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Abstract

Elastic nucleon-pion scattering amplitudes are computed using lattice QCD on a single ensemble of gauge
field configurations with Ny = 2 4 1 dynamical quark flavors and m; =200 MeV. The s-wave scattering
lengths with both total isospins / = 1/2 and I = 3/2 are inferred from the finite-volume spectrum below the
inelastic threshold together with the / = 3/2 p-wave containing the A(1232) resonance. The amplitudes
are well-described by the effective range expansion with parameters constrained by fits to the finite-volume
energy levels, enabling a determination of the I = 3/2 scattering length with statistical errors below 5%,
while the / = 1/2 scattering length is somewhat less precisely evaluated. Systematic errors due to excited
states and the influence of higher partial waves are controlled, providing a step toward future computations
down to physical light quark masses with multiple lattice spacings and volumes.
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1. Introduction

Nucleon-pion (N ) scattering is a fundamental nuclear physics process. Because the pion is
the lightest hadron, pion exchange between nucleons governs the long-range nuclear force and
contributes to the binding of protons and neutrons into atomic nuclei. Nucleon-pion scattering
also gives rise to the narrow A(1232) resonance which influences many nuclear processes, in-
cluding lepton-nucleon and lepton-nucleus scattering relevant to a range of electron-nucleus and
neutrino-nucleus scattering experiments.

While Nr scattering is well understood experimentally and phenomenologically, such as
through the Roy-Steiner equations [1], the ability to determine the amplitudes directly from quan-
tum chromodynamics (QCD) is hampered by its non-perturbative nature at low energies. After
QCD was established as the underlying theory of the strong nuclear force, chiral perturbation
theory (x PT) [2] and chiral-EFT [3,4] were developed to systematically describe the low-energy
dynamics of pions and nucleons in an effective field theory (EFT) framework. For a recent re-
view, see Ref. [5]. While EFT methods are generally effective in treating low-energy hadron
scattering processes, a number of challenges can only be addressed with first-principles QCD
calculations, for which lattice QCD is an essential non-perturbative tool.

For example, many of the low-energy constants (LECs) of nuclear EFTs are difficult to deter-
mine from experimental information alone. Lattice QCD can assist in the determination of LECs
by carrying out computations at a variety of quark masses and by computing processes which
are difficult to measure experimentally, such as hyperon-nucleon and three-nucleon interactions,
as well as short-distance matrix elements of electroweak and beyond-the-Standard Model opera-
tors. See recent reviews for further discussion [6—10]. The beneficial interplay between EFTs and
lattice computations is already developing for meson-meson scattering [11-16], but few lattice
studies of meson-baryon scattering amplitudes currently exist.

Another important issue concerns the convergence of EFTs, which are asymptotic expan-
sions in small momenta and light quark masses with convergence not guaranteed at the physical
quark masses. Lattice QCD has already provided numerical evidence that SU (2) baryon xPT
is not converging at or slightly above the physical pion mass for the nucleon mass and axial
coupling [17-19]. Including explicit A degrees of freedom may improve convergence of SU (2)
baryon xPT, but introduces a plethora of additional unknown LECs. Lattice QCD calculations
of Nm scattering at various pion masses can help verify the convergence pattern and whether
it is improved with explicit As [20], as well as constrain the additional LECs. Nm scattering
is additionally important because of the current tension between lattice QCD determinations
of the nucleon-pion sigma term [21-24] o,y and phenomenological determinations [1,25] (see
Ref. [26] for a possible resolution). o,y plays an important role in the analysis of direct dark
matter detection experiments [27]. Controlled lattice QCD calculations of Nx scattering may
help understand this tension.

As a final example, a future prospect for lattice QCD is the determination of inputs to models
of neutrino-nucleus scattering cross sections to aid next-generation experiments, like DUNE [28]
and Hyper-K [29], designed to measure unknown properties associated with neutrino oscillations.
The importance of lattice QCD input was recently highlighted by current lattice QCD results
for elastic nucleon form factors [30]. The frontier for these lattice QCD applications is the A-
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resonance and pion-production contributions to inelastic v N structure. To carry out this program,
it is essential to first demonstrate control of Nz scattering, a necessary component of nucleon
inelastic resonant structure.

Lattice QCD calculations of two-pion systems are well established (for a recent review, see
Ref. [31]), and there are now numerous three-meson results [32—38]. In contrast, there are few
nucleon-pion scattering studies in lattice QCD. Ref. [39] included nucleon-pion operators to ex-
tract the spectrum in the / = 1/2 channel at a single lattice spacing using a 16% x 32 lattice
volume with m, =~ 266 MeV and obtained an estimate of the scattering length with a signifi-
cance of roughly four standard deviations. Refs. [40] and [41] each employ a single ensemble
with m, = 250 MeV to evaluate scattering phase shifts relevant to the A resonance, but neither
presented statistically significant results for the scattering lengths. There is also older work which
employs the quenched approximation [42] and preliminary unpublished results for the / =3/2
amplitudes [43—45]. The determination of finite-volume nucleon-pion energies in Ref. [46] is
performed close to the physical quark masses, but scattering amplitudes are not computed.
Lattice computations of meson-baryon scattering lengths in other systems have also been per-
formed [47,48].

