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Abstract
Tetrahedral frame fields have applications to certain classes of nematic liquid crystals
and frustrated media. We consider the problem of constructing a tetrahedral frame
field in three-dimensional domains in which the boundary normal vector is included
in the frame on the boundary. To do this, we identify an isomorphism between a
given tetrahedral frame and a symmetric, traceless third-order tensor under a partic-
ular nonlinear constraint. We then define a Ginzburg–Landau-type functional which
penalizes the associated nonlinear constraint. Using gradient descent, one retrieves a
globally defined limiting tensor outside of a singular set. The tetrahedral frame can
then be recovered from this tensor by a determinant maximization method, developed
in this work. The resulting numerically generated frame fields are smooth outside of
one-dimensional filaments that join together at triple junctions.
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1 Introduction

In this paper, we continue with our program that aims to use variational methods for
tensor-valued functions in order to describe frame-valued fields in R

n . Here, a frame
F is a fixed set of m vectors in R

n that satisfies some symmetry conditions, while a
frame-valued field R(x)F assigns a rigid rotation R(x) ∈ SO(n) of F to every point
x ∈ � ⊂ R

n .
Whenever −a ∈ F for all a ∈ F, the frame F of m vectors can be identified with a

frame composed ofm/2 lines. Here of particular interest is a set of n orthogonal lines in
R
n , known as an n-cross. An n-cross field associates an n-cross with every point inR

n .
In Golovaty et al. (2021), we investigated whether it is possible to construct a smooth
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field of n-crosses in�, assuming certain behavior of that field on ∂�. This problem has
received a considerable attention in computer graphics and mesh generation (Vaxman
et al. 2016).

In twodimensions (or on surfaces in three dimensions), quadmeshes canbeobtained
by finding proper parametrization based on a 2-cross field defined over a triangulated
surface (Li et al. 2012).A similar hexahedralmesh generation approach in three dimen-
sions is typically accomplished by constructing a 3-cross field on a tetrahedral mesh
and then using a parametrization algorithm to produce a hexahedral mesh (Kowalski
et al. 2014; Nieser et al. 2011). From a mathematical perspective, the first step in this
procedure requires a 3-cross field in � ⊂ R

3 that is sufficiently smooth and properly
fits to ∂�, e.g., by requiring that one of the lines of the field is orthogonal to ∂�.
Generally, an n-cross field of this type has singularities on ∂� and/or in � due to
topological constraints (Golovaty et al. 2021).

A number of approaches have been proposed to construct a 2- or 3-cross fields
(Beaufort et al. 2017; Bernard et al. 2014; Bommes et al. 2009; Huang et al. 2011;
Kowalski et al. 2014; Li et al. 2012; Viertel and Osting 2019) but of particular interest
to us in Golovaty et al. (2021) was a promising direction identified in Beaufort et al.
(2017), Viertel andOsting (2019) for 2-cross fieldswhere a connection to the harmonic
map relaxation, i.e., asymptotic limits in Ginzburg–Landau theory was noticed. While
this connection is transparent in two dimensions, the appropriate descriptors in three
dimensions, however, were not known until very recently (Chemin et al. 2019; Palmer
et al. 2019). One of our contributions in Golovaty et al. (2021) was to propose a unified
tensor-based approach to constructing n-cross fields that takes advantage of classical
PDE theory.

Our framework in Golovaty et al. (2021) applies in arbitrary dimensions and asso-
ciates an n-cross with a symmetric 4-tensor that satisfies certain trace conditions and
a nonlinear constraint. We relax this constraint by introducing an appropriate penalty
term to obtain a global Ginzburg–Landau-type variational problem for relaxed, tensor-
valued maps. The Ginzburg–Landau relaxation embeds the problem into a global
steepest descent that allows for a new selection principle for the limiting n-cross field
that we were able to explore numerically.

In this paper, we adapt this procedure to optimal generation of tetrahedral frame
fields in Lipschitz domains. Here, a tetrahedral frame T is a set of four position vectors
of the vertices of a tetrahedron in R

3. The frame T can be identified with a constrained
3-tensor and, using the ideas of Golovaty et al. (2021), we develop a scheme for
constructing tetrahedral frame fields using energetic relaxation for 3-tensor-valued
functions. The primary novel feature of our approach is the recovery procedure that
allows for extraction of the tetrahedral frame from a constrained 3-tensor (Theorem
4.2). In fact, our construction gives an isometric embedding of tetrahedral frames into
the space of constrained 3-tensors (Theorem 6.5).

When we constrain a frame field to contain the normal on the boundary for topo-
logical reasons singularities emerge, as is in the case of 3-cross fields (Golovaty et al.
2021). Our variational relaxation approach allows us to observe formation of singular-
ities numerically, Fig. 1, and to study their topological properties. Here, unexpected
features arise as consequence of noncommutativity of the fundamental group of the
target manifold.
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Fig. 1 Different quotients of SO(3) lead to different types of junctions. See Golovaty et al. (2021) for more
details on the SO(3)/O computations and Sect. 8 of this paper for more details on SO(3)/T computations

In particular, unlike the standard Ginzburg–Landau where the number of singular-
ities is dictated by the degree of the boundary data, here we observe local minimizers
with different number of vortices for the same boundary conditions. Further, local
minimizers in three-dimensional domains exhibit one-dimensional singular sets that
meet at triple junctions [as opposed to quadruple junctions in Golovaty et al. (2021)].
These junctions and their structure are another novel feature of our numerical experi-
ments. Investigation of properties ofminimizers of our relaxed problem is a fascinating
challenge for further analysis.

Note that tetrahedral frame fields on � can be written as maps � → SO(3)/T =
SU (2)/2T , where T is the tetrahedral group and 2T the binary tetrahedral group, its
preimage under the coveringmap SU (2) → SO(3). It is well known since the work of
Klein (1884) that the quotient of C

2 by a finite subgroup G of SU (2) can be realized
as an algebraic variety in C

3, using the theory of invariant polynomials. Because
here we are interested in the quotient SU (2)/G which is a closed subset of C

2/G,
the Klein construction would require us to impose additional polynomial constraints.
Rather than use this approach, we instead embed SU (2)/G into an algebraic variety
of a Euclidean space of a large enough dimension so that the resulting polynomial
equations are of order two, the lowest possible for a nonlinear polynomial. As it turns
out, this embedding is into a set that can be endowed with a natural matrix structure
that leads to nice compactness properties in weak topologies, see Golovaty et al. (in
preparation).

Our interest in tetrahedral frame fields represented by third-order symmetric trace-
less tensors is not purely mathematical as they have drawn significant attention from
the physicists since the early 1980s (Brand et al. 2005; Chaudhari and Turnbull 1978;
Liu et al. Oct 2016; Fel Jul 1995; Nelson 1983; Nelson and Toner 1981; Trebin 1984).
As we will discuss in the next section, of particular relevance to this work is model-
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ing of bent-core liquid crystals, where phases with tetrahedral symmetry can arise in
certain temperature regimes.

1.1 Results and Organization of the Paper

We now describe the organization of this paper. Section 2 provides necessary back-
ground and motivation for our work from the modeling of nematic liquid crystals with
symmetries and other physical applications.

In Sect. 3, we start with n+1 vectors, {u j } inR
n that are equally spaced out onS

n−1.
Not only does this include tetrahedral frames, it also includes the two-dimensional
analog of a tetrahedral frame. This analogous frame consists of the position vectors of
vertices of an equilateral triangle with the center of mass at the origin, and we refer to
such a three-pronged shape as an MB frame. MB-frame fields appear naturally when
we discuss traces of tetrahedral frame fields on the boundary of a three-dimensional
domain. Associated with the n + 1 vectors is a symmetric three tensor,

Qi jk =
n+1∑

�=1

u�
i ⊗ u�

j ⊗ u�
k . (1.1)

The rest of Sect. 3 identifies invariants of tensors (1.1): not only are theQ’s symmetric
and traceless, they also satisfy an SVD-type identity,

QQT = λ2n I (n), (1.2)

where I (n) is the n×n identitymatrix andλ2n = (n+1)(n2−1)
n3

, see Proposition 3.3. Iden-
tity (1.2) proves to be a crucial tool, as we will use it to “push” our linear space toward
SO(3)/T . Additionally, we show that these Q’s enjoy an eigenvector–eigentensor
structure, see Proposition 3.6. A particularly useful consequence of the eigenvector–
eigentensor pairing is amechanism to ensure that the normal vector is containedwithin
and MB or tetrahedral frame field,

Q(ν ⊗ ν) = n2 − 1

n2
ν. (1.3)

Suppose that Htrace(n, k) is the set of kth-order tensors in R
n that are symmetric

and traceless, i.e., invariant with respect to permutation of indices and such that a
contraction using the last two indices produces a zero k − 2-order tensor in R

n . In
Sect. 4, we establish two theorems that enable us to recover frames of interest in two
and three dimensions. When n = 2, we prove that

SO(2)/D3 ≡ Htrace(2, 3) ∩
{
QQT = λ22 I (2)

}
, (1.4)

where D3 is the 2π
3 -rotation group. When n = 3, we establish that

SO(3)/T ≡ Htrace(3, 3) ∩
{
QQT = λ23 I (3)

}
, (1.5)
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where T is the tetrahedral group. For tensors in Htrace(3, 3) ∩ {
QQT = 32

27 I (3)
}
, we

also provide an algorithm for computing four vectors of a tetrahedral frame from a
given tensor. These theorems are proved in Sect. 4 and “Appendix B.”

In Sect. 5, we apply our results from Sect. 4 to generate a frame field in Lipschitz
domains. Simple constructions in this section show that requiring the normal vector on
the boundary be included in either an MB or tetrahedral frame induces nonexistence
of a smooth frame field in the interior. To avoid this, we work in the linear subspace
Htrace(n, 3) and push toward the constraint (1.2). Indeed, the relaxation procedure is
defined by generating a sequence,

Qε = arg min
A∈H1

ν (�;Htrace(n,3))

∫

�

1

2
|∇A|2 + 1

ε2

∣∣∣AAT − λ2n I (n)

∣∣∣
2
dx,

where the space H1
ν (�; Htrace(n, 3)) is described earlier in the section. This space

includes constraints to ensure (1.3) holds, or is satisfied in the limit. In later sections,
we examine the limiting Qε via computational experiments and show that MB and
tetrahedral frame fields are smooth outside of co-dimension 2 singular sets.

In Sect. 6, we develop a connection between tetrahedral frames and quaternions in
S3/2T , where S3 are the unit quaternions and 2T is a specific finite subgroup. We
show that a natural map from quaternions to symmetric traceless tensors induces an
isometric embedding of the space of tetrahedra. We also compute the fundamental
group of the space of tetrahedra. As the group is non-abelian, the free homotopy
classes are characterized by the conjugacy classes of the fundamental group.

In Sect. 7,we provide some global geometric information on tetrahedral framefields
in smooth three-dimensional domains. In particular, an adaptation of the classical
Poincare–Hopf theorem to frame fields, see Ray et al. (2006), provides a constraint on
the total index of the tangential MB field induced by the requirement that the normal
vector being contained in the tetrahedral frame field on boundary. If one defines the
index of the tangential MB field on the surface as the angular change about a singular
point divided by 2π , then this results in a formula,

∑

x∈A

i(x) = 2 − 2g, (1.6)

where i(x) is the index of the zero, A is the set of singularities of the tangential MB
field on the surface, and g is the genus of the bounding surface, see Remark 7.4.
Applying (1.6) to a ball in 3D, one finds i(x) = 6, which corresponds to the number
of boundary point singularities in simulation (a) in Fig. 1.

Section 8 describes typical examples of tetrahedron-valued critical points for both
two- and three-dimensional energies obtained numerically via gradient flow. In numer-
ical simulations, the trace of each competitor on the boundary of the domain is assumed
to contain the normal to the boundary. Topological obstructions associated with these
boundary conditions give rise to formation of both boundary point- and interior line
singularities.

In prior sections, we have looked at energy minimizing sequences in which
the Dirichlet energy is appended with a particular fourth-order nonlinear potential
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W̃ (Q) = 1
ε2

|QQT − λ2n I (n)|2 that pushes our linear space toward a tetrahedral (or
MB) frame field. In “Appendix C,” we explore the connection between our work and
a more general fourth-order potential for Htrace(3, 3) introduced in Lubensky and
Radzihovsky (2002) to describe bent-core nematic liquid crystals. This potential,

W (Q) = |Q|4
4

− α

2
|Q|2 + β

4

3∑

i, j=1

〈Qi ,Q j 〉2.

allows for much richer sets of minimizers. In Appendix C, we characterize some
features of energy minimizers with this more general potential in terms of the α and
β. In fact, we find both MB and tetrahedral frames in three-dimensional domains,
depending on the values of the parameters.

2 Bent-Core Nematic Liquid Crystals

A liquid crystal is a state of matter intermediate between a solid and a liquid in
that it retains some degree of order characteristic of a solid, yet in can flow like a
liquid. For example, a nematic liquid crystal—typically composed of molecules that
have highly anisotropic shapes—possesses orientational order for a certain range of
temperatures or concentrations. Two other common types of liquid crystals include
cholesterics formed by screw-shaped molecules that exhibit orientational order with a
spontaneous twist and smecticswhere, in addition, to orientational order, themolecules
tend to assemble into layers.

Suppose that a nematic occupies the domain � ⊂ R
3. Locally, orientational order

can be described by a parametrized probability density function f : �×S
2 → R that

measures the likelihood that a liquid crystallinemolecule near x ∈ � is orientedwithin
a given solid angle inS

2. For nematics, the probability of finding the head or the tail of a
molecule pointing in a given direction is always the same, hence f (x,−m) = f (x,m)

for every m ∈ S
2 and x ∈ �.

A practically useful approach to describe a probability distribution over S
2 is to gen-

erate its moments over the sphere. In classical Landau–de Gennes theory for nematics,
the invariance of f (x, ·) with respect to inversions guarantees that the first nontrivial
moment of f (x, ·) for every x ∈ � is the second moment

Q(x) :=
〈
m ⊗ m − 1

3
I (3)

〉

f (x,·)
.

Here, the second-order tensor Q(x) is symmetric and traceless and

〈h〉 f (x,·) :=
∫

S2
h(m) f (x,m) dm,
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for any map h defined on S
2. The liquid crystal is in the uniaxial nematic phase if

exactly two eigenvalues of Q, e.g., λ1, λ2 are equal so that

Q = s

(
n ⊗ n − 1

3
I (3)

)
, (2.1)

where s = 3
2λ3 is the degree of orientation of the nematic, n is the nematic director

and (λ3,n) is an eigenvalue–eigenvector pair forQ. On the other hand, when Q = 0,
the liquid crystal has no orientational order and it is said to be in the isotropic phase.
The tensor Q is the order parameter of the Landau–de Gennes variational theory, in
which equilibrium configurations of a nematic liquid crystals are assumed tominimize
the (nondimensional) energy

E[Q] :=
∫

�

[
F (Q,∇Q) + 1

δ2
W (Q, τ )

]
dx . (2.2)

In this expression, F (Q,∇Q) is the orientational elastic energy, W (Q, τ ) is the
potential energy, τ is temperature and 0 < δ � 1 is the nematic coherence length. For
a thermotropic nematic, there exists a critical temperature τc such thatW is minimized
by the isotropic phase Q = 0 when τ > τc while it is minimized by any Q of the form
(2.1) in the manifold of nematic states when τ < τc. We say that the liquid crystal
undergoes an isotropic-to-nematic phase transition at τc.

The most striking features of a liquid crystal in a nematic phase are defect patterns
of points, lines and walls that can be observed optically under crossed polarizers.
Mathematically, nematic defects are topological singularities of minimizers of (2.2),
associated with the nonlinear constraint W (Q, τ ) = minQ W (Q, τ ). This constraint
ensures that (2.1) holds approximately on the entire domain�, except for a singular set
of a small measure (determined by the size of δ) where the tensor Q is either biaxial or
isotropic. Understanding singularities of minimizers of the Landau–de Gennes energy
has been a subject of extensive investigations in the last decade (Alama et al. 2021;
Canevari 2015, 2017; Canevari et al. 2016; Canevari and Zarnescu 2020a, b; Ceuca
et al. 2021; Di Fratta et al. 2016, 2020; Golovaty and Montero 2014, 2022; Henao
and Majumdar 2012; Henao et al. 2017; Ignat et al. 2015, 2016a, b, 2020a; Kitavtsev
et al. 2016; Majumdar and Zarnescu 2010; Nguyen and Zarnescu 2013).

A relatively recent discovery of novel liquid crystalline phases formed by bent-
core, banana-shaped molecules (Jákli et al. 2018; Jákli 2013) prompted modifications
to the Landau–de Gennes theory to account for symmetries of these phases that do not
exist in standard nematics (Brand et al. 2005; Pleiner and Brand 2014; Lubensky and
Radzihovsky 2002; Radzihovsky and Lubensky Apr 2001). For example, it has been
shown in Lubensky and Radzihovsky (2002) that an appropriate continuum theory
in the absence of positional order should depend on the first three moments of an
orientational probability distribution of V-shaped bent-core molecules. To this end,
suppressing the dependence on x , recall that the probability density function can be
expanded in terms of powers ofm by using the Buckingham’s formula (Buckingham
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1967; Turzi 2011) written as

f (m) = 1

4π

(
1 +

∞∑

k=1

(2k + 1)!!
k!

〈
m⊗k

〉

f
· m⊗k

)
, (2.3)

where

m⊗k = m ⊗ · · · ⊗ m︸ ︷︷ ︸
k

,

the quantity A is the symmetric traceless part of the tensor A and “·” denotes tensor
contraction. By isolating the first three terms in (2.3), we obtain

f (m) = 1

4π

(
1 + 3p · m + 15

2
Q · (m ⊗ m) + 35

2
T · (m ⊗ m ⊗ m) + . . .

)
.

(2.4)

In this expression, the first moment p is the polarization vector, the second moment
Q is the Q-tensor defined in (2.1) and the third moment describing tetrahedratic order
is given by the third-order tensor T with components

Ti jk :=
〈
mim jmk − 1

5

(
miδ jk + m jδik + mkδi j

)〉

f
.

