1	Water availability dictates how plant traits predict demographic rates
2	Alice E. Stears ^{1*} , Peter B. Adler ² , Dana M. Blumenthal ³ , Julie A. Kray ³ , Kevin E. Mueller ⁴ ,
3	Troy W. Ocheltree ⁵ , Kevin R. Wilcox ⁶ , Daniel C. Laughlin ¹
4	¹ Botany Department and Program in Ecology, University of Wyoming, Laramie, WY;
5	² Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT;
6	³ USDA-ARS Rangeland Resources Research Unit, Fort Collins, CO;
7	⁴ Department of Biological, Geological and Environmental Sciences, Cleveland State University,
8	Cleveland, OH;
9	⁵ Warner College of Natural Resources, Colorado State University, Fort Collins, CO;
10	⁶ Department of Ecosystem Science and Management, University of Wyoming Laramie, WY
11	*Corresponding and Contact Author: astears@uwyo.edu
12 13 14	Open Research Statement : All unpublished data will be available for download through Dryad (https://doi.org/10.5061/dryad.31zcrjdp5) and all novel code is available for download through GitHub (https://github.com/aestears/CO-Sgs-paper).
15	
16	
17	
18	
19	

20 Abstract: A major goal in ecology is to make generalizable predictions of organism responses to 21 environmental variation based on their traits. However, straightforward relationships between 22 traits and fitness are rare and likely vary with environmental context. Characterizing how traits 23 mediate demographic responses to the environment may enhance predictions of organism 24 responses to global change. We synthesized 15 years of demographic data and species-level traits 25 in a shortgrass steppe to determine whether the effects of leaf and root traits on growth and 26 survival depend on seasonal water availability. We predicted that (1) species with drought-27 tolerant traits, such as lower leaf turgor loss point (TLP) and higher leaf and root dry matter 28 content (LDMC and RDMC), would be more likely to survive and grow in drier years due to 29 higher wilting resistance, (2) these traits would not predict fitness in wetter years, and (3) traits 30 that more directly measure physiological mechanisms of water use such as TLP would best 31 predict demographic responses. We found that graminoids with more negative TLP and higher 32 LDMC and RDMC had higher survival rates in drier years. Forbs demonstrated similar yet more 33 variable responses. Graminoids grew larger in wetter years, regardless of traits. However, in both 34 wet and dry years, graminoids with more negative TLP and higher LDMC and RDMC grew 35 larger than less negative TLP and low LDMC and RDMC species. Traits significantly mediated 36 the impact of drought on survival, but not growth, suggesting survival could be a stronger driver 37 of species' drought response in this system. TLP predicted survival in drier years, but easier-to-38 measure LDMC and RDMC were equal or better predictors. These results advance our 39 understanding of the mechanisms by which drought drives population dynamics, and show that 40 abiotic context determines how traits drive fitness.

41 Keywords: demographic rates, drought, plant traits, global change, grasslands

42 **Introduction:** As climate change leads to higher frequency and intensity of extreme weather events, it becomes increasingly important to identify how organisms respond to abiotic stressors. 43 It is well-known that traits can affect growth, survival, and reproduction (Adler et al. 2014, 44 45 Kunstler et al. 2020), but we are only now beginning to learn how these effects depend on 46 environmental context (Worthy et al. 2020). Models using traits to predict responses to changing 47 climate must explicitly determine how trait effects on performance change according to climatic 48 variation. Most work to date has relied on morphological traits, but traits that directly measure resource use may be superior predictors of demographic performance. Understanding how the 49 50 effect of physiological and morphological traits on demographic rates varies across 51 environmental gradients will allow for precise predictions of occurrence and performance across 52 global ecosystems and in future climate scenarios (Laughlin et al. 2020). Here, we examine how 53 plant leaf and root traits predict growth and survival rates of grassland species according to 54 interannual variation in water availability in a North American shortgrass steppe ecosystem 55 while accounting for individual plant size and local neighborhood interactions. While climate models predict that some regions will receive more precipitation in 56 57 concentrated, extreme events, other regions such as western North America will receive less 58 moisture overall or have longer periods of drought punctuated by extreme precipitation events 59 (Ummenhofer and Meehl 2017). Communities with lower mean annual precipitation often have 60 lower community-weighted mean (CWM) specific leaf area (SLA) (Cornwell and Ackerly 61 2009). Higher SLA species also increase in abundance in wetter years in communities with low 62 mean precipitation (Wilcox et al. 2021). Other studies observed little to no variation in CWM 63 traits after drought, but have identified changes in functional diversity (FD) in dry sites (Luo et 64 al. 2019) or after experimentally-induced drought (Griffin-Nolan et al. 2019a). In North

3

65

66

are relatively insensitive to interannual precipitation variability (Wilcox et al. 2021). Correlations among these and other traits indicate tradeoffs between drought resistance and rapid resource acquisition (Blumenthal et al. 2020). Additional work has found that species are more likely to survive drought if they have traits correlated with a conservative resource acquisition strategy (Luong et al. 2021). Determining how traits affect growth and survival can help provide a mechanistic understanding of population responses to interannual climate variation, as well as improve our understanding of drought-tolerance mechanisms in grassland plants.

74 Individual-level impacts of abiotic variation are observed first in the physiological 75 responses of plants to stress, such as wilting in response to decreased water availability (Bartlett 76 et al. 2012a, 2016). After a plant's physiological ability to withstand or escape drought is 77 surpassed, death or decreased fecundity negatively impacts population sizes (Koerner and 78 Collins 2014). Community composition may then shift, in turn altering the competitive and 79 facilitative interactions between individuals within that community (Ploughe et al. 2019). In 80 extreme cases, this process can lead to either species extirpation or recruitment of formerly 81 absent species to the local species pool, changing both the functional and phylogenetic diversity 82 of the community. Evaluating the underlying demographic mechanisms and plant-plant 83 interactions that are driving community dynamics will allow us to predict how plant phenotypes 84 mediate the impacts of future climate change on plant demographic rates.

