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Abstract

Tetrahedral frame fields have applications to certain classes of nematic liquid crystals
and frustrated media. We consider the problem of constructing a tetrahedral frame
field in three-dimensional domains in which the boundary normal vector is included
in the frame on the boundary. To do this, we identify an isomorphism between a
given tetrahedral frame and a symmetric, traceless third-order tensor under a partic-
ular nonlinear constraint. We then define a Ginzburg—Landau-type functional which
penalizes the associated nonlinear constraint. Using gradient descent, one retrieves a
globally defined limiting tensor outside of a singular set. The tetrahedral frame can
then be recovered from this tensor by a determinant maximization method, developed
in this work. The resulting numerically generated frame fields are smooth outside of
one-dimensional filaments that join together at triple junctions.
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1 Introduction

In this paper, we continue with our program that aims to use variational methods for
tensor-valued functions in order to describe frame-valued fields in R”. Here, a frame
3§ is a fixed set of m vectors in R” that satisfies some symmetry conditions, while a
frame-valued field R(x)§ assigns a rigid rotation R(x) € SO (n) of § to every point
x e QCR"

Whenever —a € § for all a € §, the frame § of m vectors can be identified with a
frame composed of m /2 lines. Here of particular interest is a set of n orthogonal lines in
R", known as an n-cross. An n-cross field associates an n-cross with every point in R”.
In Golovaty et al. (2021), we investigated whether it is possible to construct a smooth
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field of n-crosses in €2, assuming certain behavior of that field on d<2. This problem has
received a considerable attention in computer graphics and mesh generation (Vaxman
etal. 2016).

Intwo dimensions (or on surfaces in three dimensions), quad meshes can be obtained
by finding proper parametrization based on a 2-cross field defined over a triangulated
surface (Lietal. 2012). A similar hexahedral mesh generation approach in three dimen-
sions is typically accomplished by constructing a 3-cross field on a tetrahedral mesh
and then using a parametrization algorithm to produce a hexahedral mesh (Kowalski
et al. 2014; Nieser et al. 2011). From a mathematical perspective, the first step in this
procedure requires a 3-cross field in @ R that is sufficiently smooth and properly
fits to 0€2, e.g., by requiring that one of the lines of the field is orthogonal to 9€2.
Generally, an n-cross field of this type has singularities on d€2 and/or in 2 due to
topological constraints (Golovaty et al. 2021).

A number of approaches have been proposed to construct a 2- or 3-cross fields
(Beaufort et al. 2017; Bernard et al. 2014; Bommes et al. 2009; Huang et al. 2011,
Kowalski et al. 2014; Li et al. 2012; Viertel and Osting 2019) but of particular interest
to us in Golovaty et al. (2021) was a promising direction identified in Beaufort et al.
(2017), Viertel and Osting (2019) for 2-cross fields where a connection to the harmonic
map relaxation, i.e., asymptotic limits in Ginzburg—Landau theory was noticed. While
this connection is transparent in two dimensions, the appropriate descriptors in three
dimensions, however, were not known until very recently (Chemin et al. 2019; Palmer
etal. 2019). One of our contributions in Golovaty et al. (2021) was to propose a unified
tensor-based approach to constructing n-cross fields that takes advantage of classical
PDE theory.

Our framework in Golovaty et al. (2021) applies in arbitrary dimensions and asso-
ciates an n-cross with a symmetric 4-tensor that satisfies certain trace conditions and
a nonlinear constraint. We relax this constraint by introducing an appropriate penalty
term to obtain a global Ginzburg—Landau-type variational problem for relaxed, tensor-
valued maps. The Ginzburg-Landau relaxation embeds the problem into a global
steepest descent that allows for a new selection principle for the limiting n-cross field
that we were able to explore numerically.

In this paper, we adapt this procedure to optimal generation of tetrahedral frame
fields in Lipschitz domains. Here, a tetrahedral frame ¥ is a set of four position vectors
of the vertices of a tetrahedron in R3. The frame  can be identified with a constrained
3-tensor and, using the ideas of Golovaty et al. (2021), we develop a scheme for
constructing tetrahedral frame fields using energetic relaxation for 3-tensor-valued
functions. The primary novel feature of our approach is the recovery procedure that
allows for extraction of the tetrahedral frame from a constrained 3-tensor (Theorem
4.2). In fact, our construction gives an isometric embedding of tetrahedral frames into
the space of constrained 3-tensors (Theorem 6.5).

When we constrain a frame field to contain the normal on the boundary for topo-
logical reasons singularities emerge, as is in the case of 3-cross fields (Golovaty et al.
2021). Our variational relaxation approach allows us to observe formation of singular-
ities numerically, Fig. 1, and to study their topological properties. Here, unexpected
features arise as consequence of noncommutativity of the fundamental group of the
target manifold.
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(a) Singular sets connect- (b) Singular sets con-

ing in triple junctions for necting in  quadruple
SO(3)/T-targets. junctions for SO(3)/0O-
targets.

Fig.1 Different quotients of SO (3) lead to different types of junctions. See Golovaty et al. (2021) for more
details on the SO (3)/O computations and Sect. 8 of this paper for more details on SO (3)/T computations

In particular, unlike the standard Ginzburg-Landau where the number of singular-
ities is dictated by the degree of the boundary data, here we observe local minimizers
with different number of vortices for the same boundary conditions. Further, local
minimizers in three-dimensional domains exhibit one-dimensional singular sets that
meet at triple junctions [as opposed to quadruple junctions in Golovaty et al. (2021)].
These junctions and their structure are another novel feature of our numerical experi-
ments. Investigation of properties of minimizers of our relaxed problem is a fascinating
challenge for further analysis.

Note that tetrahedral frame fields on €2 can be written as maps 2 — SO(3)/T =
SU(2)/2T, where T is the tetrahedral group and 27 the binary tetrahedral group, its
preimage under the covering map SU (2) — SO (3). Itis well known since the work of
Klein (1884) that the quotient of C? by a finite subgroup G of SU(2) can be realized
as an algebraic variety in C3, using the theory of invariant polynomials. Because
here we are interested in the quotient SU(2)/G which is a closed subset of C?/G,
the Klein construction would require us to impose additional polynomial constraints.
Rather than use this approach, we instead embed SU (2)/G into an algebraic variety
of a Euclidean space of a large enough dimension so that the resulting polynomial
equations are of order two, the lowest possible for a nonlinear polynomial. As it turns
out, this embedding is into a set that can be endowed with a natural matrix structure
that leads to nice compactness properties in weak topologies, see Golovaty et al. (in
preparation).

Our interest in tetrahedral frame fields represented by third-order symmetric trace-
less tensors is not purely mathematical as they have drawn significant attention from
the physicists since the early 1980s (Brand et al. 2005; Chaudhari and Turnbull 1978;
Liu et al. Oct 2016; Fel Jul 1995; Nelson 1983; Nelson and Toner 1981; Trebin 1984).
As we will discuss in the next section, of particular relevance to this work is model-
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ing of bent-core liquid crystals, where phases with tetrahedral symmetry can arise in
certain temperature regimes.

1.1 Results and Organization of the Paper

We now describe the organization of this paper. Section 2 provides necessary back-
ground and motivation for our work from the modeling of nematic liquid crystals with
symmetries and other physical applications.

In Sect. 3, we start with 2+ 1 vectors, {u/} in R” that are equally spaced out on S" !
Not only does this include tetrahedral frames, it also includes the two-dimensional
analog of a tetrahedral frame. This analogous frame consists of the position vectors of
vertices of an equilateral triangle with the center of mass at the origin, and we refer to
such a three-pronged shape as an MB frame. MB-frame fields appear naturally when
we discuss traces of tetrahedral frame fields on the boundary of a three-dimensional
domain. Associated with the n + 1 vectors is a symmetric three tensor,

n+1
Qijk = ) uj @u} @uj. (1.1)
=1

The rest of Sect. 3 identifies invariants of tensors (1.1): not only are the Q’s symmetric
and traceless, they also satisfy an SVD-type identity,

00T =221 (n), (1.2)

2
where I (n) is the n x n identity matrix and )L,% = MH , see Proposition 3.3. Iden-

tity (1.2) proves to be a crucial tool, as we will use it to “push” our linear space toward
SO3)/T. Additionally, we show that these Q’s enjoy an eigenvector—eigentensor
structure, see Proposition 3.6. A particularly useful consequence of the eigenvector—
eigentensor pairing is a mechanism to ensure that the normal vector is contained within
and MB or tetrahedral frame field,

n?—1

Qv ®v) = " V. (1.3)

Suppose that Hizace (12, k) is the set of kth-order tensors in R” that are symmetric
and traceless, i.e., invariant with respect to permutation of indices and such that a
contraction using the last two indices produces a zero k — 2-order tensor in R”. In
Sect. 4, we establish two theorems that enable us to recover frames of interest in two
and three dimensions. When n = 2, we prove that

SOQ@)/Ds = Huee(2.3) N {007 =3312)} (14)
where Ds is the 2T”—rotation group. When n = 3, we establish that

SOB)/T = Higee(3,3) N {QQT - xgl(s)} , (1.5)
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where T is the tetrahedral group. For tensors in Hirace (3, 3) N {QQ7 = %—%I 3)}, we
also provide an algorithm for computing four vectors of a tetrahedral frame from a
given tensor. These theorems are proved in Sect.4 and “Appendix B.”

In Sect. 5, we apply our results from Sect.4 to generate a frame field in Lipschitz
domains. Simple constructions in this section show that requiring the normal vector on
the boundary be included in either an MB or tetrahedral frame induces nonexistence
of a smooth frame field in the interior. To avoid this, we work in the linear subspace
Hirace (12, 3) and push toward the constraint (1.2). Indeed, the relaxation procedure is
defined by generating a sequence,

. 1 2, 1 T .2 2
Q. = arg min SIVAI"+ = |AAT — A1 ()| dx,
AeH} (@ Hinee(n,3)) J@ 2 €

where the space HU1 (€25 Hirace (1, 3)) is described earlier in the section. This space
includes constraints to ensure (1.3) holds, or is satisfied in the limit. In later sections,
we examine the limiting Q, via computational experiments and show that MB and
tetrahedral frame fields are smooth outside of co-dimension 2 singular sets.

In Sect. 6, we develop a connection between tetrahedral frames and quaternions in
$3/2T, where S3 are the unit quaternions and 27 is a specific finite subgroup. We
show that a natural map from quaternions to symmetric traceless tensors induces an
isometric embedding of the space of tetrahedra. We also compute the fundamental
group of the space of tetrahedra. As the group is non-abelian, the free homotopy
classes are characterized by the conjugacy classes of the fundamental group.

In Sect. 7, we provide some global geometric information on tetrahedral frame fields
in smooth three-dimensional domains. In particular, an adaptation of the classical
Poincare—Hopf theorem to frame fields, see Ray et al. (2006), provides a constraint on
the total index of the tangential MB field induced by the requirement that the normal
vector being contained in the tetrahedral frame field on boundary. If one defines the
index of the tangential MB field on the surface as the angular change about a singular
point divided by 27, then this results in a formula,

Zi(x) =2-2g, (1.6)

x€eA

where i (x) is the index of the zero, A is the set of singularities of the tangential MB
field on the surface, and g is the genus of the bounding surface, see Remark 7.4.
Applying (1.6) to a ball in 3D, one finds i (x) = 6, which corresponds to the number
of boundary point singularities in simulation (a) in Fig. 1.

Section 8 describes typical examples of tetrahedron-valued critical points for both
two- and three-dimensional energies obtained numerically via gradient flow. In numer-
ical simulations, the trace of each competitor on the boundary of the domain is assumed
to contain the normal to the boundary. Topological obstructions associated with these
boundary conditions give rise to formation of both boundary point- and interior line
singularities.

In prior sections, we have looked at energy minimizing sequences in which
the Dirichlet energy is appended with a particular fourth-order nonlinear potential



Journal of Nonlinear Science 7

VT/(Q) = ELZIQQT - )»ﬁl (n)|? that pushes our linear space toward a tetrahedral (or
MB) frame field. In “Appendix C,” we explore the connection between our work and
a more general fourth-order potential for Hice (3, 3) introduced in Lubensky and
Radzihovsky (2002) to describe bent-core nematic liquid crystals. This potential,

4 3
W(Q = % ~ior+ By e 0
i j=1

allows for much richer sets of minimizers. In Appendix C, we characterize some
features of energy minimizers with this more general potential in terms of the « and
B. In fact, we find both MB and tetrahedral frames in three-dimensional domains,
depending on the values of the parameters.

2 Bent-Core Nematic Liquid Crystals

A liquid crystal is a state of matter intermediate between a solid and a liquid in
that it retains some degree of order characteristic of a solid, yet in can flow like a
liquid. For example, a nematic liquid crystal—typically composed of molecules that
have highly anisotropic shapes—possesses orientational order for a certain range of
temperatures or concentrations. Two other common types of liquid crystals include
cholesterics formed by screw-shaped molecules that exhibit orientational order with a
spontaneous twist and smectics where, in addition, to orientational order, the molecules
tend to assemble into layers.

Suppose that a nematic occupies the domain  C R>. Locally, orientational order
can be described by a parametrized probability density function f :  x S> — R that
measures the likelihood that a liquid crystalline molecule near x € 2 is oriented within
a given solid angle in S. For nematics, the probability of finding the head or the tail of a
molecule pointing in a given direction is always the same, hence f(x, —m) = f(x, m)
for everym € S? and x € Q.

A practically useful approach to describe a probability distribution over S? is to gen-
erate its moments over the sphere. In classical Landau—de Gennes theory for nematics,
the invariance of f(x, -) with respect to inversions guarantees that the first nontrivial
moment of f(x, -) for every x € € is the second moment

0(x) == <m ®m — %1(3)> .
£

Here, the second-order tensor Q(x) is symmetric and traceless and

() e, = /Szh(m)f(x, m) dm,
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for any map h defined on S?. The liquid crystal is in the uniaxial nematic phase if
exactly two eigenvalues of Q, e.g., A1, A2 are equal so that

Q=S<n®n—%l(3)>, 2.1

where s = %A3 is the degree of orientation of the nematic, n is the nematic director
and (A3, n) is an eigenvalue—eigenvector pair for Q. On the other hand, when Q = 0,
the liquid crystal has no orientational order and it is said to be in the isotropic phase.
The tensor Q is the order parameter of the Landau—de Gennes variational theory, in
which equilibrium configurations of a nematic liquid crystals are assumed to minimize
the (nondimensional) energy

1
E[Q] := /Q [F (0, VQ0)+ 8_2W (Q, r)i| dx. (2.2)

In this expression, F (Q, VQ) is the orientational elastic energy, W (Q, 7) is the
potential energy, t is temperature and 0 < § < 1 is the nematic coherence length. For
a thermotropic nematic, there exists a critical temperature 7. such that W is minimized
by the isotropic phase Q = 0 when t > 7, while it is minimized by any Q of the form
(2.1) in the manifold of nematic states when T < t.. We say that the liquid crystal
undergoes an isotropic-to-nematic phase transition at 7.

The most striking features of a liquid crystal in a nematic phase are defect patterns
of points, lines and walls that can be observed optically under crossed polarizers.
Mathematically, nematic defects are topological singularities of minimizers of (2.2),
associated with the nonlinear constraint W(Q, ) = ming W(Q, 7). This constraint
ensures that (2.1) holds approximately on the entire domain €2, except for a singular set
of a small measure (determined by the size of §) where the tensor Q is either biaxial or
isotropic. Understanding singularities of minimizers of the Landau—de Gennes energy
has been a subject of extensive investigations in the last decade (Alama et al. 2021;
Canevari 2015, 2017; Canevari et al. 2016; Canevari and Zarnescu 2020a, b; Ceuca
et al. 2021; Di Fratta et al. 2016, 2020; Golovaty and Montero 2014, 2022; Henao
and Majumdar 2012; Henao et al. 2017; Ignat et al. 2015, 2016a,b, 2020a; Kitavtsev
et al. 2016; Majumdar and Zarnescu 2010; Nguyen and Zarnescu 2013).