Note that at the fourth order, we retrieve a tensor that is useful in describing an ordering
with cubic symmetry considered in Chemin et al. (2019), Golovaty et al. (2021).

The appropriate Landau–de Gennes free energy functional can be constructed as
a rotationally invariant power series expansion around the isotropic state in the order
parameters p, Q and T and their gradients. The contribution from the gradients of
the order parameter fields is the elastic energy while the remaining terms that do not
vanish in a spatially homogeneousmaterial comprise the Landau–deGennes potential.
The coefficients of this potential, in general, are temperature-dependent and thus they
control the structure of the minimal set of the potential, or the phase in which the
material is observed at a given temperature. Given that the bent-core liquid crystals
are described by three order parameters, there is a large number of possible phases
that formvia interactions betweendifferentmaterial symmetries. For example, nematic
order described by the standard second-order tensor Q may induce tetrahedratic order
described by the third-order tensor T and vice versa via appropriate coupling terms
(Lubensky and Radzihovsky 2002). If one were to neglect the contributions from
lower-order moments p and Q, the form of the Landau–de Gennes energy for bent-
core liquid crystals for third-order tensor fields (Lubensky and Radzihovsky 2002)
with the potential

W (T ) = |T |4
4

− α

2
|T |2 + β

4

3∑

i, j=1

〈Ti , T j 〉2
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is a more complex version of the relaxed energy functional considered in this work.
Because both functionals would require identical algebraic and analytical tools to
obtain rigorous mathematical results, the present work can serve as a first step toward
understanding of the Landau–de Gennes models for third-order tensors in higher
dimensions. Note that recent analysis results (Bauman and Phillips 2012; García-
Cervera et al. 2018; Giorgi and Yousef 2015; Xu et al. 2018) have not considered
phases of bent-core liquid crystals with tetrahedral symmetry.

3 Symmetric, Traceless Third-OrderQ-Tensors

3.1 Notation

We will define a series of sub and affine spaces based on a set of vectors u j ∈ R
n . For

a given vector u j ∈ R
n , we can write it component-wise, u j = (u j

1, . . . , u
j
n)

T . Let
e1, . . . , en denote the canonical basis in R

n . Let V(n,R) be the set of all n-vectors
with entries from a ringR. Wewill frequently drop n when the dimension of the vector
is clear. In particular, V(n, R) = R

n .
Let M(m, n,R) be the set of all m × n matrices with entries from a ring R. In

particular, M(m, 1,R) = V(m,R). For a square n × n matrix with entries in R,
we write M(n,R). We denote elements A ∈ M(m, n, R) with capital letters. One
particularly important class of matrices for us are projections P� ∈ M(n, n, R) for
a unit vector u� ∈ R

n with P�
jk = u�

j u
�
k = (u� ⊗ u�) jk . We also denote the n × n

identity matrix, I (n).
We next define generic kth-order tensors

H(n, k) = R
n ⊗ · · · ⊗ R

n
︸ ︷︷ ︸

k times

with elements A ∈ H(n, k) that have indices Ai1i2...ik for i j ∈ {1, . . . , n} with script
letters. We finally define symmetric k-order tensors as

Hsym(n, k) = {A ∈ H(n, k) such that Aσ(i1...ik ) = Ai1...ik for all σ ∈ Sk},

where Sk is the group of permutations of k-length words. Finally, we define set of
traceless, symmetric k-order tensors

Htrace(n, k) = {A ∈ Hsym(n, k) such that
n∑

j=1

Aa1a2...ak−2 j j = 0 for a� ∈ {1, . . . , n}}. (3.1)

Given this notation, we now describe the specific class of third-order tensors that we
will study.



Journal of Nonlinear Science 11

Remark 3.1 We define an especially useful bijection QQ : H(n, 4) → H(n2, 2),
where for any choice i, j, k, � ∈ {1, . . . , n},

(QQ)(i−1)n+k,( j−1)n+� = Qi jk�. (3.2)

This bijection identifies a canonical element ofH(n2, 2) = M(n2, n2)with an element
of H(n, 4), and vice versa. Given this bijection, we will frequently refer to elements
in H(n, 4) and H(n2, 2) interchangeably.

Likewise, we define the bijection QQ : H(n, 3) → M(n, n2) by

(QQ)i,( j−1)n+k = Qi jk, (3.3)

for i, j, k ∈ {1, . . . , n}. As with the prior definition, we will refer to elements in
H(n, 3) and M(n, n2) interchangeably.

3.2 Elements ofHtrace(n, 3) Generated by a Framewith n + 1-Hedral Symmetry

We say a collection of vectors {u�}n+1
�=1 ∈ S

n−1 ⊂ R
n has “n + 1-hedral symmetry” if

the following condition holds:

〈u j ,uk〉 = −1

n
+ n + 1

n
δ jk for all j, k ∈ {1, . . . , n + 1}. (3.4)

Such collections satisfy the following result.

Lemma 3.2 Suppose we have n + 1 vectors {u j } satisfying (3.4), then

any n of the vectors u j , j = 1, . . . , n + 1 are linearly independent. (3.5)

In particular, the vectors {u j }n+1
j=1 span R

n. Furthermore,

n+1∑

�=1

u� = 0, (3.6)

1

n + 1

n+1∑

�=1

P� = 1

n
I (n) (3.7)

where Pk denotes the projection matrix generated by uk .

Proof To prove 3.5 we consider for example u j , j = 1, . . . , n and consider scalars
α j ∈ R such that

α1u1 + · · · + αnun = 0.
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Taking the dot product of this with u j , j = 1, . . . , n, gives

0 = α1 − 1

n
α2 − · · · − 1

n
αn,

...

0 = −1

n
α1 − · · · − 1

n
αn−1 + αn .

This can be written in matrix form as follows:

0 =
(
n + 1

n
I (n) − 1

n
1n1Tn

)
⎛

⎜⎝
α1
...

αn

⎞

⎟⎠ ,

where we use the notation 1n =
⎛

⎜⎝
1
...

1

⎞

⎟⎠ ∈ R
n . It is easy to check that 1

n 1n1
T
n is a rank-

1, orthogonal projection matrix. Hence, the matrix n+1
n I (n) − 1

n 1n1
T
n is invertible. It

follows that α1 = · · · = αn = 0, so u j , j = 1, . . . , n are linearly independent.
Next, since {u�} span R

n then ek = ∑n+1
j=1 α jku j for some constants α jk . This

implies

〈
n+1∑

�=1

u�, ek
〉

=
〈
n+1∑

�=1

u�, (

n+1∑

j=1

α jku j )

〉
=

n+1∑

j=1

α jk

(
n+1∑

�=1

〈
u j ,u�

〉)
(3.4)= 0.

Finally, we choose w ∈ R
n . Since the frame {u�} spans R

n then (3.6) implies we
can write w = ∑n

j=1 a ju j for unique constants {a j }. Therefore,

n+1∑

�=1

P�w =
n∑

�=1

〈
(

n∑

j=1

a ju j ),u�

〉
u� −

〈
(

n∑

j=1

a ju j ),un+1

〉
n∑

i=1

ui

(3.4)=
n∑

�=1

⎛

⎝a� − 1

n

∑

1≤ j≤n, j �=�

a j

⎞

⎠u� + 1

n

⎛

⎝
n∑

j=1

a j

⎞

⎠
n∑

�=1

u� = n + 1

n
w.

��
We associate with these vectors a third-order tensor Q ∈ Hsym(n, 3), defined as

Qi jk =
n+1∑

�=1

u�
i (P

�) jk =
n+1∑

�=1

u�
i u

�
j u

�
k . (3.8)
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For simplicity, throughout this section we write Qi = ∑n+1
�=1 u

�
i P

� to denote the i th
n × n submatrix of Q. This tensor Q generated by a set of n + 1 vectors such that
(3.4) and (3.5) hold, satisfy the following identities:

Proposition 3.3 Given {u j }n+1
j=1 satisfying (3.6) and let Q be defined as in (3.8) then

the following holds:

trQ� = QI (n) = 0, (3.9)

QQT = (n + 1)(n2 − 1)

n3
I (n), (3.10)

Quk = n + 1

n

(
Pk − 1

n
I (n)

)
, (3.11)

QPk = n2 − 1

n2
uk . (3.12)

Proof First we have from (3.6),

trQi =
n+1∑

�=1

u�
i tr P

� =
n+1∑

�=1

u�
i = 0,

which proves (3.9). To prove (3.10) we write

QQT =
n∑

�=1

Q2
� =

n+1∑

�=1

n+1∑

m=1

(
∑

k=1

u�
ku

m
k )P�Pm =

n+1∑

�=1

n+1∑

m=1

〈
u�,um

〉2
(u� ⊗ um)

=
n+1∑

�=1

P� + 1

n2
∑

j<k

u j ⊗ uk + uk ⊗ u j ,

and since 0
(3.6)= (u1 + · · · + un+1) ⊗ (u1 + · · · + un+1) = ∑n+1

�=1 P� + ∑
j<k u

j ⊗
uk + uk ⊗ u j then

QQT =
(
1 − 1

n2

) n+1∑

�=1

P� (3.7)= (n + 1)(n2 − 1)

n2
I (n),

which implies (3.10). Next, we prove identity (3.11),

Quk =
n+1∑

�=1

〈
P�u�,uk

〉
(3.4)= Pk − 1

n

∑

� �=k

P�

(3.7)= Pk − 1

n

(
n + 1

n
I (n) − Pk

)
= n + 1

n
Pk − n + 1

n2
I (n).

Finally, (3.12) follows directly from (3.11). ��
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One simple consequence of (3.9) is that the tensors defined by (3.8) live in
Htrace(n, 3).

3.3 Linear Algebraic Results forHsym(n, 3) andHtrace(n, 3)

Our first results provide a minimal representation for the unknowns in our space of
symmetric, trace-free 3-tensors in n dimensions. This will be used in later sections for
numerically computing tetrahedral frame fields.

Lemma 3.4 Let n denote the number of variables then the number of uniquemonomials
in Htrace(n, 3) is

n(n + 4)(n − 1)

6
. (3.13)

Proof Note that the number of monomials of degree 3 of n variables is
(3+n−1

n−1

)
. There

are additionally n constraints, since trQ j = 0, so the total number of unique elements
is

(
3 + n − 1

n − 1

)
− n = n(n + 4)(n − 1)

6
.

��
We conclude with a few results on vector / matrix pairings that our tensors satisfy.

We will discuss these identities in the context of eigentensor–eigenvector pairings in
Sect. 4.2. The following result was established by Qi (2017) in the case of Hsym(3, 3).
We generalize the result to arbitrary dimensions here.

Proposition 3.5 LetQ ∈ Hsym(n, 3) with n nonzero singular values. There are matri-
ces Bk ∈ Hsym(n, 2), k = 1, . . . , n, unit vectors fk ∈ R

n, k = 1, . . . , n, and scalars
λk ∈ R, k = 1, . . . , n, such that

〈Bi , B j 〉 = 〈f i , f j 〉 = δi j ,

n∑

k=1

〈Bk,Qk〉ek = λkfk,

n∑

k=1

〈fk, ek〉Qk = λk B
k,

and

Q =
n∑

k=1

λkfk
(
XBk

)T
.
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Proof Let us first notice that QQT ∈ Hsym(n, 2), so there is R ∈ O(n) such that

QQT = RDRT ,

where D is a diagonal matrix. Furthermore, QQT is nonnegative definite. Hence, we
can call the elements of its diagonal

(λ1)
2 ≥ · · · ≥ (λn)

2 > 0,

due to the assumption on the singular values. Let now

RR =
⎛

⎜⎝
R11R . . . R1n R

...
. . .

...

Rn1R . . . Rnn R

⎞

⎟⎠ ,

and define

S = RTQRR .

By construction, S ∈ Hsym(n, 3), and if we write S = (S1 . . . Sn), then Sk ∈
Hsym(n, 2), and

〈S i ,S j 〉 = (λi )
2δi j .

By the first claim of Proposition 8.1 of the main draft, we have

S =
n∑

k=1

ek(XSk )
T ,

so

Q =
n∑

k=1

Rek(XSk )TRT
R .

To finish the proof, we remember that equation 8.7 of the main draft tells us that

RRXSk = XRSk RT .

Defining fk = Rek , and Bk = RSk RT , we obtain the conclusion of the proposition.
��

If we consider three tensors generated by (3.8) via n + 1 vectors satisfying (3.6),
then we can get explicit eigenvector–eigentensor pairs.
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Proposition 3.6 For every n ≥ 2, there exists an n × (n + 1) matrix, Cn such that the
following holds. For any set of n+ 1 unit vectors in R

n, {u j }n+1
j=1, that satisfy the inner

product condition (3.4), and its associated 3-tensor Q ∈ Htrace(n, 3) generated by
these u j ’s via (3.8). Let Q = (Q1| · · · |Qn) where the Q j ∈ Htrace(n, 2) are defined
by

Q j =
n∑

k=1

〈uk, e j 〉uk(uk)T .

If we denote An the n × (n + 1) matrix whose columns are the vectors {u j }n+1
j=1. Then,

the matrix

R = n

n + 1
AnC

T
n ∈ O(n)

is orthogonal, and An = RCn. Letting fk = Rek , k = 1, . . . , n, and

Bk = 1

λn

n∑

j=1

〈fk, e j 〉Q j ,

where

λn =
(

(n2 − 1)(n + 1)

n3

) 1
2

,

then, the vectors fk along with the tensors Bk, k = 1, . . . , n are eigenvector–
eigentensor pairs for Q in the sense of Qi (see Remark 3.7). In particular,

〈f j , fk〉 = 〈B j , Bk〉 = δ jk,

n∑

i=1

〈Bk,Qi 〉ei = λnfk, and
n∑

j=1

〈fk, e j 〉Q j = λn B
k .

Finally, one can recover the 3-tensorQ from the eigenvector–eigentensor pairs, in the
sense that

Qi =
n∑

j=1

〈f j , ei 〉B j ,

for i = 1, . . . , n.

The proof of this proposition can be found in “Appendix A.”
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Remark 3.7 When n = 3, the vectors {r j }3j=1 and tensors {V j }3j=1 form eigenvector–
eigentensor pairs that are identical to those of Qi:

Qr j = σV j

QV j = σr j
〈
r j , rk

〉
=
〈
V j , V k

〉
= δ jk,

(3.14)

where the eigenvalue σ = −
√

32
27 .

3.4 Rotations and Tetrahedral Frames

To conclude this section, we introduce two canonical tetrahedral frames that will be
utilized below: {u j

0}4j=1 and {v j
0}4j=1. The first set of vectors includes a vector aligned

with e3:

u10 ≡
⎛

⎝
0
0
1

⎞

⎠ , u20 ≡
⎛

⎜⎝

√
8
9
0

− 1
3

⎞

⎟⎠ , u30 ≡

⎛

⎜⎜⎝

−
√

2
9√

2
3

− 1
3

⎞

⎟⎟⎠ , u40 ≡

⎛

⎜⎜⎝

−
√

2
9

−
√

2
3

− 1
3

⎞

⎟⎟⎠ .

There is an additional set of canonical vectors typically associated with four vertices
on a cube:

v10 ≡ 1√
3

⎛

⎝
1
1
1

⎞

⎠ , v20 ≡ 1√
3

⎛

⎝
1

−1
−1

⎞

⎠ , v30 ≡ 1√
3

⎛

⎝
−1
1

−1

⎞

⎠ , v40 ≡ 1√
3

⎛

⎝
−1
−1
1

⎞

⎠ , (3.15)

In both cases,
〈
u j
0,u

k
0

〉
=
〈
v j
0, v

k
0

〉
= 4

3δ jk − 1
3 , and so the corresponding three tensors

Q(u j
0) orQ(v j

0) enjoy the results of Proposition 3.3. One can rotate the set of vectors

{v j
0} into {u j

0} with the rotation matrix,

R0 ≡ 1√
24

⎡

⎣
4 −2 −2
0 2

√
3 −2

√
3√

8
√
8

√
8

⎤

⎦ .

More generally, we can rotate into any tetrahedral configuration on S
2 from either

canonical set of tetrahedral vectors. In particular, uσ( j) = Rv j
0 for a rotation matrix,

R = R(u j ), and permutation operator on four elements, σ . The corresponding three-
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tensor satisfies

Qi jk(u�) =
4∑

�=1

u�
i u

�
j u

�
k

=
4∑

�=1

∑

p,q,r

(Ripv
�
0,p)(R jqv

�
0,q)(Rkrv

�
0,r ) =

3∑

p,q,r=1

Wi jkpqrQpqr (v0).

where

Wi jkpqr = Rip R jq Rkr

is an element of H(3, 6). We will use this rotational perspective in the proof of the
recovery.

4 Recovery of n + 1-Hedral Frame in n = 2, 3 Dimensions

In this section, we show the converse of results in Sect. 3.2, namely that elements in
Htrace(n, 3) with a specific nonlinear constraint produce unique n + 1-hedral frame
fields.

4.1 Tensors inHtrace(2, 3) andMB Frames

Focusing on n = 2, we show that the identities developed in Sect. 3.2 are necessary
and sufficient to uniquely describe the associated 2 + 1-frame. These frames are
characterized by three planar vectors with equal 2π

3 -angles between. Given the shape,
they are commonly referred to asMercedes-Benz frames, though we will refer to them
as MB frames. Given its structure, it is sufficient to provide a single angle in [0, 2π

3 )

to fully characterize the frame. Our result in this subsection is

Theorem 4.1 The following diffeomorphism holds:

SO(2)/D3 ≡ Htrace(2, 3) ∩
{
QQT = 9

8
I (2)

}
, (4.1)

where D3 is the
2π
3 -rotation group.

