensus algorithm (7) as
an effective algorithm that yields faster convergence than the
original algorithm (5).

We close this section by noting that following the change
of variable method proposed in [5], algorithm (7a) can be
implemented in the alternative way (recall that ri is a one-sided
signal)

ẏi(t) = − α (1− k)Lx(t)− α kLx(t− τ)

xi(t) = yi(t) + ri(t)

yi(0) = 0, xi(η) = 0, for η ∈ [−τ, 0), i ∈ V

which does not require the knowledge of the derivative of the
reference input of the agents.

IV. ACCELERATING AVERAGE CONSENSUS USING OUTDATED
FEEDBACK

To start our study, we identify the admissible delay range
(0, τ̄) for algorithm (7) for different values of split factork. Given
the tracking error (10), the admissible delay bound is determined
by the ranges of delay, for which the zero input dynamics
of (9b) preserves its exponential stability. We recall that for linear
time-delayed systems with exponentially stable dynamics when
delay is set to zero, by virtue of the continuity stability property
theorem [33, Proposition 3.1], the admissible delay range is a
connected range (0, τ̄) ⊂ R>0, where τ̄ ∈ R>0 is the critical
delay bound, beyond which the system is always unstable.

Lemma IV.1 (Admissible range of delay for internal sta-
bility of algorithm (7)): The following assertions hold for the
modified average consensus algorithm (7) over an undirected
connected graph [recall (12b)].

a) For k ≤ 0.5, the modified average consensus algo-
rithm (7) is internally stable for any τ ∈ R≥0, i.e., τ̄ = ∞.

b) For k > 0.5, the modified average consensus algo-
rithm (7) is internally stable if and only if τ ∈ [0, τ̄),
where

τ̄ = arccos(1− 1/k)/(α λN

√
2k− 1). (14)

Also, for any τ ∈ [0, τ̄), we have limt→∞ eS
i
jt = 0, i ∈ ZN−1

1

and j ∈ Z. Moreover, under the initial condition (7b), the trajec-
tories of xi, i ∈ V , of the zero-input dynamics of algorithm (7)
converges exponentially fast to xavg(0).

The results of Lemma IV.1 include the result in [31], which
specifies the admissible range of delay for when k = 1, as special
case. Next, we study the ultimate tracking bound of the modified
average consensus algorithm (7). We show that for delays in the
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admissible delay bound, the ultimate tracking error is still ε0, as
defined in Lemma IV.1.

Proposition IV.1 (Convergence of (7) over connected
graphs when τ ∈ [0, τ̄)): Let G be a connected undirected
graph with communication delay in τ ∈ [0, τ̄), where τ̄ is speci-
fied in Lemma IV.1. Let ‖(IN − 1

N 1N1,
N )ṙ‖∞ = κ < ∞. Then,

for any α ∈ R>0, the trajectories of algorithm (7) for any k ∈ R
are bounded and satisfy (6). Moreover, the convergence rate to
this error neighborhood is no worse than ρτ (k) defined in (13).

With the assertion that splitting the immediate disagreement
feedback of (5) into current and outdated components as in (7)
does not have adverse effect on the tracking performance, we
set to identify the ranges of delay τ and split factor k, for
which the rate of convergence of (7) is faster than (5). As
we noted earlier, the rate of convergence of (7) is determined
by its transient response that is governed by its zero-input
dynamics. Consequently, we study the stability of the zero-input
dynamics of the modified average consensus algorithm (7) and
examine how its exponential rate of convergence to the average
of its initial condition at time t = 0 changes due to delay at
various values of k ∈ R/{0}. For any given value of k and
τ , in what follows, we let ρτ (k) be the rate of convergence
of (7) and uτ,k(t) = −α (1− k)Lx(t)− α kLx(t− τ) be the
control effort to steer the zero-input dynamics of (7). Specifi-
cally, we show that for all k ∈ R>0, there always exists a range
of delay (0, τ̃k) such that ρτ (k) > ρ0(0) = ρ0 = αλ2 for any
τ ∈ (0, τ̃k). We show, however, that only for k ∈ (0, 1], we can
guarantee |uτ,k|∞ ≤ |u0,0|∞, for τ ∈ (0, τ̃k). In what follows,
we also investigate what the maximum value of ρτ (k) and the
corresponding maximizer τ&k ∈ (0, τ̃k) are for a given k ∈ R>0.

We start our analysis by defining the delay gain function

g(γ, x) =

{
1
x Re(W0(x eγ x)), x ∈ R\{0}
1, x = 0

(15)

with x, γ ∈ R, to write ρτ (k) in (13) as

ρτ (k) = min{ρτ,i(k)}Ni=2 (16a)

ρτ,i(k) = (kg(1− 1

k
,−kλiατ)+(1− k))αλi. (16b)

It follows from (1a) that limx→0 g(γ, x) = 1. Therefore, as ex-
pected, limτ→0 ρτ (k) = ρ0 = αλ2. When emphasis on k is not
necessary, to simplify the notation, we write ρτ (k) as ρτ .