Many morphological traits are correlated along an axis representing resource acquisition strategy from fast (e.g. high SLA, low LDMC) to slow (e.g. low SLA, high LDMC) (Reich 2014). Of these economic traits, we expect that LDMC is most relevant to a plant's ability to

88 survive water stress because it measures leaf structure and allocation of carbon to leaf tissue (Hodgson et al. 2011). Species with higher LDMC have higher allocation to cell wall structure 89 90 and more densely-packed leaf cells, and thus are more likely to maintain cell turgor under water stress (Poorter et al. 2009, Wilcox et al. 2021). High LDMC species also have higher lignin 91 92 content, likely due to a higher number of leaf vessels and thicker cell walls, which also confers 93 the ability to maintain water transport under more negative water potentials (Blumenthal et al. 94 2020). Finally, high LDMC species generally have more non-structural carbohydrates (NSCs), 95 which provide osmotic resistance to wilting (Griffin-Nolan et al. 2019b). 96 Traits that more directly measure physiological processes such as cavitation resistance or 97 osmotic potentials might be especially useful for identifying patterns of individual plant 98 responses to soil water availability. One such trait is leaf turgor loss point (TLP), a measure of 99 the water potential within a leaf at which leaf cells begin to lose turgor and the leaf loses function 100 (Bartlett et al. 2012a, 2016). Plants with more negative TLP have greater physiological drought 101 tolerance because they can withstand more negative water potentials before experiencing a 102 reduction in leaf cell turgor, stomatal and hydraulic conductance, and gas exchange (Bartlett et 103 al. 2012a). Recent methodological advances use a vapor pressure osmometer to identify leaf 104 osmotic potential, or leaf cell solute potential at full hydration, which is correlated with TLP in 105 woody species (Bartlett et al. 2012b) and herbaceous species in western North American 106 grasslands (Griffin-Nolan et al. 2019b). In semiarid shortgrass steppe, TLP is predictive of 107 species occurrences in response to drought, with lower TLP species less likely to decline in 108 abundance in drier years (Wilcox et al. 2021). In this ecosystem, low TLP is also correlated with 109 other traits such as high LDMC and low leaf nitrogen and phosphorous, which indicate drought 110 tolerance and a resource conservative growth strategy (Blumenthal et al. 2020). However, the

111 extent to which TLP mediates the effect of drought on plant survival and growth is not known.

We also lack robust evidence to show that traits more closely measuring physiological processesare better than more traditional economic traits for predicting plant responses.

114 We evaluated whether species-level plant functional traits related to water use help 115 explain patterns in species growth and survival, two critical components of fitness for perennial 116 plants, across 15 years of variation in previous-year growing-season water availability in a 117 Colorado shortgrass steppe ecosystem. We integrated long-term demographic data, climate 118 records, and species-level trait measurements to develop statistical models that quantify how 119 traits predict survival and growth, and determine how that relationship changes according to 120 inter-annual water availability. These models also account for the effects of competition and 121 individual plant size, which generally impact plants' response to drought and can explain 122 variation in vital rate responses to drought across individuals of the same species (Adler et al. 123 2018, Tredennick et al. 2018). We predicted that (1) species with low TLP and high tissue DMC 124 (dry matter content) will have higher growth and survival rates in drier years than species with 125 high TLP and low tissue DMC, but that (2) these traits will not impact growth and survival as 126 strongly in wet years because water is less limiting (Fig. 1). We also predicted that (3) traits 127 related to water use, such as TLP and LDMC, will be better predictors of growth and survival in 128 response to drought when compared to traits that are less related to water use such as SLA 129 (Wright et al. 2004, Reich 2014). Further, TLP, the trait we analyzed that most directly measures 130 mechanism, will better predict survival than other easy-to-measure traits, since it is a more direct 131 measurement of physiological processes that impact growth and survival.

Methods: *Demographic Data* We monitored growth and survival for eight graminoid
and eight forb species (Appendix S1:Table S1) in 24, 1-m² chart-quadrats from 1997 to 2010 at

134	the Central Plains Experimental Research location (CPER) in Nunn, Colorado, USA (40.8
135	^o N/110.8 ^o W) (Chu et al. 2013). This North American shortgrass steppe is at 1650 m elevation
136	and is dominated by Bouteloua gracilis and Bouteloua dactyloides. It receives an annual average
137	of 340 mm of precipitation, and has a mean annual temperature of 8 °C (Appendix S2: Section
138	S1). The chart-quadrat method maps each plant in each year, but does not uniquely identify each
139	individual. Plants with a sizeable basal area are mapped as polygons, while grasses and forbs
140	with few stems are mapped as points. Graminoids in this analysis were measured as polygons,
141	and forbs as points, so we use these functional groups in place of "polygon" or "point." Points
142	representing forbs do not indicate plant size, so we can only measure growth for graminoids. We
143	extracted growth and survival from a digitized version of this map dataset using "tracking
144	algorithms" in R (version 4.0.3) (Lauenroth and Adler 2008, R Core Team 2021). Individuals
145	were allowed to be 'dormant' for up to one year (Appendix S2: Section S2).
146	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a
146 147	<i>Climate Data</i> The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More
146 147 148	<i>Climate Data</i> The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month
146 147 148 149	<i>Climate Data</i> The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI
146 147 148 149 150	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have
146 147 148 149 150 151	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have positive and negative SPEI values, respectively. SPEI varied substantially above and below the
146 147 148 149 150 151	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have positive and negative SPEI values, respectively. SPEI varied substantially above and below the mean (mean SPEI = 0) over the period of study (Appendix S1: Figure S1).
146 147 148 149 150 151 152 153	<i>Climate Data</i> The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have positive and negative SPEI values, respectively. SPEI varied substantially above and below the mean (mean SPEI = 0) over the period of study (Appendix S1: Figure S1). <i>Trait Data</i> We measured leaf and root traits for the 16 species in the demographic
146 147 148 149 150 151 152 153 154	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have positive and negative SPEI values, respectively. SPEI varied substantially above and below the mean (mean SPEI = 0) over the period of study (Appendix S1: Figure S1). Trait Data We measured leaf and root traits for the 16 species in the demographic dataset. Five to ten mature, healthy individuals of each species were sampled for each trait. A
146 147 148 149 150 151 152 153 154 155	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have positive and negative SPEI values, respectively. SPEI varied substantially above and below the mean (mean SPEI = 0) over the period of study (Appendix S1: Figure S1). Trait Data We measured leaf and root traits for the 16 species in the demographic dataset. Five to ten mature, healthy individuals of each species were sampled for each trait. A majority of the values used in this analysis were collected at the CPER. However, several
146 147 148 149 150 151 152 153 154 155 156	Climate Data The standardized precipitation-evapotranspiration index (SPEI) is a drought metric that uses temperature and precipitation data to estimate evapotranspiration. More negative SPEI values correspond to drier conditions. We calculated SPEI for a four-month interval corresponding to the growing season at CPER using climate data from the Global SPEI database (Vicente-Serrano et al. 2010) (Appendix S2:Section S3). 'Wet' and 'dry' years have positive and negative SPEI values, respectively. SPEI varied substantially above and below the mean (mean SPEI = 0) over the period of study (Appendix S1: Figure S1). Trait Data We measured leaf and root traits for the 16 species in the demographic dataset. Five to ten mature, healthy individuals of each species were sampled for each trait. A majority of the values used in this analysis were collected at the CPER. However, several additional species were measured at the USDA-ARS High Plains Grasslands Research Station