Proof Consider three vectors that are 2π
3 rotations of each other. If we let

R 2π
3

=
(

− 1
2 −

√
3
2√

3
2 − 1

2

)
and R 4π

3
=
(

− 1
2

√
3
2

−
√
3
2 − 1

2

)
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denote 2π
3 and 4π

3 rotation, and if θ denotes the angle off the x-axis, then anMB frame
can be described by three vectors

u1 =
(
cos(θ)

sin(θ)

)
, u2 = R 2π

3

(
cos(θ)

sin(θ)

)
, u3 = R 4π

3

(
cos(θ)

sin(θ)

)
. (4.2)

Consequently, ui · u j = − 1
2 + 3

2δi j . Recalling our definition Qi jk = ∑3
�=1 u

�
i u

�
j u

�
k,

then Proposition 3.3 and Lemma 3.4 imply Q is a symmetric, traceless 3-tensor with
two unique elements, which implies it can be written as

Q ≡
(
q1 q2 q2 −q1
q2 −q1 −q1 −q2

)
, (4.3)

whereQQT = 9
8 I (2). Since (cos(θ), sin(θ))T is part of the frame, then (3.12) implies

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)(
q1
q2

)
= 3

4

(
cos(θ)

sin(θ)

)
.

As a consequence, q1 = 3
4 cos(3θ), q2 = 3

4 sin(3θ), and so

Q ≡
( 3

4 cos(3θ) 3
4 sin(3θ) 3

4 sin(3θ) − 3
4 cos(3θ)

3
4 sin(3θ) − 3

4 cos(3θ) − 3
4 cos(3θ) − 3

4 sin(3θ)

)
. (4.4)

Tensor (4.4) recovers the expected threefold symmetry of theMB frame in two dimen-
sions, and it also provides an explicit representation for boundary alignment of a frame
field, as will be discussed later.

We now consider the converse. Suppose Q ∈ Htrace(2, 3) with QQT = 9
8 I (2)

then the representation (4.3) and its nonlinear constraint implies 2q21 + 2q22 = 9/8.
Consequently,

q1 = 3

4
cos(φ) and q2 = 3

4
sin(φ) (4.5)

for some angle φ. Now, assuming that some vector (cos(θ), sin(θ))T is part of the MB
frame, and if arg : R

2\{0} �→ [0, 2π) returns the unique angle in [0, 2π) associated
with the ordered pair off the x-axis, then (4.4) implies

θ = 1

3
arg(q1, q2). (4.6)

Therefore, our tensor Q is determined by a unique angle θ ∈ [0, 2π
3 ), and since that

angle retrieves the other two vectors by 2π
3 and 4π

3 rotations of the vector associated
with (4.6), we retrieve the full MB frame. ��
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4.2 Tensors inHtrace(3, 3) and Tetrahedral Frames

We turn to n = 3 and show our the identities are necessary and sufficient to uniquely
describe an tetrahedral frame. Our result is

Theorem 4.2 We have the following diffeomorphism:

SO(3)/T ≡ Htrace(3, 3) ∩
{
QQT = 32

27
I (3)

}
, (4.7)

where T is the tetrahedral group.
More explicitly, for every Q ∈ Htrace(3, 3) ∩ {

QQT = 32
27 I (3)

}
there are vectors

b j ∈ S
2, j = 1, . . . , 4, such that

〈bi ,b j 〉 = 1

3

(
4δi j − 1

)
,

and such that

Q =
4∑

j=1

b j
(
Xb j(b j)

T

)T
.

The four vectors b1, . . . ,b4 are the four unique maximizers of

μQ(a) = det

⎛

⎝
3∑

j=1

〈e j , a〉Q j

⎞

⎠ . (4.8)

Proof Given four tetrahedral vectors, the corresponding tensorQ lives inHtrace(3, 3)∩{
QQT = 32

27 I (3)
}
due to our results in Sect. 3. The converse is much more involved,

and its proof can be found in “Appendix B.” ��

Remark 4.3 Note that in Gaeta and Virga (2019) eigenvalues and eigenvectors in the
sense of Qi (2017) were obtained for third-order symmetric traceless tensors by max-
imizing the so-called octupolar potential

�(x) = Qi jk xi x j xk .

The potential � is different from μQ(a) in Theorem 4.2. Both � and μQ(a) have
exactly the same maximizing set whenQ ∈ SO(3)/T ; however, the maximizing sets
no longer coincide for Q /∈ SO(3)/T .
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5 Ginzburg–Landau Relaxation to the Appropriate Variety in 2 and 3
Dimensions

SinceMBand tetrahedral framefields can be identified by nonlinear sets inHtrace(n, 3)
for n = {2, 3}, we propose a Ginzburg–Landau relaxation toward these constraints.
This procedure leads to a direct method for generating these frame fields on Lipschitz
domains.

5.1 MB Frames: SO(2)/D3 ≡ Htrace(2, 3) ∩ {QQT = 9
8 I(2)}

MB-frame fields are an example of an n-direction field, in which each point in domain
or tangent to a surface (see Sect. 7) is assigned n evenly spaced vectors, see the review
article (Vaxman et al. 2016) for background on this topic. We now show how our
framework generates an MB frame on a two-dimensional domain, outside of small
number of singular sets and reduces to methods similar to those found in Beaufort
et al. (2017), Viertel and Osting (2019) for 2-cross fields.

By Theorem 4.1, we can uniquely represent our MB frame field by an element
of Htrace(2, 3) ∩ {QQT = 9

8 I (2)}. However, not all maps with boundary data in
{QQT = 9

8 I (2)} extend smoothly into the interior.
In particular from Theorem 4.1 we let

Q ≡
(
q1 q2 q2 −q1
q2 −q1 −q1 −q2

)
,

and if QQT = 9
8 I (2), then (cos(3θ), sin(3θ)) = 4

3 (q1, q2) where θ = 1
3 arg(q1, q2).

Therefore, our MB frame can be generated by determining angle θ ∈ [0, 2π
3 ) and

computing the other two vectors by 2π
3 and 4π

3 rotations of the vector associated with
θ .

Definition 5.1 Let A : U �→ TU/ ∼ be a map with A(x) = [(x, v)] with v �= 0
except at isolated points, and (x, v) ∼ (x, e2π i/nv) for some n ∈ N. For a simple
closed curve γ : [0, 1] → U not meeting any of the zeroes, we define the index of
A on γ by finding a continuous lifting via the universal cover, θ : [0, 1] → R, with
v
|v| = eiθ and setting

#(A, γ ) = 1

2π
(θ(1) − θ(0)).

The index of an isolated zero a is defined as that of A on any closed, Jordan curve
γ : [0, 1] → U surrounding a (in a counter clockwise manner) and no other zeroes.
We denote the index about this a as

i(a) = #(A, γ ).
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It is standard that the index just defined takes values in 1
nZ, compare Hopf (1983, p.

108) for the case n = 2. We often use the words index, degree and winding number
interchangeably.

For this reason, instead of looking for smooth extensions of boundary data, we
relax toward SO(2)/D3 using the variety associated with this quotient. In particular,
we look for Q(x) ∈ H1(�; Htrace(2, 3)) such that QQT = 9

8 I (2) is satisfied on the
boundary, and the normal is a part of anMB frame.We can, therefore, define the space

H1
ν (�; Htrace(2, 3)) =

{
A ∈ H1(�; Htrace(2, 3)) such that A(ν ⊗ ν) = 3

4
ν on ∂�

}
,

i.e., the normal, ν, is part of theMBframe. If the normal ν = (cos(θ(x)), sin(θ(x)))T is
smoothly defined on the boundary, it induces nontrivial topology in Q|∂�, due to (4.4),
and this can preclude globally definedMB-frame fields. In particular, by the constraint
we can set (q1, q2) = 3

4 (u1, u2) = 3
4u with u ∈ S

1 and u = (cos(3θ), sin(3θ)) ≡ g
on ∂�. Setting

H1
g (�; S

1) = {v ∈ H1(�; S
1) such that v|∂� = g},

then we can try to minimally extend the boundary data into the interior subject to (4.4),
which entails minimizing

min
Q∈H1(�;Htrace(2,3))

QQT = 9
8 I (2)

ν|∂�∈Q

1

2

∫

�

|∇Q|2 dx = min
u∈H1

g (�;S1)
9

8

∫

�

|∇u|2 dx .

However, by classical arguments H1
g (�; S

1) = ∅ for any domain topologically equiv-
alent to a disk.

To avoid such problems, we relax toward the manifold Htrace(2, 3) ∩ {QQT =
9
8 I (2)}. In particular we take a sequence Qε ∈ H1(R2, Htrace(3, 2)) and penalize the
distance from the variety {QQT = 9

8 I (2)} by looking for minimizers of the associated
Ginzburg–Landau functional,

E2d
ε (A) ≡ 1

2

∫

�

|∇A|2 + 1

ε2

∣∣∣∣AAT − 9

8
I (2)

∣∣∣∣
2

dx . (5.1)

We then consider a sequence

Qε = arg min
A∈H1

ν (�;Htrace(2,3))
E2d

ε (A)

subject to the boundary conditions that have normal as a part of the MB frame which,
in turn, induces the 3θ dependency.

The condition that competitors on the boundary are MB frames containing the
normal to ∂� can also be enforced in a weak sense by introducing the surface energy



Journal of Nonlinear Science 23

term that penalizes deviations from this condition. With the help of (3.12), the surface
energy can be taken in the form

∫

∂�

{
1

δ21

∣∣∣∣A (ν ⊗ ν) − 3

4
ν

∣∣∣∣
2

+ 1

δ22

∣∣∣∣AAT − 9

8
I (2)

∣∣∣∣
2
}

dS, (5.2)

so that the energy functional is

E2d
ε,δ1,δ2

(A) ≡ 1

2

∫

�

|∇A|2 + 1

ε2

∣∣∣∣AAT − 9

8
I (2)

∣∣∣∣
2

dx

+
∫

∂�

{
1

δ21

∣∣∣∣A (ν ⊗ ν) − 3

4
ν

∣∣∣∣
2

+ 1

δ22

∣∣∣∣AAT − 9

8
I (2)

∣∣∣∣
2
}

dS. (5.3)

The interplay between the parameters δ1, δ2 and ε will be discussed in Sect. 5.4 in the
case of tetrahedral frames.

5.2 Tetrahedral Frames: SO(3)/T ≡ Htrace(3, 3) ∩ {QQT = 32
27 I(3)}

We now turn our attention to foliating a Lipschitz domain with tetrahedral frame
fields. Using Theorem 4.2, this is equivalent to looking for harmonic maps in
H1(�; Htrace(3, 3) ∩ {QQT = 32

27 I (3)}). However, as in the 2D problem, this mani-
fold typically generates singularities due to boundary conditions, and so we will use
a harmonic map relaxation with prescribed boundary conditions.

Suppose that Q ∈ Htrace(3, 3) with QQT = 32
27 I (3), we define the operator μQ :

Hsym(3, 3) �→ R via

μQ(b) := det

⎛

⎝
3∑

j=1

Q j 〈e j ,b〉
⎞

⎠ (5.4)

then by (4.8) in the proof of Theorem 4.2, the four vectors whichmaximize (5.4) define
a unique tetrahedral frame in SO(3)/T . Therefore, we can generate a tetrahedral frame
field by filling our domain with harmonic maps in Htrace(3, 3) ∩ {QQT = 32

27 I (3)}
and generate the tetrahedral vectors at each point in the domain using maximizers of
μQ(b). However, as in theMB-frame field situation, if we look to fill out our Lipschitz
domain � ⊂ R

3 with tetrahedral frame fields that adhere to the boundary, we find
topological obstructions. The challenge, again, is the nonlinear constraint, and so we
again relax toward the nonlinear constraint using a different nonlinearity.



24 Journal of Nonlinear Science

We now describe this procedure in detail. From (3.13) a general Q ∈ Htrace(3, 3)
has the #{unique monomials} = 7. Letting q = (q1, . . . , q7)T ∈ R

7 allows us to
express

Q(q) =
⎡

⎣

⎛

⎝
q1 q2 q3
q2 q4 q5
q3 q5 (−q1 − q4)

⎞

⎠

⎛

⎝
q2 q4 q5
q4 q6 q7
q5 q7 (−q2 − q6)

⎞

⎠

⎛

⎝
q3 q5 (−q1 − q4)
q5 q7 (−q2 − q6)

(−q1 − q4) (−q2 − q6) (−q3 − q7)

⎞

⎠

⎤

⎦ ,

and our potential

W (Q(q)) =
∣∣∣∣Q(q)QT (q) − 32

27
I (3)

∣∣∣∣
2

=
(

(q1 + q4)
2 + q21 + 2q22 + 2q23 + q24 + 2q25 − 32

27

)2

+
(

(q2 + q6)
2 + q22 + 2q24 + 2q25 + q26 + 2q27 − 32

27

)2

+
(
2(q1 + q4)

2 + 2(q2 + q6)
2 + (q3 + q7)

2 + q23 + 2q25 + q27 − 32

27

)2

+ 2 (2q2q3 − 2q1q5 − q2q7 + q3q6)
2 + 2(q3q4 − q1q7 − 2q4q7 + 2q5q6)

2

+ 2 (2q1q2 + 3q2q4 + q1q6 + 2q3q5 + 2q4q6 + 2q5q7)
2 .

(5.5)

Before generating the associated Ginzburg–Landau energy, we need to provide
suitable boundary conditions that ensure the normal vector is included in the tetrahedral
frame.

5.3 Boundary Conditions and Reduction to theMB Frame

In order to prescribe natural boundary conditions of the tetrahedral frame, we impose
that the normal on the boundary ν comprises one of the four vectors of the frame.
Consequently, we arrive at the following conditions on the frame at the boundary, due
to (3.11) and (3.12):

Lemma 5.2 If ν is a normal on the boundary and an element of the tetrahedral frame
Q = Q(q), then

Qi jkνk = 4

3
(ν ⊗ ν)i j − 4

9
I (3),

Qi jkν jνk = 8

9
νi .
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Equivalently, if ν is the outer normal on the boundary and an element of the tetrahedral
frame Q = Q(q), then

V (Q, ν) := 1

2

∣∣QXννT − μ3ν
∣∣2 = 0. (5.6)

Here, for an 3 × 3 matrix A, XA is the vector in R
9 that contains the columns of A

vertically, in order, and μ3 = 32−1
32

= 8
9 .

If this holds for ν = (ν1, ν2, ν3)
T , then we can solve for q = (q1, . . . , q7) using

the underdetermined system of equations

⎛

⎜⎜⎜⎜⎜⎜⎝

ν1 ν2 ν3 0 0 0 0
0 ν1 0 ν2 ν3 0 0

−ν3 0 ν1 −ν3 ν2 0 0
0 0 0 ν1 0 ν2 ν3
0 −ν3 0 0 ν1 −ν3 ν2

−ν1 −ν2 −ν3 −ν1 0 −ν2 −ν3

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
q2
q3
q4
q5
q6
q7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3ν

2
1 − 4

9

4
3ν1ν2

4
3ν1ν3

4
3ν

2
2 − 4

9

4
3ν2ν3

4
3ν

2
3 − 4

9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.7)

In particular, the matrix on the left has rank 5.

If we assume the boundary is locally R
2 then ν = (0, 0, 1)T is an element of the

frame. We can then locally parametrize the orientation by planar rotation of θ . The
corresponding Q becomes:

Q =
⎡

⎣

⎛

⎝
a b − 4

9
b −a 0

− 4
9 0 0

⎞

⎠

⎛

⎝
b −a 0

−a −b − 4
9

0 − 4
9 0

⎞

⎠

⎛

⎝
− 4

9 0 0
0 − 4

9 0
0 0 8

9

⎞

⎠

⎤

⎦ .

Furthermore, condition (3.10) implies a2 + b2 = 32
81 or

a = 4
√
2

9
cos(φ) and b = 4

√
2

9
sin(φ).

Given the threefold symmetry of the remaining three vectors of the tetrahedral frame
implies a direct analog of the MB-frame result:

Q =
⎡

⎢⎣

4
√
2

9 cos(3θ) − 4
√
2

9 sin(3θ) − 4
9 − 4

√
2

9 sin(3θ) − 4
√
2

9 cos(3θ) 0 − 4
9 0 0

− 4
√
2

9 sin(3θ) − 4
√
2

9 cos(3θ) 0 − 4
√
2

9 cos(3θ) 4
√
2

9 sin(3θ) − 4
9 0 − 4

9 0
− 4

9 0 0 0 − 4
9 0 0 0 8

9

⎤

⎥⎦ .
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5.4 Relaxation

We can now consider a harmonic map relaxation to the tetrahedral frame field using
a Ginzburg–Landau formalism. We first set

H1
ν (�; Htrace(3, 3)) =

{
A ∈ H1(�; Htrace(3, 3)) such that A = A(q) satisfies (5.7)

}
.

For elements of H1
ν (�; Htrace(3, 3)), we define a relaxed energy,

E3d
ε (A) ≡ 1

2

∫

�

|∇A|2 + 1

ε2

∣∣∣∣AAT − 32

27
I (3)

∣∣∣∣
2

dx (5.8)

and consider

Qε = arg min
A∈H1(�;Htrace(3,3))

E3d
ε (A).

As pointed out in Lemma 5.2, the condition that the normal to the boundary ν is part
of the tetrahedral frame Q can be conveniently imposed by assuming that

V (Q, ν) = 0.

This condition could also be imposed in a weak form through a boundary integral.
This leads us to the alternative energy

E3d
ε,δ1,δ2

(A) ≡ 1

2

∫

�

|∇A|2 + 1

ε2
W (A)dx +

∫

∂�

V (A, ν)

δ21
+ W (A)

δ22
dS, (5.9)

where

W (A) = 1

2

∣∣∣∣AAT − 32

27
I (3)

∣∣∣∣
2

.

For our next result, we will use the notation

� : H(3, 3) → Htrace(3, 3)

for the orthogonal projection from the set of rank-3 tensors H(3, 3) onto the our
relaxation space Htrace(3, 3).

Proposition 5.3 Let γ = δ22
δ21
. The critical points of the energy E3d

ε,δ1,δ2
satisfy

|A| ≤ max

{
8

3
,

3

√
8γ

3

}
,

independent of ε > 0.
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Proof First we observe that the Euler–Lagrange equation along with boundary condi-
tions for the energy E3d

ε,δ1,δ2
are

−�A + 1

ε2
�((∇AW )(A)) = 0 in �,

∇A · ν + �(
1

δ21
(∇AV )(A, ν) + 1

δ22
(∇AW )(A)) = 0 on ∂�.