In what follows, we aim to determine ranges of delay τ ∈ R>0

and k, for which we have ρτ (k) > αλ2. We also aim to identify
the optimum value of the delay τ&, for whichρτ has its maximum
value for a given k, i.e., we identify the solution for

τ& = argmax
τ∈(0,τ̄)

ρτ = argmax
τ∈(0,τ̄)

min{ρτ,i}Ni=2. (17)

According to (16b), for any given k, the variation of ρτ,i with τ is
characterized by the variation of g with x = −kλiατ . Our study
of the properties of the delay gain function (15) in Appendix B
shows that the variation of g with x ∈ R≥0 for given values of
γ is not monotone (see Lemma B.1 and Fig. 5). As a result,

variation of ρτ,i, i ∈ {2, . . . , N}, with τ is not monotone, and
thus, characterizing ρτ (k) = min{ρτ,i(k)}Ni=2 with τ and solv-
ing the optimization problem (17) are not trivial. Nevertheless,
as shown in the following, our comprehensive characterization
of the variation of g versus x ∈ R≥0 in Appendix B enables us
to solve these problems.

In what follows, we set:

τ&i = argmax
τ∈(0,τ̄i)

ρτ,i

τ̃i = {τ ∈ (0, τ̄i) | g(1−
1

k
,−kαλiτ))=1}

where τ̄i is given in (22). With the notation defined, the following
theorem examines the effect of outdated feedback on the rate of
convergence of modified consensus algorithm (7) for different
values of k ∈ R/{0}.

Theorem IV.1 (Effect of outdated feedback on the rate
of convergence of average consensus algorithm (7)): The
following assertions hold for the modified average consensus
dynamics (7) over a connected graph whose rate of convergence
is specified in (16a).

a) For k < 0, the rate of convergence of the consensus
algorithm (7) decreases by increasing τ ∈ R≥0.

b) For k > 0, ρτ > ρ0 if and only if τ ∈ [0, τ̂) ⊂ [0, τ̄)
where τ̂ = min{τ̂i}Ni=2 with τ̂i = {τ ∈ R>0|ρτ,i = ρ0}
and satisfies τ̃N ≤ τ̂ ≤ min{τ̃2, τ̄}. ρτ is a monotoni-
cally increasing function of τ ∈ (0, τ&N ) ⊂ (0, τ̂) and a
decreasing function of τ for any τ > τ&2 , where

τ&N =
1

α(1− k)λN
W0(

1− k

k e
)

and

τ&2 =
1

α(1− k)λ2
W0(

1− k

k e
).

Moreover, the optimum time delay τ& corresponding
to the maximum rate of convergence of the consensus
algorithm (7) satisfies τ& ∈ [τ&N ,min{τ&2 , τ̂}] and is given
by

τ& = {τ ∈ [τ&N ,min{τ&2 , τ̂}] | ρτ,2 = min{ρτ,i}Ni=3}.
(18)

Proof: Recall that the convergence rate of algorithm (7) is
specified by (16a) [equivalent representation of (13)], which is
the minimum of the rate of convergence of zi, i ∈ {2, . . . , N},
dynamics given in (21). Then, the proof of part (a) follows di-
rectly from statement (a) of Lemma B.2, which states that the rate
of convergence of each zi, i ∈ {2, . . . , N}, dynamics decreases
by increasing delay τ ∈ R>0 (note that in Lemma B.2 each zi
dynamics reads as a = −αkλi > 0 and b = −α(1− k)λi < 0).
To prove statement (b), we proceed as follows. For k > 0, be-
cause of statement (b) of Lemma B.2 for each zi, i∈{2, . . . , N},
dynamics (a=−αkλi<0), we are guaranteed that

ρτ,i=(kg(1− 1

k
,−kλiατ)+(1− k))αλi > ρ0,i ≥ ρ0
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for τ ∈ (0, τ̃i). Since α > 0, λN ≥ λN−1 ≥ · · · ≥ λ2 > 0 and
ρ0,N ≥ ρ0,N−1 ≥ · · · ≥ ρ0,2, we have

τ&i < τ̃i ≤ τ̂i < τ̄i, i ∈ {3, . . . , N} (19a)

τ̃N ≤ τ̃N−1 ≤ · · · ≤ τ̃2 (19b)

τ̄ = τ̄N ≤ τ̄N−1 ≤ · · · ≤ τ̄2 (19c)

τ&N ≤ τ&N−1 ≤ · · · ≤ τ&2 (19d)

and τ̂2 = τ̃2. Since g(1− 1
k ,−kλiατ) is a decreasing function of

τ for any τ ∈ (τ̃i, τ̄i) ⊂ (τ&i , τ̄i) (recall Lemma B.1), it follows
that for any τ ∈ [0, τ̂j), we have ρτ,j > ρ0, and for any τ ∈
[τ̂j , τ̄), we have ρτ,j < ρ0. Because ρτ = min{ρτ,j}Nj=2, we
have ρτ > ρ0, if and only if τ ∈ (0, τ̂), where τ̂ = min{τ̂j}Nj=2.
From (19a) and (19b), it follows that τ̃N ≤ τ̂ . Moreover, since
ρτ,2 > ρ0 for τ ∈ (0, τ̃2), we obtain τ̂ ≤ min{τ̃2, τ̄}. This con-
cludes the proof of the first part of statement (b).