A relatively recent discovery of novel liquid crystalline phases formed by bent-
core, banana-shaped molecules (Jakli et al. 2018; Jakli 2013) prompted modifications
to the Landau—de Gennes theory to account for symmetries of these phases that do not
exist in standard nematics (Brand et al. 2005; Pleiner and Brand 2014; Lubensky and
Radzihovsky 2002; Radzihovsky and Lubensky Apr 2001). For example, it has been
shown in Lubensky and Radzihovsky (2002) that an appropriate continuum theory
in the absence of positional order should depend on the first three moments of an
orientational probability distribution of V-shaped bent-core molecules. To this end,
suppressing the dependence on x, recall that the probability density function can be
expanded in terms of powers of m by using the Buckingham’s formula (Buckingham
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1967; Turzi 2011) written as

fm) = — <1+Z@< ®"> ~m®k>, (2.3)
' f

k=1

where

m®k=m®...®m’
—— ——
k

m
the quantity A is the symmetric traceless part of the tensor .4 and “-” denotes tensor
contraction. By isolating the first three terms in (2.3), we obtain

f(m) = 1 <1+3p m+—Q (m®m )+—T M®®mEm) + .. )
2.4)

In this expression, the first moment p is the polarization vector, the second moment
Q is the Q-tensor defined in (2.1) and the third moment describing tetrahedratic order
is given by the third-order tensor 7" with components

1
Tijk = <mimjmk -3 (m,'5jk +m ik + mk8ij)>
f

Note that at the fourth order, we retrieve a tensor that is useful in describing an ordering
with cubic symmetry considered in Chemin et al. (2019), Golovaty et al. (2021).

The appropriate Landau—de Gennes free energy functional can be constructed as
a rotationally invariant power series expansion around the isotropic state in the order
parameters p, Q and 7 and their gradients. The contribution from the gradients of
the order parameter fields is the elastic energy while the remaining terms that do not
vanish in a spatially homogeneous material comprise the Landau—de Gennes potential.
The coefficients of this potential, in general, are temperature-dependent and thus they
control the structure of the minimal set of the potential, or the phase in which the
material is observed at a given temperature. Given that the bent-core liquid crystals
are described by three order parameters, there is a large number of possible phases
that form via interactions between different material symmetries. For example, nematic
order described by the standard second-order tensor Q may induce tetrahedratic order
described by the third-order tensor 7 and vice versa via appropriate coupling terms
(Lubensky and Radzihovsky 2002). If one were to neglect the contributions from
lower-order moments p and Q, the form of the Landau—de Gennes energy for bent-
core liquid crystals for third-order tensor fields (Lubensky and Radzihovsky 2002)
with the potential

3

W(T) = — T +

4
171" « B (T T
= 2T +y

i,j=1
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is a more complex version of the relaxed energy functional considered in this work.
Because both functionals would require identical algebraic and analytical tools to
obtain rigorous mathematical results, the present work can serve as a first step toward
understanding of the Landau—de Gennes models for third-order tensors in higher
dimensions. Note that recent analysis results (Bauman and Phillips 2012; Garcia-
Cervera et al. 2018; Giorgi and Yousef 2015; Xu et al. 2018) have not considered
phases of bent-core liquid crystals with tetrahedral symmetry.

3 Symmetric, Traceless Third-Order Q-Tensors
3.1 Notation

We will define a series of sub and affine spaces based on a set of vectors u/ € R”. For
a given vector u/ € R", we can write it component-wise, u/ = (u], ..., uy)". Let
el, ..., e" denote the canonical basis in R". Let V(n, R) be the set of all n-vectors
with entries from aring R. We will frequently drop n when the dimension of the vector
is clear. In particular, V(n, R) = R".

Let M(m, n, R) be the set of all m x n matrices with entries from a ring R. In
particular, M(m, 1, R) = V(m, R). For a square n x n matrix with entries in R,
we write Ml(n, R). We denote elements A € M(m, n, R) with capital letters. One
particularly important class of matrices for us are projections P¢ € M(n, n, R) for
a unit vector u’ € R” with Pfk = uﬁuﬁ =we uz)jk. We also denote the n x n
identity matrix, I (n).

We next define generic kth-order tensors

Hn, k) =R"®- ---R"
—

k times

with elements A € H(n, k) that have indices A;,;,..;, fori; € {1,..., n} with script
letters. We finally define symmetric k-order tensors as

Hgym (1, k) = {A € H(n, k) such that A, i) = Aiy..i forall o € Si},

where Si is the group of permutations of k-length words. Finally, we define set of
traceless, symmetric k-order tensors

Hirace (n, k) = {-A [S Hsym (n, k) such that

n
> Aaay.apjj = O0forag € {1,....n}}. (3.1)
j=1

Given this notation, we now describe the specific class of third-order tensors that we
will study.
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Remark 3.1 We define an especially useful bijection Qg : H(n,4) — H(n2, 2),
where for any choice i, j, k, £ € {1,...,n},

(QQ)(i—Vntk,(j—Dn+e = Qijke- (3.2)

This bijection identifies a canonical element of H(n?, 2) = M2, n?) with an element
of H(n, 4), and vice versa. Given this bijection, we will frequently refer to elements
in H(n, 4) and H(n?2, 2) interchangeably.

Likewise, we define the bijection Q¢ : H(n, 3) — Mi(n, n?) by

(Q0)i.(j—Dn+k = Qijks (3.3)

for i, j,k € {l,...,n}. As with the prior definition, we will refer to elements in
H(n, 3) and M(n, n?) interchangeably.

3.2 Elements of Hy,,ce (N, 3) Generated by a Frame with n + 1-Hedral Symmetry
We say a collection of vectors {u‘z}g;rll € §"~! ¢ R” has “n + 1-hedral symmetry” if
the following condition holds:

| 1
by 1T 8% forall jke{l,....n+1} (3.4)
n n X

(uj,u

Such collections satisfy the following result.

Lemma 3.2 Suppose we have n + 1 vectors {u/} satisfying (3.4), then

any n of the vectors w’, j =1,....n+ 1 are linearly independent. ~ (3.5)

In particular, the vectors {u/ }72 span R". Furthermore,

Zue =0, (3.6)

1 n+1

Z Pt = ll(n) (3.7)
n

=1

where P* denotes the projection matrix generated by u*.

Proof To prove 3.5 we consider for example uw/, j =1,...,n and consider scalars
a; € R such that

au! + - 4 auu’ =0.
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Taking the dot product of this with u/, j=1,...,n,gives
1 1
O=a)——ap— - — —ay,
n n
1 1
O=——a;— - — —ap—1 + .
n n

This can be written in matrix form as follows:

1 ! “
0= <”+ 1(n)--1n1[> .
n n :

Op

where we use the notation 1, = | : | € R". Itis easy to check that %lnl,{ is a rank-
1
1, orthogonal projection matrix. Hence, the matrix 2+ J (n) — l1,11,{ is invertible. It
n n

follows thata| = --- =, =0,s0u/, j=1,....n are linearly independent.

Next, since {u’} span R” then e* = Z"Jr} o ]ku for some constants « . This

implies
n+1 n+1 n+1 ) n+1 n+1 34
(S )= (St S )= S (S]] 200
=1 (=1 j=1 (=1

Finally, we choose w € R™. Since the frame {u‘z} spans R” then (3.6) implies we
can write w = Z’}: 1 aju’ for unique constants {a;}. Therefore,

n+1

n n n "
Z Plw — Z <(Z ajuj), u£>u£ _ <(Z ajuj), un+1> Zui
=1 =1\ j=1 j=1 =1
” n 1 n +1
G4 ap — - Z aj u’ + = Zaj Z f=

=1 I<j<n,j#t

We associate with these vectors a third-order tensor Q € Hsym(n, 3), defined as

n+l1 n+1

Qijk = Zu (PYjk = Zueuzuﬁ (3.8)
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For simplicity, throughout this section we write Q; = ZZLI uf P! to denote the ith
n x n submatrix of Q. This tensor Q generated by a set of n 4+ 1 vectors such that
(3.4) and (3.5) hold, satisfy the following identities:

Proposition 3.3 Given {u/ }’;:{ satisfying (3.6) and let Q be defined as in (3.8) then
the following holds:

trQp = Ql(n) =0, (3.9
2

00" = “E= D ), (3.10)

out =11 <Pk — lI(n)) , 3.11)
n n
2

Pk =" Lk, (.12)
n

Proof First we have from (3.6),

n+l1 n+1

trQ; = ZuftrPl = Zuf =0,
=1 (=1

which proves (3.9). To prove (3.10) we write

n n+1 n+1 n+1 n+1 2
00" =Y 0 =3 SV upuyr P = 30 fulw ) wf ou)
=1 =1 m=1 k=1 =1 m=1
n+l
1 . .
= ZP€+n—ZZuJ @u +uf@u/,
=1 j<k

and since 0 &2 @4+ ruthe@ +- +uth = ZZ;I Pt 4+ Zj<k v ®
u* + uf ® u’ then

1 37 (n+Dn>—1)

which implies (3.10). Next, we prove identity (3.11),

n+1

k_ .0 k| GH k_l ¢
Qu _Z<Pu,u>_P nZP
=1 Lk
1 1 1 1
@Pk——<”+ I(n)—Pk>=n+ P ).
n n n n

Finally, (3.12) follows directly from (3.11). O
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One simple consequence of (3.9) is that the tensors defined by (3.8) live in
Hirace (12, 3).

3.3 Linear Algebraic Results for Hsym (n, 3) and Hyyace (n, 3)

Our first results provide a minimal representation for the unknowns in our space of
symmetric, trace-free 3-tensors in n dimensions. This will be used in later sections for
numerically computing tetrahedral frame fields.

Lemma 3.4 Letn denote the number of variables then the number of unique monomials
in Hirace (11, 3) is

nn+4)(n—-1)

. (3.13)

Proof Note that the number of monomials of degree 3 of n variables is (%tﬁ;l) There

are additionally n constraints, since tr Q ; = 0, so the total number of unique elements
is

<3+n—1)_ _nn+Hn—1)
n—1 "= 6 '

O

We conclude with a few results on vector / matrix pairings that our tensors satisfy.
We will discuss these identities in the context of eigentensor—eigenvector pairings in
Sect.4.2. The following result was established by Qi (2017) in the case of Hgym (3, 3).
We generalize the result to arbitrary dimensions here.

Proposition 3.5 Let Q € Hiyn (1, 3) with n nonzero singular values. There are matri-
ces B¥ € Hsym(n, 2), k = 1, ..., n, unit vectors ff e R k=1,...,n, and scalars
MeER k=1,...,n, such that

(B', By = (f' 1)) = &,

n

D (BE, Qpyet =tk
k=1
n
Z(fk, e“) O = A B,
k=1
and

Q= Z)\kfk (XBk)T .
k=1
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Proof Let us first notice that Q07 € Hsym (1, 2), so there is R € O(n) such that
QQ" = RDRT,

where D is a diagonal matrix. Furthermore, 007 is nonnegative definite. Hence, we
can call the elements of its diagonal

(M) == (W) >0,

due to the assumption on the singular values. Let now

Ri1R ... RixR
Re=| © 1 |
R, IR ... RyyR
and define
S = RTQRk.
By construction, § € Hgym(n, 3), and if we write § = (S ... 8", then S* €

Hisym(n, 2), and
(8'.87) = (i)?8;.
By the first claim of Proposition 8.1 of the main draft, we have

S=Y eXg0T,

k=1
SO
n
Q=Y Re"Xg) RE.
k=1
To finish the proof, we remember that equation 8.7 of the main draft tells us that
RRXSk = XRSkRT-

Defining f* = Re*, and B = RS*R”, we obtain the conclusion of the proposition.
O

If we consider three tensors generated by (3.8) via n 4+ 1 vectors satisfying (3.6),
then we can get explicit eigenvector—eigentensor pairs.
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Proposition 3.6 For every n > 2, there exists an n x (n + 1) matrix, C" such that the
following holds. For any set of n + 1 unit vectors in R", {u/ }"f}, that satisfy the inner
product condition (3.4), and its associated 3-tensor Q € Htrace(n, 3) generated by
these w’’s via (3.8). Let Q = (Q1l---19Qyn) where the Q; € Hirace(n, 2) are defined

by

Q; = Z(uk,ej)uk(uk)T.

k=1

If we denote A, the n x (n + 1) matrix whose columns are the vectors {u/ }72 Then,
the matrix

R =

oy lA,,C,,T € 0n)

is orthogonal, and A,, = RC,,. Letting k= Rek k=1,...,n and

:_Z st

where
1
n?2—Dn+1))\?2
=)
n
then, the vectors f* along with the tensors B k = 1,....n are eigenvector—

eigentensor pairs for Q in the sense of Qi (see Remark 3.7). In particular,

(7, %) = (B/, BY) = 54,
n

> (BY, Qe = f*, and Z .¢/)Q; =1, B*.

i=1 j=1

Finally, one can recover the 3-tensor Q from the eigenvector—eigentensor pairs, in the
sense that

Q=) (t/,¢)B/
Jj=1

fori=1,...,n

The proof of this proposition can be found in “Appendix A.”
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Remark 3.7 When n = 3, the vectors {r/ }§:1 and tensors {V/ }3: | form eigenvector—
eigentensor pairs that are identical to those of Qi:

or/ =gV

Qv/ =or/ (3.14)
o)==

i - _ /32
where the eigenvalue o = 55

3.4 Rotations and Tetrahedral Frames

To conclude this section, we introduce two canonical tetrahedral frames that will be
utilized below: {u{) }‘]‘.:1 and {V(j)}‘}:l. The first set of vectors includes a vector aligned

with e:

2 2
1 0 2 g 3 Vo 4 V2
u()E O 5 llOE O , UOE % . uOE _ %
1 1 1 1
3 — 2 — =
3 3

There is an additional set of canonical vectors typically associated with four vertices
on a cube:

—1

— —=1]., 319
3\~ 3\~ 3\1

In both cases, <u{), u’é) = < (J), V’(§> = %‘5 ik — %, and so the corresponding three tensors

Q(u{)) or Q(V(J)) enjoy the results of Proposition 3.3. One can rotate the set of vectors
{v{} into {u}} with the rotation matrix,

Tt
Ro=—| 0 243 =23 .
"TVA | B R R

More generally, we can rotate into any tetrahedral configuration on S? from either
canonical set of tetrahedral vectors. In particular, w’) = Rv{) for a rotation matrix,
R = R(w’), and permutation operator on four elements, o. The corresponding three-
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tensor satisfies
4
¢ 000
Qije(u) = D ufulug
=1

4 3
=YY Ripvg (RigvG RirvG,) = Y Wijkpgr Qpgr (Vo).

{=1p.q.r p.q.r=1

where
Wijkpqr = Ripqu Rir

is an element of H(3, 6). We will use this rotational perspective in the proof of the
recovery.

4 Recovery of n + 1-Hedral Frame in n = 2, 3 Dimensions
In this section, we show the converse of results in Sect. 3.2, namely that elements in

Hirace (12, 3) with a specific nonlinear constraint produce unique n + 1-hedral frame
fields.