157	(HPGRS), a northern mixed-grass prairie 60 km from the CPER. Trait samples were collected
158	from CPER and HPGRS between 2014 and 2018, and the associated data has been published
159	(Blumenthal et al. 2020). For species without trait data from CPER or HPGRS, we used species-
160	level trait values measured in 2018 and 2019 at Hays, KS, Miles City, MT and Dubois, ID. See
161	Appendix S1: Table S1 for sampling details. Species explained significant variation in traits (e.g.
162	SLA ($P < 0.01$, F = 4.78, df = 58), while trait sampling location did not ($P = 0.13$, F = 2.53, df =
163	1)). We calculated species mean values for seven traits: specific leaf area (SLA), leaf and root
164	dry matter content (LDMC and RDMC), leaf turgor loss point (TLP), specific root length (SRL),
165	average root diameter (RDiam), and root tissue density (RTD) (Appendix S2: Section S4).
166	Statistical Analysis We used a generalized linear mixed model (GLMM) framework to
167	identify how the effect of trait values on growth and survival varies with drought intensity, as
168	well as to assess the relative ability of each trait to predict these demographic rates. All variables
169	in all survival and growth models were centered and scaled. We created separate growth and
170	survival models for each trait, since we are interested in the relative ability of each trait to predict
171	drought tolerance along a gradient of SPEI, as opposed to their relative importance for
172	demographic rates directly. Both growth and survival models followed a similar covariate
173	structure, shown below (Eqn. 1). In both model frameworks, the covariates of most interest are
174	SPEI, trait, and an SPEI-by-trait interaction.
175	Equation 1
176	Response variable ~ $\alpha + \gamma_{species} + \delta_{quad} + \tau_{year} + \ln[size_t(\beta_{species} + \beta_1)] + trait\beta_2 + SPEI\beta_3 + nearEdge\beta_4 + neighborhoodDensity\beta_5 + (trait × SPEI)\beta_6 + \epsilon$
177 178	To model survival, we used the lme4 package in R statistical software to fit GLMMs with

a binomial error distribution and a logit link function (Bates et al. 2015). All survival models use

180 a binary response variable indicating survival in the next year (year $_{t+1}$). We modeled graminoid

181 and forb survival separately because data for size, an important predictor of variation in survival 182 within species, was only available for graminoids. To model growth, we used lme4 to fit 183 GLMMs using a Gaussian error distribution. We measured growth as ln(basal area in year_{t+1}) as 184 a function of *ln*(basal area in year_t). Growth models were only constructed for graminoids, since 185 we did not have size information for forbs. All growth and survival models for both forbs and 186 graminoids included fixed terms for SPEI, neighborhood density in the current year (year_t), a 187 "nearEdge" term indicating proximity of ≤ 5 cm to the quadrat edge, trait value, and an 188 interaction between trait and SPEI (Eqn. 1). They also included a random intercept for species $(\gamma_{species})$ to account for variation in the effects of fixed covariates on response variables across 189 190 species. All models also included a random intercept for quadrat (δ_{auad}) to account for non-

191 independence of observations within the same quadrat, and a random intercept for year (δ_{year}) 192 to account for non-independence of samples observed in the same year.

193 All graminoid growth and survival models included a fixed term for individual plant size. 194 All graminoid growth models and most graminoid survival models also included a random slope 195 for individual size that varied according to species $(ln[size_t (\beta_{species} + \beta_l)])$, which accounts for the 196 fact that larger individuals have a higher growth and survival probability than small individuals 197 of the same species, but also allows for variation in response for each species. This random slope 198 term was not included in graminoid survival models using RTD and SRL because it led to 199 singular model fit. All models included fixed covariates for conspecific local neighborhood 200 density and proximity to quadrat edge (Eqn. 1) to account for factors in addition to species-level 201 trait values and climate that either impact demographic rates or contribute to measurement error. 202 The "nearEdge" model term is a binary variable indicating whether an individual was growing 203 within 5 cm of the quadrat edge, and accounts for edge effects, as well as potential under-

10

estimation of neighborhood density or individual size due to proximity to the edge. Local 204 205 neighborhood density, which incorporates effects of competition/facilitation on demographic 206 rates (Fig. 1), was calculated for each individual in each year (Appendix S2: Section S5). We 207 estimated only intra-specific competition, since the fact that forbs and graminoids were measured 208 differently made it difficult to produce a reasonable estimate of inter-specific competition. 209 Additionally, inter-specific competition has been shown to be weaker than intra-specific 210 competition in dry grassland systems (Chu et al. 2016, Laughlin et al. 2018). 211 We used AIC to determine the best random effect structure for each trait model by 212 comparing the F-statistics of models with all possible random effect structures. We then used an 213 analogous process to determine the best fixed effect structure (Bolker et al. 2009). We used the 214 mixed() function in the "afex" R package to calculate P-values for coefficients using Likelihood 215 Ratio Tests (Singmann et al. 2021). We used the size and significance of the trait-by-SPEI 216 interaction coefficient to assess the sign and magnitude of a trait's ability to predict drought 217 tolerance. We then used to two methods to compare the relative ability of traits to predict 218 drought tolerance. First, we used a value we call Δ AIC. It was impossible to use AIC to compare 219 fit across models because data for each trait was not available for all species so each model had a different sample size. Instead, we used AIC to compare each model to a model of the same 220 221 structure, but without the trait and trait-by-environment interaction coefficients (what we call 222 ΔAIC ; $\Delta AIC = AIC_{No-traits}$ - AIC_{traits}). This comparison indicates how including traits as 223 covariates improved the model . The more positive the Δ AIC between the trait model and the no-224 trait model, the more support for the ability of that trait to predict survival or growth in response 225 to drought. Negative ΔAIC values indicate that including a trait did not improve model fit. 226 Second, we used likelihood ratio tests (LRTs) as an additional method to quantify the difference

between models with and without traits. A significant χ^2 value (P < 0.05) from an LRT indicates that including trait values significantly changes model fit. If, for example, including values for trait A resulted in a positive Δ AIC and/or a significant LRT result, while including values for trait B did not, trait A is a better predictor of the response variable than trait B.

231 Results: Graminoid Survival We detected significant negative main effects of local 232 neighborhood conspecific density and significant positive main effects of individual plant size on 233 survival probability across all trait models (Table 1: Fig. 2: A-B; Appendix S1: Table S3). Plants 234 with more conspecific neighbors were less likely to survive, and larger plants were more likely to 235 survive than smaller plants of the same species. There was a consistently negative main effect of 236 SPEI on survival which shows that plants had higher survival in drier years, but this effect was 237 only significant in root trait models. RTD was the only trait with a significant main effect on 238 survival. Every trait except RTD significantly interacted with SPEI to impact survival (Table 1). 239 The traits with the strongest interactions based on the absolute value of the interaction coefficient 240 were LDMC, RDMC, TLP, and RDiam, in that order (Table 1; Fig. 3: D, G, A & J). There was 241 also a significant interaction between SRL and SPEI, but the coefficient was small (Table 1). 242 Species with low TLP and high LDMC, RDMC and RDiam were more likely to survive in drier 243 years (Fig. 3: A, D, G, & J). The opposite was true of species with high TLP and low LDMC, 244 RDMC and RDiam. *A*AIC and LRT values indicated that LDMC, RDMC, TLP, and RDiam best 245 predicted survival across a gradient of SPEI. SRL, RTD, and SRL also had positive ⊿AIC values 246 and significant LRTs, although ⊿AIC values were smaller and LRTs less insignificant than for 247 other traits (Table 1). Fixed effects explained 33-61% of variation in graminoid survival, while 248 fixed and random effects combined explained 50-67% of variation (Table 1).