To obtain τ& ∈ (0, τ̂), which gives the maximum attainable
ρ&τ , we proceed as follows. First, note that statement (b) of
Lemma B.2 indicates that ρτ,i, i ∈ {2, . . . , N} is a mono-
tonically increasing (respectively, decreasing) function of τ ∈
(0, τ&i ) (respectively, τ ∈ (τ&i , τ̄i)). Then, because of (19d), we
have the guarantee that ρτ is a monotonically increasing function
of τ ∈ (0, τ&N ) and a decreasing function of τ for any τ > τ&2 .
Therefore, the maximum value of ρτ should be attained at τ& ∈
([τ&N , τ&2 ] ∩ (0, τ̂)) ⊆ [τ&N ,min{τ&2 , τ̂}] with τ&2 = 1

λ2
W0(

1−k
k e )

and τ&N = 1
λN

W0(
1−k
k e ). Now, let j = min{i ∈ {2, . . . , N}|τ&i ≤

τ&}. Then, given (19d), for any i ∈ {2, . . . , N} such that i < j
(respectively, i ≥ j) by virtue of statement (e) of Lemma B.1,
we know dg(1− 1

k ,−kλiατ)/dτ > 0 (respectively, < 0) and
consequently dρτ,i/dτ > 0 (respectively, < 0) at τ = τ&. Since
ρτ = min{ρτ,i}Ni=2, the maximum value of ρτ is attained at
τ = τ& at which

min{ρτ,i}Ni=j = min{ρτ,i}j−1
i=2. (20)

Since λ2τ& ≤ · · · ≤ λj−1τ& and dg(1− 1
k ,−kλiατ&)/dτ > 0

for i ∈ {2, . . . , j − 1}, we have g(1− 1
k ,−kλj−1ατ&) ≥ g(1−

1
k ,−kλj−2ατ&) ≥ · · · ≥ g(1− 1

k ,−kλ2ατ&). As a result, it fol-
lows from (16a) that at τ = τ& we have min{ρτ,i}j−1

i=2 = ρτ,2,
which given (20) completes our proof. !

Remark IV.1 (Selecting the accelerating τ for a given k ∈
R>0): According to Theorem IV.1, for k ∈ R>0, there always
exists a range of delay for which the rate of convergence of
algorithm (7) increases with delay. When the network topology
is fully known, and the eigenvalues of the Laplacian matrix are
available, the best accelerating τ is computed from (18). The
full knowledge of the topology is also assumed in other methods
used to accelerate the average consensus algorithms, such as the
optimal adjacency weight selection of [2]. On the other hand,
when the network topology is not known fully but the maximum
degree of the graph is available, we can use the upper bound
λN ≤ 2dmax (see [3]) to write

1

2α(1− k)dmax
W0(

1− k

k e
) ≤ τ&N ≤ τ& ≤ τ̄

where τ̄ ≥ arccos(1− 1/k)/(α 2dmax
√
2k − 1) for k >

0.5 and τ̄ = ∞ for k ∈ [0, 0.5] (recall Lemma IV.1).

Moreover, by virtue of Theorem IV.1, we know that for any
τ ∈(0, 1

2α(1−k)dmaxW0

(
1−k
k e

)
], we have the guaranteed ρτ >ρ0.

Next, our goal is to identify values of k ∈ R>0 for which the
maximum driving effort uτ,k(t) does not exceed the one for the
original algorithm (5) (for zero-input dynamics). However, be-
fore that, we make the following statement about the maximum
attainable rate using outdated feedback.

Lemma IV.2 (Ultimate bound on the maximum attainable
increase in the rate of convergence of (7)): For any k ∈
R≥0, the ultimate bound on the maximum attainable rate of
convergence for (7) by using outdated feedback is equal to
(1− k)

(
1 + 1

W0(
1−k
ke )

)
ρ0.

Next, we study how the maximum control effort of the agents
while implementing the modified algorithm (7) compares to that
of the original average consensus algorithm (5) for any k ∈ R>0.
The following theorem indicates that for any k ∈ (0, 1], using
the outdated feedback does not increase the maximum control
effort, while for k > 1, the maximum control effort is greater
than the one of the original algorithm (5).

Theorem IV.2 (The maximum control effort for steering
the zero-input dynamics of the algorithm (7)): For a given
α ∈ R>0, let u0,0, and uτ,k(t) be, respectively, the network
aggregated control input of the zero-input dynamics of (5)
and (7) for any k ∈ R>0 and τ ∈ R>0. Then, for any τ ∈ [0, τ̄ ],
where admissible delay bound τ̄ is given in Lemma IV.1, the
following assertions hold for t ∈ R≥0.

a) For k ∈ (0, 1], we have |uτ,k(t)|∞ ≤ |u0,0(t)|∞.
b) For k > 1, we have |uτ,k(t)|∞ ≥ e(k−1)αλ2τ |u0,0(t)|∞.

We close this section with a remark on how the split factor
can be chosen based on the expectations on the convergence rate,
robustness to delay, and managing the control effort.

Remark IV.2 (Selecting k in the algorithm (7)): Lemma IV.1
and Theorems IV.1 and IV.2 give insights on how we can choose
the split factor k ∈ R given expectations on the algorithm’s ac-
celeration, robustness to delay, and control effort. Theorem IV.2
certifies that for any k ∈ (0, 1], the rate of convergence we
observe for any τ ∈ [0, τ̄ ] is attained without imposing any
extra control effort on the agents. Therefore, assuming that the
acceleration is expected without increasing the control effort, the
split factor should be selected to satisfy k ∈ (0, 1]. According
to Lemma IV.2, the maximum attainable rate of convergence is
an increasing function of k ∈ (0, 1]. Moreover, as k → 1, the
ultimate bound on the rate of convergence converges to e ρ0,
which recovers the same bound established in [22, Th. 4.4]. On
the other hand, as expected, as k → 0, the ultimate bound on
the rate of convergence converges to ρ0. Finally, we observe
from Lemma IV.1 that for k > 0.5, the admissible delay bound
is finite, and thus, the robustness of the algorithm to delay is not
strong. On the contrary, the algorithm is robust with respect to
any perturbation in delay for k ∈ (0, 0.5], because the admissible
delay range for such split factors is R≥0. These observations
point to tradeoff between robustness to delay and achieving
higher acceleration when it comes to choosing the split factor;
k = 1 gives the maximum rate of convergence with the corre-
sponding optimum delay, while k = 0.5 results in robustness
as well as higher rate of convergence relative to the original
system (5).
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Fig. 2. Rate of convergence ρτ of the modified average consensus
algorithm (7) over the graph in Fig. 1 for k ∈ {−0.5, 0, 0.5, 1, 1.5}. For
the example case of k = 1.5, note that τ̃ = 0.14 and the maximum rate
of convergence that can be achieved is ρ$τ ≈ 2ρ0 at τ$ = 0.087.