4.1 Tensors in Hyy,ce (2, 3) and MB Frames

Focusing on n = 2, we show that the identities developed in Sect.3.2 are necessary
and sufficient to uniquely describe the associated 2 + 1-frame. These frames are
characterized by three planar vectors with equal 2T”-angles between. Given the shape,
they are commonly referred to as Mercedes-Benz frames, though we will refer to them
as MB frames. Given its structure, it is sufficient to provide a single angle in [0, 2X)
to fully characterize the frame. Our result in this subsection is

Theorem 4.1 The following diffeomorphism holds:
9
SO(2)/D3 = Hyace(2,3) N {QQT = §1(2)} ) 4.1

where D3 is the 2?’T-rotation group.
Proof Consider three vectors that are 27” rotations of each other. If we let

_¥3 _1 3
RzT” = i and R4Tn = \% 2

— —v3 _1
)

|
Nl&t\)l -
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denote ZT” and %” rotation, and if € denotes the angle off the x-axis, then an MB frame

can be described by three vectors

1 _ (cos(0) 2 cos(6) 3 cos(6)
= <sin(9)>’ w =Ry (sin(e) =R Gingoy ) - 4.2)
Consequently, u’ - w/ = —1 4 35;;. Recalling our definition Q;jx = Y7_, ujuug,

then Proposition 3.3 and Lemma 3.4 imply Q is a symmetric, traceless 3-tensor with
two unique elements, which implies it can be written as

0= (611 @ P _‘Il)’ 4.3)
9 —q1 —q1 —q2

where QO7 = %I (2). Since (cos(0), sin(9))” is part of the frame, then (3.12) implies

cos(20) sin(20) (q1) _ 3 (cos(6)
—sin(20) cos(20) ) \q2) — 4 \sin(®) ) *
As a consequence, g1 = % cos(36), g2 = % sin(360), and so

0= <% cos(39) 3sin(30) 3sin(30) —3 cos(39)>' )

2sin(30) —3 cos(30) —2 cos(30) —3 sin(36)

Tensor (4.4) recovers the expected threefold symmetry of the MB frame in two dimen-
sions, and it also provides an explicit representation for boundary alignment of a frame
field, as will be discussed later.

We now consider the converse. Suppose Q € Hiace (2, 3) with QQ7 = 27 2)
then the representation (4.3) and its nonlinear constraint implies 2q12 + 2q22 = 9/8.
Consequently,

3 3
g1 = 7 cos(¢) and g2 = 7 sin(9) 4.5

for some angle ¢. Now, assuming that some vector (cos(6), sin(0))7 is part of the MB
frame, and if arg : RZ\{O} > [0, 27) returns the unique angle in [0, 277) associated
with the ordered pair off the x-axis, then (4.4) implies

1
0= 3 arg(q1, q2)- (4.6)

Therefore, our tensor Q is determined by a unique angle 6 € [0, 27), and since that
angle retrieves the other two vectors by %” and “T’T rotations of the vector associated
with (4.6), we retrieve the full MB frame. O
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4.2 Tensors in Hyy,ce (3, 3) and Tetrahedral Frames

We turn to n = 3 and show our the identities are necessary and sufficient to uniquely
describe an tetrahedral frame. Our result is

Theorem 4.2 We have the following diffeomorphism:
SOB3)/T = Hiace(3,3) N 1QQ" = ﬁ1(3) ; 4.7)

where T is the tetrahedral group.
More explicitly, for every Q € Hirace(3,3) N {QQT = %1(3)} there are vectors
b/ € S, j=1,...,4, such that

(bi,bj)=%(48,-j—l),

and such that

4

Q = ij <ij(bj)r>T .

j=1

The four vectors b, ... b* are the four unique maximizers of

3
pno(a) = det Z(ej, a)Q; | . (4.8)
Jj=1

Proof Given four tetrahedral vectors, the corresponding tensor Q lives in Hice (3, 3) N
{ 00T = %I (3)} due to our results in Sect. 3. The converse is much more involved,
and its proof can be found in “Appendix B.” O

Remark 4.3 Note that in Gaeta and Virga (2019) eigenvalues and eigenvectors in the
sense of Qi (2017) were obtained for third-order symmetric traceless tensors by max-
imizing the so-called octupolar potential

D(x) = Qjjrxixjxy.

The potential ® is different from pg(a) in Theorem 4.2. Both ® and pg(a) have
exactly the same maximizing set when Q € SO (3)/T; however, the maximizing sets
no longer coincide for @ ¢ SO(3)/T.
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5 Ginzburg-Landau Relaxation to the Appropriate Variety in 2 and 3
Dimensions

Since MB and tetrahedral frame fields can be identified by nonlinear sets in Hypyce (72, 3)
for n = {2, 3}, we propose a Ginzburg—Landau relaxation toward these constraints.
This procedure leads to a direct method for generating these frame fields on Lipschitz
domains.

5.1 MB Frames: SO(2) /D3 = Hyae (2, 3) N {QQOT = %I(Z)}

MB-frame fields are an example of an n-direction field, in which each point in domain
or tangent to a surface (see Sect.7) is assigned n evenly spaced vectors, see the review
article (Vaxman et al. 2016) for background on this topic. We now show how our
framework generates an MB frame on a two-dimensional domain, outside of small
number of singular sets and reduces to methods similar to those found in Beaufort
et al. (2017), Viertel and Osting (2019) for 2-cross fields.

By Theorem 4.1, we can uniquely represent our MB frame field by an element
of Hirace (2, 3) N {QQT = %I (2)}. However, not all maps with boundary data in
(00T = 21(2)} extend smoothly into the interior.

In particular from Theorem 4.1 we let

o= (1 © @ —a
9@ —q1 —q1 —q2)°

and if QQT = 21(2), then (cos(36), sin(30)) = 3(q1, g2) where 6 = 1 arg(q1. ¢2).
Therefore, our MB frame can be generated by determining angle 6 € [0, 27y and

computing the other two vectors by 27” and 47” rotations of the vector associated with
0.

Definition5.1 Let A : U +— TU/ ~ be a map with A(x) = [(x, v)] with v # 0
except at isolated points, and (x, v) ~ (x, e2mi/ny) for some n € N. For a simple
closed curve y : [0, 1] — U not meeting any of the zeroes, we define the index of
A on y by finding a continuous lifting via the universal cover, 6 : [0, 1] — R, with

ﬁ = ¢'% and setting

1
#(A,y) = —(O(1) = 6(0)).

The index of an isolated zero a is defined as that of A on any closed, Jordan curve
y : [0, 1] — U surrounding a (in a counter clockwise manner) and no other zeroes.
We denote the index about this a as

i(a) =#(A,y).
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It is standard that the index just defined takes values in %Z, compare Hopf (1983, p.
108) for the case n = 2. We often use the words index, degree and winding number
interchangeably.

For this reason, instead of looking for smooth extensions of boundary data, we
relax toward SO (2)/D3 using the variety associated with this quotient. In particular,
we look for Q(x) € H'(Q; Hirace(2, 3)) such that QQT = %I(Z) is satisfied on the
boundary, and the normal is a part of an MB frame. We can, therefore, define the space

3
Hv] (2; Hiace (2, 3)) = {.A e H! (25 Hirace (2, 3)) such that A(v ® v) = ZV on BQ} ,

i.e., the normal, v, is part of the MB frame. If the normal v = (cos(6(x)), sin(6(x))) Tis
smoothly defined on the boundary, it induces nontrivial topology in Q|q, due to (4.4),
and this can preclude globally defined MB-frame fields. In particular, by the constraint
we can set (g1, q2) = %(ul, uy) = %u with u € S! and u = (cos(30), sin(30)) = g
on 9L2. Setting

Hg](Q; Sl) ={ve HI(Q; Sl) such that v|;o = g},

then we can try to minimally extend the boundary data into the interior subject to (4.4),
which entails minimizing

1 9
min -/ IVOI’dx = min -/ |Vu|? dx.
QeH' (QHiee2.3) 2 Jo uer}(@:sh) 8 Jo

Q=312
vlhe€Q

However, by classical arguments H, gl (Q2; S') = & for any domain topologically equiv-
alent to a disk.

To avoid such problems, we relax toward the manifold Hipee (2, 3) N (00T =
%I (2)}. In particular we take a sequence Q, € H T(R2, Hiace (3, 2)) and penalize the
distance from the variety {QQT = %I (2)} by looking for minimizers of the associated
Ginzburg-Landau functional,

1 1 :
£X(A) = 5/ VAP + = |AAT — 21| d. (5.1)
Q & 8

We then consider a sequence

Q. = arg min ggd(A)
-AGHUI (§2;Hirace (2,3))

subject to the boundary conditions that have normal as a part of the MB frame which,
in turn, induces the 36 dependency.

The condition that competitors on the boundary are MB frames containing the
normal to €2 can also be enforced in a weak sense by introducing the surface energy
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term that penalizes deviations from this condition. With the help of (3.12), the surface
energy can be taken in the form

/ ! AWV Qv) ) 2+ ! AAT 91(2)2 ds (5.2)

- vV V) — —V — — = , .
e |8 4 83 8

so that the energy functional is
2d _ 1 2, 1 r 9 2
oA =5 QIVAI + 5 |AAT - 21@)| dx
1 3 2 1 9 2
+ AV — v + = |AAT —Z1@2)| {dS. (5.3
/ag{af vev -ty 5! } )

The interplay between the parameters 81, 6, and ¢ will be discussed in Sect. 5.4 in the
case of tetrahedral frames.

5.2 Tetrahedral Frames: SO(3) /T = Hyyce (3, 3) N {QQT = 32/(3))

We now turn our attention to foliating a Lipschitz domain with tetrahedral frame
fields. Using Theorem 4.2, this is equivalent to looking for harmonic maps in
HY(Q; Hipace (3, 3) N {QOT = %1(3)}). However, as in the 2D problem, this mani-
fold typically generates singularities due to boundary conditions, and so we will use
a harmonic map relaxation with prescribed boundary conditions.

Suppose that Q € Hipaee (3, 3) with QQT = %I (3), we define the operator (g :

Hsym (3, 3) = R via

3
uo(b) :=det [ > "Q;(e/,b) (5.4)

j=1

then by (4.8) in the proof of Theorem 4.2, the four vectors which maximize (5.4) define
aunique tetrahedral frame in SO (3) /T . Therefore, we can generate a tetrahedral frame
field by filling our domain with harmonic maps in Hipee (3, 3) N {QQT = %1(3)}
and generate the tetrahedral vectors at each point in the domain using maximizers of
1o (b). However, as in the MB-frame field situation, if we look to fill out our Lipschitz
domain © C R3 with tetrahedral frame fields that adhere to the boundary, we find
topological obstructions. The challenge, again, is the nonlinear constraint, and so we

again relax toward the nonlinear constraint using a different nonlinearity.
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We now describe this procedure in detail. From (3.13) a general Q € Hiace (3, 3)

has the #{unique monomials} = 7. Letting q = (g1, ...,g7)7 € R7 allows us to
express
q1 92 q3 q2 44 qs
QW= |19 g4 qs q4 g6 q7
g g5 (—q1—q4)) \g5 97 (—q2—q0)
q3 qs (—q1 —q4)
qs q7 (—q2—4q6) | |+

(=q1—q4) (—q2—4q6) (—q3—q7)

and our potential

T 2 P
W(Q(Q) = 2@ (@) — 51(3)

32)\2
= ((ql +qa)? +q12 +2q§ +2432 +q§ +2452 - ﬁ>

32\
+ ((qz +46)* +q3 + 297 + 242 + g +245 — §> (5.5)

2

2 2 2, 2 2, 2 32

+(2(q1 + 940 +2(q2 +96)” + (g3 + q7)° +q5 + 295 + q7 77
+2 (29293 — 29195 — 9247 + 4396)* + 2(q3q4 — Q197 — 29497 + 2q546)°

+2 (29192 + 39294 + 4196 + 24395 + 29496 + 295q7)* .

Before generating the associated Ginzburg-Landau energy, we need to provide
suitable boundary conditions that ensure the normal vector is included in the tetrahedral
frame.

5.3 Boundary Conditions and Reduction to the MB Frame

In order to prescribe natural boundary conditions of the tetrahedral frame, we impose
that the normal on the boundary v comprises one of the four vectors of the frame.
Consequently, we arrive at the following conditions on the frame at the boundary, due
to (3.11) and (3.12):

Lemma 5.2 Ifv is a normal on the boundary and an element of the tetrahedral frame

Q = Q(q), then

4 4
Qijkvi = §(" ®v)ij — 51(3),

8
Qijkvjvk = oV
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Equivalently, if v is the outer normal on the boundary and an element of the tetrahedral
frame Q = Q(q), then

1 2
V(Q,v) = 3 |OX,,r — uzv|[” = 0. (5.6)
Here, for an 3 x 3 matrix A, Xy is the vector in RO that contains the columns of A
vertically, in order, and u3 = 323;1 = g.
If this holds for v = (v1, va, v3)T, then we can solve for q = (q1, ..., q7) using

the underdetermined system of equations

4.2 4
3V1 =9
q1
V1 1%} V3 0 0 0 0 4
q2 3V1V2
0 Vi 0 Va3 0 0
- 0 vp —v3 v 0 0 a3 %vll)3
qa | = . 57
0 0 0 V1 0 %) V3 41)2 4
0 —V3 0 0 V1 —V3 1% a5 372 9
—V] —V2 —Vv3 —V] 0 —V2 —V3 6 %V2V3
T 402 4
373 9

In particular, the matrix on the left has rank 5.

If we assume the boundary is locally R2 then v = (0,0, l)T is an element of the
frame. We can then locally parametrize the orientation by planar rotation of 6. The
corresponding Q becomes:

a b -\ (b -a 0\ /-5 0 0

4 4
Q: b —a 0 —a —b ) 0 ) 0
-3 0 0 0 -3 0 o o 3

Furthermore, condition (3.10) implies a’ + b2 = 37 or

a= 49£ cos(¢) and b = 4% sin(¢).

Given the threefold symmetry of the remaining three vectors of the tetrahedral frame
implies a direct analog of the MB-frame result:

42 cos(30) —HY2sin(30) —4 —*Y2sin(30) — Y2 cos(30) 0 —% 0 0
Q=] _424in30) — 12 cos(30) 0 —1Y2cos(30) *Y2sin(30) —4 0 —4 0
-3 0 0 0 -3 o0 038
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5.4 Relaxation

We can now consider a harmonic map relaxation to the tetrahedral frame field using
a Ginzburg—Landau formalism. We first set

HU1 (2; Hirace (3, 3)) = {.A € H'(Q; Hirace (3, 3)) such that A = A(q) satisfies (5.7)} .

For elements of Hl} (€25 Hirace (3, 3)), we define a relaxed energy,

2

2
AAT — 3—71(3) dx (5.8)

3, 4y | 2
& (A):E/Q|VA| ~|—8—2

and consider

Q. = arg min 583‘1(./4).
AeH(Q: Hirace (3.3))

As pointed out in Lemma 5.2, the condition that the normal to the boundary v is part
of the tetrahedral frame Q can be conveniently imposed by assuming that

V(Q,v) =0.