249 *Graminoid Growth* All models of plant growth had a significant negative main effect of 250 local neighborhood conspecific density, and a significant positive main effect of individual size 251 in the current year on size in the next year (Table 2; Fig. 2 C-E; Appendix S1: Table S4). When 252 plants are small, they are likely to become larger in the next year. However, when they exceed a 253 moderate size in the current year, they shrink in the next year (Fig. 2: D-E). There was a positive 254 main effect of SPEI on growth for all models, although it was only significant for models with 255 TLP, LDMC, SLA, and RDMC. RTD was the only trait with a significant main effect on growth. 256 Species with lower RTD were significantly more likely to grow larger in the next year. There 257 were not any significant interactions between traits and SPEI (Table 2, Fig. 3: B, E, H, K & N). 258 Both our metrics indicated that including trait main effects and a trait-by-SPEI interactions did 259 not improve models of graminoid growth. All models had negative Δ AIC values, as well as insignificant χ^2 values from LRTs (Table 2). Fixed effects explained 16-24% of variation in 260 261 growth, while both fixed and random effects combined explained 38-53% of variation (Table 2). 262 Forb Survival There were no significant main effects of local neighborhood conspecific 263 density, SPEI, or traits on forb survival (Table 3; Appendix. S1: Table S5). However, survival 264 was affected by a significant interaction between SPEI and LDMC, RDMC, SLA, SRL, and 265 RTD (Table 3; Fig. 3: F, I & O; Appendix S1: Figs. S2: F & C). In drier years, survival was 266 higher for species with high LDMC and RDMC. In wetter years, survival was higher for species 267 with low LDMC and RDMC. There was a weake interaction between TLP and SPEI in models 268 of forb survival than in graminoids. Forb survival was uniformly higher in wetter years. 269 Visualizations of the interactions between SPEI and LDMC and RDMC for forb survival were 270 consistent with those for graminoids. However, the interaction between SLA and SPEI, where 271 low SLA species had high survival in drier years and low survival in wetter years, was opposite

272 the pattern in graminoids. Although $\Delta AICs$ were small and LRTs were mostly insignificant, 273 these two metrics indicated that including traits and trait-by-SPEI interactions in models using 274 LDMC, RDMC, and SLA improved our ability to predict change in survival across variation in 275 SPEI (Table 3). The uncertainty in forb survival estimates was much larger than for graminoids 276 (Fig. 3: C, F, I, L & O; Appendix. S1: Fig. S2). Fixed effects explained less than 1% of variation 277 in forb survival, while fixed and random effects combined explained 53-69% of variation. 278 Discussion: Effects of climate change on species composition will primarily be manifested 279 through demography, yet it is not tractable to develop unique demographic predictions for every 280 species. If traits predict demographic responses to environmental variation, then generalizable 281 predictions across species may be possible. Here, we determined how leaf and root traits 282 mediated the effect of drought on perennial growth and survival in a shortgrass steppe 283 ecosystem, and found that (1) traits are better predictors of survival than growth across a gradient 284 of SPEI, (2) TLP is an important predictor of graminoid survival in this semiarid grassland, (3) 285 surprisingly, RDMC and LDMC (hereafter collectively referred to as DMC) are more related to 286 survival than TLP in both graminoids and forbs, and (4) survival is not uniformly higher for all 287 species in wet years. These findings are an important step toward understanding the context-288 dependent impacts of traits on demographic rates, and demonstrate the relative importance of 289 different traits for predicting demographic responses to variation in water availability. 290 Trait-by-environment effects on growth and survival: Population-level response to 291 precipitation in shortgrass steppe species (as measured by changes in percent-cover and ANPP) 292 can be predicted by species-level values of TLP, LDMC, SLA, and leaf N and P (Wilcox et al. 293 2021). We found that change in graminoid survival in response to water availability can be 294 explained by TLP and LDMC, but also RDMC and RDiam. The effect of traits on demographic

295 rates is not uniform across the spectrum of water availability. While a certain suite of traits may 296 increase survival in drier years, that advantage does not necessarily translate to higher survival in 297 wetter years. For example, species with traits that were predicted to be drought tolerant (low 298 TLP, high DMC) were more likely to survive in drier years, but less likely to survive in wetter 299 years than species at the other end of the trait spectrum (Fig. 3: A, D & G). This result 300 contributes to growing evidence that environmental context determines when and how traits 301 impact fitness, and expands this framework beyond woody plants to herbaceous grassland 302 species (Anderegg et al. 2016, Kunstler et al. 2020). However, the interaction in survival models 303 between water-related traits and SPEI differs from our prediction of consistently high survival in 304 wetter years regardless of a species' traits. Instead, survival declines for low TLP and high 305 LDMC species (Fig. 3). This pattern may indicate a trade-off between drought tolerance and 306 competitive ability, where drought tolerant species suffer from competition with less drought 307 tolerant species in wetter years. This aligns with substantial evidence supporting a trade-off 308 between stress-tolerance and competitive ability (Grime 1979, Craine 2007). Additional support 309 for a drought-tolerance-competition trade-off is provided by the negative main effect of SPEI on 310 graminoid survival in the rootDiam model. This higher survival in dry years regardless of root 311 diameter could be due to increased facilitation in more stressful conditions (Maestre et al. 2009). 312 While the effect of traits on forb survival varied according to water availability, these

interactions were weakly significant (Fig. 3). The significant interaction between DMC and SPEI
in models of forb survival align with results for graminoid survival. However, unlike with
graminoids, the TLP-by-SPEI interaction is weak and the SLA-by-SPEI interaction is strongly
significant. While it is possible that SLA is more correlated with drought-sensitivity for forbs
than graminoids, it is also possible that our small sample size and lack of information about forb