V. NUMERICAL EXAMPLE

We consider the modified average consensus algorithm (7)
over the graph depicted in Fig. 1. The reference input of each
agent i ∈ {1, . . . , 5} is chosen according to the first numerical
example in [5] to be the zero-order hold sampled points from
the signal ri(t) = ai(2 + sin(ω(t)t+ φ(t)) + bi. The idea dis-
cussed in [5] is that the sensor agents sample the signal and
should obtain the average of these sampled points before the next
sampling arrives. The parametersai (the multiplicative sampling
error) and bi (additive bias), i ∈ {1, . . . , 5}, are chosen as the ith
element of [1.1,1,0.9,1.05,0.96] and [−0.55, 1, 0.6,−0.9,−0.6],
respectively. At each sampling time, ω and φ are chosen ran-
domly according to N(0, 5) and N(0, (π/2)2), where N(µ,σ)
indicates the Gaussian distribution with mean µ and variance σ.
We set the sampling rate at 2 Hz. This numerical example can
be viewed as a simple abstraction for decentralized operations
such as distributed sensor fusion, where a dynamic or static
average consensus algorithm is used to create the additive fusion
terms in a distributed manner (see, e.g., [6] and [40]). Since the
convergence of the average consensus algorithm is asymptotic,
there is always an error when the algorithm is terminated in
the finite intersampling time. Faster convergence is desired to
reduce the residual error.

For this example, in what follows, we study the re-
sponse of the modified average consensus algorithm (7) for
k ∈ {−0.5, 0, 0.5, 1, 1.5}. We note that the case of k = 0 gives
the original (delay-free) dynamic average consensus algo-
rithm (5) and, thus, is the baseline case that the rest of the
cases should be compared to. For k ∈ {−0.5, 0, 0.5, 1, 1.5}, the
critical delay value τ̄ of the admissible delay range (0, τ̄) of (7),
respectively, is {∞,∞,∞, 0.32, 0.18} s. Fig. 2 illustrates how
ρτ changes with τ . First, we note that for k = −0.5, the rate of
convergence decreases with delay. However, for positive values
of k, there is a range (0, τ̃), for which ρτ > ρ0. For positive
values of k, we also observe monotonic increase until reaching
τ& and then the monotonic decrease afterward. The trend ob-
served is in accordance with the results of Theorem IV.1. We can
also observe that as k increases, the maximum achievable rate of
convergence also increases. Fig. 3 shows the tracking response of
agent 2 for k ∈ {−0.5, 0, 0.5, 1, 1.5} when the delay is τ = 0.1
(similar trend is observed for the other agents). As seen, the
convergence rate of (7) is different for each value of k. The fastest
response is observed for k = 1.5, while k = −0.5 shows the
lowest one. The decrease in the rate of convergence for k = −0.5

Fig. 3. Trajectory of local state of agent 2 executed by the algorithm (7)
over the graph in Fig. 1 for τ = 0.1, α = 1, and k ∈ {−0.5, 0, 0.5, 1, 1.5}
and for τ = 0 and α = 2.

Fig. 4. Maximum control effort executed by the algorithm (7) over the
graph in Fig. 1 for τ = 0.1 and for k ∈ {0, 0.5, 1, 1.5} and for τ = 0 and
α = 2.

and its increase for the positive values of k are in accordance with
the trend certified by Theorem IV.1 (note that as seen in Fig. 2,
τ = 0.1 is in the rate increasing delay range of (0, τ̃ of the cases
corresponding to k ∈ {0.5, 1, 1.5}). The desired effect of fast
convergence is demonstrated by the smaller tracking error that
is observed at the end of each sampling time, e.g., the tracking
error in the first epoch forα = 1, k ∈ {0.5, 1, 1.5} and for k = 0,
α = 2 is, respectfully, 13%, 9%, 0.2%, and 2.5% that is an
improvement over 15% that corresponds to k = 0 (case of the
original algorithm). We note here that as can be seen in Fig. 2,
τ = 0.1 is close to τ& of the case corresponding to k = 1.5. The
same fast rates of convergence can be achieved for the cases of
k = 1 and k = 0.5 if one uses τ& corresponding to these split
factors.

Fig. 4 shows the maximum control effort of zero-input dy-
namics of the algorithm (7) over time corresponding to τ = 0.1
and k ∈ {0, 0.5, 1, 1.5} and α = 1. For k = 1.5, the maximum
control effort exceeds the value for the original consensus al-
gorithm (case of k = 0). However, for k = 1 and k = 0.5, the
maximum control effort is equal to or less than the case k = 0.
The trend observed above is in accordance with Theorem IV.2.
We also observe that the control effort for the case of k = 0 and
α = 2, which is equivalent to cranking up the control effort of the
delay-free Laplacian average consensus algorithm two times, is
much larger than control effort of the cases that we use outdated
feedback for accelerating the algorithm.