This condition could also be imposed in a weak form through a boundary integral.
This leads us to the alternative energy

VA, v) WA
2 > d
Q 0 85

1 1
£, 5, (A = §/Q|VA|2+€—2W(A)dx+/a S, (59
where

2

1 32
W(A) = 3 ‘AAT — El(?})

For our next result, we will use the notation
IT: H@3, 3) =& Hyace (3, 3)

for the orthogonal projection from the set of rank-3 tensors H(3, 3) onto the our
relaxation space Hiace (3, 3).
5

Proposition5.3 Lety = 37 The critical points of the energy 53[(131 5, Satisfy
1 81,

8 4/8y
<< - —_—
IAI_maX[S,,/ 3 }

independent of ¢ > 0.
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Proof First we observe that the Euler—Lagrange equation along with boundary condi-

: 3d
tions for the energy 58’51 5, are

—AA+ S%H((VAW)(A)) —0in Q,

VA-v+ H(S%(VAV)(A, V) + Slz(VAW)(A)) =0 on 9.
1 2

Here,
(VAW)(A) = 2(AAT — 231 (3))A,
and
(VAVIA, p) = AX 1 XT 7 — papX ) = (AXr — 13p)X) o
8
s

4
Now, since A € Hiace (3, 3), we have IT(A) = A. We also have |AAT |2 > MiT‘,
SO we can estimate

denote the gradients of the potentials with respect to A, and A3 = %, Uz =

r|? 2 o 2MAP o
(A TLVAW)A) = 2(AAT[" =33 |AP) = (AP =30). (5.10)

Next, for |p| = 1, and using the facts that TT(A) = A, (A, Axppfxzfpﬁ > 0,

‘pX;pT = 1, we obtain

(A TH(VAVI(A, p)) = (A AX 1 XD — u3pX)r)
> —p3(A pX) ) = —n3 Al 5.11)

Now, we take the inner product of the equation satisfied by A with A, and use
(5.10), to obtain

2 2 2
A (%) > [VA]* + '—“‘lz|(|,4|2 —323).

ne

2
On the other hand, using 5.10 and 5.11, and writing y = i—%, we obtain
1

1 1 Al [(21AP
<A, n <—2(VAV)(A, v) + _Z(VAW)(-A)>> > ( A s =2 |A|> .
57 83 52 3
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From here we obtain

1 1
(A1 (8_2(VAV)(A, v) + S—Z(VAW)(A))) >0 for | Al = max{y/613, v/3yu3}.

1 2

From the equation satisfied by |A|%, and Hopf lemma, we conclude that |A] <
max{+/3A3, &/3y u3}. This is the conclusion of the Proposition. O

Before, we use this formalism to generate tetrahedral fields for different Lipschitz
domains in two and three dimensions, we first discuss the topology of SO (3)/T and
its effect on the frame field.

6 Tetrahedral Frames and Quaternions

In this section, we discuss how tetrahedral frames can be described using quaternions
as §3/2T, where S3 are the unit quaternions and 27 is a specific finite subgroup. We
show that a natural map from quaternions to symmetric traceless tensors induces an
isometric embedding of the space of tetrahedra.

We compute the fundamental group of the space of tetrahedra, following (Monteil
etal. 2021b). As the group is non-abelian, the free homotopy classes are characterized
by the conjugacy classes of the fundamental group, compare also (Mermin Jul 1979;
Trebin 1984) for similar topological considerations in theoretical physics.

6.1 Quaternions, Rotations and Tetrahedra

It is a well-known result that the group of unit quaternions S> can be used to describe
rotations in R3. The following lemma is standard:

Lemma6.1 Setq=a+ bi+cj+dk € S3 fora,b,c,d € R, thenq > Rq

a?+b?—c2—4d? 2bc — 2ad 2ac + 2bd
Ry = 2ad +2bc  a*+c*—b*>—d*  2cd —2ab
2bd — 2ac 2ab+2cd  a?+d*—b2—¢?

with a*> + b +c? +d? = 1 is a group homomorphism S3 — SO (3) with kernel {£1}.

Proof Note that Ry is the matrix representation of the map p — qpq ! forp = p1i+
p2j + p3k a pure quaternion identified with a vector in R3. It is an easy computation
that qpq ™! is a pure quaternion and the matrix is orthogonal. O

We now define some useful groups: The tetrahedral group 7 is the subgroup
of R € SO(3) that map the standard tetrahedron defined in (3.15) to itself, i.e.,
RV! = vg .. where o is a permutation. It is well known that 7 is isomorphic to
the alternating group Ay: rotations preserve the orientation so cannot generate any
transpositions. On the other hand, any 3-cycle in A4 can be generated as a rotation
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around the leftover vector. Finally, we have the binary tetrahedral group 27 C S3,
given by

1
2T = {£1, +i, £j, £k, E(il +itj+k)},
where each of the £ represents an independent choice so there are 24 elements in
total. It is generated by s = %(1 +i+j+k)andt = %(1 +1i+ j — k), which satisfy
3 3
s =t =—1

Lemma 6.2 The map q +— Rq induces a map 2T — T that acts as follows on the
standard tetrahedron:

0 0
Rqv; = Vo)

so there is an induced map 2T — A4 that has the following representation:

2T Ay

+1 1)

+i = +ts (12)(34)
+j = +st (13)(24)
+k = +st?s (14)(23)
LA +i+j+Kk) =+s (234)
ii(l —i—j—k)=4s"! (243)
:I:i(1+i+j—k) =+t (123)
(1 —i—j+k)==+t! (132)
ii(l +i—j+k) = +st™! (142)
ii(l —it+j—k) =+ts! (124)
+Ha—i+j+k) =45t (143)
£y +i—j—k =*t"ls (134)

Proof This is a straightforward computation. O

We see that the tetrahedral group is composed of + ZT” rotations around of the vectors
of the tetrahedron (these correspond to the 3-cycles) and  rotations around the axis
going through the midpoints of two opposite edges (these correspond to the products
of two transpositions). The binary tetrahedral group has twice as many elements, and
we have the following characterization of its conjugacy classes:

Lemma 6.3 There are seven conjugacy classes of elements of 2T :
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Elements Geodesic distance ~ Description
from 1

1 0 identity

S, tfl, tfls, st—! % 1/3 rotation around one of the tetrahedral
vectors

s 1 ,t, tsfl, s 1t % -1/3 rotation around one of the tetrahedral
vectors

52, t_z, t_lst_ls, st—lst—! 27” -1/3 rotation around one of the tetrahedral

vectors
s_z,tz,ts_lts_l,s_lts_lt 2n

bt

1/3 rotation around one of the tetrahedral
vectors

full rotation

rotation interchanging two pairs of vectors

-1
+i, +j, +k

ISER

Proof We note that powers of s are conjugate to each other if and only if they are the
same, which gives that the classes corresponding to O =1,s!,6%2, 83 = —1,¢* =
s72,s°> = s~ L. are all separate. Conjugating each of these elements with i, j, k yields
the rest of the conjugacy class. The elements +i, +j, £k form their own conjugacy
class because the geodesic distance to £1 is invariant under conjugation and we can

compute —iji = jand t~lit = j etc. O

The configuration space of regular tetrahedra with vertices on the unit sphere can
be understood as follows. Let

o 4 1
Mo = {(vl, V2, v, v4) c (IR3)4 : <v’,v1> = g&;/ 3 det(v1|v2|v3) > 0}

and M = M/A4, where A4 acts by permuting the indices. Then M contains all
collections of oriented tetrahedra with indexed vertices and M the corresponding
collection without numbered vertices.

Proposition 6.4 We can identify M = SO(3)/T = SU(2)/2T = S?/2T.

Proof We can map SO(3) into M by considering the action on a fixed standard
tetrahedron. The image of two rotations in M is clearly the same iff they differ by an
element of 7. To see that this map is surjective, note that for any (V1 V2 v3, V4) € Mo,
we can choose R € SO (3) such that vl = RV(/) for j =1, ..., 4, by first rotating V(])
into v! and then rotating around this axis to align the other vectors.

That SO3)/T = SU(2)/2T is almost the definition of 27, the preimage of T
under the double covering SU(2) — SO(3). O

6.2 Embedding of Tetrahedra into Tensor Spaces

Our main result in this subsection establishes an isometry between SO (3)/T and our
tensor space Hiace (3, 3) N {QQT = %1(3)}.
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Theorem 6.5 Tuking the vectors of a standard tetrahedron, {Vé }‘;:1, given in (3.15),
we can generate the q-rotated tetrahedron

4
T(q) =) _ Rqvi® Rqv ® RqV (6.1)
(=1

The map T : §° — Higace (3, 3) given by g — T(q) is up to scaling a local isometry
in the sense that it satisfies |dT(q)(V)|2 = Ol()|V|2f0r all q € S3andv e TqS3, the
tangent space, where oy = %.

The induced map T : $3 /2T — Hirace (3, 3) is well defined and injective, and up to

scaling we find an isometry S3 /2T = SO(3)/T = Hipace(3,3) N {QQOT = 27 21(3)).

Proof The heart of the matter for proving the local (scaled) isometry character is to
use that $3 is a group, so it suffices to show this for q = 1. Writing a geodesic
through 1 as exp(ta) = cos(t|a]) + 2 al sin(t|a]) for a = aji + a2j + azk, we have
j—[|t:06xp(ta) = a and E|t:0ReXP(ta)V —av—va=2axv.Letu, j=1...,4
be the four unit vector of a tetrahedron. We compute

A=A+ A =dT(H@F =12) (a
ok
xu’, a x uk)(uj, uk)2 + 24 Z(a X uj,uk)(uj, ax uk>(uj,uk).
ok

Using (u/, uf) = %(Sjk 1 and (u/,uf)? = 9<Sjk + § yields

32 .
1=?Z|a><u1|2.
J
For A,, we note that
. 4 32 .12
Az=—242:(a><u’,u">2<3 ik — )—8Zaxu’ uk)2=?2’axu]‘ :
Jjsk J

because (a x u/, u/) =0, and > w (u/)T = $1(3). So far then we have
64 12
A=A +A) = — ‘axu"

1+ A2 3 Z

~.

However, again using the fact that ) ; w (u)T = %I (3), we obtain

2 8lal?
Zaxu/ = .
- 3

J
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Putting everything together, we then conclude that

512
9

2

A lal”.

This is a multiple of |a|?>. The parallelogram identity then implies that 7 is (up to
scaling) a local isometry.

If 7(q1) = 7 (q2) then by Theorem 4.2 we have that {quvé cj=1,.,4 =
{quv(j) :j=1,.,4} so quqz—l € T and qlq;1 € 2T, so 7 is well defined and

injective on S3/2T . It is surjective by Theorem 4.2. O

6.3 Homotopy of the Set of Tetrahedral Frames

With our identification of the space of tetrahedra as S /27T, we can now determine its
fundamental group:

Proposition 6.6 The fundamental group of the space of tetrahedra is wi(M) =
T(SOQB)/T) = m(83/2T) = 2T.

Proof As S is simply connected and locally path connected and 27T acts properly
discontinuously on S, this is a consequence of standard results on covering spaces,
see, e.g., Bredon (1993, Corollary II1.7.3) or Monteil et al. (2021b, Proposition 9.1).

O

The definition of 71 means that its elements are represented by homotopy classes of
(continuous) loops where the homotopy keeps the start/end point 1 fixed. The following
result considers also free homotopies where the start/end point is not fixed throughout
the homotopy.

Proposition 6.7 If yi, y> : S — S3/2T are loops in S3 /2T starting and ending at
1, then y1 and vy, are (freely) homotopic to each other if and only if their homotopy
classes [y1], [y2] € 7'[1(53/2T) are conjugate, i.e., if there exists h € 2T with

1] = hly2lh ™"

Proof This is a standard result in elementary algebraic topology, see, e.g., Bredon
(1993, Proposition II1.2.4). O

As the identity is the only elements in its conjugacy class, it follows that for simply
connected 2, a g € C°(9R2, $3/2T) has an extension h € C°(2, $3/2T) if and only
el =1

For boundary conditions that cannot be resolved by a globally continuous map, it
is possible to find “topological resolutions.” The following is a special case of the
treatment in Monteil et al. (2021b, Section 2.1).

Definition 6.8 Let $2 be a simply connected sufficiently smooth domain in R? and let
g € CY39, $3/2T). A collection of maps y; € CO(S!, $3/2T) is called a topological
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resolution of g if there exist distinct points a; € € and p € (0, min({% dist(a;, a;) :
i # jYU{dist(a;, 3RQ)}) such that there is h € CO(Q\ U; By (a;), S*/2T) withh = g
on 32 and h(a; + pz) = ;(z) on each copy of S'.

Proposition 6.9 Let Q be a simply connected sufficiently smooth domain in R* and
let g € CO082, SS/ZT). A collection of maps y; € cOs!t, S3/2T) is a topological
resolution of g if and only if there exist qo, q; € 2T such that the homotopy classes
(g1 of g and [y} of y; satisfy

qal[g]qo = qfl[yl]ql . --Q/:I[Vk]CIk,

i.e., iff a conjugate of the homotopy class of the outer boundary map g can be written
as a product of conjugates of the homotopy classes of the inner boundary maps y;.

Proof This is a slight reformulation of the simplest case of Monteil et al. (Monteil
et al. 2021b, Proposition 2.4), adapted to our special case. We refer to that article for
a discussion about the independence of this result from the order used in the product.

O

Remark 6.10 There are several possible topological resolutions of the identity with
different numbers of homotopy classes at geodesic distance %: We have a length
zero resolution 1 = 1, a length 2 resolution 1 = s -s~! and a length 3 resolution
1 =st~!.t.s~!. From these, we can construct arbitrary longer resolutions. Note that
s® = 1 gives another resolution. For this reason, in numerical simulations we observe
local minimizers with higher number of singularities than what is expected for a
global minimizer. The same phenomenon has been observed in the Landau—de Gennes
context for Q-tensors describing nematic liquid crystals, where local minimizers with
singularities were rigorously shown to exist (Ignat et al. 2020b) for topologically trivial

boundary data.

6.4 Generating Data in Free Homotopy Classes of Tetrahedral Frames

Armed with the results of the previous subsection, we can now try to interpret tensor-
valued maps with target into Hace (3, 3)N{QQT = % 1(3)} except for a finite number
of point singularities as topological resolutions of their boundary data.

To construct a map with given homotopy types, we can use the following recipe:

Definition 6.11 For o = w + xi + yj + zk € S, we set s = arg(w + iv/1 — w?) €
(—m, ] and let

(xi+ yj + zK) sin(st)
V1 —w?

with G1(t) = 1 and G_(t) = cos(mt) + i sin(t).

G, (t) = cos(st) +

Proposition 6.12 The G, satisfies G, : [0, 1] — $3 with G, (0) = 1, G, (1) = 0.
G is a smooth geodesic.
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For o € 2T the formula reduces to the following cases:
Ifo =31 £itj£Kk) then

t t
Gg(t)zcos%—l— 1n%(j:i:i:jj:k)

I .
—s
V3
For o = =i (£+j and £k are analogous):

G (t) e +i Tt
o = COS ) isin 2

Ifo = 3(—1£i+j+Kk)then

1
ﬁ

Proof This is a straightforward computation. O

2t
Gs (t)_cosT+ (:l:l:l:J:l:k)

Lemma6.13 Leta, B € 2T, 0 < p < 1. Then the map Fy g : B\ B, — s3,

Fup (re") = Gﬂ<11 )Gaane)

induces after taking the quotient modulo 2T a topological resolution of its boundary
map. The homotopy class of the outer boundary map is «, and the homotopy class of
the inner boundary is B~ ap.

Proof We need to show that F, g induces a continuous map. This follows after taking
the quotient from the fact that G, (1) = @ = ¢G4 (0), with @ € 2T. O

Proposition 6.14 Let al, ces 0k, B1, oo, B € 2T and ay, ...,a;y € By distinct
points. Let j1,(z) = =2 be a Mobius transformation mapping a to 0. Then,

Q(Z) 051 B1 (M(ll (Z)) otk B (/’Lak (Z))

induces a topological resolution of its boundary data of homotopy type o . . . ak.
Post-composing this with the map T (q) of Theorem 6.5 leads to a corresponding
resolution in the space of tensors.