14

size impacted our results. Additionally, lower precision in estimation of TLP from forb leaf 318 319 osmotic potential may have impacted the accuracy of TLP models (Griffin-Nolan et al. 2019b). 320 RTD was the only trait that predicted graminoid growth. Although the effect of TLP and 321 DMC on growth was not significant, low TLP and high DMC species generally had higher 322 growth than high TLP and low DMC species, consistent with the pattern observed in graminoid 323 survival models. Unlike in models of survival, there were no significant interactions between 324 traits and SPEI (Fig. 3). Thus, species with trait values considered to be more drought tolerant 325 grew larger regardless of drought intensity. Previous work in the same grassland found that 326 abundances of species with a similar suite of drought tolerant traits were less sensitive to 327 precipitation change than drought intolerant species (Wilcox et al. 2021). Our results generally 328 align with this finding. While the abundance of drought-intolerant species is more sensitive to 329 precipitation change (Wilcox et al. 2021), drought-tolerant species may still have higher absolute 330 growth irrespective of water availability, as seen in our results (Fig. 2: B, E). This is because 331 they are better suited to the average conditions of this habitat. The shortgrass steppe is nearly 332 always water-limited, and so drought tolerance is generally a very favorable strategy. 333 Additionally, the heightened precipitation sensitivity of drought-intolerant species may be driven 334 by the fact that many of the drought-intolerant species in this system are annuals, which are 335 adapted to spike in abundance in years that are well-suited to their growth strategy (Blumenthal 336 et al. 2020, Wilcox et al. 2021). Our analysis included only perennial species, and those 337 perennials that are drought intolerant may be generally less likely to grow in this water-limited 338 system. However, our growth model results should be interpreted with a degree of caution, since 339 there were multiple potential sources of error in the growth-measurement process. While 340 accurately identifying whether a plant survived is relatively straightforward, there is substantial

room for error when mapping basal area in the field, translating a basal area outline from aquadrat to a datasheet, and then to a digital shapefile.

343 *Relative predictive ability of traits*: Leaf TLP is a good predictor of herbaceous plant 344 survival and growth in this shortgrass steppe ecosystem (Fig. 3: A-C), where water availability 345 is highly variable and limits plant growth. TLP is used as an indicator of physiological drought tolerance, and has been linked to drought tolerance in tropical trees (Bartlett et al. 2012a), but 346 347 there is mixed evidence for its utility as a predictor of drought tolerance in grasslands. TLP has 348 been linked to precipitation sensitivity in North American grasslands (Griffin-Nolan et al. 2019b, 349 Blumenthal et al. 2020, Wilcox et al. 2021), but was not indicative of whole-plant drought 350 tolerance in European grassland species (Májeková et al. 2019). Our analysis further tests the 351 relationship of TLP to drought tolerance in graminoids and forbs, and represents the first test of 352 TLP to predict demographic responses to variation in drought. Species with a more negative TLP 353 can experience more negative water potentials before wilting, and we found they have a higher 354 survival probability in drier years than species with higher TLP. Species with more negative TLP 355 are also more likely to grow larger than species with high TLP, regardless of water availability. 356 Tissue DMC was a better predictor of growth and survival in response to drought than 357 TLP. This is surprising since TLP is a direct measure of a plant's capacity to maintain leaf turgor 358 under water stress, and has been shown to be a good indicator of physiological drought tolerance 359 (Bartlett et al. 2012a). While LDMC and RDMC have been linked to drought tolerance, they are 360 less directly related to plant water status than TLP, and are correlated with functional strategies 361 beyond drought tolerance. These results may indicate that structural, rather than osmotic, 362 resistance to wilting is a more successful strategy in this environment. The proportionally higher

363 carbon investment in leaf and root structure in high DMC species impedes wilting, even when

soil water availability is low enough to overcome osmotic wilting resistance. Although the 364 365 relative importance of these traits for predicting demographic responses to drought may differ in 366 other systems, this result is encouraging from a methodological standpoint since LDMC and 367 RDMC are much easier to measure than TLP. 368 Identifying traits that predict demographic responses to environmental stress represents a 369 key step in formulating frameworks of population and community dynamics under 370 environmental change (Laughlin et al. 2020). Our results challenge the idea that traits which 371 more closely measure physiological mechanism are always superior predictors of individual-372 level responses to abiotic conditions. Specifically, we have shown that easy-to-measure plant 373 traits such as DMC explain significant variation in demographic responses to drought across 16 374 herbaceous species in a North American grassland. More importantly, these results advance our 375 understanding of the environment-dependent effect of traits on demographic rates, and reinforce 376 the notion that demographic rates can respond in distinct ways to environmental variation and 377 can have differing contributions to population-level responses to the environment. 378 Author Contributions: AES and DCL designed the study. DMB, JAK, KEM, TWO, and KRW 379 collected trait data, and PBA compiled demographic data. AES performed analysis with DCL, 380 DMB, and PBA contributing. AES wrote the manuscript with contributions from all authors. 381 **Literature Cited** 382 Adler, P. B., R. Salguero-Gómez, A. Compagnoni, J. S. Hsu, J. Ray-Mukherjee, C. Mbeau-Ache, 383 and M. Franco. 2014. Functional traits explain variation in plant lifehistory strategies. 384 Proceedings of the National Academy of Sciences of the United States of America

385 111:740–745.

17

38921:1319–1329.

- 390 Anderegg, W. R. L., T. Klein, M. Bartlett, L. Sack, A. F. A. Pellegrini, B. Choat, and S. Jansen.
- 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of droughtinduced tree mortality across the globe. Proceedings of the National Academy of Sciences
 of the United States of America 113:5024–5029.
- Bartlett, M. K., T. Klein, S. Jansen, B. Choat, and L. Sack. 2016. The correlations and sequence
 of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National
 Academy of Sciences of the United States of America 113:13098–13103.
- 397 Bartlett, M. K., C. Scoffoni, R. Ardy, Y. Zhang, S. Sun, K. Cao, and L. Sack. 2012a. Rapid
- determination of comparative drought tolerance traits: Using an osmometer to predict turgor
 loss point. Methods in Ecology and Evolution 3:880–888.
- Bartlett, M. K., C. Scoffoni, and L. Sack. 2012b. The determinants of leaf turgor loss point and
 prediction of drought tolerance of species and biomes: A global meta-analysis. Ecology
 Letters 15:393–405.
- Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting Linear Mixed-Effects Models
 Using lme4. Journal of Statistical Software 67.
- 405 Blumenthal, D. M., K. E. Mueller, J. A. Kray, T. W. Ocheltree, D. J. Augustine, and K. R.