Here,

(∇AW )(A) = 2(AAT − λ3 I (3))A,

and

(∇AV )(A, p) = AXppTX
T
ppT − μn pX

T
ppT = (AXppT − μ3 p)XT

ppT

denote the gradients of the potentials with respect to A, and λ3 = 32
27 , μ3 = 8

9 .

Now, since A ∈ Htrace(3, 3), we have �(A) = A. We also have
∣∣AAT

∣∣2 ≥ |A|4
3 ,

so we can estimate

〈A,� (∇AW )(A))〉 = 2(
∣∣∣AAT

∣∣∣
2 − λ3 |A|2) ≥ 2 |A|2

3
(|A|2 − 3λ3). (5.10)

Next, for |p| = 1, and using the facts that �(A) = A, 〈A,AXppTX
T
ppT

〉 ≥ 0,∣∣∣pXT
ppT

∣∣∣ = 1, we obtain

〈A,� (∇AV )(A, p))〉 = 〈A,AXppTX
T
ppT − μ3 pXT

ppT 〉
≥ −μ3〈A, pXT

ppT 〉 ≥ −μ3 |A| . (5.11)

Now, we take the inner product of the equation satisfied by A with A, and use
(5.10), to obtain

�

(
|A|2
2

)
≥ |∇A|2 + 2 |A|2

nε2
(|A|2 − 3λ3).

On the other hand, using 5.10 and 5.11, and writing γ = δ22
δ21
, we obtain

〈
A,�

(
1

δ21
(∇AV )(A, ν) + 1

δ22
(∇AW )(A)

)〉
≥ |A|

δ22

(
2 |A|3
3

− γμ3 − 2λ3 |A|
)

.
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From here we obtain

〈A,�

(
1

δ21
(∇AV )(A, ν) + 1

δ22
(∇AW )(A)

)
〉 ≥ 0 for |A| ≥ max{√6λ3,

3
√
3γμ3}.

From the equation satisfied by |A|2, and Hopf lemma, we conclude that |A| ≤
max{√3λ3, 3

√
3γμ3}. This is the conclusion of the Proposition. ��

Before, we use this formalism to generate tetrahedral fields for different Lipschitz
domains in two and three dimensions, we first discuss the topology of SO(3)/T and
its effect on the frame field.

6 Tetrahedral Frames and Quaternions

In this section, we discuss how tetrahedral frames can be described using quaternions
as S3/2T , where S3 are the unit quaternions and 2T is a specific finite subgroup. We
show that a natural map from quaternions to symmetric traceless tensors induces an
isometric embedding of the space of tetrahedra.

We compute the fundamental group of the space of tetrahedra, following (Monteil
et al. 2021b). As the group is non-abelian, the free homotopy classes are characterized
by the conjugacy classes of the fundamental group, compare also (Mermin Jul 1979;
Trebin 1984) for similar topological considerations in theoretical physics.

6.1 Quaternions, Rotations and Tetrahedra

It is a well-known result that the group of unit quaternions S3 can be used to describe
rotations in R

3. The following lemma is standard:

Lemma 6.1 Set q = a + bi + cj + dk ∈ S3 for a, b, c, d ∈ R, then q �→ Rq

Rq =
⎛

⎝
a2 + b2 − c2 − d2 2bc − 2ad 2ac + 2bd

2ad + 2bc a2 + c2 − b2 − d2 2cd − 2ab
2bd − 2ac 2ab + 2cd a2 + d2 − b2 − c2

⎞

⎠

with a2+b2+c2+d2 = 1 is a group homomorphism S3 → SO(3) with kernel {±1}.
Proof Note that Rq is the matrix representation of the map p �→ qpq−1 for p = p1i+
p2j + p3k a pure quaternion identified with a vector in R

3. It is an easy computation
that qpq−1 is a pure quaternion and the matrix is orthogonal. ��

We now define some useful groups: The tetrahedral group T is the subgroup
of R ∈ SO(3) that map the standard tetrahedron defined in (3.15) to itself, i.e.,
Rv0j = v0σ( j) where σ is a permutation. It is well known that T is isomorphic to
the alternating group A4: rotations preserve the orientation so cannot generate any
transpositions. On the other hand, any 3-cycle in A4 can be generated as a rotation



Journal of Nonlinear Science 29

around the leftover vector. Finally, we have the binary tetrahedral group 2T ⊂ S3,
given by

2T = {±1,±i,±j,±k,
1

2
(±1 ± i ± j ± k)},

where each of the ± represents an independent choice so there are 24 elements in
total. It is generated by s = 1

2 (1 + i + j+ k) and t = 1
2 (1 + i + j − k), which satisfy

s3 = t3 = −1.

Lemma 6.2 The map q �→ Rq induces a map 2T → T that acts as follows on the
standard tetrahedron:

Rqv0j = v0σ( j)

so there is an induced map 2T → A4 that has the following representation:

2T A4

±1 (1)
±i = ±ts (12)(34)
±j = ±st (13)(24)
±k = ±st2s (14)(23)
± 1

2 (1 + i + j + k) = ±s (234)
± 1

2 (1 − i − j − k) = ±s−1 (243)
± 1

2 (1 + i + j − k) = ±t (123)
± 1

2 (1 − i − j + k) = ±t−1 (132)
± 1

2 (1 + i − j + k) = ±st−1 (142)
± 1

2 (1 − i + j − k) = ±ts−1 (124)
± 1

2 (1 − i + j + k) = ±s−1t (143)
± 1

2 (1 + i − j − k) = ±t−1s (134)

Proof This is a straightforward computation. ��
Wesee that the tetrahedral group is composed of± 2π

3 rotations around of the vectors
of the tetrahedron (these correspond to the 3-cycles) and π rotations around the axis
going through the midpoints of two opposite edges (these correspond to the products
of two transpositions). The binary tetrahedral group has twice as many elements, and
we have the following characterization of its conjugacy classes:

Lemma 6.3 There are seven conjugacy classes of elements of 2T :
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Elements Geodesic distance
from 1

Description

1 0 identity
s, t−1, t−1s, st−1 π

3 1/3 rotation around one of the tetrahedral
vectors

s−1, t, ts−1, s−1t π
3 -1/3 rotation around one of the tetrahedral

vectors
s2, t−2, t−1st−1s, st−1st−1 2π

3 -1/3 rotation around one of the tetrahedral
vectors

s−2, t2, ts−1ts−1, s−1ts−1t 2π
3 1/3 rotation around one of the tetrahedral

vectors
−1 π full rotation
±i, ±j,±k π

2 rotation interchanging two pairs of vectors

Proof We note that powers of s are conjugate to each other if and only if they are the
same, which gives that the classes corresponding to s0 = 1, s1, s2, s3 = −1, s4 =
s−2, s5 = s−1. are all separate. Conjugating each of these elements with i, j, k yields
the rest of the conjugacy class. The elements ±i,±j,±k form their own conjugacy
class because the geodesic distance to ±1 is invariant under conjugation and we can
compute −iji = j and t−1it = j etc. ��

The configuration space of regular tetrahedra with vertices on the unit sphere can
be understood as follows. Let

M0 =
{
(v1, v2, v3, v4) ∈ (R3)4 :

〈
vi , v j

〉
= 4

3
δi j − 1

3
, det(v1|v2|v3) > 0

}

and M = M0/A4, where A4 acts by permuting the indices. Then M0 contains all
collections of oriented tetrahedra with indexed vertices and M the corresponding
collection without numbered vertices.

Proposition 6.4 We can identify M = SO(3)/T = SU (2)/2T = S2/2T .

Proof We can map SO(3) into M by considering the action on a fixed standard
tetrahedron. The image of two rotations inM is clearly the same iff they differ by an
element of T . To see that thismap is surjective, note that for any (v1, v2, v3, v4) ∈ M0,
we can choose R ∈ SO(3) such that v j = Rv j

0 for j = 1, . . . , 4, by first rotating v10
into v1 and then rotating around this axis to align the other vectors.

That SO(3)/T = SU (2)/2T is almost the definition of 2T , the preimage of T
under the double covering SU (2) → SO(3). ��

6.2 Embedding of Tetrahedra into Tensor Spaces

Our main result in this subsection establishes an isometry between SO(3)/T and our
tensor space Htrace(3, 3) ∩ {QQT = 32

27 I (3)}.
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Theorem 6.5 Taking the vectors of a standard tetrahedron, {v j
0}4j=1, given in (3.15),

we can generate the q-rotated tetrahedron

T (q) =
4∑

�=1

Rqv�
0 ⊗ Rqv�

0 ⊗ Rqv�
0 (6.1)

The map T : S3 → Htrace(3, 3) given by q �→ T (q) is up to scaling a local isometry
in the sense that it satisfies |dT (q)(v)|2 = α0|v|2 for all q ∈ S3 and v ∈ TqS3, the
tangent space, where α0 = 512

9 .
The induced map T : S3/2T → Htrace(3, 3) is well defined and injective, and up to

scaling we find an isometry S3/2T ≡ SO(3)/T ≡ Htrace(3, 3) ∩ {QQT = 32
27 I (3)}.

Proof The heart of the matter for proving the local (scaled) isometry character is to
use that S3 is a group, so it suffices to show this for q = 1. Writing a geodesic
through 1 as exp(ta) = cos(t |a|) + a

|a| sin(t |a|) for a = a1i + a2j + a3k, we have
d
dt

∣∣
t=0 exp(ta) = a and d

dt

∣∣
t=0Rexp(ta)v = av − va = 2a × v. Let u j , j = 1, . . . , 4

be the four unit vector of a tetrahedron. We compute

A = A1 + A2 = |dT (1)(a)|2 = 12
∑

j,k

〈a

×u j , a × uk〉〈u j ,uk〉2 + 24
∑

j,k

〈a × u j ,uk〉〈u j , a × uk〉〈u j ,uk〉.

Using 〈u j ,uk〉 = 4
3δ jk − 1

3 and 〈u j ,uk〉2 = 8
9δ jk + 1

9 yields

A1 = 32

3

∑

j

|a × u j |2.

For A2, we note that

A2 = −24
∑

j,k

〈a × u j ,uk〉2
(
4

3
δ jk − 1

3

)
= 8

∑

j,k

〈a × u j ,uk〉2 = 32

3

∑

j

∣∣∣a × u j
∣∣∣
2
,

because 〈a × u j ,u j 〉 = 0, and
∑

j u
j (u j )T = 4

3 I (3). So far then we have

A = A1 + A2 = 64

3

∑

j

∣∣∣a × u j
∣∣∣
2
.

However, again using the fact that
∑

j u
j (u j )T = 4

3 I (3), we obtain

∑

j

∣∣∣a × u j
∣∣∣
2 = 8 |a|2

3
.
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Putting everything together, we then conclude that

A = 512

9
|a|2 .

This is a multiple of |a|2. The parallelogram identity then implies that T is (up to
scaling) a local isometry.

If T (q1) = T (q2) then by Theorem 4.2 we have that {Rq1v
j
0 : j = 1, .., 4} =

{Rq2v
j
0 : j = 1, .., 4} so Rq1q

−1
2

∈ T and q1q
−1
2 ∈ 2T , so T is well defined and

injective on S3/2T . It is surjective by Theorem 4.2. ��

6.3 Homotopy of the Set of Tetrahedral Frames

With our identification of the space of tetrahedra as S3/2T , we can now determine its
fundamental group:

Proposition 6.6 The fundamental group of the space of tetrahedra is π1(M) =
π1(SO(3)/T ) = π1(S3/2T ) = 2T .

Proof As S3 is simply connected and locally path connected and 2T acts properly
discontinuously on S3, this is a consequence of standard results on covering spaces,
see, e.g., Bredon (1993, Corollary III.7.3) or Monteil et al. (2021b, Proposition 9.1).

��
The definition of π1 means that its elements are represented by homotopy classes of

(continuous) loopswhere the homotopykeeps the start/end point 1fixed. The following
result considers also free homotopies where the start/end point is not fixed throughout
the homotopy.

Proposition 6.7 If γ1, γ2 : S1 → S3/2T are loops in S3/2T starting and ending at
1, then γ1 and γ2 are (freely) homotopic to each other if and only if their homotopy
classes [γ1], [γ2] ∈ π1(S3/2T ) are conjugate, i.e., if there exists h ∈ 2T with

[γ1] = h[γ2]h−1.

Proof This is a standard result in elementary algebraic topology, see, e.g., Bredon
(1993, Proposition III.2.4). ��
As the identity is the only elements in its conjugacy class, it follows that for simply
connected �, a g ∈ C0(∂�, S3/2T ) has an extension h ∈ C0(�, S3/2T ) if and only
[g] = 1.

For boundary conditions that cannot be resolved by a globally continuous map, it
is possible to find “topological resolutions.” The following is a special case of the
treatment in Monteil et al. (2021b, Section 2.1).

Definition 6.8 Let � be a simply connected sufficiently smooth domain in R
2 and let

g ∈ C0(∂�, S3/2T ). A collection ofmapsγ j ∈ C0(S1, S3/2T ) is called a topological
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resolution of g if there exist distinct points a j ∈ � and ρ ∈ (0,min({ 12 dist(ai , a j ) :
i �= j}∪ {dist(ai , ∂�)}) such that there is h ∈ C0(�\⋃i Bρ(ai ), S3/2T )with h = g
on ∂� and h(ai + ρz) = γi (z) on each copy of S1.

Proposition 6.9 Let � be a simply connected sufficiently smooth domain in R
2 and

let g ∈ C0(∂�, S3/2T ). A collection of maps γ j ∈ C0(S1, S3/2T ) is a topological
resolution of g if and only if there exist q0, q j ∈ 2T such that the homotopy classes
[g] of g and [γ j ] of γ j satisfy

q−1
0 [g]q0 = q−1

1 [γ1]q1 . . . q−1
k [γk]qk,

i.e., iff a conjugate of the homotopy class of the outer boundary map g can be written
as a product of conjugates of the homotopy classes of the inner boundary maps γ j .

Proof This is a slight reformulation of the simplest case of Monteil et al. (Monteil
et al. 2021b, Proposition 2.4), adapted to our special case. We refer to that article for
a discussion about the independence of this result from the order used in the product.

��
Remark 6.10 There are several possible topological resolutions of the identity with
different numbers of homotopy classes at geodesic distance π

3 : We have a length
zero resolution 1 = 1, a length 2 resolution 1 = s · s−1 and a length 3 resolution
1 = st−1 · t · s−1. From these, we can construct arbitrary longer resolutions. Note that
s6 = 1 gives another resolution. For this reason, in numerical simulations we observe
local minimizers with higher number of singularities than what is expected for a
global minimizer. The same phenomenon has been observed in the Landau–de Gennes
context for Q-tensors describing nematic liquid crystals, where local minimizers with
singularitieswere rigorously shown to exist (Ignat et al. 2020b) for topologically trivial
boundary data.

6.4 Generating Data in Free Homotopy Classes of Tetrahedral Frames

Armed with the results of the previous subsection, we can now try to interpret tensor-
valuedmapswith target intoHtrace(3, 3)∩{QQT = 32

27 I (3)} except for a finite number
of point singularities as topological resolutions of their boundary data.

To construct a map with given homotopy types, we can use the following recipe:

Definition 6.11 For σ = w + x i + yj + zk ∈ S3, we set s = arg(w + i
√
1 − w2) ∈

(−π, π ] and let

Gσ (t) = cos(st) + (x i + yj + zk) sin(st)√
1 − w2

with G1(t) = 1 and G−1(t) = cos(π t) + i sin(π t).

Proposition 6.12 The Gσ satisfies Gσ : [0, 1] → S3 with Gσ (0) = 1, Gσ (1) = σ .
Gσ is a smooth geodesic.
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For σ ∈ 2T the formula reduces to the following cases:
If σ = 1

2 (1 ± i ± j ± k) then

Gσ (t) = cos
π t

3
+ 1√

3
sin

π t

3
(±i ± j ± k)

For σ = ±i (±j and ±k are analogous):

Gσ (t) = cos
π t

2
± i sin

π t

2
.

If σ = 1
2 (−1 ± i + j + k) then

Gσ (t) = cos
2π t

3
+ 1√

3
sin

2π t

3
(±i ± j ± k).

Proof This is a straightforward computation. ��
Lemma 6.13 Let α, β ∈ 2T , 0 < ρ < 1. Then the map Fα,β : B1 \ Bρ → S3,

Fα,β

(
reiθ

)
= Gβ

(
1 − r

1 − ρ

)
Gα (2πθ)

induces after taking the quotient modulo 2T a topological resolution of its boundary
map. The homotopy class of the outer boundary map is α, and the homotopy class of
the inner boundary is β−1αβ.

Proof We need to show that Fα,β induces a continuous map. This follows after taking
the quotient from the fact that Gα(1) = α = αGα(0), with α ∈ 2T . ��
Proposition 6.14 Let α1, . . . , αk, β1, . . . , βk ∈ 2T and a1, . . . , ak ∈ B1 distinct
points. Let μa(z) = z−a

1−az be a Möbius transformation mapping a to 0. Then,

q(z) = Fα1,β1(μa1(z)) . . . Fαk ,βk (μak (z))

induces a topological resolution of its boundary data of homotopy type α1 . . . αk .
Post-composing this with the map T (q) of Theorem 6.5 leads to a corresponding

resolution in the space of tensors.

Proof This is a direct consequence of the preceding computations. ��

7 Poincare–Hopf for MB-Frame-ValuedMaps on Generic Surfaces

In this section, we recall a version of the Poincare–Hopf theorem adapted to our
situation. This theorem can be easily adapted from page 112 of Heinz Hopf’s book
(Hopf 1983). Similar results have been shown to be valid for cross-field-valued maps
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(Beaufort et al. 2017; Beben 2020; Fogg et al. 2017; Ray et al. 2006). Theorem 7.3
will be useful in interpreting our numerical simulations in Sect. 8.

Let � ⊂ R
3 be a closed, smooth, orientable surface with normal ν, and fix an

integer m ∈ N, m ≥ 2. Consider the set

M = {(x, ω) ∈ � × S
2 : ν(x) · ω = 0}.

For (x j , ω j ) ∈ M , j = 1, 2, define the equivalence relation

(x1, ω1) ∼ (x2, ω2) ⇐⇒ x1 = x2 and ω1 · ω2 = cos

(
2kπ

m

)
for some k ∈ N.