Proof This is a direct consequence of the preceding computations. O

7 Poincare-Hopf for MB-Frame-Valued Maps on Generic Surfaces

In this section, we recall a version of the Poincare—Hopf theorem adapted to our
situation. This theorem can be easily adapted from page 112 of Heinz Hopf’s book
(Hopf 1983). Similar results have been shown to be valid for cross-field-valued maps
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(Beaufort et al. 2017; Beben 2020; Fogg et al. 2017; Ray et al. 2006). Theorem 7.3
will be useful in interpreting our numerical simulations in Sect. 8.

Let ¥ C RR3 be a closed, smooth, orientable surface with normal v, and fix an
integer m € N, m > 2. Consider the set

M={(x,0) €T xS :v(x) o=0}

For (x;, ;) € M, j =1, 2, define the equivalence relation
2k
(x1,w1) ~ (x2, ) <= x1 =xp and w| -wy =cos| — | forsome k € N.
m

Define then
M=M/~.

In other words, we consider the unit tangent bundle of X, and identify tangent vectors
that are related to each other by a rotation of an integer multiple of 27” about the
normal. Let also P; : M — X be the projection onto the first coordinate.

Definition 7.1 Let A C X be a finite set. An m-gon-valued field on X is a continuous
map Q : ¥\ A — M such that P{(Q(x)) = x forevery x € X.

In the above definition, if x € A and the field Q : ¥ \ A — M cannot be extended
to x by continuity, we say that x is a singularity of Q. Next,ifx € A C X is a singular
pointof Q : ¥ \ A — M, we can define its index.

Definition 7.2 Let x € A C X be a singular point of Q : ¥ \ A — M. Consider
a closed, continuous curve y C X \ A surrounding x, small enough to be contained
in a single coordinate patch, and such that x is the only singularity surrounded by y .
Consider a continuous lifting of Q along y through a unit tangent vector, in the sense
that, at every point in y, Q can be obtained rotating the unit vector by 27”, m — 1 times.
Compute the angle between this unit vector and one of the coordinate tangents. The
total change of this angle as we travel through y once anti-clockwise, divided by 2,
will be called the index of the singularity x € A and denoted i (x).

Note when ¥ C R? x {0}, this definition agrees with Definition 5.1. In particular the
index of a singularity in this case is of the form % for some integer k € Z. Furthermore,
as pointed out in Theorem 1.3, page 108 of Hopf (1983), the degree does not depend
on the curve y nor on the coordinate patch used to define it. With this terminology
we can now state the following theorem. Its proof can be found in page 112 of Hopf
(1983), for the case m = 2, or in the appendix of Ray et al. (2006), for any m > 2.
Hence, we omit it.

Theorem 7.3 (Hopf 1983;Rayetal. 2006) Let ¥ C R3 be a closed, smooth, orientable
surface, A C X a finite set, and Q : ¥\ A — M an m-gon-valued field in . We
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assume further that every x € A is a singularity of Q. Then

KdS =2 [ (X).
/2 nZz(x)

xeA

Here K is the Gauss curvature of X, and i(x) denotes the index of the singularity
x € A

Remark 7.4 By the Gauss—Bonnet theorem,
/ KdS =27&(2) =272 —2g(%)),
b

where g(X) and £(X) are the genus and Euler characteristic of X, respectively. Hence,
we conclude that

D i) =2-2g. (7.1)

xXeA

8 Examples and Numerical Experiments

In this section, we discuss nontrivial examples of tetrahedron-valued maps, either
constructed analytically or obtained via numerical simulations. In the latter case, the
goal is to understand behavior of local minimizers of (5.1) and (5.9), respectively, by
simulating gradient flow for each energy using the finite element software COMSOL
http://www.comsol.com/. Note that the two analytical examples below only provide
competitors and not minimizers of the corresponding variational problems.

8.1 Example of a Map from B; c R2 into SO(3)/T

Here, we show that, similar to what is known for Q-tensors, normal boundary
alignment of tetrahedron-valued maps in two-dimensional domains does not require
singularities. Indeed, we can construct a map that is nonsingular because it “escapes
into the third dimension” in the interior of the domain.

On the unit disk with polar coordinates define

rmw

tl(r, 0) = cos(9) (cos ( )e — sin (7> e3) — sin(9)e?,
f2(r 0) = sin(6) (cos ( ) e’ —sin (”T ) e3> + cos(9)e9,
3

2
riw
£, 0) = sin () ¢+ cos (7 ) ¢
(r,0) = sin > e’ + cos >
Now set

1 3 1 3
b =12, b’ =——f>+ £f3, b= 2 _ ‘/__f{
2 2 2 2


http://www.comsol.com/

Journal of Nonlinear Science 37

and define
; 1 242
al =f! and a/ = —gfl + «be] for j =2,3,4.
This gives
al =f!,
1 24/2
32:__f1+£f2’
3 3
1 5 6 8.1)
a3=——f1—£f2+£f3
3 3 3
1
atolp_2p Yo
3 3 3

It is easy to check that the map that sends a point in the unit disk to {a', a, a°, a%}
is tetrahedron-valued, nonsingular and the vector a' coincides with the normal on the
boundary of the disk.

Note that a quaternion representation of the rotation inherent in this map (starting
from the tetrahedron containing e?) is given by

wr ) . (TTY, . (TTrY
q(r,0) = cos (—) — sin(#) sin (—) i+ cos(f) sin (—)J

4 4 4
As this is a smooth map into S3, it belongs to the trivial homotopy class.

8.2 Example of a Map from B;(0) c R? into SO(3)/T

The next example is that of a tetrahedron-valued map on the unit ball in R3 that has
exactly one point singularity on the boundary of the ball (at the north pole) and no
other interior point or line singularities. This map also has a finite Dirichlet integral.
The example is a straightforward adaptation of a similar computation for orthonormal
frame-valued map in Golovaty et al. (2021).

Let x = (x1, x2, x3)T, then define the vector fields

T
¢l 2x1(1 — x3) 2x2(1 — x3) x4+ x5 — (1 —x3)2
(X): x2+x2+(1_x 2, 2 2 _ 27 2 2 _ 2
i 5 3) xy+xy + (1 —x3)° x{+x35+ (1 —x3)
2. .2 2 r
P XX+ (1 —x3) —2x1x2 2x1(1 — x3)
x) = 2 2 _ 2.2 2 _ 27,2 2 _ 2
xp+xy + (1 —=x3)* xp+x3+0—x3)° x{+x5+(1—x3)
2x1x 22+ (=-x))  —200-x3) \
f3(X) _ 1X2 1 2 3 2 3
2 2 N2 2 2 — o\ 2 2 ERY)
xi+x; + (1 —x3) xi{ + x5 + (1 —x3) xi + x5 + (1 —x3)
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for x € B1(0) C R* x # (0,0, )7. Note that f' - £/ = &;;,i,j = 1,...,3 and
f!(x) = x whenever |x|> = 1. It follows that {f2(x), f3(x)} is an orthonormal frame
for the tangent plane at the boundary whenever x € dB1(0) \ {(0, 0, 1)}.

Next set

1

1
_§f2+£ \/g

f3 b4 — ——f2 _ _f3
2 7 2 2 7

b’ =2, b=
then (f!,b/) = 0 for j = 2, 3, 4. Further, (b', b/) = 36;; — J for i, j =2,3,4, that
is the map that sends x € B;(0) to {b%, b3, b*} is MB-valued in B;(0) \ {(0, 0, 1)}.
By construction, the two-dimensional MB frame is contained in the tangent plane at
any x € 9B1(0) \ {(0,0, D}.

Similar to the previous example, now let

. 1 242 .
al =f! and a’/ = —gfl +%—b1 for j =2,3,4,
so that
al :fl,
1 22
2 1 2
=——f —f-,
=3t
1 2 6
B g V2 Vo
3 3 3
1 2 6
ato _Lp_Y2p Vo
3 3 3

A straightforward computation shows that, for i, j € {1, 2, 3, 4}, we have

Thus the vectors a!, a2, a3, a* give the 4 vertices of a tetrahedron and we can consider

the map that sends x € Bj(0) to the tetrahedron defined by {a!, a%, a>, a*}. Since
al =flandf!'(x) = xforx € 9B;(0) \{(0, 0, 1), one of the vectors of this tetrahedron
coincides with the normal on the boundary of the unit ball.

8.3 An Energy-Minimizing Map from B; c R? into SO(2)/D;

Here, we examine an MB-frames-valued map generated by a gradient descent of the
energy (5.1) subject to the Dirichlet condition that the normal on the boundary is
aligned with the MB frame. When simulating in a domain that has a shape of an
equilateral triangle, the gradient flow converges to a constant state with the three
vectors of the MB frame perpendicular to the respective sides of the triangle. Clearly
this state is also the global minimizer of (5.1).
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(b)

(a)

Fig. 2 A critical point of (5.3) in an equilateral triangular domain with an excised disk. The vectors of

2
the MB-frame field are shown with the colorbar representing the values of the potential ‘.A.AT - %I 2)| .

Here ¢ = 0.04. a A minimal MB frame shows three vortices with winding —ZT”; b Magnification about
one of the singularities identifies the local rotation of the MB frame

In order to observe a state with vortices, we excised a disk from the equilateral
triangle. The restriction of the solution to the boundary of the triangle is still a constant
MB frame, while the requirement that the normal to the boundary of the disk is aligned
with the MB frame produces winding of the normal by the angle 27 when the boundary
of the disk is traversed once in the positive direction. Because the quantum of winding
for the MB frame is 27 /3 (as the degree takes values in %Z), we thus expect three
vortices with opposite of that winding to form in the interior of the domain. Indeed,
in Fig. 2a one sees that an MB frame aligns with the exterior boundary away from the
excised disk, while the disk induces three vortices with winding of —ZT” (Fig. 2b).

8.4 Computational Examples of Maps from B; c R? into SO(3)/T

We now explore critical points of (5.8) for two different choices of Dirichlet boundary
conditions.

(a) First, consider a tetrahedral frame field Q, defined by the vectors given in
(8.1) and consider critical points of the energy 83" from (5.8), that satisfy the same
Dirichlet data as Q,. We first run the gradient flow simulation for this setup assuming
the initial condition is also given by Q,. Because Q, is smooth in B; and the energy
of the gradient flow solution is bounded by its initial value, the critical points obtained
starting from Q, have energies that are uniformly bounded in ¢ so that the critical
point is nonsingular (Fig. 3).

On the other hand, the gradient flow simulation that starts from the trivial initial
condition @ = 0 results in an entirely different stable critical point shown in Fig. 4.
This local minimizer has three equidistant point singularities such that the frame field
over any curve surrounding one singularity is in a homotopy class conjugate to either
s or s71, i.e., one vector of the frame does not change while a curve is traversed,
Fig. 4b—d.

The different critical points, given the same boundary data, are an example of
distinct topological resolutions for that data, see Remark 6.10.
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() (b) »

Fig.3 Gradient flow solution subject to the Dirichlet boundary data given by (8.1) starting from the initial
condition also given by (8.1). a Plot of W(Q) shows no singularities in the interior of the domain; b Plot
of the energy-minimizing tetrahedral frame field in the top right quadrant. Here ¢ = 0.05
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(c)

Fig.4 Gradient flow solution subject to the Dirichlet boundary data given by (8.1) starting from the trivial
initial condition Q = 0. a Plot of W (Q) shows three singularities in the interior of the domain; b—d Partial
plots of the energy-minimizing tetrahedral frame field over the curves shown in black in (a). Here, the frame
field over all curves has a homotopy class conjugate to s or s~1 (one vector does not change while a curve
is traversed). Here ¢ = 0.05

(b) The next example shows a critical point of (5.8) obtained via a gradient flow in
a unit disk for maps satisfying Dirichlet boundary data that lies in a homotopy class
conjugate to i. Here, both the boundary and the initial conditions were obtained using
the techniques described in Section 6.4. The initial condition had a singularity at the
center of the disk, and the tetrahedral frame map was in the same homotopy class as
the boundary data for every circle surrounding the singularity. The simulation attains
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Fig.5 Gradient flow solution subject to the Dirichlet boundary data homotopic to i. a Plot of W (Q) shows
two singularities in the interior of the domain; b Partial plots of the energy-minimizing tetrahedral frame
field over the curves shown in black in (a). Here the frame field over the larger curve has a homotopy
class conjugate to i (both green and black vectors rotate by = when the curved is traversed once) while the
frame field over the smaller curves has a homotopy class conjugate to s (the blue vector does not change its
orientation while red vector rotates by 27t /3 when the respective curves are traversed once). Here ¢ = 0.05
(Color figure online)

a local minimizer of (5.8) shown in Fig. 5. This minimizer has two singularities in
the interior of the disk and examination of winding of the frame vectors indicates
that the frame field over the curves surrounding each singularity has a homotopy
class conjugate to s. Indeed, the state with two singularities corresponds to a shorter
topological resolution than that for the boundary data and thus this state has a lower
energy than a state with one singularity.

The two remaining examples deal with the tetrahedron-valued maps obtained via
a gradient flow for the energy (5.9) when 61 = 6, = § < ¢.

8.5 Computational Examples of Maps from B, (0) c R3 into SO(3)/T

(a) In Fig. 6, we depict the singular set of a critical point of (5.9) in the ball of radius
1, where the surface contribution to the energy forces the tetrahedron-valued map to
contain the normal to the sphere d B almost everywhere on d By. Then, the trace of this
map on dBj can be identified with an MB-valued map. From Remark 7.4, it follows
that any MB-valued map must have singularities on d By with the degrees of these
singularities adding up to 2. Notice that the energy of an MB-frame field in (5.1) is
identical to the scaled Ginzburg—Landau energy after a short calculation. Recall that in
Ginzburg-Landau theory, vortices of higher degree in equilibrium split into vortices of
degree 1 that repel each other, Bethuel et al. (1994), and we expect analogous behavior
from vortices of MB-valued maps. Because the degree of the MB frame is measured
in units of 1/3, the singular set of total degree 2 on the sphere should split into six
equidistant vortices of degree 1/3.

Since we assumed that § < ¢, the penalty associated with the surface energy is
much stronger than that for the bulk energy and therefore the surface effects should
dominate bulk effects. Indeed, the singular set in Fig. 6a intersects the surface of the
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Fig.6 A locally minimizing tetrahedral frame field in a sphere of the radius 1. a The singular set; b—d cross
sections of the frame field and the line singularities by planes corresponding to different values of z. Here,
& =0.05and § = 0.01

sphere at six, approximately equidistant points, connected by line singularities in the
interior of the domain. The bulk structure of the singular set is dictated by the topology
of SO(3)/T and the energy considerations. In particular, from Fig. 6a it seems to be
clear that the total length of the singular set can be reduced by “squeezing” it toward
the center of the ball. This, in fact, is possibly what would happen as ¢, — 0 but
such investigation is beyond the scope of the present paper. Rather, we are interested to
understand the behavior of the singular set for finite ¢ and § by exploring the topological
structure of a triple junction.