406 Wilcox. 2020. Traits link drought resistance with herbivore defence and plant economics in

407 semi-arid grasslands: The central roles of phenology and leaf dry matter content. Journal of

408 Ecology 108:2336–2351.

- 409 Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.
- 410 S. S. White. 2009. Generalized linear mixed models: a practical guide for ecology and
- 411 evolution. Trends in Ecology and Evolution 24:127–135.
- 412 Chu, C., A. R. Kleinhesselink, K. M. Havstad, M. P. McClaran, D. P. Peters, L. T. Vermeire, H.
- 413 Wei, and P. B. Adler. 2016. Direct effects dominate responses to climate perturbations in
- 414 grassland plant communities. Nature Communications 7:1–10.
- 415 Chu, C., J. Norman, R. Flynn, Ni. Kaplan, W. K. Lauenroth, and P. B. Adler. 2013. Cover,
- 416 density, and demographics of shortgrass steppe plants mapped 1997-2010 in permanent
- 417 grazed and ungrazed quadrats. Ecology 94:1435.
- 418 Cornwell, W. K., and D. D. Ackerly. 2009. Community assembly and shifts in plant trait
- 419 distributions across an environmental gradient in coastal California. Ecological Monographs
 420 79:109–126.
- 421 Craine, J. M. 2007. Plant strategy theories: Replies to Grime and Tilman: Forum. Journal of
 422 Ecology 95:235–240.
- 423 Griffin-Nolan, R. J., D. M. Blumenthal, S. L. Collins, T. E. Farkas, A. M. Hoffman, K. E.
- 424 Mueller, T. W. Ocheltree, M. D. Smith, K. D. Whitney, and A. K. Knapp. 2019a. Shifts in
- 425 plant functional composition following long-term drought in grasslands. Journal of Ecology
 426 107:2133–2148.
- 427 Griffin-Nolan, R. J., T. W. Ocheltree, K. E. Mueller, D. M. Blumenthal, J. A. Kray, and A. K.
- 428 Knapp. 2019b. Extending the osmometer method for assessing drought tolerance in

- 429 herbaceous species. Oecologia 189:353–363.
- 430 Grime, J. P. 1979. Plant Strategies & Vegetation Processes. John WIley & Sons, Ltd., New York.
- 431 Hodgson, J. G., G. Montserrat-Martí, M. Charles, G. Jones, P. Wilson, B. Shipley, M. Sharafi, B.
- 432 E. L. Cerabolini, J. H. C. Cornelissen, S. R. Band, A. Bogard, P. Castro-Díez, J. Guerrero-
- 433 Campo, C. Palmer, M. C. Pérez-Rontomé, G. Carter, A. Hynd, A. Romo-Díez, L. De Torres
- 434 Espuny, and F. Royo Pla. 2011. Is leaf dry matter content a better predictor of soil fertility
- than specific leaf area? Annals of Botany 108:1337–1345.
- 436 Koerner, S. E., and S. L. Collins. 2014. Interactive effects of grazing, drought, and fire on
- 437 grassland plant communities in North America and South Africa. Ecology 95:98–109.
- 438 Kunstler, G., A. Guyennon, S. Ratcliffe, N. Rüger, P. Ruiz-Benito, D. Z. Childs, J. Dahlgren, A.
- 439 Lehtonen, W. Thuiller, C. Wirth, M. A. Zavala, and R. Salguero-Gomez. 2020.
- 440 Demographic performance of European tree species at their hot and cold climatic edges.
- 441 Journal of Ecology:1–34.
- Lauenroth, W. K., and P. B. Adler. 2008. Demography of perennial grassland plants: Survival,
 life expectancy and life span. Journal of Ecology 96:1023–1032.
- Laughlin, D. C., J. R. Gremer, P. B. Adler, R. M. Mitchell, and M. M. Moore. 2020. The Net
 Effect of Functional Traits on Fitness. Trends in Ecology and Evolution 35:1037–1047.
- 446 Laughlin, D. C., R. T. Strahan, P. B. Adler, and M. M. Moore. 2018. Survival rates indicate that
- 447 correlations between community-weighted mean traits and environments can be unreliable
- estimates of the adaptive value of traits. Ecology Letters 21:411–421.
- Luo, W., X. Zuo, R. J. Griffin-Nolan, C. Xu, W. Ma, L. Song, K. Helsen, Y. Lin, J. Cai, Q. Yu,

450	Z. Wang, M. D. Smith, X. Han, and A. K. Knapp. 2019. Long term experimental drought
451	alters community plant trait variation, not trait means, across three semiarid grasslands.
452	Plant and Soil 442:343-353.

Luong, J. C., K. D. Holl, and M. E. Loik. 2021. Leaf traits and phylogeny explain plant survival
and community dynamics in response to extreme drought in a restored coastal grassland.

455 Journal of Applied Ecology 58:1670–1680.

456 Maestre, F. T., R. M. Callaway, F. Valladares, and C. J. Lortie. 2009. Refining the stress-

457 gradient hypothesis for competition and facilitation in plant communities. Journal of
458 Ecology 97:199–205.

Májeková, M., J. Martínková, and T. Hájek. 2019. Grassland plants show no relationship
between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in
soil moisture. Functional Ecology 33:774–785.

462 Ploughe, L. W., E. M. Jacobs, G. S. Frank, S. M. Greenler, M. D. Smith, and J. S. Dukes. 2019.

463 Community Response to Extreme Drought (CRED): a framework for drought-induced shifts

in plant–plant interactions. New Phytologist 222:52–69.

Poorter, H., Ü. Niinemets, L. Poorter, I. J. Wright, and R. Villar. 2009. Causes and consequences
of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist 182:565–588.

467 R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for
468 Statistical Computing, Vienna, Austria.

469 Reich, P. B. 2014. The world-wide "fast-slow" plant economics spectrum: A traits manifesto.

470 Journal of Ecology 102:275–301.

- 471 Singmann, H., B. Bolker, J. Westfall, F. A. and Aust, and M. S. Ben-Shachar. 2021. afex:
 472 Analysis of Factorial Experiments
- 473 Stears, Alice et al. (2022), Water availability dictates how plant traits predict demographic rates,
- 474 Dryad, Dataset, https://doi.org/10.5061/dryad.31zcrjdp5
- 475 Tredennick, A. T., B. J. Teller, P. B. Adler, G. Hooker, and S. P. Ellner. 2018. Size-by-
- 476 environment interactions: a neglected dimension of species' responses to environmental
 477 variation. Ecology Letters:1757–1770.
- 478 Ummenhofer, C. C., and G. A. Meehl. 2017. Extreme weather and climate events with ecological
- 479 relevance: A review. Philosophical Transactions of the Royal Society B: Biological480 Sciences 372.
- 481 Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno. 2010. A Multiscalar Drought Index
- 482 Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index.
- 483 Journal of Climate 23:1696–1718.
- 484 Wilcox, K. R., D. M. Blumenthal, J. A. Kray, K. E. Mueller, J. D. Derner, T. Ocheltree, and L.
- 485 M. Porensky. 2021. Plant traits related to precipitation sensitivity of species and
- 486 communities in semiarid shortgrass prairie. New Phytologist 229:2007–2019.
- 487 Worthy, S. J., D. C. Laughlin, J. Zambrano, M. N. Umaña, C. Zhang, L. Lin, M. Cao, and N. G.
- 488 Swenson. 2020. Alternative designs and tropical tree seedling growth performance
 489 landscapes. Ecology 101:1–12.
- 490 Wright, I. J., P. B. Reich, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B.
- 491 Lamont, T. Lee, W. Lee, and Others. 2004. The Worldwide leaf economics spectrum.