Define then

M = M/ ∼ .

In other words, we consider the unit tangent bundle of �, and identify tangent vectors
that are related to each other by a rotation of an integer multiple of 2π

m about the
normal. Let also P1 : M → � be the projection onto the first coordinate.

Definition 7.1 Let � ⊂ � be a finite set. An m-gon-valued field on � is a continuous
map Q : � \ � → M such that P1(Q(x)) = x for every x ∈ �.

In the above definition, if x ∈ � and the field Q : � \ � → M cannot be extended
to x by continuity, we say that x is a singularity of Q. Next, if x ∈ � ⊂ � is a singular
point of Q : � \ � → M , we can define its index.

Definition 7.2 Let x ∈ � ⊂ � be a singular point of Q : � \ � → M . Consider
a closed, continuous curve γ ⊂ � \ � surrounding x , small enough to be contained
in a single coordinate patch, and such that x is the only singularity surrounded by γ .
Consider a continuous lifting of Q along γ through a unit tangent vector, in the sense
that, at every point in γ , Q can be obtained rotating the unit vector by 2π

m ,m−1 times.
Compute the angle between this unit vector and one of the coordinate tangents. The
total change of this angle as we travel through γ once anti-clockwise, divided by 2π ,
will be called the index of the singularity x ∈ � and denoted i(x).

Notewhen� ⊂ R
2×{0}, this definition agrees withDefinition 5.1. In particular the

index of a singularity in this case is of the form k
m for some integer k ∈ Z. Furthermore,

as pointed out in Theorem 1.3, page 108 of Hopf (1983), the degree does not depend
on the curve γ nor on the coordinate patch used to define it. With this terminology
we can now state the following theorem. Its proof can be found in page 112 of Hopf
(1983), for the case m = 2, or in the appendix of Ray et al. (2006), for any m ≥ 2.
Hence, we omit it.

Theorem 7.3 (Hopf 1983;Ray et al. 2006) Let� ⊂ R
3 be a closed, smooth, orientable

surface, A ⊂ � a finite set, and Q : � \ A → M an m-gon-valued field in �. We
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assume further that every x ∈ A is a singularity of Q. Then

∫

�

K dS = 2π
∑

x∈A

i(x).

Here K is the Gauss curvature of �, and i(x) denotes the index of the singularity
x ∈ A.

Remark 7.4 By the Gauss–Bonnet theorem,

∫

�

K dS = 2πξ(�) = 2π(2 − 2g(�)),

where g(�) and ξ(�) are the genus and Euler characteristic of�, respectively. Hence,
we conclude that

∑

x∈A

i(x) = 2 − 2g. (7.1)

8 Examples and Numerical Experiments

In this section, we discuss nontrivial examples of tetrahedron-valued maps, either
constructed analytically or obtained via numerical simulations. In the latter case, the
goal is to understand behavior of local minimizers of (5.1) and (5.9), respectively, by
simulating gradient flow for each energy using the finite element software COMSOL
http://www.comsol.com/. Note that the two analytical examples below only provide
competitors and not minimizers of the corresponding variational problems.

8.1 Example of a Map from B1 ⊂ R
2 into SO(3)/T

Here, we show that, similar to what is known for Q-tensors, normal boundary
alignment of tetrahedron-valued maps in two-dimensional domains does not require
singularities. Indeed, we can construct a map that is nonsingular because it “escapes
into the third dimension” in the interior of the domain.

On the unit disk with polar coordinates define

f1(r , θ) = cos(θ)
(
cos

(rπ
2

)
er − sin

(rπ
2

)
e3
)

− sin(θ)eθ ,

f2(r , θ) = sin(θ)
(
cos

(rπ
2

)
er − sin

(rπ
2

)
e3
)

+ cos(θ)eθ ,

f3(r , θ) = sin
(rπ
2

)
er + cos

(rπ
2

)
e3.

Now set

b2 = f2, b3 = −1

2
f2 +

√
3

2
f3, b4 = −1

2
f2 −

√
3

2
f3,

http://www.comsol.com/
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and define

a1 = f1 and a j = −1

3
f1 + 2

√
2

3
b j for j = 2, 3, 4.

This gives

a1 = f1,

a2 = −1

3
f1 + 2

√
2

3
f2,

a3 = −1

3
f1 −

√
2

3
f2 +

√
6

3
f3

a4 = −1

3
f1 −

√
2

3
f2 −

√
6

3
f3.

(8.1)

It is easy to check that the map that sends a point in the unit disk to {a1, a2, a3, a4}
is tetrahedron-valued, nonsingular and the vector a1 coincides with the normal on the
boundary of the disk.

Note that a quaternion representation of the rotation inherent in this map (starting
from the tetrahedron containing e3) is given by

q(r , θ) = cos
(πr

4

)
− sin(θ) sin

(πr

4

)
i + cos(θ) sin

(πr

4

)
j.

As this is a smooth map into S3, it belongs to the trivial homotopy class.

8.2 Example of a Map from B1(0) ⊂ R
3 into SO(3)/T

The next example is that of a tetrahedron-valued map on the unit ball in R
3 that has

exactly one point singularity on the boundary of the ball (at the north pole) and no
other interior point or line singularities. This map also has a finite Dirichlet integral.
The example is a straightforward adaptation of a similar computation for orthonormal
frame-valued map in Golovaty et al. (2021).

Let x = (x1, x2, x3)T , then define the vector fields

f1(x) =
(

2x1(1 − x3)

x21 + x22 + (1 − x3)2
,

2x2(1 − x3)

x21 + x22 + (1 − x3)2
,
x21 + x22 − (1 − x3)2

x21 + x22 + (1 − x3)2

)T

,

f2(x) =
(

−x21 + x22 + (1 − x3)2

x21 + x22 + (1 − x3)2
,

−2x1x2
x21 + x22 + (1 − x3)2

,
2x1(1 − x3)

x21 + x22 + (1 − x3)2

)T

,

f3(x) =
(

2x1x2
x21 + x22 + (1 − x3)2

,
−(x21 − x22 + (1 − x3)2)

x21 + x22 + (1 − x3)2
,

−2x2(1 − x3)

x21 + x22 + (1 − x3)2

)T

,
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for x ∈ B1(0) ⊂ R
3, x �= (0, 0, 1)T . Note that f i · f j = δi j , i, j = 1, . . . , 3 and

f1(x) = x whenever |x|2 = 1. It follows that {f2(x), f3(x)} is an orthonormal frame
for the tangent plane at the boundary whenever x ∈ ∂B1(0) \ {(0, 0, 1)}.

Next set

b2 = f2, b3 = −1

2
f2 +

√
3

2
f3, b4 = −1

2
f2 −

√
3

2
f3,

then
〈
f1,b j

〉 = 0 for j = 2, 3, 4. Further,
〈
bi ,b j

〉 = 3
2δi j − 1

2 for i, j = 2, 3, 4, that
is the map that sends x ∈ B1(0) to {b2,b3,b4} is MB-valued in B1(0) \ {(0, 0, 1)}.
By construction, the two-dimensional MB frame is contained in the tangent plane at
any x ∈ ∂B1(0) \ {(0, 0, 1)}.

Similar to the previous example, now let

a1 = f1 and a j = −1

3
f1 + 2

√
2

3
b j for j = 2, 3, 4,

so that

a1 = f1,

a2 = −1

3
f1 + 2

√
2

3
f2,

a3 = −1

3
f1 −

√
2

3
f2 +

√
6

3
f3,

a4 = −1

3
f1 −

√
2

3
f2 −

√
6

3
f3.

A straightforward computation shows that, for i, j ∈ {1, 2, 3, 4}, we have

ai · a j = 4

3
δi j − 1

3
,

Thus the vectors a1, a2, a3, a4 give the 4 vertices of a tetrahedron and we can consider
the map that sends x ∈ B1(0) to the tetrahedron defined by {a1, a2, a3, a4}. Since
a1 = f1 and f1(x) = x for x ∈ ∂B1(0)\{(0, 0, 1), one of the vectors of this tetrahedron
coincides with the normal on the boundary of the unit ball.

8.3 An Energy-MinimizingMap from B1 ⊂ R
2 into SO(2)/D3

Here, we examine an MB-frames-valued map generated by a gradient descent of the
energy (5.1) subject to the Dirichlet condition that the normal on the boundary is
aligned with the MB frame. When simulating in a domain that has a shape of an
equilateral triangle, the gradient flow converges to a constant state with the three
vectors of the MB frame perpendicular to the respective sides of the triangle. Clearly
this state is also the global minimizer of (5.1).
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Fig. 2 A critical point of (5.3) in an equilateral triangular domain with an excised disk. The vectors of

the MB-frame field are shown with the colorbar representing the values of the potential
∣∣∣AAT − 9

8 I (2)
∣∣∣
2
.

Here ε = 0.04. a A minimal MB frame shows three vortices with winding − 2π
3 ; b Magnification about

one of the singularities identifies the local rotation of the MB frame

In order to observe a state with vortices, we excised a disk from the equilateral
triangle. The restriction of the solution to the boundary of the triangle is still a constant
MB frame, while the requirement that the normal to the boundary of the disk is aligned
with theMB frame produceswinding of the normal by the angle 2π when the boundary
of the disk is traversed once in the positive direction. Because the quantum of winding
for the MB frame is 2π/3 (as the degree takes values in 1

3Z), we thus expect three
vortices with opposite of that winding to form in the interior of the domain. Indeed,
in Fig. 2a one sees that an MB frame aligns with the exterior boundary away from the
excised disk, while the disk induces three vortices with winding of − 2π

3 (Fig. 2b).

8.4 Computational Examples of Maps from B1 ⊂ R
2 into SO(3)/T

We now explore critical points of (5.8) for two different choices of Dirichlet boundary
conditions.

(a) First, consider a tetrahedral frame field Qa defined by the vectors given in
(8.1) and consider critical points of the energy E3d

ε from (5.8), that satisfy the same
Dirichlet data asQa . We first run the gradient flow simulation for this setup assuming
the initial condition is also given by Qa . Because Qa is smooth in B1 and the energy
of the gradient flow solution is bounded by its initial value, the critical points obtained
starting from Qa have energies that are uniformly bounded in ε so that the critical
point is nonsingular (Fig. 3).

On the other hand, the gradient flow simulation that starts from the trivial initial
condition Q ≡ 0 results in an entirely different stable critical point shown in Fig. 4.
This local minimizer has three equidistant point singularities such that the frame field
over any curve surrounding one singularity is in a homotopy class conjugate to either
s or s−1, i.e., one vector of the frame does not change while a curve is traversed,
Fig. 4b–d.

The different critical points, given the same boundary data, are an example of
distinct topological resolutions for that data, see Remark 6.10.
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Fig. 3 Gradient flow solution subject to the Dirichlet boundary data given by (8.1) starting from the initial
condition also given by (8.1). a Plot of W (Q) shows no singularities in the interior of the domain; b Plot
of the energy-minimizing tetrahedral frame field in the top right quadrant. Here ε = 0.05

Fig. 4 Gradient flow solution subject to the Dirichlet boundary data given by (8.1) starting from the trivial
initial conditionQ ≡ 0. a Plot ofW (Q) shows three singularities in the interior of the domain; b–d Partial
plots of the energy-minimizing tetrahedral frame field over the curves shown in black in (a). Here, the frame
field over all curves has a homotopy class conjugate to s or s−1 (one vector does not change while a curve
is traversed). Here ε = 0.05

(b) The next example shows a critical point of (5.8) obtained via a gradient flow in
a unit disk for maps satisfying Dirichlet boundary data that lies in a homotopy class
conjugate to i. Here, both the boundary and the initial conditions were obtained using
the techniques described in Section 6.4. The initial condition had a singularity at the
center of the disk, and the tetrahedral frame map was in the same homotopy class as
the boundary data for every circle surrounding the singularity. The simulation attains
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Fig. 5 Gradient flow solution subject to the Dirichlet boundary data homotopic to i. a Plot of W (Q) shows
two singularities in the interior of the domain; b Partial plots of the energy-minimizing tetrahedral frame
field over the curves shown in black in (a). Here the frame field over the larger curve has a homotopy
class conjugate to i (both green and black vectors rotate by π when the curved is traversed once) while the
frame field over the smaller curves has a homotopy class conjugate to s (the blue vector does not change its
orientation while red vector rotates by 2π/3 when the respective curves are traversed once). Here ε = 0.05
(Color figure online)

a local minimizer of (5.8) shown in Fig. 5. This minimizer has two singularities in
the interior of the disk and examination of winding of the frame vectors indicates
that the frame field over the curves surrounding each singularity has a homotopy
class conjugate to s. Indeed, the state with two singularities corresponds to a shorter
topological resolution than that for the boundary data and thus this state has a lower
energy than a state with one singularity.

The two remaining examples deal with the tetrahedron-valued maps obtained via
a gradient flow for the energy (5.9) when δ1 = δ2 = δ � ε.

8.5 Computational Examples of Maps from B1(0) ⊂ R
3 into SO(3)/T

(a) In Fig. 6, we depict the singular set of a critical point of (5.9) in the ball of radius
1, where the surface contribution to the energy forces the tetrahedron-valued map to
contain the normal to the sphere ∂B1 almost everywhere on ∂B1. Then, the trace of this
map on ∂B1 can be identified with an MB-valued map. From Remark 7.4, it follows
that any MB-valued map must have singularities on ∂B1 with the degrees of these
singularities adding up to 2. Notice that the energy of an MB-frame field in (5.1) is
identical to the scaled Ginzburg–Landau energy after a short calculation. Recall that in
Ginzburg–Landau theory, vortices of higher degree in equilibrium split into vortices of
degree 1 that repel each other, Bethuel et al. (1994), and we expect analogous behavior
from vortices of MB-valued maps. Because the degree of the MB frame is measured
in units of 1/3, the singular set of total degree 2 on the sphere should split into six
equidistant vortices of degree 1/3.

Since we assumed that δ � ε, the penalty associated with the surface energy is
much stronger than that for the bulk energy and therefore the surface effects should
dominate bulk effects. Indeed, the singular set in Fig. 6a intersects the surface of the
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Fig. 6 A locally minimizing tetrahedral frame field in a sphere of the radius 1. a The singular set; b–d cross
sections of the frame field and the line singularities by planes corresponding to different values of z. Here,
ε = 0.05 and δ = 0.01

sphere at six, approximately equidistant points, connected by line singularities in the
interior of the domain. The bulk structure of the singular set is dictated by the topology
of SO(3)/T and the energy considerations. In particular, from Fig. 6a it seems to be
clear that the total length of the singular set can be reduced by “squeezing” it toward
the center of the ball. This, in fact, is possibly what would happen as ε, δ → 0 but
such investigation is beyond the scope of the present paper. Rather, we are interested to
understand the behavior of the singular set for finite ε and δ by exploring the topological
structure of a triple junction.

In Fig. 7a, a small sphere surrounds the triple junction that we are interested in and
in Fig. 7c we plotted the vectors of the trace of the tetrahedron-valued frame field on
the surface of that sphere. The circles on the same plot depict the intersection between
the singular set and the surface of the sphere.
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Fig. 7 The structure of a triple junction. a The singular set with a small sphere surrounding a triple junction;
b Zoom-in on the sphere with a triple junction; c cross section of the tetrahedral frame field by the same
sphere. Circles correspond to cross sections of the line singularities by the sphere. For the frame field near
the singularity on the right, the black vector appears to be missing, while the green vector appears to be
missing for the frame field near the singularity on the left. ε = 0.05 and δ = 0.01 (Color figure online)

Figure 8c shows the same small spherical cutout from the points of view of individ-
ual arms of the triple junction. Near each singularity on the sphere associated with an
arm of the junction, a frame vector of one color points into the sphere toward the triple
junction and is not visible, while the remaining three vectors form an MB-frame field.
This MB-frame field rotates by 120◦ counterclockwise when one travels around the
singularity in the counterclockwise direction. The product of two 120◦ counterclock-
wise rotations around any two adjacent edges of a tetrahedron indeed corresponds to
an inverse of a counterclockwise rotation around a third edge, and we expect that a
similar structure is valid for the remaining triple junctions of the singular set in Fig. 6a.
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Fig. 8 Cross section of the tetrahedral frame field by the sphere in Fig. 7 viewed from the perspectives of
three different arms of the triple junction. a Near the singularity, the green vector points into the sphere
toward the triple junction and the MB frame consisting of the black, red and blue vectors rotates by 120◦
counterclockwise when one travels around the singularity in the counterclockwise direction; b Near the
singularity, the red vector points into the sphere toward the triple junction and theMB frame consisting of the
blue, green and black vectors rotates by 120◦ counterclockwisewhen one travels around the singularity in the
counterclockwise direction; c Near the singularity, the black vector points into the sphere toward the triple
junction and the MB frame consisting of the blue, green and red vectors rotates by 120◦ counterclockwise
when one travels around the singularity in the counterclockwise direction. Here ε = 0.05 and δ = 0.01
(Color figure online)

(b) Finally, in Fig. 9 we show the singular set of a critical point of (5.9) in a large
domain in the exterior of the ball of radius 1, where the surface contribution to the
energy forces the tetrahedron-valued map to contain the normal to the sphere ∂B1
almost everywhere on ∂B1. The structure of this set is clearly similar to that in Fig. 6
in that it has six equidistant vortices on the surface of the sphere and the same number
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Fig. 9 The line singularity of a
locally minimizing tetrahedral
frame field outside of a sphere of
the radius 0.1 and inside a large
tetrahedron (not shown). Here
ε = 0.01 and δ = 0.01

of triple junctions but, this time, the total length of the line singularities composing
the singular set can be reduced by compressing these singularities toward the sphere.
This is indeed what is observed in Fig. 9.

9 Discussion

Tetrahedral symmetry arises in many contexts in nature, including in liquid crys-
tals, condensed matter physics and materials science. The framework presented here
for generating such frame fields entails identifying a bijection between a tetra-
hedral configuration and a specific variety on traceless, symmetric three-tensors.
When tetrahedral frame fields are constrained to align with the normal, singular-
ities arise generically. To avoid this, the variety suggests a natural harmonic map
(Ginzburg–Landau) relaxation that helps in computation to identify a local minimiz-
ing configuration with isolated near-singular sets. We discuss some open questions
and interesting lines of inquiry related to the work presented here.