VI. CONCLUSION

In this article, we analyzed the effect of using an affine
combination of immediate and outdated disagreement feedback
to increase the convergence rate of a dynamic average consensus
algorithm. We showed that the modified algorithm has the same
ultimate tracking accuracy but will have faster convergence
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with specific choices of the delay and the affine combination
factor. Our study produced a set of closed-form expressions to
specify the admissible delay range, the delay range for which the
system experiences an increase in its rate of convergence, and
a range in which the optimum time delay corresponding to the
maximum rate of convergence lies. We also examined the range
of affine combination factors, for which the outdated feedback
can be used to improve the convergence of the algorithm without
increasing the control effort. To develop our results, we used
the Lambert W function to obtain the rate of convergence of
our algorithm under study in the presence of the delay. Our
future work includes extending our results for dynamic con-
sensus algorithms over directed graphs and investigating the
use of outdated feedback to increase the rate of convergence
of other distributed algorithms for networked systems such as
leader–follower algorithms.

APPENDIX A
PROOFS OF LEMMAS AND PROPOSITIONS OF SECTION IV

Proof of Lemma IV.1: Consider the zero-input dynamics
of (9), the equivalent representation of zero dynamics of algo-
rithm (7). It is evident that the delay tolerance of (9) is defined by
the dynamics of states z2:N . Note that (9b) because of definition
of Λ̄ also reads as

żi(t)=−α(1− k)λi zi(t)− αk λizi(t− τ), i ∈ ZN
2 . (21)

When k ≤ 0.5, we have −αλi(1− k) ≤ |αλik|, while when
k > 0.5, we have −αλik < −|αλi(1− k)|. Therefore, the ad-
missible delay ranges stated in statements (a) and (b) follow,
respectively, from the first and second statements of [33, Propo-
sition 3.15] as

τ̄i =
arccos(1− 1

k )

αλi

√
2k− 1

. (22)

In admissible delay bound, the time-delayed systems (21) for
i ∈ {2, . . . , N} are exponentially stable, i.e., zi → 0 as t → ∞,
i ∈ {2, . . . , N}. As a result, limt→∞ eS

i
jt = 0, i ∈ ZN−1

1 and
j ∈ Z, can be certified from (11) when the second term on
the right-hand side is removed (zero-input response). Moreover,
since z(t) = T,x(t) (in zero-input dynamics), we then obtain
that in the stated admissible delay ranges in statements (a)
and (b), x(t) converges exponentially fast to 1√

N
z1(0)1N =

1√
N

(
1√
N

∑N
j=1 x

i(0)
)
1N = xavg(0), completing the proof. !

Proof of Proposition IV.1: To establish our proof, we con-
sider (9), the equivalent representation of algorithm (7). Re-
call (9a), which along with the given initial condition gives
z1(t) = 0 for t ∈ R≥0. Also, given (11), the trajectories of
t 1→ z2:N for t ∈ R≥0 satisfy

‖z2:N (t)‖≤
∥∥∥
∑

j∈Z
Diag

(
C1

j e
S1

j t, . . . ,CN−1
j eS

N−1
j t

)

∥∥∥‖z2:N (0)‖

+ κ
∥∥∥
∑

j∈Z
Diag

(
C1

j

S1
j

(1− eS
1
j t), . . . ,

CN−1
j

SN−1
j

(1− eS
N−1
j t)

)∥∥∥

= max





∣∣
∑

j∈Z
Ci

j e
Si

jt
∣∣






N−1

i=1

‖z2:N (0)‖

+ κmax





∣∣
∑

j∈Z

Ci
j

Si
j

(1− eS
i
jt)
∣∣






N−1

i=1

. (23)

Here, we used ‖R, ṙ‖ ≤ κ. Furthermore, using (8), we
obtain |xi(t)− ravg(t)| ≤ ‖x(t)− ravg(t)1N‖ = ‖z(t)‖ =√
|z1(t)|2 + ‖z2:N (t)‖2 = ‖z2:N (t)‖. Then, it follows

from (23) that limt→∞ |xi(t)− ravg(t)| ≤ limt→∞ ‖z2:N (t)‖ =

κmax{|
∑

j∈Z
Ci

j

Si
j
|}N−1

i=1 . Next, we show that
∑

j∈Z
Ci

j

Si
j
=

1
αλi+1

for any i ∈ ZN−1
1 . To this end, note that from zero-input

response of (11), we have zi(t)=(
∑

j∈Ze
Si

jt Ci
j) zi(0), which

gives (
∑

j∈Z
Ci

j

Si
j
)zi(0) =

∫∞
0 zi(t)dt. On the other hand,

using (21), for any i ∈ ZN−1
1 , we have

∫ ∞

0
żi+1(t)dt =−αλi+1

∫ ∞

0
zi+1(t)dt− αλi+1k

∫ 0

−τ
zi+1(t)dt.

Recalling (9c), we get
∫ 0
−τ zi+1(t)dt = 0, which, along with

the fact that under admissible range limt→∞ zi+1(t) = 0, im-
plies that

∫∞
0 zi+1(t)dt =

zi+1(0)
αλi

, which holds for any initial

condition zi+1(0) ∈ R. Therefore, we get
∑

j∈Z
Ci

j

Si
j
= 1

αλi+1

and, consequently, limt→∞ |xi(t)− ravg(t)| ≤ κ
αmin{λi}Ni=2

≤
κ
ρ0

. Moreover, the maximum rate of convergence corresponds
to the worst rate of the exponential terms in (23) or equivalently
min{{−Re(Si

j)}N−1
i=1 }j∈Z given in (13). !