492 Nature 428:821–827.

493 Tables

	Trait Model						
	TLP	LDMC	SLA	RDMC	RTD	SRL	RDiam
size _t	0.95**	0.94^{**}	0.96^{**}	0.78^{**}	1.19**	1.20^{**}	0.86^{**}
neighbors	-0.61**	-0.62**	-0.60**	-0.61**	-0.43**	-0.43**	-0.59**
nearEdge	0.003	-0.001	0.01	-0.003	0.08	0.08	0.02
SPEI:trait	0.15**	-0.26**	-0.08**	-0.21**	0.01	-0.05**	-0.15**
SPEI	-0.08	-0.09	-0.07	-0.11	-0.23*	-0.23*	-0.19*
Trait	-0.04	0.26	-0.07	-0.02	0.36**	0.14	-0.04
τ_{00}	0.13_{quad}	0.12_{quad}	0.13_{quad}	0.13_{quad}	0.11_{quad}	0.11_{quad}	0.12_{quad}
	0.11_{year}	0.12_{year}	0.09_{year}	0.08_{year}	0.14_{year}	0.14_{year}	0.08 _{year}
	1.22 _{spp.}	1.70 _{<i>spp</i>.}	1.27 _{spp.}	0.48 _{spp.}	$0.06_{spp.}$	$0.40_{spp.}$	0.58 _{spp.}
τ_{01}	$0.37_{size*spp}$	$0.30_{size*spp}$	$0.37_{size*spp}$	$0.15_{size*spp}$			$0.17_{size*spp}$
ρ ₀₁	-0.95 _{spp.}	-0.97 _{spp.}	-0.96 _{spp.}	-0.85 _{spp.}			-0.88 _{spp.}
Residual	3.29	3.29	3.29	3.29	3.29	3.29	3.29
Variance							
n	18,827	18,829	18,827	18,474	16,618	16,618	17,190
Marg./Cond.	0.38/0.63	0.41/0.62	0.38/0.63	0.33/0.50	0.61/0.64	0.60/0.67	0.38/0.55
\mathbb{R}^2							
AIC	14,823.8	14,749.4	14,861.9	14,774.8	13,334.3	13,346.4	13,502.5
ΔAIC^{\dagger}	48.79	123.18	10.64	87.60	5.06	2.99	46.13
LRT: χ^2 (df) (<i>P</i> -val) ^{††}	52.79(2) ** (P<0.001)	127.2(2) ** (<i>P</i> <0.001)	14.6(2) ** (<i>P</i> =0.001)	91.6(2) ** (<i>P</i> <0.001)	9.1(2)* (<i>P</i> =0.011)	7.0(2)* (<i>P</i> =0.030)	50.1(2)** (P<0.001)

494 **Table 1**. Graminoid survival model coefficients

495 Note: * P < 0.05; ** P < 0.01; Exact *P*-values, test statistics, and degrees of freedom are shown in

496 Appendix S1: Table S3; τ_{00} = rand. intercept variance; τ_{01} = rand. slope variance; ρ_{01} =

497 correlation of rand. slope & intercept; $\dagger =$ compares the AIC of a model with fixed effects for

498 trait and trait: envi interaction to a model without these effects.; $\dagger \dagger =$ Results from a likelihood

- 499 ratio test comparing models with and without trait and trait:envi effects. Key to traits: TLP (leaf
- 500 turgor loss point), LDMC (leaf dry matter content), SLA (specific leaf area), RDMC (root dry

- 501 matter content), RTD (root tissue density), SRL (specific root length), RDiam (average root
- 502 diameter)
- 503

504	Table 2.	Graminoid	growth	model	coefficients
-----	----------	-----------	--------	-------	--------------

	Trait Model						
	TLP	LDMC	SLA	RDMC	RTD	SRL	RDiam
size _t	0.51^{**}	0.51**	0.51**	0.51**	0.56^{**}	0.56^{**}	0.48^{**}
neighbors	-0.12**	-0.12**	-0.12**	-0.12**	-0.13**	-0.13**	-0.13**
nearEdge	-0.003	-0.004	-0.004	-0.004	-0.03	-0.03	-0.02
SPEI:trait	0.01	-0.02	-0.004	-0.01	0.01	0.003	-0.02
SPEI	0.12*	0.13*	0.12^{*}	0.12^{*}	0.12	0.12	0.12
Trait	-0.17	0.13	0.05	0.05	-0.20*	-0.09	0.02
τ_{00}	0.02_{quad}						
	0.03_{year}	0.03_{year}	0.03_{year}	0.03_{year}	0.04_{year}	0.04_{year}	0.04_{year}
	0.72 _{spp.}	0.62 _{spp.}	0.53 _{spp.}	0.52 _{spp.}	0.34 _{spp.}	0.49 _{spp.}	0.76 _{spp.}
τ_{01}	0.06 _{size*spp}	0.06 _{size*spp}	0.06 _{size*spp}	0.06 _{size*spp}	0.08size*spp	$0.07_{size*spp}$	$0.09_{size*spp}$
ρ ₀₁	-0.09 _{spp.}	-0.86 _{spp.}	-0.81 _{spp.}	-0.78 _{spp.}	-0.74 _{spp.}	-0.48 _{spp.}	-0.76 _{spp.}
Residual	1.44	1.44	1.44	1.44	1.44	1.44	1.44
Variance							
n	9,497	9,497	9,497	9,497	8,802	8,802	9,018
Marg./Cond.	0.23/0.38	0.23/0.40	0.20/0.40	0.20/0.41	0.24/0.49	0.19/0.53	0.16/0.44
\mathbb{R}^2							
AIC	30,597.8	30,597.4	30,600.2	30,599.3	28,430.6	28,433.7	29,107.7
ΔAIC^{\dagger}	-10.78	-10.40	-13.16	-12.25	-9.55	-12.66	-12.39
LRT: χ^2 (df) (<i>P</i> -val) ^{††}	3.0(2) (<i>P</i> =0.22)	2.6(2) (<i>P</i> =0.27)	0.6(2) (<i>P</i> =0.73)	0.5(2) (<i>P</i> =0.76)	4.4(2) (<i>P</i> =0.11)	0.8(2) (<i>P</i> =0.65)	0.7(2) (<i>P</i> =0.69)

505 Note: * P < 0.05; ** P < 0.01; Exact *P*-values, test statistics, and degrees of freedom are shown in

506 Appendix. S1: Table S4; τ_{00} = rand. intercept variance; τ_{01} = rand. slope variance; ρ_{01} =

507 correlation of rand. slope & intercept; \dagger = compares the AIC of a model with fixed effects for

508 trait and trait: envi interaction to a model without these effects.; $\dagger \dagger =$ Results from a likelihood

ratio test comparing models with and without trait and trait:envi effects.