In Sect. 3, we showed that n+1 vectors satisfying n+1-hedral symmetry on the unit

sphere inR
n defines a symmetric three tensorQ that satisfiesQQT = (n+1)(n2−1)

n3
I (n).

On the other hand, the recovery has only been shown for n ∈ {2, 3}. In particular it
would be natural to ask if for all n ≥ 4 there is a bijection between SO(n)/Gn and

Htrace(n, 3) ∩ {QQT = (n+1)(n2−1)
n3

I (n)}, where Gn represents the group of rotations

leaving n + 1 equipositioned points on the sphere S
n−1 invariant.

There are many other interesting directions to explore. Recently, it was proved that
the energy density of mappings from planar domains into relaxed vacuum manifold
targets converge to a sum of delta functions with masses associated with the energy
minimized over all nontrivial homotopy classes (so-called systolic geodesics), see
Monteil et al. (2021a), Monteil et al. (2021b). One interesting direction would be
to perform a stability analysis of equivariant critical points that conform to different
homotopy classes either on the boundary of a disk or at infinity, along the lines of Ignat
et al. (2020b) for Q-tensor models. This should provide additional information on the
selection of particular topological resolutions found in our numerical experiments.
Even more important would be to rigorously establish the expected Gamma-limit of
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the relaxation energy, (5.8). In particular, one should be able to identify a compact
mapping, along the lines of the Jacobian in Ginzburg–Landau theory, that concentrates
at singular points for two-dimensional domains and co-dimension two, rectifiable sets
for three-dimensional domains. Results for the cross-field case are the subject of
the work in Golovaty et al. (in preparation), and we expect the Gamma-limit in the
tetrahedral frame problem to behave similarly.

A more intriguing task would be to provide a rigorous rationale for the formation
of triple junctions in the singular limit of tetrahedral frame fields for mappings on
three-dimensional domains (versus quadruple junctions in the SO(3)/O case), see
Fig. 1. Systolic geodesics should play a role here.

Even more generally, one can ask how this approach can be used to connect a
quotient of a Lie group with a specific choice of symmetric k tensor and a variety. For
example can a frame with icosahedral symmetry, SO(3)/I , be generated by a suitable
variety on the correct choice of k-symmetric tensors? How these k’s and choice of
varieties arise remains mysterious.
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10 Appendix A: Proof of Proposition 3.6

In this section, we prove Proposition 3.6. This requires the use of properties of families
of vectors in R

n that we recorded in Lemma 3.2, particularly the property stated in
(3.7). For the convenience of the reader, we first state the proposition and then proceed
to its proof.

Proposition 10.1 For every n ≥ 2 there exists an n × (n + 1) matrix, Cn such that
the following holds. For any set of n + 1 unit vectors in R

n, {u j }n+1
j=1, that satisfy the

inner product condition (3.4), and its associated 3-tensorQ ∈ Htrace(n, 3) generated
by these u j ’s via (3.8). LetQ = (Q1| · · · |Qn)where theQ j ∈ Htrace(n, 2) are defined
by

Q j =
n∑

k=1

〈uk, e j 〉uk(uk)T .

If we denote An the n × (n + 1) matrix whose columns are the vectors {u j }n+1
j=1. Then,

the matrix

R = n

n + 1
AnC

T
n ∈ O(n)
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is orthogonal, and An = RCn. Letting f j = Rek , k = 1, . . . , n, and

Bk = 1

λn

n∑

j=1

〈fk, e j 〉Q j ,

where

λn =
(

(n2 − 1)(n + 1)

n3

) 1
2

,

then, the vectors fk along with the tensors Bk, k = 1, . . . , n are eigenvector–
eigentensor pairs for Q in the sense of Remark 3.7. In particular,

〈f j , fk〉 = 〈B j , Bk〉 = δ jk,

n∑

i=1

〈Bk,Qi 〉ei = λnfk, and
n∑

j=1

〈fk, e j 〉Q j = λn B
k .

Finally, one can recover the 3-tensorQ from the eigenvector–eigentensor pairs, in the
sense that

Qi =
n∑

j=1

〈f j , ei 〉Bj ,

for i = 1, . . . , n.

Proof For the proof, we first construct the matrix Cn , and proving several of its prop-
erties. The conclusions of the proposition will then follow from here.
Step 1 In this step, we will build an n × (n + 1) matrix Cn , n ≥ 2, such that CnCT

n =
n+1
n I (n), that

CT
n Cn = n + 1

n
I (n + 1) − 1

n
1n+11Tn+1,

and Cn1n+1 = 0, where we use the notation

1n =
⎛

⎜⎝
1
...

1

⎞

⎟⎠ ∈ R
n .

The construction of Cn is inductive, starting with n = 2. Let

C2 =
( √

3
2 −

√
3
2 0

− 1
2 − 1

2 1

)
,
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and let c j = Cne j be the columns of C2. It is straightforward to verify that

ci · c j = 3

2
δi j − 1

2
.

It is also straightforward to check that C213 = 0.
The last two properties of C2 that we need are the following:

C2C
T
2 = 3

2
I (2), and CT

2 C2 = 3

2
I (3) − 1

2
131T3 .

The first of these comes from the fact that the rows of C2, thought of as vectors in R
3,

are orthogonal to each other, and have length 3
2 . The second comes from the fact that

the i j entry of CT
2 C2 is exactly ci · c j .

Let us now suppose we have an n × (n + 1) matrix Cn , n ≥ 2, such that CnCT
n =

n+1
n I (n), that Cn1n+1 = 0, and that

CT
n Cn = n + 1

n
I (n + 1) − 1

n
1n+11Tn+1.

All these conditions hold for n = 2. With all this let us define the (n + 1) × (n + 2)
matrix

Cn+1 =

⎛

⎜⎜⎜⎝

√
(n+1)2−1
n+1 Cn

0
...

0
− 1

n+1 . . . − 1
n+1 1

⎞

⎟⎟⎟⎠ .

Note that the last row of Cn+1, thought of as a vector in R
n+2, is orthogonal to the

others by the hypothesis Cn1n+1, and its length squared is n+2
n+1 , whereas the length

squared of the other rows is

n + 1

n

n2 + 2n

(n + 1)2
= n + 2

n + 1
.

Since the other rows of Cn+1 are orthogonal among themselves by the hypotheses on
Cn , this shows that Cn+1CT

n+1 = n+2
n+1 I (n + 1).

It is also easy to see that each column of Cn+1 has length 1 and that the dot product
of the last column with any of the others is exactly − 1

n+1 . Since the dot product

between two different columns of Cn is − 1
n , we conclude that the dot product of any

two different columns of Cn+1, not including the last, is

−1

n

n2 + 2n

(n + 1)2
+ 1

(n + 1)2
= − 1

n + 1
.
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This shows that

CT
n+1Cn+1 = n + 2

n + 1
I (n + 2) − 1

n + 1
1n+21Tn+2.

Lastly, that Cn+11n+2 = 0 follows easily from the form of the last row of Cn+1 and
the hypotheses on Cn . This concludes the proof of Step 1.

Step 2 In this step, we now consider a family {u j }n+1
j=1 ⊂ R

n of unit vectors that
satisfy the inner product conditions (3.4), and its associated 3-tensorQ ∈ Htrace(n, 3)
generated by these u j ’s via (3.8). LetQ = (Q1| · · · |Qn) where theQ j ∈ Htrace(n, 2)
are defined by

Q j =
n∑

k=1

〈uk, e j 〉uk(uk)T .

We will denote An the n× (n+ 1) the matrix whose columns are the vectors {u j }n+1
j=1.

It is easy to check that the inner product conditions (3.4) say exactly that

AT
n An = n + 1

n
I (n + 1) − 1

n
1n+11Tn+1,

whereas equations 3.6 and 3.7 from Lemma 3.2 say that

An1n+1 = 0 and An A
T
n = n + 1

n
I (n).

Our main claim in this step is the following:

The matrix R = n

n + 1
AnC

T
n is an orthogonal matrix, that is RRT = RT R = I (n).

From here it follows that An = RCn , and u j = Ane j = RCne j .
The proof is straightforward. Indeed, we first observe that

RRT = n2

(n + 1)2
AnC

T
n Cn A

T
n

= n2

(n + 1)2
An

(
n + 1

n
I(n + 1) − 1

n
1n+11Tn+1

)
AT
n = I (n),

because An1n+1 = 0 and An AT
n = n+1

n I (n).
Next, we notice that

RCn = n

n + 1
AnC

T
n Cn = n

n + 1
An

(
n + 1

n
I (n + 1) − 1

n
1n+11Tn+1

)
= An,

where again we used the fact that An1n+1 = 0.
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Step 3 In this last step, we build our eigenvector–eigentensor pairs from what we
obtained in the previous step, and prove that the 3-tensor Q we mentioned at the
beginning of the previous step can be reconstructed from these pairs. Our definitions
are the following:

for the eigenvectors we set fk = Rek , and for the eigentensors Bk = 1

λn

n∑

j=1

〈fk , e j 〉Q j ,

where λn =
(

(n2−1)(n+1)
n3

) 1
2
. We need to prove

f j · fk = 〈B j , Bk〉 = δ jk,

n∑

j=1

〈fk, e j 〉Q j = λn B
k and

n∑

j=1

〈Bk,Qk〉ek = λnfk .

f j · fk = δ jk is direct from their definition and the fact that R ∈ O(n), whereas
n∑
j=1

〈fk, e j 〉Q j = λn Bk is by definition of Bk . To prove the other two, we first observe

that 〈Q j ,Qk〉 = (n+1)(n2−1)
n3

δ jk = λ2nδ jk , which is a direct consequence of equation
3.10 from Proposition 3.3. Then, we compute

〈Bk, Bl〉 = 1

λ2n

n∑

i, j=1

〈fk, ei 〉〈f l , e j 〉〈Qi ,Q j 〉 = fk · f l = δkl .

Next, we compute

n∑

j=1

〈Bk,Q j 〉e j = 1

λn

n∑

i, j=1

〈fk, e j 〉〈Q j ,Qi 〉ei = λn

n∑

j=1

〈fk, e j 〉e j = λnfk,

where we again used the fact that 〈Q j ,Qk〉 = λ2nδ jk .
Lastly, we observe that

n∑

j=1

〈f j , ei 〉Bj =
n∑

j,k=1

〈f j , ei 〉〈f j , ek〉Qk = Qi .

This is the statement that the 3-tensor Q can be recovered from the eigenvector–
eigentensor pairs. ��
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11 Appendix B: Proof of Theorem 4.2

In this section, we will prove a useful property of the tensors in our algebraic variety.
Let us first recall that

H(n, k) = R
n ⊗ · · · ⊗ R

n
︸ ︷︷ ︸

k times
Hsym(n, k) = {A ∈ H(n, k) such that Aσ(i1...ik ) = Ai1...ik for all σ permutations},

and

Htrace(n, k) = {A ∈ Hsym(n, k) such that
n∑

j=1

Ai1...ik−2 j j = 0 for all i� ∈ {1, . . . , n}}.

Let also I (n) denote the n × n identity matrix.
We define a contraction operator on symmetric tensors which is, in effect, the trace

over the last two components. For A ∈ H(n, k), we set the “block trace” operator,
BTr : H(n, k) → H(n, k − 2), to be

BTr(A)a1...ak−2 =
n∑

�=1

Aa1...ak−2�� (11.1)

for any a� ∈ {1, . . . , n}. Consequently, if Q ∈ Htrace(n, 3) then BTr(Q) = 0. The
block trace operator will be used extensively in the proof of Theorem 4.2, as it was
used in the recovery theorem in Golovaty et al. (2021).

In this section, we will think of the set H(3, 2) as the set of 3 × 3 matrices, and
Hsym(3, 2) as the set of symmetric 3 × 3 ones. For A, B ∈ H(3, 2), we define the
inner product

〈A, B〉 = tr(BT A).

We then define

X : H(3, 2) → R
9

by the equation

X(A) := XA =
⎛

⎝
Ae1

Ae2

Ae3

⎞

⎠ ,

where {e j }3j=1 denotes the canonical basis in R
3. Notice that

〈A, B〉 = 〈XA,XB〉,
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where the inner product in the left-hand side is the inner product in H(3, 2), while the
one in the right-hand side is the standard dot product in R

9. In other words, the map
X : H(3, 2) → R

9 is an isometry.
In this section, we will also consider an element of the set Q ∈ H(3, 3) as a 3 × 9

matrices with real entries. For this, we think of vectors q ∈ R
m , in any Euclidean

space, as columns. In particular, for p ∈ R
m , q ∈ R

n , pqT is an m × n matrix. Then,
for q1,q2,q3 ∈ R

3, we identify the tensor q1 ⊗ q2 ⊗ q3 with the 3 × 9 matrix

q1
(
Xq2(q3)T

)T
.

With this notation the permutation operators can be expressed as follows: for
q1,q2,q3 ∈ R

3, so that q2(q3)T ∈ H(3, 2), and a permutation σ ∈ S3, define
Tσ : H(3, 3) → H(3, 3) by

Tσ

(
q1

(
Xq2(q3)T

)T ) = qσ(1)
(
Xqσ(2)(qσ(3))T

)T
,

and extend Tσ to H(3, 2) by linearity.
Next recall the block-trace operator BTr : Hsym(3, 3) → R

3 in (11.1). It is easy to
check that this operator satisfies the condition

BTr
(
q1

(
Xq2(q3)T

)T ) = 〈q1,q3〉q2.

This operator considers a 3×9 matrixQ ∈ H(3, 3) as being built from 3 blocksQ j ∈
H(3, 2), and sends Q into a vector containing the trace of Q j in its j th component.

With all this notation in place,we can restate the definition ofHtrace(3, 3) as follows:

Htrace(3, 3) = {Q ∈ H(3, 3) : BTr(Q) = 0, Tσ (Q) = Q ∀ σ ∈ S3}. (11.2)

We now record some properties of tensors Q ∈ Hsym(3, 3) that will be important to
us. Let us recall that the canonical orthonormal basis of R

3 is denoted by {e j }3j=1.

Proposition 11.1 Let Q ∈ Hsym(3, 3), and write Q = (Q1|Q2|Q3), where Q j ∈
Hsym(3, 2). It holds

Q =
3∑

j=1

e j
(
XQ j

)T
. (11.3)

Furthermore, we have

QiQ j =
3∑

k=1

Qkei (e j )TQk, (11.4)

for every i, j = 1, 2, 3. Finally, we have

Qie j = Q jei , (11.5)
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also for every i, j = 1, 2, 3.

Proof To prove identity (11.3), for σbr(1, 2, 3) = (3, 2, 1), let Tbr = Tσbr , and observe
that the rows of the tensor Tbr(Q), as vectors in R

9, correspond to the blocks of Q.
Since Q ∈ Hsym(3, 3), by definition we have Tbr(Q) = Q. This shows (11.3).

To prove (11.4), observe that, owing to equation (11.3), we have

QTQ =
⎛

⎝
Q1Q1 Q1Q2 Q1Q3
Q2Q1 Q2Q2 Q2Q3
Q3Q1 Q3Q2 Q3Q3

⎞

⎠ =
3∑

k=1

XQk

(
XQk

)T
.

(11.4) follows from this last identity, and the definition of X : H(3, 2) → R
9.

Finally, to prove (11.5), recall that by definition

XQ j =
⎛

⎝
Q je1

Q je2

Q je3

⎞

⎠ .

Because of this and (11.3), we have

Q =
3∑

j=1

e jXT
Q j

=
3∑

j=1

(
e j
(
e1
)T

Q j |e j
(
e2
)T

Q j |e j
(
e3
)T

Q j

)
.

From here, we obtain

Qi =
3∑

j=1

e j
(
ei
)T

Q j =
3∑

j=1

Q jei
(
e j
)T

,

where the last equation is because QT
i = Qi . (11.5) follows directly from here. ��

It will be useful to have an explicit basis for the space Htrace(3, 3), in terms of the
canonical orthonormal basis {e j }3j=1 of R

3. For this, let us define the tensors

Pi = ei (ei )T , i = 1, 2, 3,

associated with the canonical basis {e j }3j=1. Note that the P
j ’s are rank-1, orthogonal

projection matrices with orthogonal images, and I(3) =
3∑

i=1
Pi . We emphasize that

these P j ’s are different than those defined in Sect. 3. Define also

Si, j = ei (e j )T + e j (ei )T , 1 ≤ i �= j ≤ 3.

Observe that the P j together with the Si, j provide a basis for the set of symmetric,
3 × 3 matrices with real entries. With all these we now have the following.



54 Journal of Nonlinear Science

Proposition 11.2 The following list provides a basis for Hsym(3, 3):

Ai = ei
(
XPi

)T
, i = 1, 2, 3,

Bi, j = ei
(
XP j

)T + e j
(
XSi, j

)T
, 1 ≤ i �= j ≤ 3,

C = �
σ∈S3

Tσ

(
e1
(
Xe2(e3)

T

)T) = e1
(
XS2,3

)T + e2
(
XS1,3

)T + e3
(
XS1,2

)T
.

Given this notation, the following list is a basis for Htrace(3, 3):

Bi, j − Ai = ei
(
XP j − XPi

)T + e j
(
XSi, j

)T
, 1 ≤ i �= j ≤ 3.

C = e1
(
XS2,3

)T + e2
(
XS1,3

)T + e3
(
XS1,2

)T
.

Note that this implies that Htrace(3, 3) has dimension 7.
Next, we will need to work in the set H(3, 4), and we recall that, by Remark 3.1,

we identify elements Q ∈ H(3, 4) with Q ∈ H(9, 2). With this in mind, we point out
that, for σ ∈ S4 we can also define a permutation operator Tσ : H(9, 2) → H(9, 2).
To define it, let a j ∈ R

3, j = 1, 2, 3, 4, define Tσ by the condition

Tσ

(
Xa1(a2)

T

(
Xa3(a4)

T

)T) = Xaσ(1)(aσ(2))
T

(
Xaσ(3)(aσ(4))

T

)T
,

and extend it to H(9, 2) by linearity. We trust that the use of the same notation for
the permutation operators in H(3, 4), H(9, 2) and H(3, 3) will not be a source of
confusion.