Proof of Lemma IV.2: It follows from part (f) of Lemma B.1
that g(1− 1

k ,−kλiατ&i ) =
1−k

kW0(
1−k
ke )

for any i ∈ {2, . . . , N}.

Then, given (16a), we have ρτ ≤ ρτ,2 ≤ ρτ",2 = (kg(1−
1
k ,−kλ2ατ&2 ) + (1− k))αλ2 = (1− k)(1 + 1

W0(
1−k
ke )

)ρ0,
which concludes our proof. !

Proof of Theorem IV.2: Consider the zero-input dynamics
of (9), the equivalent representation of algorithm (7). For the
maximum control effort of algorithm (7), we have

|uτ,k(t)|∞ = |− α (1− k)Λ z(t)− α kΛ z(t− τ)|∞

= αmax{|(1− k) λi zi(t) + k λi zi(t− τ)|∞}Ni=2.
(24)

Here, we used the fact that z1(t) = 0. Also, recalling (21), for
τ = 0 and any i ∈ {2, . . . , N}, we have zi(t) = e−λit zi(0),
which gives |u0,0(t)|∞ = |u0,0(0)|∞ = αmax{|λizi(0)|}Ni=2.

Next, we show that for any τ ∈ (0, τ̄) and k ∈ (0, 1],
|uτ,k(t)|∞ ≤ α{|λizi(0)|}Ni=2. Notice that from (24), we have
|uτ,k(t)|∞ ≤ α(1− k)max{|λizi(t)|∞}+ αkmax{|λiz(t−
τ)|∞}. Also, recall that for t ∈ [0, τ), we have zi(t− τ) = 0.
Thus, to validate statement (a), it suffices to show that
|zi(t)|∞ = |zi(0)|. To this aim, consider the trajectories
t → z2:N of (21). Since set of dynamics (21) are exponentially
stable with −α(1− k)λi ≤ 0 and −αkλi ≤ 0, recalling
Lemma B.3, for any delay in the admissible range, we have

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 11,2023 at 18:27:51 UTC from IEEE Xplore.  Restrictions apply. 



MORADIAN AND KIA: STUDY ON ACCELERATING AVERAGE CONSENSUS ALGORITHMS USING DELAYED FEEDBACK 165

|zi(t)|∞ = maxs∈[−τ,2τ ] |zi(s)| for any i ∈ {2, . . . , N}. Also,
note that from (21), we get

zi(t) = 0, t ∈ [−τ, 0) (25a)

zi(t) = e−α(1−k)λit zi(0), t ∈ [0, τ) (25b)

zi(t) = e−α(1−k)λitzi(0)(1 +
k

(1− k)
(e−α(1−k)λi(t−τ)−1))

t ∈ [τ, 2τ ] (25c)

which results inmaxs∈[−τ,2τ ] |zi(s)|= |zi(0)| and, consequently,
|zi(t)|∞= |zi(0)|, which concludes statement (a). To validate
part (b), we proceed as follows. Recalling (24) for k>1, we
have |uτ,k(2τ)|∞=αmax{|kλizi(τ)−(k−1)λizi(2τ)|}Ni=2≥
αmax{kλi|zi(τ)|−(k−1)λi|zi(2τ)|}Ni=2. Also, from (25c),
for t ∈ [τ, 2τ), we have |zi(2τ)|≤ |zi(τ)|, which gives
|uτ,k(2τ)|∞ = αmax{kλi|zi(τ)| − (k− 1)λi|zi(τ)|}Ni=2 =
α(2k−1)max{λi|zi(τ)|}Ni=2. Moreover, (25b) implies that
zi(τ)=eα(k−1)λiτ zi(0), which deduces |uτ,k(2τ)|≥α(2k−
1) eα(k−1)λiτ max{|λizi(0)|}Ni=2= (2k−1) eα(k−1)λ2τ |u0,0|∞.
Knowing 2k−1≥1 and |uτ,k(t)|∞≥ |uτ,k(2τ)|∞, we can
conclude the proof. !

APPENDIX B
DELAY GAIN FUNCTION

The following lemma highlights some of the properties of
the delay gain function g(γ, x). Fig. 5 gives some graphical
representation for the properties discussed in this lemma.

Lemma B.1 (Properties of g(γ, x)): The following asser-
tions hold for the delay gain function (15) with γ, x ∈ R.

a) For any γ ∈ R, we have limx→0 g(γ, x) = 1.
b) For any γ > 1 and x ∈ R>0, we have g(γ, x) < γ.
c) For anyγ > 1 and x ∈ R>0, g(γ, x) is a strictly increasing

function of x.
d) Let x ∈ (x̄, 0), where x̄ = arccos(γ)/

√
1− γ2. Then, for

any γ < 1 (respectively, γ > 1), we have g(γ, x) > γ
(respectively, g(γ, x) < γ).

e) For any γ < 1 and x ∈ R<0, g(γ, x) is a strictly de-
creasing function of x for any x ∈ [x&, 0) ⊂ (x̄, 0) and
a strictly increasing function of x for any x < x&, where
x& = 1

γW0(−γ
e ) when γ '= 0 and x& = − 1

e when γ = 0.
f) For any γ<1 and x∈R<0, the maximum value of g(γ, x)

occurs at x&= 1
γW0(−γ

e ), where g(γ, x&)= −γ
W0(− γ

e )
when

γ '=0, and at x&=− 1
e , where g(γ, x&)=e when γ=0.

g) For any γ < 1 and x ∈ R<0, g(γ, x) > 1 if and only if
x ∈ (x̃, 0), where x̃ is the unique solution of g(γ, x) = 1
in (x̄, 0).