510	
511	

	Trait Model						
	TLP	LDMC	SLA	RDMC	RTD	SRL	RDiam
neighbors	-0.28	-0.30	-0.29	-0.29	-0.26	-0.27	-0.24
nearEdge	-0.03	-0.03	-0.11	-0.05	0.10	0.09	0.002
SPEI:trait	0.17	-0.46**	0.70^{**}	-0.40**	-0.36*	0.21*	0.06
SPEI	0.23	0.34	0.42	0.23	0.29	0.29	0.20
Trait	-0.10	-0.15	0.28	-0.43	0.13	0.04	0.11
τ_{00}	0.55_{quad}	0.51_{quad}	0.56_{quad}	0.52_{quad}	0.63_{quad}	0.66_{quad}	0.56_{quad}
	0.44_{year}	0.31 _{year}	0.34_{year}	0.34_{year}	0.51_{year}	0.66_{year}	0.53_{year}
	3.20 _{spp.}	2.54 _{spp.}	3.00 _{spp.}	3.10 _{spp.}	3.10 _{spp.}	5.70 _{spp.}	3.47 _{spp.}
Residual	3.29	3.29	3.29	3.29	3.29	3.29	3.29
Variance							
n	551	551	551	551	438	464	507
Marg./Cond.	0.01/0.57	0.05/0.53	0.04/0.56	0.05/0.57	0.03/0.57	0.01/0.69	0.01/0.58
R^2							
AIC	643.4	636.8	636.8	637.0	544.0	551.4	621.2
ΔAIC^{\dagger}	-2.14	8.72	4.49	4.34	1.61	-2.90	-3.56
LRT: γ^2	1.9(2)	12.7(2) **	8.5(2)*	8.3(2)*	5.6(2)	1.1(2)	0.4(2)
$(df)(P-val)^{\dagger\dagger}$	(P=0.40)	(P=0.002)	(<i>P</i> =0.014)	(P=0.015)	(P=0.06)	(<i>P</i> =0.58)	(P=0.80)

Table 3. Forb survival model coefficients

Note: * P < 0.05; ** P < 0.01; Exact *P*-values, test statistics, and degrees of freedom are shown in

515 Appendix S1: Table S5; τ_{00} = rand. intercept variance; [†] = compares the AIC of a model with

516 fixed effects for trait and trait: envi interaction to a model without these effects.; $\dagger \dagger = \text{Results}$

517 from a likelihood ratio test comparing models with and without trait and trait:envi effects.

520

521

522

523 Figure Captions

524 Figure 1. The demographic rates of growth, survival, and reproduction are impacted by 525 environment, interactions with neighbors, and size. We focus here on plant growth and survival. 526 The impact of environmental variation on an organism's demographic rates is likely mediated by 527 the traits of that organism. This is especially true for traits that are related to environmental 528 conditions that are most limiting or stress-inducing in a given habitat. In semiarid steppe, traits 529 related to water use might be more important for plant growth and survival in very dry years, and 530 relatively less important in wetter years. The "predictions" figure shows how a trait related to 531 drought-tolerance may mediate the effect of climate on growth and survival. Specifically, we 532 predicted that water-use traits impact survival or growth rates in dry years, but are not important 533 in wetter years when a plant is not experiencing severe water stress. 534 Figure 2. The effect of local neighborhood density (A) and size in year, (B) on graminoid 535 survival in models using LDMC as the trait predictor. (A) Across all graminoid species, higher 536 local neighborhood crowding by individuals of the same species corresponds with lower 537 survival. (B) Larger individuals are more likely to survive to the next year than smaller 538 individuals of the same species. (C-D) use values from models using TLP as the trait predictor. 539 (C) Across all graminoid species, higher local neighborhood crowding by individuals of the 540 same species corresponds to smaller size_{t+1}. (**D**) This model predicts that as $ln(size_t)$ increases, a

541 plant will become larger in year $_{t+1}$ until it reaches a mid-point in size $_t$, at which point it will

542 plateau in size. (E) In the raw data (as opposed to model predictions shown in A-D) there is a 543 positive linear relationship between $ln(size_t)$ and $ln(size_{t+1})$ for each graminoid, although there is 544 a size above which plants are more likely to shrink than grow in year, Dashed lines in (**D**) and 545 (E) show a 1:1 relationship between ln(size) and $ln(size_{t+1})$. Dark lines show the overall effect of 546 each covariate on survival. The 95% CI for the predictor is shown in light grey. Colored lines 547 incorporate random species effects to show the effects of competition or size $_t$ by species. 548 **Figure 3:** Survival probabilities and $ln(size_{t+1})$ for wet years and dry years, calculated using the 97.5th and 2.5th quantiles of the distribution of SPEI values. (A) Low TLP graminoid species are 549 550 more likely to survive than high TLP species in dry years (low SPEI), while in wet years (high 551 SPEI) species with a high TLP are more likely to survive than low TLP species $(\beta_{TLP*SPEI} = 0.95; P < 0.001; \chi^2 = 16.45; df = 1)$. (**D**, **G**) A similar trend in graminoid survival is 552 predicted by the models that includes LDMC ($\beta_{LDMC*SPEI} = 0.94$; P<0.001; $\chi^2 = 17.06$; df=1) and 553 RDMC ($\beta_{RDMC*SPEI} = 0.78$; P<0.001; $\chi^2 = 17.36$; df=1). Note the scale of TLP is inverse to that 554 555 of LDMC and RDMC. (J, M) There are significant interactions between SPEI and RDiam $(\beta_{RDiam*SPEI} = 0.86; P < 0.001; \chi^2 = 14.58; df = 1)$ and SLA $(\beta_{SLA*SPEI} = 0.96; P < 0.001; \chi^2 = 17.12;$ 556 557 df=1). However these two traits models have much lower \triangle AIC values than other trait models. 558 (B, E, H, K, N) There are no significant interactions between the effects of any trait and SPEI on 559 size_{t+1} (Appendix S1: Table S4). Horizontal dashed lines in (**B**, **E**, **H**, **K**, **N**) indicate the average 560 plant size in year_t. (C, F, I, L, O) Trends for forb survival were similar to those for graminoids, 561 although model fit is weaker and interactions between trait and environment are less significant 562 for all traits (Appendix S1: Table S5). Black bars on the x-axis indicate species-level trait values, 563 and bands around each line indicate 95% CIs. *(P < 0.05) for this trait:SPEI interaction; $\& \Delta$ AIC 564 for this model is positive and the LRT is significant.