There are two families of elements in H(9, 2) that will appear naturally in the proof
of Lemma 11.8. Here we use the notation from the Appendix of Golovaty et al. (2021).
For two 3 × 3 matrices A, B ∈ H(3, 2) define

NA,B = XA (XB)T . (11.6)

Observe that

NA,BXC = 〈B,C〉XA.

When A = B we will simply write NA in place of NA,A.
Next, again for A, B ∈ H(3, 2), let MA,B ∈ H(9, 2) be the 9 × 9 matrix defined by
the equation

MA,BXC = XACBT ∀ C ∈ H(3, 2). (11.7)

Again, when A = B we will write MA in place of MA,A. From Golovaty et al.
(2021), we can give an expression for MA,B , A, B ∈ H(3, 2) as follows: denoting
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Ai, j = 〈A, ei
(
e j
)T 〉, that is, Ai, j is the i j entry of A, then

MA,B =
⎛

⎝
B11A B12A B13A
B21A B22A B23A
B31A B32A B33A

⎞

⎠ . (11.8)

The next proposition appears in Golovaty et al. (2021). We include its proof for the
reader’s convenience.

Proposition 11.3 For the permutation σ∗(1, 2, 3, 4) = (1, 3, 2, 4), the operator T∗ =
Tσ∗ : H(9, 2) → H(9, 2) satisfies

T∗(NA,B) = Tσ∗(NA,B) = MA,B (11.9)

for every A, B ∈ H(3, 2).

Proof A simple way to see that the operator T∗ indeed has this property is to observe
first that by definition

T∗
(
Xa1(a2)

T

(
Xa3(a4)

T

)T) = Xa1(a3)
T

(
Xa2(a4)

T

)T
.

Calling A = a1
(
a2
)T

, B = a3
(
a4
)T

, and C = u1
(
u2
)T

, then clearly

Xa1(a3)
T

(
Xa2(a4)

T

)T
XC = 〈a2

(
a4
)T

,C〉Xa1(a3)
T

= 〈a2,u1〉〈a4,u2〉Xa1(a3)
T = XACBT .

The result of the proposition follows by linearity, and the fact that every matrix
in H(3, 2) is a linear combination of rank-1 matrices of the form a (b)T with a,b
∈ R

3. ��
Remark 11.4 For q1,q2,q3 ∈ R

3, and R ∈ O(3), the definition of MR reads:

MRXq2(q3)
T = X

Rq2(Rq3)
T .

Since every Q ∈ Hsym(3, 3) is a linear combination of tensors of the form

∑

σ∈S3
Tσ

(
q1

(
Xq2(q3)

T

)T)
,

it follows from here that

RQ (MR)T = RQMRT ∈ Hsym(3, 3)

for every Q ∈ Hsym(3, 3).
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Next, we again recall the block-trace operator BTr : Hsym(3, 4) → Hsym(3, 2)
from (11.1). Under the identification of H(3, 4) with H(9, 2), this operator can be
thought of as BTr : Hsym(9, 2) → Hsym(3, 2), and then it can be defined by the
condition

BTr

(
Xq1(q2)

T

(
Xq3(q4)

T

)T) = 〈q3,q4〉 q1
(
q2
)T

,

Thinking of the elements R ∈ Hsym(3, 4) as 9 × 9 matrices, and we look at such an
R as being built from 3 × 3 blocks, then BTr(R) just adds the 3 × 3 blocks in the
diagonal of R. For this reason, we refer to Btr as the block-trace operator

Remark 11.5 ForQ ∈ H(3, 3), a direct computation shows that BTr
(
QTQ

) = QQT .
This is a tensor analog of the fact that tr

(
a (b)T

) = bT a = 〈a,b〉 for a,b ∈ R
3.

However, to establish Lemma 11.8, and its consequence, Corollary 11.9, we need to
analyze the full tensorQTQ, rather thanQQT . This our main motivation to introduce
this operator.

Next, we construct a basis for Hsym(3, 4) in the spirit of Golovaty et al. (2021). We
recall here that, by Remark 3.1, we identify Hsym(3, 4) with Hsym(9, 2).

Proposition 11.6 For the space

Hsym(9, 2) = {Q ∈ H(9, 2) : Tσ (Q) = Q ∀ σ ∈ S4},

the following list provides a basis:

P i = XPi

(
XPi

)T
,

Di, j = XPi

(
XSi, j

)T + XSi, j
(
XPi

)T
,

F i, j = XPi

(
XP j

)T + XSi, j
(
XSi, j

)T + XP j

(
XPi

)T
,

Gi, j,k = XPi

(
XS j,k

)T + XSi, j
(
XSi,k

)T + XSi,k
(
XSi, j

)T + XS j,k

(
XPi

)T
,

for 1 ≤ i, j, k ≤ 3 i �= j, i �= k, j �= k. For their block-traces, we have

BTr(P i ) = Pi ,

BTr(Di, j ) = Si, j ,

BTr(F i, j ) = BTr
(
XSi, j

(
XSi, j

)T ) = Pi + P j , and

BTr(Gi, j,k) = BTr
(
XSi, j

(
XSi,k

)T + XSi,k
(
XSi, j

)T ) = S j,k .

Proof The proof of the basis is straightforward and follows from tensor combinations
of the e j ’s in R

3, along with symmetry assumptions in the indices. The block-trace
identities likewise follow from the tensor constructions and the contraction of the last
two indices. ��
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Remark 11.7 It is important to notice that in general Di, j �= D j,i , whereas F i, j =
F j,i . On the other hand Gi, j,k depends on the order of the indices i, j, k; however,
Gi, j,k = Gi,k, j .

The main use of the bases for Htrace(3, 3) and Hsym(9, 2) will be to prove Lemma
11.8. Indeed, using these baseswewill computeQTQ, which satisfiesQTQ ∈ H(9, 2)
forQ ∈ Htrace(3, 3), and write it as a sum of a term that belongs to Hsym(9, 2), and a
second term to which we can apply Proposition 11.3. The analysis of these terms will
give us the proof of the aforementioned Lemma.

11.1 Block-Trace Conditions onHtrace(3, 3)

A result for permutation invariant 3-tensors that have traceless blocks and satisfy a
normalization condition. Our main result in this section is the following.

Lemma 11.8 Let Q ∈ Htrace(3, 3), and assume

BTr(QTQ) = α I (3),

for some α > 0. Then there is S ∈ Hsym(9, 2) such that

QTQ = S − α

2
XI (3)

(
XI (3)

)T = S − α

2
NI (3),

where we are using the notation NA defined in equation (11.6).

Before giving the proof of this lemma, we derive a corollary from it that we will
need for our recovery argument.

Corollary 11.9 Let Q ∈ Htrace(3, 3), and assume

QQT = α I (3),

for some α > 0. Write Q = (Q1|Q2|Q3), where Q j ∈ Hsym(3, 2) and tr(Q j ) = 0.
Then,

3∑

j=1

Q jQiQ j = α

2
Qi

for i = 1, 2, 3.

Proof First observe that QQT =
3∑
j=1

Q2
j . A direct computation shows that

BTr(QTQ) =
3∑
j=1

Q2
j . We conclude that BTr(QTQ) = α I (3), so Q satisfies the

hypotheses of Lemma 11.8.
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Next, recall that by Remark 11.3, we can write

Q =
3∑

j=1

e j
(
XQ j

)T
.

Because of this, we obtain

QQT =
3∑

j=1

〈Qi ,Q j 〉ei
(
e j
)T

.

In particular, the hypothesis QQT = α I (3) tells us that

〈Qi ,Q j 〉 = δi j α. (11.10)

Also from Remark 11.3, we obtain the expression

QTQ =
3∑

j=1

XQ j

(
XQ j

)T =
3∑

j=1

NQ j . (11.11)

By Lemma 11.8, we know that

QTQ = S − α

2
NI (3). (11.12)

Now recall the operator T∗ : H(3, 4) → H(3, 4) defined in (11.9). Applying this
operator to (11.11) we obtain

T∗(QTQ) =
3∑

j=1

MQ j .

We can also apply T∗ to (11.12) to obtain

T∗(QTQ) = S − α

2
MI (3)

= S − α

2
NI (3) + α

2
NI (3) − α

2
MI (3) = QTQ + α

2
NI (3) − α

2
MI (3),

because S ∈ Hsym(9, 2) and (11.12).
To conclude, we observe that

T∗(QTQ)XQi =
3∑

j=1

MQ jXQi =
3∑

j=1

XQ jQiQ j ,
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by the definition of MA given in (11.7). However, we also have

T∗(QTQ)XQi =
(
QTQ + α

2
NI (3) − α

2
MI (3)

)
XQi = α

2
XQi ,

by the definitions (11.6) and (11.7) ofNA andMA, respectively, the fact that trQi = 0,
(11.10), and the expression (11.11) for QTQ. The last two equations give the claim
of the corollary. ��

Proof of Lemma 11.8 The proof consists in computing QTQ using structure of the
bases for Htrace(3, 3) and Hsym(9, 2) provided by Lemmas 11.2 and 11.6 to conclude.
Step 1 By Proposition 11.2, we can write Q ∈ Htrace(3, 3) as

Q =β1,2(B1,2 − A1) + β1,3(B1,3 − A1)

+ β2,1(B2,1 − A2) + β2,3(B2,3 − A2)

+ β3,1(B3,1 − A3) + β3,2(B3,2 − A3)

+ γ C
:=H1

Q + H2
Q + H3

Q + H4
Q. (11.13)

A direct computation shows that

QTQ =
4∑

i=1

(Hi
Q)THi

Q +
∑

1≤i< j≤3

((Hi
Q)TH j

Q

+(H j
Q)THi

Q) +
3∑

i=1

((Hi
Q)TH4

Q + (H4
Q)THi

Q). (11.14)

We will expand each of these sums.
Step 2 Computation of (Hi

Q)THi
Q. By Proposition 11.2 we have

H1
Q = β1,2

(
e1
(
XP2 − XP1

)T + e2
(
XS1,2

)T ) + β1,3

(
e1
(
XP3 − XP1

)T + e3
(
XS1,3

)T )
.

Since 〈ei , e j 〉 = δi, j , we obtain

(H1
Q)TH1

Q = β2
1,2

(
XP2−P1

(
XP2−P1

)T + XS1,2
(
XS1,2

)T )

+ β1,2β1,3

(
XP2−P1

(
XP3−P1

)T + XP3−P1
(
XP2−P1

)T )

+ β2
1,3

(
XP3−P1

(
XP3−P1

)T + XS1,3
(
XS1,3

)T )
.
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From here, by adding and subtracting terms of the form XS j,k

(
XS j,k

)T we obtain

(H1
Q)TH1

Q = β2
1,2(P1 + P2 − F1,2)

+ β1,2β1,3(F2,3 − F1,2 − F1,3 + 2P1)

+ β2
1,3(P1 + P3 − F1,3)

+ 2β2
1,2XS1,2

(
XS1,2

)T

+ β1,2β1,3

(
XS1,2

(
XS1,2

)T + XS1,3
(
XS1,3

)T − XS2,3
(
XS2,3

)T )

+ 2β2
1,3XS1,3

(
XS1,3

)T
.

Observe that in this expression the first three terms belong to Hsym(3, 4), and have
Block-trace equal to zero. In contrast, the last three terms are not permutation invariant,
and each has Block-trace equal to a linear combination of the P j ’s.

The same argument gives us

(H2
Q)TH2

Q = β2
2,1(P1 + P2 − F1,2)

+ β2,1β2,3(F1,3 − F1,2 − F2,3 + 2P2)

+ β2
2,3(P2 + P3 − F2,3)

+ 2β2
2,1XS1,2

(
XS1,2

)T

+ β2,1β2,3

(
XS1,2

(
XS1,2

)T + XS2,3
(
XS2,3

)T − XS1,3
(
XS1,3

)T )

+ 2β2
2,3XS2,3

(
XS2,3

)T
,

and

(H3
Q)TH3

Q = β2
3,1(P1 + P3 − F1,3)

+ β3,1β3,2(F1,2 − F1,3 − F2,3 + 2P3)

+ β2
3,2(P2 + P3 − F2,3)

+ 2β2
3,1XS1,3

(
XS1,3

)T

+ β3,1β3,2

(
XS1,3

(
XS1,3

)T + XS2,3
(
XS2,3

)T − XS1,2
(
XS1,2

)T )

+ 2β2
3,2XS2,3

(
XS2,3

)T
.

Finally, we also have

(H4
Q)TH4

Q = γ 2
(
XS2,3

(
XS2,3

)T + XS1,3
(
XS1,3

)T + XS1,2
(
XS1,2

)T )
.

Step 3 Computation of (Hi
Q)TH j

Q + (H j
Q)THi

Q, 1 ≤ i < j ≤ 3.
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First we observe that

(H1
Q)TH2

Q + (H2
Q)TH1

Q = β1,3β2,1

(
XP3−P1

(
XS1,2

)T + XS1,2
(
XP3−P1

)T )

+ β1,2β2,3

(
XP3−P2

(
XS1,2

)T + XS1,2
(
XP3−P2

)T )

+ β1,3β2,3

(
XS1,3

(
XS2,3

)T + XS2,3
(
XS1,3

)T )
.

We now add and subtract terms of the form XS1,3
(
XS2,3

)T +XS2,3
(
XS1,3

)T to obtain

(H1
Q)TH2

Q + (H2
Q)TH1

Q = β1,3β2,1(G3,1,2 − D1,2) + β1,2β2,3(G3,1,2 − D2,1)

+ (β1,3β2,3 − β1,3β2,1 − β1,2β2,3)
(
XS1,3

(
XS2,3

)T + XS2,3
(
XS1,3

)T )
.

Observe again that the two terms on right hand side of the first line are Block-traceless,
permutation invariant, whereas the term in the second line is not. We also have

(H1
Q)TH3

Q + (H3
Q)TH1

Q = β1,2β3,1(G2,1,3 − D1,3) + β1,3β3,2(G2,1,3 − D3,1)

+ (β1,2β3,2 − β1,2β3,1 − β1,3β3,2)
(
XS1,2

(
XS2,3

)T + XS2,3
(
XS1,2

)T )
,

and

(H2
Q)TH3

Q + (H3
Q)TH2

Q = β2,1β3,2(G1,2,3 − D2,3) + β2,3β3,1(G1,2,3 − D3,2)

+ (β2,1β3,1 − β2,1β3,2 − β2,3β3,1)
(
XS1,2

(
XS1,3

)T + XS1,3
(
XS1,2

)T )
.

Step 3 Computation of
3∑

i=1
((Hi

Q)TH4
Q + (H4

Q)THi
Q). With the same logic, we have

used so far we have

(H1
Q)TH4

Q + (H4
Q)TH1

Q = γβ1,2(D2,3 − G1,2,3) + γβ1,3(D3,2 − G1,2,3)

+ 2γ (β1,2 + β1,3)
(
XS1,2

(
XS1,3

)T + XS1,3
(
XS1,2

)T )
,

(H2
Q)TH4

Q + (H4
Q)TH2

Q = γβ2,1(D1,3 − G2,1,3) + γβ2,3(D3,1 − G2,1,3)

+ 2γ (β2,1 + β2,3)
(
XS1,2

(
XS2,3

)T + XS2,3
(
XS1,2

)T )
,

and

(H3
Q)TH4

Q + (H4
Q)TH3

Q = γβ3,1(D1,2 − G3,1,2) + γβ3,2(D2,1 − G3,1,2)

+ 2γ (β3,1 + β3,2)
(
XS1,3

(
XS2,3

)T + XS2,3
(
XS1,3

)T )
.
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Step 4 Consequences of BTr(QTQ) = α I (3). From all our previous computations,
we now have the following:

BTr(QTQ) = 2((β2
1,2 + β2

2,1) + (β2
1,3 + β2

3,1) + β1,2β1,3 + γ 2)P1

+ 2((β2
1,2 + β2

2,1) + (β2
2,3 + β2

3,2) + β2,1β2,3 + γ 2)P2

+ 2((β2
1,3 + β2

3,1) + (β2
2,3 + β2

3,2) + β3,1β3,2 + γ 2)P3

+ (β1,3β2,3 − β1,3β2,1 − β1,2β2,3 + 2γ (β3,1 + β3,2))S
1,2

+ (β1,2β3,2 − β1,2β3,1 − β1,3β3,2 + 2γ (β2,1 + β2,3))S
1,3

+ (β2,1β3,1 − β2,1β3,2 − β2,3β3,1 + 2γ (β1,2 + β1,3))S
2,3.

From BTr(QTQ) = α I (3), we deduce that the coefficients of Si, j , i �= j , are zero,
so

β1,3β2,3 − β1,3β2,1 − β1,2β2,3 + 2γ (β3,1 + β3,2) = 0,

β1,2β3,2 − β1,2β3,1 − β1,3β3,2 + 2γ (β2,1 + β2,3) = 0,

and

β2,1β3,1 − β2,1β3,2 − β2,3β3,1 + 2γ (β1,2 + β1,3) = 0.

Looking carefully at all the terms we have obtained for QTQ we deduce that there is
S ∈ Hsym(9, 2) such that

QTQ − S = (2(β2
1,2 + β2

2,1) + β1,2β1,3 + β2,1β2,3 − β3,1β3,2 + γ 2)XS1,2
(
XS1,2

)T

+ (2(β2
1,3 + β2

3,1) + β1,2β1,3 + β3,1β3,2 − β2,1β2,3 + γ 2)XS1,3
(
XS1,3

)T

+ (2(β2
2,3 + β2

3,2) + β2,1β2,3 + β3,1β3,2 − β1,2β1,3 + γ 2)XS2,3
(
XS2,3

)T
.

(11.15)

Next, we observe that BTr(QTQ) = α I (3) also implies that

(β2
1,2 + β2

2,1) + (β2
1,3 + β2

3,1) + β1,2β1,3 + γ 2 = α

2
,

(β2
1,2 + β2

2,1) + (β2
2,3 + β2

3,2) + β2,1β2,3 + γ 2 = α

2
,

and

(β2
1,3 + β2

3,1) + (β2
2,3 + β2

3,2) + β3,1β3,2 + γ 2 = α

2
.