The proof of this lemma invokes various properties of the
Lambert W function listed in Section II and is given in Ap-
pendix C. The next lemma, whose proof relies on the results of
Lemma B.1 and is also given in Appendix C, characterizes the
effect of delay on the rate of convergence of scalar time-delayed
system

ẋ(t) = ax(t− τ) + bx(t), t ∈ R≥0

Fig. 5. Delay gain function for different values of x, γ. (a) γ > 1. (b)
0 < γ < 1. (c) −1 < γ < 0. (d) γ < −1.

x(η) ∈ R, η ∈ [−τ, 0]. (26)

The tightest estimate of the rate of convergence of (26) is char-
acterized by the magnitude of the real part of the rightmost root
of its characteristic equation s = 1

τW0(α τ e−τb) + b [recall
Lemma II.1 and (2a)]. That is (see [26, Corollary 1])

ρτ = −1

τ
Re(W0(a τ e−τb))− b. (27)

Recalling (15), we write (27) as

ρτ = −(g(γ, x)a + b) = −(g(γ, x)− γ)a (28)

where x=aτ and γ=− b
a . It follows from (1a) that:

lim
τ→0

g(γ,aτ) = 1. (29)

Therefore, as expected, limτ→0 ρτ = ρ0, where

ρ0 = −(a + b) = −(1− γ)a. (30)

System (26) in terms of different values of a,b ∈ R, a '= 0
satisfies a + b < 0.

Lemma B.2 (Effect of delay on the rate of convergence of
delayed system (26)): Consider system (26) with a ∈ R\{0}
and b ∈ R such that a + b < 0, whose rate of convergence ρτ
is specified by (28). Consider also the delay gain function (15)
with γ = − b

a and x = aτ . Then, we have the following.
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a) For a > 0 and b < 0, the system (26) is exponentially
stable for any τ ∈ R≥0. Moreover, the rate of convergence
decreases by increasing τ ∈ R≥0.

b) For a < 0 and b ∈ R, ρτ > ρ0 if and only if τ ∈ [0, τ̃) ⊂
[0, τ̄), where τ̃ is the unique solution of g(γ,aτ) = 1 in
(0, τ̄) and τ̄ is specified by

τ̄ = arccos(−b/a)/
√

a2 − b2. (31)

Moreover, ρτ is monotonically increasing (respectively,
decreasing) with τ for any τ ∈ [0, τ&) ⊂ [0, τ̄) (respec-
tively, τ ∈ (τ&, τ̄) ⊂ [0, τ̄)), where τ& = − 1

bW0(
b

a e )
when b '= 0 and τ& = − 1

a e when b = 0. Finally, the
maximum rate of convergence of ρ&τ = −(1 + 1

W0(
b

ae )
)b

when b '= 0 and ρ&τ = −a e when b = 0 is obtained at
τ = τ&.

In developing our results, we also invoke the following result.
Lemma B.3 (Maximum value of the trajectory of (26) [41,

Th. 2.10]): For the time delay system (26) and any τ ∈ (0, τ̄ ]
with a,b ∈ R<0, the following holds:

|x(t)|∞ = maxs∈[−τ,2τ ]|x(s)|. (32)

APPENDIX C
PROOFS OF LEMMAS B.1 AND B.2

Proof of Lemma B.1: Part (a) can be readily deduced by
invoking (1b) since W0(x eγ x) → x eγ x as x → 0. To prove
statement (b), we proceed as follows. Let q = x eγ x. Since x ∈
R>0, then q ∈ R>0. As a result, given the properties of Lambert
W function reviewed in Section II, we can write x = 1

γW0(γq)

and Re(W0(q)) = W0(q), which allows us to represent g(γ, x)
as

g(γ, x) =
W0(q)

W0(γ q)
γ, for x ∈ R>0. (33)

Since for γ > 1, we have q < γ q, by invoking Lemma II.2,
we obtain W0(q)

W0(γ q) < 1, which together with W0(q) ∈ R>0 and
W0(γ q) ∈ R>0 validates statement (b) from (33).

Next, we validate statement (c). The derivative of g(γ, x)with
respect to x ∈ R is

d g(γ, x)
d x

=
(1 + γ x) eγ x

x
Re

(
1

x eγ x +eW0(x eγ x)

)

− 1

x2
Re(W0(x eγ x)) =

(1 + γ x)
x2

Re

(
W0(x eγ x)

W0(x eγ x) + 1

)

− 1

x2
Re(W0(x eγx))=

1

x2
Re

(
(γx−W0(x eγ x))W0(x eγ x)

(W0(x eγ x)+1)

)

(34)

for x eγ x '= − 1
e . Recall (2c) that Re(W0(z)) + 1 > 0 for any

z ∈ R\{− 1
e} and Re(W0(z)) = W0(z) > 0 for any z ∈ R>0.

Note also that we have already shown that for any γ > 1 and
x > 0, we have g(γ, x) < γ, which gives γ x −W0(x eγ x) >
0. Therefore, for γ > 1 and x ∈ R>0, from (34), we obtain
dg(γ,x)

d x > 0, which validates statement (c).

To validate statement (d), consider x ∈ (x̄, 0]. For x → 0−,
we have g(γ, x) → 1. Therefore, for γ < 1 (respectively, γ >
1), we get g(γ, x) > γ (respectively, g(γ, x) < γ) as x → 0−.
Moreover, we know that the admissible bound x = x̄ is the
first point that g(γ, x) = γ holds. Therefore, since g(γ, x) is
a continuous function, for any x ∈ (x̄, 0], we have g(γ, x) > γ
for γ < 1, and g(γ, x) < γ for γ > 1.