In Fig. 7a, a small sphere surrounds the triple junction that we are interested in and
in Fig. 7c we plotted the vectors of the trace of the tetrahedron-valued frame field on
the surface of that sphere. The circles on the same plot depict the intersection between
the singular set and the surface of the sphere.
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(a) (b)

(c)

Fig.7 The structure of a triple junction. a The singular set with a small sphere surrounding a triple junction;
b Zoom-in on the sphere with a triple junction; ¢ cross section of the tetrahedral frame field by the same
sphere. Circles correspond to cross sections of the line singularities by the sphere. For the frame field near
the singularity on the right, the black vector appears to be missing, while the green vector appears to be
missing for the frame field near the singularity on the left. ¢ = 0.05 and § = 0.01 (Color figure online)

Figure 8c shows the same small spherical cutout from the points of view of individ-
ual arms of the triple junction. Near each singularity on the sphere associated with an
arm of the junction, a frame vector of one color points into the sphere toward the triple
junction and is not visible, while the remaining three vectors form an MB-frame field.
This MB-frame field rotates by 120° counterclockwise when one travels around the
singularity in the counterclockwise direction. The product of two 120° counterclock-
wise rotations around any two adjacent edges of a tetrahedron indeed corresponds to
an inverse of a counterclockwise rotation around a third edge, and we expect that a
similar structure is valid for the remaining triple junctions of the singular set in Fig. 6a.
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Fig. 8 Cross section of the tetrahedral frame field by the sphere in Fig. 7 viewed from the perspectives of
three different arms of the triple junction. a Near the singularity, the green vector points into the sphere
toward the triple junction and the MB frame consisting of the black, red and blue vectors rotates by 120°
counterclockwise when one travels around the singularity in the counterclockwise direction; b Near the
singularity, the red vector points into the sphere toward the triple junction and the MB frame consisting of the
blue, green and black vectors rotates by 120° counterclockwise when one travels around the singularity in the
counterclockwise direction; ¢ Near the singularity, the black vector points into the sphere toward the triple
junction and the MB frame consisting of the blue, green and red vectors rotates by 120° counterclockwise
when one travels around the singularity in the counterclockwise direction. Here ¢ = 0.05 and § = 0.01
(Color figure online)

(b) Finally, in Fig. 9 we show the singular set of a critical point of (5.9) in a large
domain in the exterior of the ball of radius 1, where the surface contribution to the
energy forces the tetrahedron-valued map to contain the normal to the sphere d By
almost everywhere on d By. The structure of this set is clearly similar to that in Fig. 6
in that it has six equidistant vortices on the surface of the sphere and the same number
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Fig.9 The line singularity of a
locally minimizing tetrahedral
frame field outside of a sphere of
the radius 0.1 and inside a large
tetrahedron (not shown). Here

e =0.0land § = 0.01

of triple junctions but, this time, the total length of the line singularities composing
the singular set can be reduced by compressing these singularities toward the sphere.
This is indeed what is observed in Fig. 9.

9 Discussion

Tetrahedral symmetry arises in many contexts in nature, including in liquid crys-
tals, condensed matter physics and materials science. The framework presented here
for generating such frame fields entails identifying a bijection between a tetra-
hedral configuration and a specific variety on traceless, symmetric three-tensors.
When tetrahedral frame fields are constrained to align with the normal, singular-
ities arise generically. To avoid this, the variety suggests a natural harmonic map
(Ginzburg—Landau) relaxation that helps in computation to identify a local minimiz-
ing configuration with isolated near-singular sets. We discuss some open questions
and interesting lines of inquiry related to the work presented here.

In Sect. 3, we showed that n 4 1 vectors satisfying n+ 1-hedral symmetry on the unit
sphere in R” defines a symmetric three tensor Q that satisfies 00T = Mf‘”] (n).
On the other hand, the recovery has only been shown for n € {2, 3}. In particular it
would be natural to ask if for all n > 4 there is a bijection between SO (n)/G, and

2
Hirace (1, 3) N {QQT = ("H)n(—g_l)l (n)}, where G, represents the group of rotations

leaving n + 1 equipositioned points on the sphere S"~! invariant.

There are many other interesting directions to explore. Recently, it was proved that
the energy density of mappings from planar domains into relaxed vacuum manifold
targets converge to a sum of delta functions with masses associated with the energy
minimized over all nontrivial homotopy classes (so-called systolic geodesics), see
Monteil et al. (2021a), Monteil et al. (2021b). One interesting direction would be
to perform a stability analysis of equivariant critical points that conform to different
homotopy classes either on the boundary of a disk or at infinity, along the lines of Ignat
et al. (2020b) for Q-tensor models. This should provide additional information on the
selection of particular topological resolutions found in our numerical experiments.
Even more important would be to rigorously establish the expected Gamma-limit of
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the relaxation energy, (5.8). In particular, one should be able to identify a compact
mapping, along the lines of the Jacobian in Ginzburg—Landau theory, that concentrates
at singular points for two-dimensional domains and co-dimension two, rectifiable sets
for three-dimensional domains. Results for the cross-field case are the subject of
the work in Golovaty et al. (in preparation), and we expect the Gamma-limit in the
tetrahedral frame problem to behave similarly.

A more intriguing task would be to provide a rigorous rationale for the formation
of triple junctions in the singular limit of tetrahedral frame fields for mappings on
three-dimensional domains (versus quadruple junctions in the SO(3)/O case), see
Fig. 1. Systolic geodesics should play a role here.

Even more generally, one can ask how this approach can be used to connect a
quotient of a Lie group with a specific choice of symmetric k tensor and a variety. For
example can a frame with icosahedral symmetry, SO (3)/1, be generated by a suitable
variety on the correct choice of k-symmetric tensors? How these k’s and choice of
varieties arise remains mysterious.
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10 Appendix A: Proof of Proposition 3.6

In this section, we prove Proposition 3.6. This requires the use of properties of families
of vectors in R" that we recorded in Lemma 3.2, particularly the property stated in
(3.7). For the convenience of the reader, we first state the proposition and then proceed
to its proof.

Proposition 10.1 For every n > 2 there exists an n x (n + 1) matrix, C" such that
the following holds. For any set of n + 1 unit vectors in R", {u/ };H:'} that satisfy the
inner product condition (3.4), and its associated 3-tensor Q € Hirace (1, 3) generated

by these w/ ’s via (3.8). Let Q = (Q1|- - - |Q,) where the Q/ € Hipace (1, 2) are defined
by

Q; = Z(uk,ej)uk(uk)T.

k=1
Ifwe denote A,, the n x (n + 1) matrix whose columns are the vectors {uj};f:%. Then,
the matrix

n

R=-—— A.Cl e 0

n+1
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is orthogonal, and A,, = RC,,. Letting f/ =Rek k=1,...,n and

Z_Z Qja

where

<(nz—1><n+1>>é
)\,nz —3 )
n

then, the vectors f* along with the tensors B k = 1,....n are eigenvector—
eigentensor pairs for Q in the sense of Remark 3.7. In particular,

(7,85 = (B/, BY) = 54,

n

> (Bi. Qi)e' =¥, and Z .e/)Q; =1, B.

i=1
Finally, one can recover the 3-tensor Q from the eigenvector—eigentensor pairs, in the

sense that

n

Q=) (t/,¢)B,

j=1
fori=1,...,n

Proof For the proof, we first construct the matrix C”, and proving several of its prop-
erties. The conclusions of the proposition will then follow from here.

Step 1 In this step, we will build an n x (n + 1) matrix C,, n > 2, such that C,, CnT =
2L (n), that

n+1 1
CrCn=——10n+1) =~y

and C,, 1,41 = 0, where we use the notation

1
1,=| : | e R".

The construction of Cj, is inductive, starting with n = 2. Let



48 Journal of Nonlinear Science

and let ¢/ = C, e/ be the columns of C5. It is straightforward to verify that

i3 1
¢ ¢ = 55”—5
It is also straightforward to check that C>13 = 0.

The last two properties of C, that we need are the following:

3 3 1
C 0T = 51(2), and C1Cy = 51(3) _ 51315

The first of these comes from the fact that the rows of C», thought of as vectors in R3,
are orthogonal to each other, and have length 3. The second comes from the fact that
the ij entry of C2 C is exactly ¢/

Let us now suppose we have an n x (n + 1) matrix C,, n > 2, such that C,, CnT =
L7 (n), that Cy 1,41 = 0, and that

n+1 1
cre, = —— I+ 1) - ;1,,“1,{“.

All these conditions hold for n = 2. With all this let us define the (n + 1) x (n + 2)
matrix

0

N (n+1)2— C
Cpil = T+l :
0

1 1

Note that the last row of C,41, thought of as a vector in R"+2 is orthogonal to the
others by the hypothesis C, 1,11, and its length squared is whereas the length
squared of the other rows is

n+1 ’

n+1n*42n n—+2

n m+D? a4l

Since the other rows of Cn+1 are orthogonal among themselves by the hypotheses on
C,,, this shows that C,,HCnJrl = Z—ﬁl(n +1).
It is also easy to see that each column of Cy, 41 has length 1 and that the dot product

of the last column with any of the others is exactly —#. Since the dot product

between two different columns of C,, is —%, we conclude that the dot product of any
two different columns of C,, 41, not including the last, is

1n2+2n+ 1 1
nin+1D2 n+D2 41
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This shows that

n—+42 1
CnT.HCn—H = n_—i—ll(n +2)— n__'_l1n+21y7;+2-

Lastly, that C,, 411,42 = 0 follows easily from the form of the last row of C, 4| and
the hypotheses on Cy,. This concludes the proof of Step 1.

Step 2 In this step, we now consider a family {u/ }"Jrl C R” of unit vectors that
satisfy the inner product conditions (3.4), and its ass0c1ated 3-tensor @ € Hiqee (12, 3)
generated by these u/’s via (3.8). Let Q@ = (Q!]| - - - |Q") where the Q/ € Hirace (1, 2)
are defined by

Q) = Z(uk, ej)uk(uk)T.

k=1

We will denote A, the n x (n + 1) the matrix whose columns are the vectors {u/ }" +}.

It is easy to check that the inner product conditions (3.4) say exactly that

n+1
Al A, = I(n+ )——1n+11n+1,

whereas equations 3.6 and 3.7 from Lemma 3.2 say that

1
Anlysr =0 and A AT = 25070y,
Our main claim in this step is the following:
The matrix R = —A C, T isan orthogonal matrix, that is RRT =RTR=1 (n).

n+1

From here it follows that A, = RC,, andu/ = A,e/ = RC,e’.
The proof is straightforward. Indeed, we first observe that

2
T _ n T T
RR —_ mAnC” CnAn

n? n—+1 1
An( In+1)— - n+11n+1> = 1(n),

T 1)

because A,1,11 = 0and A, Al = ”nill(n).
Next, we notice that

n n+1 1
RC, = C, = Ay ( I+ 1) - ;1,1“1,{“) = A,

n+1° """ n+1

where again we used the fact that A, 1,11 = 0.
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Step 3 In this last step, we build our eigenvector—eigentensor pairs from what we
obtained in the previous step, and prove that the 3-tensor Q@ we mentioned at the
beginning of the previous step can be reconstructed from these pairs. Our definitions
are the following:

n

1 .
for the eigenvectors we set £ = ReX, and for the eigentensors BX = o Z(fk, e)Q;,

" j=1

5 1
where A, = (m—;#w) * . We need to prove

f/ . f5 = (B/, B*) = 84,

n n
Z(fk,ef>gj = 2, B and Z(Bk,Qk)ek = aafk.

j=1 j=1

£/ .tk =5 jk 1is direct from their definition and the fact that R € O(n), whereas
n .
S (f k el )9 = A Bk is by definition of B*. To prove the other two, we first observe
j=l1
. 2
that (97, Qk) = W#B k= XﬁS jk» which is a direct consequence of equation
3.10 from Proposition 3.3. Then, we compute

1
22

n

Dk e el)(Qr, Q) =5 £ = 8.

ij=1

(B*, By =

Next, we compute

n n n
> (B Qjlel = — 3 (ff,e)(Q), Qe' =, ) (FF, el)el = af",
j=1 "= j=1

where we again used the fact that (Q;, Qk) = )L,%S k-
Lastly, we observe that

Do e B = Y (e, e ) O = Q.
j=1 jok=1

This is the statement that the 3-tensor Q can be recovered from the eigenvector—
eigentensor pairs. O
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11 Appendix B: Proof of Theorem 4.2

In this section, we will prove a useful property of the tensors in our algebraic variety.
Let us first recall that

Hn, k) =R"®---R"
—
k times
Hsym (1, k) = {A € H(n, k) such that A, , ) = Ai..;; for all o permutations},

and
n
Hirace (1, k) = {A € Hgym (n, k) such that ZA,'I_J,(?ZJ'./ =O0foralli; € {1,...,n}}.
j=1

Let also I (n) denote the n x n identity matrix.

We define a contraction operator on symmetric tensors which is, in effect, the trace
over the last two components. For A € H(n, k), we set the “block trace” operator,
BTr : H(n, k) — H(n, k — 2), to be

n
BTr(A)al...ak,Z = Z Aal...ak,QZZ (111)
=1
for any a; € {1, ..., n}. Consequently, if Q € Hiace(n, 3) then BTr(Q) = 0. The
block trace operator will be used extensively in the proof of Theorem 4.2, as it was
used in the recovery theorem in Golovaty et al. (2021).

In this section, we will think of the set H(3, 2) as the set of 3 x 3 matrices, and
Hsym (3, 2) as the set of symmetric 3 x 3 ones. For A, B € H(3, 2), we define the
inner product

(A, B) = tr(BT A).
We then define
X:HG3,2) — R’

by the equation
X(A):=X4 = | Ae? |,

where {e/ }?:1 denotes the canonical basis in R3. Notice that

(A, B) = (X4, Xp),
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where the inner product in the left-hand side is the inner product in H(3, 2), while the
one in the right-hand side is the standard dot product in R?. In other words, the map
X : H(3,2) — R? is an isometry.

In this section, we will also consider an element of the set Q € H(3,3)asa3 x 9
matrices with real entries. For this, we think of vectors q € R™, in any Euclidean
space, as columns. In particular, for p € R, q € R", qu is an m X n matrix. Then,
for q!, g%, ¢° € R3, we identify the tensor q' ® ¢ ® > with the 3 x 9 matrix

q' (qu(tﬁ)T)T

With this notation the permutation operators can be expressed as follows: for
q'.q%. ¢ € R3, so that ¢>(q°)7 € H(3,2), and a permutation o € S3, define
T, : H(3, 3) - H(3, 3) by

T T
Ty (ql (qu(q3)r) ) = qg(l) (an(Z)(an))T) s

and extend 7, to H(3, 2) by linearity.
Next recall the block-trace operator BTr : Hgym (3, 3) — R3 in (11.1). Itis easy to
check that this operator satisfies the condition

T
BTr (q1 (Xe2tqy7) ) — (q', )

This operator considers a 3 x 9 matrix Q e H(3, 3) as being built from 3 blocks Q; €
H(3, 2), and sends Q into a vector containing the trace of Q; in its jth component.
With all this notation in place, we can restate the definition of Hace (3, 3) as follows:

Hirace(3,3) ={Q € H(3,3) : BTr(Q) =0, 7,(Q) =Q Vo e S} (11.2)

We now record some properties of tensors Q € Hgym (3, 3) that will be important to
us. Let us recall that the canonical orthonormal basis of R3 is denoted by {e/ }321.

Proposition 11.1 Let Q € Hym (3, 3), and write Q = (Q1|Q21Q3), where Q; €
Hsym (3, 2). It holds

3
) T

9= ¢ (ng) , (11.3)

j=1

Furthermore, we have
3 . .

QiQ; =) ee) g, (11.4)

k=1

foreveryi, j = 1,2, 3. Finally, we have

Qie/ = Q;e', (11.5)
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also foreveryi, j =1,2,3.

Proof To prove identity (11.3), for oy, (1, 2, 3) = (3, 2, 1), let Ty = 7Z5,,, and observe
that the rows of the tensor 7y, (Q), as vectors in R, correspond to the blocks of Q.
Since Q € Hyym (3, 3), by definition we have Ty, (Q) = Q. This shows (11.3).

To prove (11.4), observe that, owing to equation (11.3), we have

Q191 9192 9193 3 r
Q70 = 291 20, 2:0; | =) Xg, (Xo,)" -
Q3091 939> 9393 k=1

(11.4) follows from this last identity, and the definition of X : H(3, 2) — RY.
Finally, to prove (11.5), recall that by definition

Qe!