Adding the first two of these equations and subtracting the third, we obtain the identity

2(β2
1,2 + β2

2,1) + β1,2β1,3 + β2,1β2,3 − β3,1β3,2 + γ 2 = α

2
.
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Adding the first and third, and subtracting the second, we obtain

2(β2
1,3 + β2

3,1) + β1,2β1,3 + β3,1β3,2 − β2,1β2,3 + γ 2 = α

2
.

A similar procedure gives

2(β2
2,3 + β2

3,2) + β2,1β2,3 + β3,1β3,2 − β1,2β1,3 + γ 2 = α

2
.

Using this in (11.15) we obtain

QTQ − S = α

2

(
XS1,2

(
XS1,2

)T + XS1,3
(
XS1,3

)T + XS2,3
(
XS2,3

)T )
.

Now recall from Proposition 11.6 that

XSi, j
(
XSi, j

)T = F i, j − XPi

(
XP j

)T − XP j

(
XPi

)T
.

We deduce that

XS1,2
(
XS1,2

)T + XS1,3
(
XS1,3

)T + XS2,3
(
XS2,3

)T

= F1,2 + F1,3 + F2,3

−
(
XP1

(
XP2

)T + XP2
(
XP1

)T + XP1
(
XP3

)T + XP3
(
XP1

)T + XP2
(
XP3

)T

+XP3
(
XP2

)T )
.

Finally, by adding and subtracting terms of the form XPi

(
XPi

)T , we observe that

XP1
(
XP2

)T + XP2
(
XP1

)T + XP1
(
XP3

)T + XP3
(
XP1

)T + XP2
(
XP3

)T + XP3
(
XP2

)T

= XI (3)
(
XI (3)

)T − P1 − P2 − P3.

At this point we move every permutation invariant term in XS1,2
(
XS1,2

)T

+ XS1,3
(
XS1,3

)T + XS2,3
(
XS2,3

)T to the S on the left hand side of the identity

QTQ − S = α

2

(
XS1,2

(
XS1,2

)T + XS1,3
(
XS1,3

)T + XS2,3
(
XS2,3

)T )
,

and redefine S accordingly. This gives us

QTQ − S = −α

2
XI (3)

(
XI (3)

)T
,

where S ∈ Hsym(3, 4) by construction. ��
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11.2 Recovery Procedure

Our main result in this section are our two recovery theorems in Sect. 4.2.

Proof of Theorem 4.2 Let Q ∈ Htrace(3, 3), and define ηQ : S
2 → Hsym(3, 2) by

ηQ(a) =
3∑

j=1

〈e j , a〉Q j . (11.16)

Then define μQ : S
2 → R by

μQ(a) = det(ηQ(a)).

We will show that the maxima of μQ in S
2 are the vectors we seek. We divide the

proof in steps.
Step 1 The critical point condition for μQ in S

2 is

(∇aμQ)(a) =
3∑

i, j,k=1

〈a, e j 〉〈a, ek〉〈Qi ,Q jQk〉ei = λ a,

where λ ∈ R is a Lagrange multiplier for the constraint a ∈ S
2. To prove this, let us

recall that if A ∈ H(3, 2, R) has tr(A) = 0, then Cayley–Hamilton theorem tells us
that

A3 − |A|2
2

A − det(A)I (3) = 0.

From here we deduce that

det(A) = 1

3

(
tr
(
A3
))

.

Since Q ∈ Htrace(3, 3), then ηQ(a) ∈ Htrace(3, 2) whenever a ∈ S
2. Hence,

μQ(a) = 1

3

3∑

i, j,k=1

〈a, ei 〉〈a, e j 〉〈a, ek〉tr(QiQ jQk).

We then deduce that the critical point condition for μQ among a ∈ S
2 reads

(∇aμQ)(a) =
3∑

i, j,k=1

〈a, e j 〉〈a, ek〉tr(QiQ jQk)ei = λ a,
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where λ ∈ R is a Lagrange multiplier for the constraint a ∈ S
2. This is the claim of

the step once we recall that for A, B ∈ H(3, 2) we have

〈A, B〉 = tr(BT A).

Step 2 If a ∈ S
2 is a critical point of μQ, then we claim that a satisfies the identity

ηQ(a) a = 2λ

α
a,

where λ is the Lagrange multiplier from Step 1, and α is the real number in the
hypothesis QQT = α I (3). To prove this, let us first recall that (11.4) tells us that

Q jQk =
3∑

l=1

Qle j
(
ek
)T

Ql .

From here we obtain

3∑

j,k=1

〈a, e j 〉〈a, ek〉Q jQk =
3∑

l=1

QlaaTQl .

We use this in the claim of Step 1 to deduce that critical points a of μQ satisfy

3∑

i,l=1

〈Qi ,QlaaTQl〉ei = λ a.

From here and Corollary 11.9 we obtain

3∑

i=1

〈Qi , aaT 〉ei = 2λ

α
a. (11.17)

Now we observe the following:

3∑

i=1

〈Qi , aaT 〉ei =
3∑

i, j,k=1

〈a, e j 〉〈a, ek〉〈Qi , e j
(
ek
)T 〉ei

=
3∑

i, j,k=1

〈a, e j 〉〈a, ek〉〈Qiek, e j 〉ei

=
3∑

i, j,k=1

〈a, e j 〉〈a, ek〉〈Qkei , e j 〉ei ,
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where the last identity is a consequence of (11.5). Recalling the definition of ηQ from
(11.16), this last sequence of identities can be summarized as follows:

3∑

i=1

〈Qi , aaT 〉ei =
3∑

i=1

〈ηQ(a)ei , a〉 ei .

However, ηQ(a) ∈ Htrace(3, 2), so

3∑

i=1

〈Qi , aaT 〉ei =
3∑

i=1

〈ηQ(a)ei , a〉 ei = ηQ(a)a.

Using this in (11.17) we obtain the claim of this step.
Step 3 We claim there is an R ∈ SO(3) such that Q̃ = RQMRT ∈ Htrace(3, 3) has
Q̃Q̃T = α I (3) and

ηQ̃(e1)e1 = 2λ

α
e1.

To prove this let us start by observing that Q̃ = RQMRT ∈ Hsym(3, 3) follows from
Remark 11.4.

Next, if R ∈ O(3), QQT = α I (3), and Q̃ = RQMRT , then

Q̃ Q̃T = RQMRTMRQT RT = RQQT RT = α RI (3)RT = α I (3).

Next, a direct computation shows that

ηQ(b)b = RT ηQ̃(Rb)Rb.

SinceηQ(b)b = 2λ
α
b, we conclude thatηQ̃(Rb)Rb = 2λ

α
Rb. Finally, the step follows

by choosing R ∈ SO(3) such that Rb = e1.
Step 4We claim that

Q̃ =
⎛

⎝
γ 0 0 0 a b 0 b −γ − a
0 a b a c d b d −c
0 b −γ − a b d −c −γ − a −c −d

⎞

⎠ ,

where γ = 2λ
α

with the constraints

0 = −2γ b, c2 + d2 = γ 2 + γ a and γ (γ + 2a) = 0.
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To see this, let us write Q̃ =
(
Q̃1|Q̃2|Q̃3

)
, and observe that Step 3 tells us that

Q̃1e1 = ηQ̃(e1)e1 = 2λ
α
e1. Since Q̃ j ∈ Htrace(3, 2), we obtain

Q̃1 =
⎛

⎝
γ 0 0
0 a b
0 b −γ − a

⎞

⎠ ,

for some real numbers a, b ∈ R. From here, we deduce the rest of Q̃ by imposing
the condition Q̃ ∈ Htrace(3, 4). The constraints 0 = −2γ b, c2 + d2 = γ 2 + γ a

and γ (γ + 2a) = 0 follow from imposing the 〈Q̃2, Q̃3〉 = 0,
∣∣∣Q̃1

∣∣∣
2 =

∣∣∣Q̃2

∣∣∣
2
and

∣∣∣Q̃2

∣∣∣
2 =

∣∣∣Q̃3

∣∣∣
2
, respectively.

Step 5 We now analyze the possible cases for λ. We start with the case λ = 0. From
Step 4, in this case Q̃ reduces to

Q̃ =
⎛

⎝
0 0 0 0 a b 0 b −a
0 a b a 0 0 b 0 0
0 b −a b 0 0 −a 0 0

⎞

⎠ .

In this case we define

w =
√−b + ia√
a2 + b2

, z = iw.

Observe that the vectors c2 = (Re(w), Im(w))T , c3 = (Re(z), Im(z))T , have
〈ci , c j 〉 = δi j . Define next

a1 = e1, a2 =
(

0
c2

)
, a3 =

(
0
c3

)
,

and let b = − 1√
3
(a1+a2+a3). Clearly 〈ai , a j 〉 = δi j , so |b| ∈ S

2. A straightforward
computation whoes that

ηQ̃(b)b = 2
√
a2 + b2

3
b.

In other words, we have found b ∈ S
2 such that ηQ̃(b) has b as an eigenvector with

nonzero eigenvalue. This is the situation we consider in the next step.
Step 6 We consider here the case λ �= 0. Let us first observe that if λ < 0, we can
always change b by −b. This will change λ by −λ. Hence, we can actually assume
λ > 0. Under this assumption, from Step 4 we obtain

Q̃ =
⎛

⎝
γ 0 0 0 a b 0 b −γ − a
0 a b a c d b d −c
0 b −γ − a b d −c −γ − a −c −d

⎞

⎠ ,
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where γ = 2λ
α
. From the constraints of Step 4 we also have b = 0, a = − γ

2 and

c2 + d2 = γ 2

2 . This reduces Q to

Q̃ =
⎛

⎝
γ 0 0 0 − γ

2 0 0 0 − γ
2

0 − γ
2 0 − γ

2 c d 0 d −c
0 0 − γ

2 0 d −c − γ
2 −c −d

⎞

⎠ .

Since we also have Q̃Q̃T = α I(3), we deduce that γ 2 = 2α
3 .

Observe now that

R = (R1|R2) =
(
c d d −c
d −c −c −d

)

satisfies RRT = α
3 I (2), and R ∈ Htrace(2, 3). Because of this, we can apply the 2D

recovery procedure for such a 2 × 4 tensor. This yields vectors c j ∈ R
2, j = 2, 3, 4,

such that 〈ci , c j 〉 = δ
2 (3δi j − 1), and

R j =
4∑

k=2

〈ck, f j 〉 ck
(
ck
)T

, j = 1, 2.

Here {f1, f2} is the canonical basis of R
2 such that

e2 =
(
0
f1

)
and e3 =

(
0
f2

)
.

We then define

a1 = e1, a j = −1

3
e1 + 2

√
2

3

(
0
c j

)
, j = 2, 3, 4.

A long straightforward computation shows that Q̃ =
(
Q̃1|Q̃2|Q̃3

)
has

Q̃ j =
4∑

k=1

〈e j , ak〉ak
(
ak
)T

.

This completes the proof of Theorem 4.2. ��

12 Appendix C. Potential for Bent-Core Liquid Crystals

In this section, we consider the more general potential for tensors Q ∈ Htrace(3, 3)
proposed in Lubensky and Radzihovsky (2002) to model bent-core liquid crystals.
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The potential appears in equation (4.4) of Lubensky and Radzihovsky (2002), and in
view of equation (4.5b) of the same paper, it can be expressed as

W (Q) = |Q|4
4

− α

2
|Q|2 + β

4

3∑

i, j=1

〈Qi ,Q j 〉2. (12.1)

Here, forQ ∈ Htrace(3, 3), wewriteQ = (Q1|Q2|Q3), whereQ j ∈ Hsym(3, 2) has
tr(Q j ) = 0. Our main result in this section is a rigorous version of a similar statement
in Lubensky and Radzihovsky (2002) as described in the following proposition.

Proposition 12.1 For β ≤ −2, the potential W is unbounded from below. For β >

− 29
15 , β �= 0, if α = 0, the only global minimizer of W is the tensor Q = 0. Assume

now α �= 0. For − 29
15 < β < 0 the global minimizers of W satisfy the condition that

QQT is a rank-2 projection and correspond to the MB frames. For β > 0, the global
minimizers of W satisfy the condition that QQT is a multiple of the 3 × 3 identity
matrix, and correspond to tetrahedral frames. For β = 0, if α ≤ 0, the global only
minimizer of W is the tensorQ = 0. For β = 0 and α > 0, the set of global minimizers
is the set tensors Q ∈ Htrace(3, 3) that satisfy |Q|2 = α.

As discussed in Lubensky and Radzihovsky (2002), this proposition indicates that
there is a temperature at which phase transition occurs between two phases—one with
tetrahedral and another with MB symmetry—that can be modeled using the energy of
the type (5.8), but with the potential (12.1) if one were to ignore contributions from
lower moments.

Proof For R ∈ SO(3), define

RR =
⎛

⎝
R11R R12R R13R
R21R R22R R23R
R31R R32R R33R

⎞

⎠ .

We know that for Q ∈ Htrace(3, 3) we have

RQRT
R ∈ Htrace(3, 3).

Also, a direct computation shows that for any Q ∈ Htrace(3, 3) and any R ∈ SO(3)
we have

W (Q) = W (RQRT
R).

Since QQT ∈ Hsym(3, 2) and is nonnegative definite, we can find R ∈ SO(3) such
that

RQQT RT =
⎛

⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ ,



70 Journal of Nonlinear Science

where λ j = ∣∣Q j
∣∣2 ≥ 0, j = 1, 2, 3, and |Q|2 = λ1 + λ2 + λ3. For this R ∈ SO(3),

and writing Q̃ = RQRT
R , we have

W (Q) = W (Q̃) = 1

4

⎛

⎝
3∑

j=1

λ j

⎞

⎠
2

− α

2

3∑

j=1

λ j + β

4

3∑

j=1

λ2j .

Next, the fact that Q ∈ Htrace(3, 3) gives us some constraints the λ j , j = 1, 2, 3,
must satisfy. To see what these are we let Q ∈ Htrace(3, 3), and write it in the form
Q = (Q1|Q2|Q3), where

Q1 =
⎛

⎝
a b c
b d e
c e −(a + d)

⎞

⎠ , Q2 =
⎛

⎝
b d e
d f g
e g −(b + f )

⎞

⎠ and Q3 =
⎛

⎝
c e −(a + d)

e g −(b + f )
−(a + d) −(b + f ) −(c + g)

⎞

⎠ .

Recalling the notation λ j = ∣∣Q j
∣∣2, a straightforward computation shows that

λ1 + λ2 − 2λ3
3

≥ 5

8
(a2 + f 2) + 2

3
(c − g)2

and

λ3 ≥ 3

2
(c + g)2 + 2(b + f )2 + 2(a + d)2.

From here we obtain

|λ1 − λ2|
2

=
∣∣∣a2 + ad + c2 − g2 − b f − b2

∣∣∣ = |(a,− f , c − g) · (a + d, b + f , c + g)|

≤
(

λ3

(
λ1 + λ2 − 2λ3

3

)) 1
2

. (12.2)

The fact that Q ∈ Htrace(3, 3) implies, in summary, that the following inequalities
hold:

(λ1 − λ2)
2

4
≤ λ3

(
λ1 + λ2 − 2λ3

3

)
,

(λ2 − λ3)
2

4
≤ λ1

(
λ2 + λ3 − 2λ1

3

)
and

(λ1 − λ3)
2

4
≤ λ2

(
λ1 + λ3 − 2λ2

3

)
. (12.3)
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Adding these three inequalities, and passing the cross terms all to the right-hand side,
we obtain

7

6

3∑

j=1

(λ j )
2 ≤ 5

2
(λ1λ2 + λ1λ3 + λ2λ3).

Finally, adding 5
4

3∑
j=1

(λ j )
2 to both sides of this last inequality, we obtain

29

15

3∑

j=1

(λ j )
2 ≤

⎛

⎝
3∑

j=1

λ j

⎞

⎠
2

. (12.4)

We then seek the critical points of

ω(λ1, λ2, λ3) = 1

4

⎛

⎝
3∑

j=1

λ j

⎞

⎠
2

− α

2

3∑

j=1

λ j + β

4

3∑

j=1

(λ j )
2,

under the restrictions that λ j ≥ 0, j = 1, 2, 3, and that contained in (12.4).
We first observe that β > − 29

15 implies that, as max{λ1, λ2, λ3} → ∞ under
condition (12.4), we obtain ω(λ1, λ2, λ3) → ∞.

Assume now all the restrictions hold with strict inequalities. Differentiating ω with
respect to λ j we obtain

2
∂ω

∂λ j
=

3∑

i=1

λi − α + β λ j .

For λ j > 0, j = 1, 2, 3, ∇ω = 0 implies

β λ j = α −
3∑

i=1

λ j .

Wededuce then that the critical pointsλ∗ = (λ∗
1, λ

∗
2, λ

∗
3) satisfyλ∗

1 = λ∗
2 = λ∗

3 = α
3+β

.

In this case, QQT is a multiple of the 3 × 3 identity matrix, and

W (λ∗
1, λ

∗
2, λ

∗
3) = − 3α2

3 + β
.

If one of the λ j = 0, say λ3 = 0, we have

ω(λ1, λ2, 0) = 1

4

⎛

⎝
3∑

j=2

λ j

⎞

⎠
2

− α

2

2∑

j=1

λ j + β

4

2∑

j=2

(λ j )
2,
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and the critical point condition for λ∗ = (λ∗
1, λ

∗
2, 0) then becomes λ3 = 0, λ∗

1 = λ∗
2 =

α
2+β

, and

ω(λ∗
1, λ

∗
2, 0) = −2α2

2 + β
.

In this case QQT is a multiple of a rank-2 projection.
Next, if two of the λ j = 0, condition (12.4) implies that the third λ j is also 0.
Next, if condition (12.4) holds with equality, ω(λ1, λ2, λ3) depends on only one

variable, which we may call t =
3∑
j=1

λ j . Under this restriction, the minimum value ω∗

of ω is

ω∗ = − 29α2

4(29 + 15β)
.

Finally, from all these computations, it is easy to check that the conclusions of the
proposition hold. ��
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