For proof of statement (e), we proceed as follows. Recall
the properties of Lambert W0 function in (2). Note that for
0 < γ < 1, we have −1 < W0(−γ

e ) < 0, and for γ < 0, we
have W0(−γ

e ) > 0. Also, recall that W0(0) = 0. Therefore, for
γ < 1 and γ '= 0, we have 1

γW0(−γ
e ) ∈ R<0. Now, for γ < 1,

consider x ∈ [ 1γW0(−γ
e ), 0) for γ '= 0 and x ∈ [− 1

e , 0) for
γ = 0. For such x, we have x eγ x ∈ R<0. For f(x) = x eγx,
with x, γ ∈ R, we know df

d x = (1 + γ x) eγx > 0 for any
x ∈ (− 1

e , 0] and γ < 1, i.e., f(x) is a strictly increasing
continuous function. Because the solutions of z eγz = − 1

e
are z = 1

γWl(−γ
e ), l = {−1, 0} for γ '= 0 and z = − 1

e

for γ = 0, for x ∈ [ 1γW0(−γ
e ), 0), we have x eγx ∈ (− 1

e , 0]

and then W0(x eγ x) ∈ R<0 [recall (2a)]. Next, note that by
statement (d), we have γ x −W0(x eγ x) = x(γ − g(x, γ)) > 0

for x ∈ (x̄, 0]. Therefore, dg(x,γ)
d x < 0 can be inferred from (34).

Next, for x < 1
γW0(−γ

e ), let W0(x eγ x) = w + iu. Then, (34)

can be written as dg(γ,x)
d x = 1

x2 Re(
(γ x−(w+iu))(w+iu)

((w+iu)+1) ) =
1

x2((w+1)2+u2) ((γx − w)(w2 + u2 + w) + u2). In addition,
we have w = −u cotu since Im(x eγ x) = 0, which gives
dg(γ,x)

d x = 1
x2u2((cotu+1)2+1) ((γx + u cotu)(u2 cot2 u+ u2 −

u cotu) + u2) > 0. Here, we used u2 cot2 u+ u2 − u cotu =
u

sinu (
u

sinu − cosu) > 0, and γx + u cotu = γx − w =
γx − Re(W0(x eγ x)) = x(γ − g(γ, x)) > 0, which holds
for any x ∈ [x̄, 0) [recall statement (d)], which finalize our
proof for statement (e).

For proof of statement (f), notice that statement (e) explicitly
implies that max(g(γ, x)) = g(γ, x&) for any x ∈ R<0, where
x& eγ x" = − 1

e , which is equivalent to x& = 1
γW0(−γ

e ) for γ '=
0, and x& = − 1

e for γ = 0.
Proof of statement (g) is as follows. In statement (a), we

showed that g(γ, x) → 1 as x → 0−. Moreover, g(γ, x) is a
continuous ascending function in x ∈ (−∞, 1

γW0(−γ
e )] and a

descending function in x ∈ [ 1γW0(−γ
e ), 0). Therefore, continu-

ity implies that there exists a x̃ ∈ (x̄, x&) such that g(γ, x̃) = 1,
or equivalentlyRe(W0(x̃ eγ x̃)) = x̃, and also, g(γ, x) > 1 holds
for any x ∈ (x̃, 0). !

Proof of Lemma B.2: Because, by assumption, we have
α+ b < 0, a > 0 implies that b < −a < 0, resulting in γ > 1
and x = aτ > 0 for τ ∈ R>0. Therefore, invoking statement (b)
of Lemma B.1, we get g(γ, x) < γ. Thus, (28) implies that
system (26) is exponentially stable regardless of the value of
τ ∈ R≥0. Moreover, by taking derivative of ρτ with respect to
τ , we obtain

d ρτ
d τ

=

(
d g(γ, x)

d x

)(
d x
d τ

)
= −a

d g(γ, x)
d x

. (35)
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Statement (c) of Lemma B.1 states that d g(γ,x)
d x > 0 for anyγ > 1

and x > 0. Hence, for a > 0, we have dρτ

d τ < 0, which concludes
our proof of part (a).

For a < 0 and b ∈ R, from (28), it follows that ρτ > ρ0 if
and only if g(γ,aτ) > 1. In this case, because of a + b < 0,
we have γ < 1 and x = aτ < 0 for τ ∈ R>0. Therefore, by
virtue of statement (g) of Lemma B.1, we have ρτ > ρ0 if
and only if τ ∈ [0, τ̃) ⊂ [0, τ̄), where τ̃ is the unique solution
of g(γ,aτ) = 1 in (0, τ̄). In addition, by virtue of part (e) of
Lemma B.1, ρτ , whose rate of change with respect to τ is
specified by (35), is monotonically increasing (respectively, de-
creasing) with τ for any τ ∈ [0, τ&) ⊂ [0, τ̄) (respectively, τ ∈
(τ&, τ̄) ⊂ [0, τ̄)), where τ& = x"

a = 1
γaW0(−γ

e ) = − 1
bW0(

b
a e )

for b '= 0 and τ& = x"
a = − 1

a e for b = 0. Moreover, by virtue
of part (f) of Lemma B.1, we conclude that the maximum value
of g(γ, x) occurs at x& = aτ&, where g(γ, x&) = −γ

W0(− γ
e )

for

b '= 0, which gives ρ&τ = −(1 + 1
W0(

b
ae )

)b. For b = 0, we have

ρ&τ = −a e. !
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