XQJ-Z Qj62

Qe

Because of this and (11.3), we have
3 3
ixT i(eY 0160 (2 O.1e/ (&3)"
Q:ZeXszz e (e) Qjle (e) Qjle (e) Q; ).

j=1 j=1

From here, we obtain
AT 3 AT
Q=) ¢ (e) Qj=) Qje (e’) ,
j=1 j=1

where the last equation is because Ql.T = Q;. (11.5) follows directly from here. O

It will be useful to have an e?;plicit basis for the space Hiyce (3, 3), in terms of the
canonical orthonormal basis {e’ }3: | of R3. For this, let us define the tensors

Pi=¢H, i=1,23,
associated with the canonical basis {e’ };:1 . Note that the P/’s are rank-1, orthogonal

3.0
projection matrices with orthogonal images, and I(3) = )  P'. We emphasize that
i=1
these P/’s are different than those defined in Sect. 3. Define also

S =eleH +ele), 1<i#j<3.

Observe that the P/ together with the S’/ provide a basis for the set of symmetric,
3 x 3 matrices with real entries. With all these we now have the following.
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Proposition 11.2 The following list provides a basis for Hgym (3, 3):

Ai = ei (XPi)T 1i = 11273’
B = (X)) 4 (Xg) . =i

T
C=3x T, <el (XeZ(e3)T) ) =e! (st,s)T + ¢ (X51‘3)T S (Xsl,z)T .

0ES3

Given this notation, the following list is a basis for Hizace (3, 3):

B — Al = (Xp; —Xpi) ¢/ (Xgi)', 1<i#j<3
C=e' (Xg3)" +€ (Xg2)" +¢ (Xg12)"

Note that this implies that Hirace (3, 3) has dimension 7.

Next, we will need to work in the set H(3, 4), and we recall that, by Remark 3.1,
we identify elements Q € H(3, 4) with Q € H(9, 2). With this in mind, we point out
that, for o € S4 we can also define a permutation operator 7, : H(9,2) — H(9, 2).
To define it, let a/ € R3, j =1,2,3,4, define 7, by the condition

T

& (Xa1<a2>T (Xa3<a4>T)T> =Xy (Ko o)

and extend it to H(9, 2) by linearity. We trust that the use of the same notation for
the permutation operators in H(3, 4), H(9, 2) and H(3, 3) will not be a source of
confusion.

There are two families of elements in H(9, 2) that will appear naturally in the proof
of Lemma 11.8. Here we use the notation from the Appendix of Golovaty et al. (2021).
For two 3 x 3 matrices A, B € H(3, 2) define

Nap=XaXp). (11.6)
Observe that
NapXc = (B, C)X4.

When A = B we will simply write N4 in place of N4 4.
Next, again for A, B € H(3, 2), let M4 p € H(9, 2) be the 9 x 9 matrix defined by
the equation

MapXe =X, opr ¥V C € HG3,2). (11.7)

Again, when A = B we will write M4 in place of My 4. From Golovaty et al.
(2021), we can give an expression for M4 g, A, B € H(3, 2) as follows: denoting
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Aij=(A¢€ (ef)T), that is, A; ; is the ij entry of A, then
Bi1A B12A BizA
Map = B2a1A BnA BnA |. (11.8)
B31A B3 A ByzA

The next proposition appears in Golovaty et al. (2021). We include its proof for the
reader’s convenience.

Proposition 11.3 For the permutation o, (1, 2, 3,4) = (1, 3, 2, 4), the operator T, =
75, - H(9,2) — H(9, 2) satisfies

T.(Na,B) = T5,(Na,B) = My (11.9)

forevery A, B € H(3, 2).

Proof A simple way to see that the operator 7, indeed has this property is to observe
first that by definition

% (Xal<a2>f (XaB(aﬂT)T) =Xy (Xey)

Calling A = a! (aZ)T, B =a’ (a4)T, and C = u! (uz)T, then clearly

T

T 5 (T
Xy (Xaaguyr) Xe = (@ (a%) 2 OX,y
= (@’ u')@" W)X, oyr = Xacpr.
The result of the proposition follows by linearity, and the fact that every matrix

in H(3,2) is a linear combination of rank-1 matrices of the form a (b)” with a, b
e R3. o

Remark 11.4 For q', %, q> € R3, and R € O(3), the definition of My reads:
MRqu(q3)T = Xqu(Rq3)T.
Since every Q € Hgym (3, 3) is a linear combination of tensors of the form

2% (ql (qu(tﬁ)T)T) ’

oeS3

it follows from here that
RQ Mp)" = RQMyr € Hyn(3,3)

for every Q € Hsym (3, 3).
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Next, we again recall the block-trace operator BTr : Hgym(3,4) — Hgym(3,2)
from (11.1). Under the identification of H(3, 4) with H(9, 2), this operator can be
thought of as BTr : Hy,(9,2) — Hgym(3,2), and then it can be defined by the

condition
T T
3 12
BTt <Xq1(q2)r (Xq3(q4)r> ) =’ q" q (q ) :

Thinking of the elements R € Hsym(3, 4) as 9 x 9 matrices, and we look at such an
‘R as being built from 3 x 3 blocks, then BTr(R) just adds the 3 x 3 blocks in the
diagonal of R. For this reason, we refer to Btr as the block-trace operator

Remark 11.5 For Q € H(3, 3), a direct computation shows that BTr (QT Q) =007,

This is a tensor analog of the fact that tr (a (b)T) = bTa = (a,b) fora,b € R3.
However, to establish Lemma 11.8, and its consequence, Corollary 11.9, we need to
analyze the full tensor Q7 Q, rather than QQ7 . This our main motivation to introduce
this operator.

Next, we construct a basis for Hgym (3, 4) in the spirit of Golovaty et al. (2021). We
recall here that, by Remark 3.1, we identify Hgym (3, 4) with Hgym (9, 2).

Proposition 11.6 For the space
Hsym(ga 2)={QeH(O,2): T,(Q) =Q Vo e S,
the following list provides a basis:
= Xpy (XP )
Dlj _XPz (XS ) +XS!](XPI) 9y
T
Fil =X pi (Xpi)" +Xgis (Xgii)" +Xps (Xpi)'
GHIK =X pi (Xgiu)" + X (Xgin) " 4+ Xgiw (Xgios) + Xgie (Xpi)
forl <i,j,k<3i+#j,i #k,j# k. Fortheir block-traces, we have
BTr(P') = P',
BTr(D"/) = §™J,
BTr(F"/) = BTr (Xgi; (Xgiy)") = P+ P1, and
BTr(G'/F) = BTr (XS,:_/ (Xgix)" + Xgin (XS;‘,-)T) = §/k,
Proof The proof of the basis is straightforward and follows from tensor combinations
of the e/’s in R3, along with symmetry assumptions in the indices. The block-trace

identities likewise follow from the tensor constructions and the contraction of the last
two indices. O
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Remark 11.7 Tt is important to notice that in general D'*/ # D/, whereas F'/ =
Fi-i. On the other hand G*/-* depends on the order of the indices i, j, k; however,
gi,j,k — gi,k,j'

The main use of the bases for Hiace (3, 3) and Hym, (9, 2) will be to prove Lemma
11.8. Indeed, using these bases we will compute OT Q, which satisfies 9T Q e H(9, 2)
for Q € Hiace(3, 3), and write it as a sum of a term that belongs to Hy, (9, 2), and a
second term to which we can apply Proposition 11.3. The analysis of these terms will
give us the proof of the aforementioned Lemma.

11.1 Block-Trace Conditions on Hy,,ce (3, 3)

A result for permutation invariant 3-tensors that have traceless blocks and satisfy a
normalization condition. Our main result in this section is the following.

Lemma 11.8 Ler Q € Hiace (3, 3), and assume
BTr(QT Q) =« 1(3),

for some a > 0. Then there is S € Hgym (9, 2) such that
o T o
ofg=85- §X1(3) Xi3) =S-— 5/\/1(3),

where we are using the notation N defined in equation (11.6).

Before giving the proof of this lemma, we derive a corollary from it that we will
need for our recovery argument.

Corollary 11.9 Let Q € Hirace (3, 3), and assume
Q0" =« 1(3),
for some o > 0. Write Q = (Q1]92]93), where Q; € Hgym(3,2) and tr(Q;) = 0.
Then,
3 o
Z Q;Q;9; = EQi
j=1

fori=1,2,3.
3

Proof First observe that QQT = Y Q?. A direct computation shows that
j=1

3
BTr(Q7Q) = ). Q?. We conclude that BTr(QT Q) = « I(3), so Q satisfies the
j=1
hypotheses of Lemma 11.8.
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Next, recall that by Remark 11.3, we can write

3 T
Q= Zej (XQj) .
j=1

Because of this, we obtain
3 . AT
Q0" =10, )¢ (¢/)
j=1
In particular, the hypothesis Q9T =« I(3) tells us that
(Qi, Qj) = dija. (11.10)
Also from Remark 11.3, we obtain the expression
3 T 3
Q"9 =Y"Xo, (Xo,) =D No,. (11.11)
j=1 j=1
By Lemma 11.8, we know that
T o
Q QZS—E/\G@). (11.12)
Now recall the operator 7, : H(3,4) — H(3,4) defined in (11.9). Applying this
operator to (11.11) we obtain

3
T.(Q"Q) =) Mo,
j=1

We can also apply 7 to (11.12) to obtain

T.QTQ) =S - %MIG)

o (07 o (07 o
=S§—- 5/\/'1(3) + §N1(3) — EMI(S) =0T0+ 5N1(3) - §M1(3),

because S € Hgym (9, 2) and (11.12).
To conclude, we observe that

3 3
T.(Q"Q)Xg, =Y Mg Xg, =Y Xg,00;
j=1

j=1
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by the definition of M 4 given in (11.7). However, we also have

(Q" Xy, (Q Q+2N1(3) 2/\/11(3)) o = 53

by the definitions (11.6) and (11.7) of /4 and M 4, respectively, the fact that tr Q; = 0,
(11.10), and the expression (11.11) for QT Q. The last two equations give the claim
of the corollary. O

Proof of Lemma 11.8 The proof consists in computing Q7 Q using structure of the
bases for Hirace (3, 3) and Hym (9, 2) provided by Lemmas 11.2 and 11.6 to conclude.
Step 1 By Proposition 11.2, we can write Q € Hiaee (3, 3) as

Q =p12(B"? — A" + g 3B — A
+ Bo (B> — AY) + Bos (B> — AY)
+ B3 (B> — A%) + B32(B>% — A3
+yC
=Hg + Hg + Hy + HE. (11.13)

A direct computation shows that

4
Q=) Ho'Ho+ ), (HQ'Hg
i=1

1<i<j<3

3
+(HH) Hig) + Y (T HY + (Y Hi). (1L14)
i=1

We will expand each of these sums.
Step 2 Computation of (H’Q)TH’Q. By Proposition 11.2 we have

'HIQ =Bi2 (el (XP2 - XPI)T +e? (Xsl,z)T) + B13 <el (Xps - XP])T + ¢ (XS1,3)T> .
Since (e, e/) = §; j, we obtain

(HIQ)THIQ = /3122 (sz_pl (sz_pl)T + X1.2 (Xsl,z)T)
+ B1,281,3 <XP2_pl (Xp3_pl)T + Xp3_pt (sz_Pl)T>

+ ,3%3 (Xps,pl (XP3,p|)T + X1.3 (XSL})T) .
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From here, by adding and subtracting terms of the form Xg; « (X s j,k)T we obtain

(Ho)"Hg = pi,(P' +P* = F'?)

+Arapra(F - FI2 - FL2 2Pl

+ 8P+ P - F)

287 Xg1z (Xgi2)"

+B1.2h13 (Xslvz (Xs12)" + X3 (Xg15)" = Xgo (stﬁ)T)

+287 X5 (Xg13) "

Observe that in this expression the first three terms belong to Hgym (3, 4), and have
Block-trace equal to zero. In contrast, the last three terms are not permutation invariant,
and each has Block-trace equal to a linear combination of the P/s.

The same argument gives us

and

(Ho) Hy = B3, (P! + P> = F1?)

+ Bofos(F13 — F12 — 723 4 op?)
+ B3P+ P — F3)

+ 263 Xg12 (Xg12)"

+Pribas <XS"2 (XS"Z)T + X523 (XS“)T — Xy13 (Xsl.3)T>

+ 2/3%’3)(52,3 (st,z)T ,

(HY HG =B (P + PP = F')

+ B3.1 B3 (FL2 — FL3 — 723 4 op?)
+ B3, (P2 + PP — F23)

+ 267 Xg1s (Xg13)"

+ BaaBs (Xsis (Xo10) + X (Xg2s)" = X2 (Xg12) ")

+ 267, X 55 (Xg23) "

Finally, we also have

(HE)T'HA‘Q =y? (st,s (st,s)T + Xg1.3 (Xsm)T + Xg1.2 (Xsl,z)T) .

Step 3 Computation of (Hb)TH]é + (’HjQ)TH" ,1<i<j<3.
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First we observe that

(M) H + () HY = fr3par (Xpr_pt (Xsi2) | +Xg12 (Xpa_p1) ")
+ B1.282.3 (Xp3fp2 (X51,2)T + Xg1.2 (Xp3,p2)T)

+ B1,382.3 (XSI.3 (X52.3)T + X 23 (Xsl,3)T) .
We now add and subtract terms of the form X 3 (st,s)T + X523 (X 51.3)T to obtain

(HQ) Mg + (HY) Mg = 13621 (G2 = D' + prapas (@2 — D)
+ (B1,3B2,3 — B1,3B21 — B1,2B2,3) (Xsl.3 (Xg23)" + X253 (XSm)T) :

Observe again that the two terms on right hand side of the first line are Block-traceless,
permutation invariant, whereas the term in the second line is not. We also have

(Ho) Hy + (MY HG = p12B31(G>1 =DV + Brafs @ — D)
+ (B1.2832 — B1,2B3,1 — P1,363,2) (Xsm (stﬁ)T + X3 (XSI,Z)T) )

and

(MY My + (MY HG = 132G = D> + pasfsn (G — D)
+ (BaaBsn = BriBa2 — Braba) (Xsiz (Xgis) |+ Xgis (Xgi2) ")

3 . .
Step 3 Computation of g:l ((HZQ)TH“Q + (H“Q)TH’Q). With the same logic, we have

used so far we have
(HO)THE + (HE HG = yP1a(D?? — G123 + y 13 (D — G827)
+2y(Br2+ B1,3) (Xsl.z (Xsl,3)T + X13 (Xsl,z)T> ,
(MY HG + MY HE = yp1(D'? = G +ypr 5D — G219
+2y(B2.1 + B2.3) (Xsl,Z (X52,3)T + X3 (Xsl,z)T) ,

and

(HHTHE + (HETHY = yB3.1(D"? — G312 + yp3 (D! — G312
+2y(B3.1+ B3.2) (XSI.3 (XS2,3)T + X3 (XS|,3)T) .
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Step 4 Consequences of BTr(Q” Q) = «/(3). From all our previous computations,
we now have the following:

BTr(Q" Q) = 2((Bl, + B31) + (BT 3 + B3 1) + BraBrs+ yH) P!
+2((Bia+ B3 + (Bis+ B3 + BriPoz+yHP?
+20(B 3+ B3 + (Bis+ B3o) + BaiBaa+ v PP
+ (B1.3B23 — Bi.3B21 — Bi2Bas + 2y (a1 + B32)S'?
+ (B12B32 — B12B3.1 — B13P3a + 2y (Ba1 + Pa3))S"?
+ (B2.1B3,1 — B21B32 — B3B3 + 2y (Bia + Br.3)S>.

From BTr(QT Q) = al(3), we deduce that the coefficients of S; ;, i # j, are zero,
SO

B1,3B23 — P1,3B2,1 — B1,2B23 +2y(B31 + B32) =0,
B1,2B32 — B1,2B3,1 — B1,3B32 +2v(B21 + B23) =0,

and

B2,1B3,1 — B2,1B3.2 — B2.3B3,1 +2y(Bi2 + B13) =0.

Looking carefully at all the terms we have obtained for 9T Q we deduce that there is
S € Hgym (9, 2) such that

QTQ— 8= QB+ B3 )+ BiaBis + BoiBos — 1B + v HXg2 (Xs12)
+ QB+ B3 + BioBis + BB — Buibas + v DX (Xgs)
+ QB35+ B30 + BaaBos + BaaBaz — Brabia + )X (Xea)
(11.15)

Next, we observe that BTr(Q7 Q) = a/(3) also implies that

(,3122 + ,3%1) + (,312,3 + /332‘1) +B12B13+ Y=

k]

Bir+ B3 )+ (B33 + B3y +BriPos+y? =

’

N RN|R

and

o
(Bis+B31) + (BIs+Biy) + Baafsa+v? = .

[\S]

Adding the first two of these equations and subtracting the third, we obtain the identity

o
2(,312,2 + /322,1) + B12B13 + Bt — B3aBa2 + v =~

[\
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Adding the first and third, and subtracting the second, we obtain

o
20873+ B3 1) + BB+ BBz — Bribos + v = 5
A similar procedure gives
2 2 2 _ ¢
233+ B32) + BBz + B3B3 — Pi2fiz+y = 5

Using this in (11.15) we obtain
Q"0 -8 =2 (X2 (Xg12)" + Xy (Xg19)" +Xgos (X))
Now recall from Proposition 11.6 that
Xty (Xgis) ' = F7 = Xpi (Xps)" = Xps (Xpi)" -
We deduce that

X1.2 (Xsl,z)T + X1.3 (X51,3)T + X213 (st,s)T
_Fl2 g3 23
T T T T T
—<XP1 (XPZ) +XP2 (Xpl) +XP1 (XP3) +XP3 (XPI) +XP2 (XPS)
+Xps (Xp2)' ).

Finally, by adding and subtracting terms of the form X p; (X P,-)T, we observe that

Xp1 (XPZ)T + Xp2 (XPI)T + Xp1 (XP3)T + Xp3 (XPI)T X (XP3)T X (XPZ)T
=X/3) (X[(3))T _pl _p2_p3

At this point we move every permutation invariant term in Xgi2 (X Sl,z)T
+ X1.3 (XSI,3)T + Xg2.3 (st,s)T to the S on the left hand side of the identity

o'g-s= % (Xsl,z (X51.2)T + X13 (X51,3)T + Xg23 (X52,3)T> ,
and redefine S accordingly. This gives us
(04 T
ol -8 = —§X1(3) (Xi3) .

where S € Hgym (3, 4) by construction. O
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11.2 Recovery Procedure

Our main result in this section are our two recovery theorems in Sect.4.2.
Proof of Theorem 4.2 Let Q € Hipyce (3, 3), and define ng : S* — Hgym (3, 2) by

3

no(@ =y (e/,a)Q;. (11.16)
j=1

Then define g : S> — R by

no(a) = det(ng(a)).

We will show that the maxima of j1g in S? are the vectors we seek. We divide the
proof in steps.
Step 1 The critical point condition for 1 in S? is

3

(Vang)@ = ) (a ¢/)(a,e")(Qi, Q;Qu)e’ = ra,

i,j.k=1

where A € R is a Lagrange multiplier for the constraint a € S2. To prove this, let us
recall that if A € H(3, 2, R) has tr(A) = 0, then Cayley—Hamilton theorem tells us
that

s lAP _
A= DA = de(A)3) =0,

From here we deduce that

det(A) = % (tr (A3)) .

Since Q € Hirace (3, 3), then ng(a) € Hirace (3, 2) whenever a € S2. Hence,

3
Mg(a)=% D (ae)(a el)(a, €)tr(Q;Q; Q).

i,j k=1
We then deduce that the critical point condition for ;1o among a € S? reads
3

(Vang)@ = Y (a ¢/)(a,e")r(Q;Q;Que’ = ra,

i) k=1
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where A € R is a Lagrange multiplier for the constraint a € S?. This is the claim of
the step once we recall that for A, B € H(3, 2) we have

(A, B) = tr(BT A).
Step 2 If a € S? is a critical point of 1o, then we claim that a satisfies the identity
@) 2)
a)a= —a,
no o

where A is the Lagrange multiplier from Step 1, and « is the real number in the
hypothesis QQT = «1(3). To prove this, let us first recall that (11.4) tells us that

3 T
Q=) Qe (¢) Q.
=1

From here we obtain

Z (a,e/)(a,e")Q; Q) = ZQlaa
Jj.k=1
We use this in the claim of Step 1 to deduce that critical points a of ug satisfy
3 .
> (Qi. Qaa” Q))e’ = 1ra.

i,/=1

From here and Corollary 11.9 we obtain
3
. 2A
Y (Qjaa")e' = —a. (11.17)
— o
Now we observe the following:

(a,¢/)(a, e)(Q;, ¢/ ()T>ef

1

3
> (Qiaa)el =
i=1

(a,e/)(a, ) (Q;ek, e/)e’

1

< <
w "”Mm %Mm
Il Il

= (a,e’)(a, e“)(Qre, e/)e’,
k=1

<
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where the last identity is a consequence of (11.5). Recalling the definition of g from
(11.16), this last sequence of identities can be summarized as follows:

3 3
Z(Qi, aa’ Z (no(a)e', a)
i=1 i=1

However, ng(a) € Hirce (3, 2), s0

3 3
Z Ql,aa = Z nQ(a)e a) e = =ng(a)a.

Using this in (11.17) we obtain the claim of this step.
Step 3 We claim there is an R € SO(3) such that Q@ = R QM pr € Hirace (3, 3) has
Q0T = wI(3) and

2
77Q(eal)e1 = " el

To prove this let us start by observing that O =ROM g7 € Hsym (3, 3) follows from
Remark 11.4. ~
Next, if R € 0(3), Q9T =« 1(3), and Q = R QM r, then

00" = ROMpr MrQTRT = RQQTRT =« RIG)RT = I(3).
Next, a direct computation shows that
— pT, .
no()b =R nQ(Rb)Rb.

Since ng(b)b = 2 b, we conclude that n 5 (Rb) Rb = 2 Rb. Finally, the step follows
by choosing R € SO(3) such that Rb = e!.
Step 4 We claim that

0 b —y—a

where y = 2(1—)‘ with the constraints

0=-=2yb, *+d*=y>+ya and y(y +2a) =0.
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To see this, let us write Q = (Q1|Q2|Q3>, and observe that Step 3 tells us that

2Ae1

Qlel = 17Q(e1)e1 = <e’. Since Qj € Hirace (3, 2), we obtain

_ y0 0
Qr=|0a b ,
0b—y—a

for some real numbers a, b € R. From here, we deduce the rest of Q by imposing

the condition Q € Hyyce(3,4). The constraints 0 = —2y b, A+ d? = yz +vyva
~ o~ ~ 2 ~ 2

and y(y + 2a) = 0 follow from imposing the (9, 93) = 0, Ql‘ = )Qz‘ and

~ 2 ~ 2

Qz’ = ‘Q3 , respectively.

Step 5 We now analyze the possible cases for A. We start with the case A = 0. From

Step 4, in this case Q reduces to

~ 00 0 Oab O b—a
Q=10a b a00 b 00
0b—ab00—-a0 O

In this case we define

W v=b+ia = iw
= — = IW.
va? +b?
Observe that the vectors ¢ = (Re(w),Im(w))T, S = (Re(z),Im(z))T, have

(¢f, ¢y = d;j. Define next

0 0
1.1 .2 3
a_e,a_<c2>,a <c3>’

andletb = —«/Lg(a1 +a%+a%). Clearly (a’, a/) = §;;, 50 |b| € S%. A straightforward
computation whoes that

2Va® + b2
nob = ==

In other words, we have found b € S? such that n Q(b) has b as an eigenvector with
nonzero eigenvalue. This is the situation we consider in the next step.

Step 6 We consider here the case A # 0. Let us first observe that if A < 0, we can
always change b by —b. This will change » by —A. Hence, we can actually assume
A > 0. Under this assumption, from Step 4 we obtain

3 y0 0 Oa b 0 b —y—a
Q=|0a b acd b d —c ;
0b—y—-—abd —c—y—a—-c —d
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where y = 20(_/\ From the constraints of Step 4 we also have b = 0, a = —% and
2
2 +d* = - This reduces Q to

[y 0 0 0-%0 0 0-%
d=(0-%0-% ¢ a 0 d -c
00 -5 0 d —c—%5—c—d

Since we also have Q0T = & 1(3), we deduce that y2 =
Observe now that

= (R1[Ry) = (" d d ‘C)

—c —c —d

satisfies RRT = £7(2), and R € Hirace (2, 3). Because of this, we can apply the 2D
recovery prqcedure for such a 2 x 4 tensor. This yields vectors ¢/ e R?, j=2,3,4,
such that (¢’ ¢/) = 3(38;; — 1), and

4 T
j ': .
R; = k§:2jc ) ( ) L j=12

Here {f', 2} is the canonical basis of R? such that

e = <3> and € = (tg)
We then define

. 1 2V2 (0
1 _ al J— _Zal g 2V . | =
a =e, a/ = 3e + 3 <c/>’ j=2,3,4.

A long straightforward computation shows that Q= (Ql 1Oy Q3) has

4
~ . T
Q= Z(e/, ak)ak (ak>
k=1
This completes the proof of Theorem 4.2. O

12 Appendix C. Potential for Bent-Core Liquid Crystals

In this section, we consider the more general potential for tensors Q € Hipace (3, 3)
proposed in Lubensky and Radzihovsky (2002) to model bent-core liquid crystals.



Journal of Nonlinear Science 69

The potential appears in equation (4.4) of Lubensky and Radzihovsky (2002), and in
view of equation (4.5b) of the same paper, it can be expressed as

Q" « B <
W(Q) =— — -9+ Q)% 12.1
Q@ ==—-312 +4i;<Q, Q)) (12.1)
Here, for @ € Hirace (3, 3), we write Q = (Q1]Q2|Q3), where Q; € Hym (3, 2) has
tr(Q;) = 0. Our main result in this section is a rigorous version of a similar statement
in Lubensky and Radzihovsky (2002) as described in the following proposition.

Proposition 12.1 For 8 < —2, the potential W is unbounded from below. For 3 >
—%, B #0, ifa =0, the only global minimizer of W is the tensor Q@ = 0. Assume
now a # 0. For —% < B < 0 the global minimizers of W satisfy the condition that
Q0T is a rank-2 projection and correspond to the MB frames. For 8 > 0, the global
minimizers of W satisfy the condition that QQT is a multiple of the 3 x 3 identity
matrix, and correspond to tetrahedral frames. For B = 0, if « < 0, the global only
minimizer of W is the tensor @ = 0. For B = 0 and o > 0, the set of global minimizers

is the set tensors Q € Hirace (3, 3) that satisfy 1912 = a.

As discussed in Lubensky and Radzihovsky (2002), this proposition indicates that
there is a temperature at which phase transition occurs between two phases—one with
tetrahedral and another with MB symmetry—that can be modeled using the energy of
the type (5.8), but with the potential (12.1) if one were to ignore contributions from
lower moments.

Proof For R € SO(3), define
Ri1R Ri12R Ri13R
Rr=1| RaR RnR R3R
R31R R3zR R33R
We know that for @ € Hiqce (3, 3) we have
R QRITQ € Hirace (3, 3).

Also, a direct computation shows that for any Q € Hyyce(3,3) and any R € SO(3)
we have

W(Q) = W(R QRY).

Since QQT ¢ Hisym (3, 2) and is nonnegative definite, we can find R € SO(3) such
that

A 00
ROOTRT = 02 0 |,
0 0 A3



70 Journal of Nonlinear Science

where 1 ; = |Qj|2 >0,j=1,2,3and |Q|*> = A; + A2 + A3. For this R € SO(3),
and writing Q = R QRT, we have

2

3 3
W(Q)=W(@)=f—t DA Zx gz
j=1 j=1

Next, the fact that @ € Hirace(3, 3) gives us some constraints the A;, j = 1,2,3
must satisfy. To see what these are we let Q € Hice (3, 3), and write it in the form

Q = (91192|Q3), where

a b c b d e c e —(a+d)
Q1—(b d e ) Qz—(d f g ) and 93—( e g (b+f)).
c e —(a+d e g —Mb+)) —(a+d) —-0b+f) —(+g

Recalling the notation A; = |Q; g

, a straightforward computation shows that

A1+A2—TZ§(0 +f)+§(c—g)

and

ha > o 2 2 2
3_2(C+g) +20b+ )"+ 2(a+4d).

From here we obtain

Al —A
P28l | bad 4~ by 0| = 1@, ~f e~ - @ d b+ fret o)l

< ((u-22))" 122)

The fact that Q € Hiaee (3, 3) implies, in summary, that the following inequalities
hold:

3

Ao — A3)? 21
W2 = 23)7 . ) 5/\1<x2+/\3—71) and

A — A3)? 2A
% < <x1 g — —2) (12.3)

A — A2)? 2
(142) <M+)~2——3),

3



Journal of Nonlinear Science 71

Adding these three inequalities, and passing the cross terms all to the right-hand side,
we obtain

AN

3
5
E )? < E(Klkz + A1A3 4+ A2A3).
Jj=1

3
Finally, adding % > ()‘./)2 to both sides of this last inequality, we obtain
j=1

29 3 3 2
=OICHEEE DI I (12.4)
j=1 j=1
We then seek the critical points of
1 (3 2 03 B 3
— N . P 32
(1,42, 33) = 7 ;x, 2;k]+ 4;@,),

under the restrictions that A; > 0, j = 1, 2, 3, and that contained in (12.4).

We first observe that 8 > —% implies that, as max{Aj, A2, A3} — oo under
condition (12.4), we obtain w (A, A2, A3) — o0.

Assume now all the restrictions hold with strict inequalities. Differentiating w with
respect to A ; we obtain

3
dw
22— = E Ai—a+ BAj.
3)»] P

Fori; >0,j=1,2,3, Vo = 0 implies

3
BA; ZOl—Z)»./.
i=1

We deduce then that the critical points A* = (A}, A3, A}) satisfy A] = A5 = A} = ﬁ

In this case, QO7 is a multiple of the 3 x 3 identity matrix, and

3a?
WA A5 A = ——.
(A1, A2, 43) 3+ 8
If one of the A; = 0, say A3 = 0, we have
3 2

2 2

1 o B 5

0(h1.22.0) = Z;xj —EZM+ZZZ(M),
j: j:

J=1
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and the critical point condition for A, = (1], A3, 0) then becomes A3 = 0, A] = A5 =

o
2+ﬂ,and

—202
2+

w5, 25,0) =

=

In this case QQ7 is a multiple of a rank-2 projection.
Next, if two of the A ; = 0, condition (12.4) implies that the third A ; is also 0.
Next, if condition (12.4) holds with equality, w(A1, A2, A3) depends on only one
3

variable, which we may callz = ) A ;- Under this restriction, the minimum value w,

j=I
of wis
2902
Wy = ——.
4(29 4 15p8)

Finally, from all these computations, it is easy to check that the conclusions of the
proposition hold. O
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