Recent advances in lattice QCD computations of multi-hadron scattering amplitudes are due
in part to stochastic algorithms employing Laplacian-Heaviside (LapH) smearing to efficiently
compute timeslice-to-timeslice quark propagators [49,50] which enable definite momentum
projections of the constituent hadrons in multi-hadron interpolators and the evaluation of all
needed Wick contraction topologies. Recently, these algorithms have been successfully applied to
meson-baryon scattering amplitudes [40,46]. Alternatively, Ref. [41] employs sequential sources,
while the scattering channels in Refs. [47,48] are chosen to avoid same-time valence quark prop-
agation and can be straightforwardly implemented with point-to-all. The LapH approach has also
been employed to three-meson [32,34—-38,51-53] and two-baryon [54-56] amplitudes.

This work is part of an ongoing project to obtain N7 scattering amplitudes from lattice QCD,
which requires computations using several Monte Carlo ensembles to reach the physical pion
mass and extrapolate to the continuum limit. Nucleon-pion correlation functions in lattice QCD
suffer from an exponential degradation in the signal-to-noise ratio with increasing time separa-
tion, which hampers the determination of nucleon-pion energies from the large-time asymptotics.
This difficulty worsens as the quark mass is decreased to its physical value. One important ob-
jective of this work is to determine if the stochastic-LapH approach of Ref. [50] is viable for
computing nucleon-pion scattering amplitudes close to the physical values of the quark masses.
Another objective is to compare two different methods [57] of extracting the K-matrix from
finite-volume energies. The results presented here extend those of Ref. [40]. An update with in-
creased statistics on the same m,; = 280 MeV ensemble used in Ref. [40] is not included here
due to instabilities discovered in the gauge generation of that ensemble, as detailed in Ref. [58].

Both the total isospin I = 1/2 and I = 3/2 scattering lengths at light quark masses corre-
sponding to m, = 200 MeV are computed in this work. The results are

mpay> =—02735@81),  mga)/> =0.142(22), (1)

where the errors are statistical only. The Breit-Wigner parameters for the A (1232)-resonance are
also determined from the 7 =3/2, J¥ =3/2% partial wave
A _6257(35),  gapw=14.41(53), @)
Mgy
where the corresponding scattering phase shift is shown in Fig. 7. Since only a single ensemble of
gauge field configurations is employed, the estimation of systematic errors due to the finite lattice
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size, lattice spacing, and unphysically large light quark mass is left for future work. However,
systematic errors due to the determination of finite-volume energies, the reduced symmetries of
the periodic simulation volume, and the parametrization of the amplitudes are addressed. The
methods presented here therefore provide a step toward the lattice determination of the nucleon-
pion scattering lengths at the physical point with controlled statistical and systematic errors.

The remainder of this work is organized as follows. Sec. 2 discusses the effects of the fi-
nite spatial volume, including the corresponding reduction in symmetry and the relation between
finite-volume energies and infinite-volume scattering amplitudes. Sec. 3 presents the computa-
tional framework, including the lattice regularization and simulation, the measurement of corre-
lation functions, and the determination of the spectrum from them. Results for the amplitudes are
presented and discussed in Sec. 4, while Sec. 5 concludes.

2. Finite-volume formalism

The Euclidean metric with which lattice QCD simulations are necessarily performed compli-
cates the determination of scattering amplitudes. It was shown long ago by Maiani and Testa [59]
that the direct application of an asymptotic formalism to Euclidean correlation functions does not
yield on-shell scattering amplitudes away from threshold. Instead, lattice QCD computations ex-
ploit the finite spatial volume to relate scattering amplitudes to the shift of multi-hadron energies
from their non-interacting values [60]. See Ref. [61] for a more complete investigation of the
Maiani-Testa theorem, and Refs. [62,63] for an alternative approach to computing scattering
amplitudes from Euclidean correlation functions based on Ref. [64].

This section summarizes the relationship between finite-volume spectra and elastic nucleon-
pion scattering amplitudes. Due to the reduced symmetry of the periodic spatial volume, this
relationship is not one-to-one and generally involves a parametrization of the lowest partial wave
amplitudes with parameters constrained by a fit to the entire finite-volume spectrum. Symmetry
breaking due to the finite lattice spacing is also present, but ignored. At fixed physical volume
and quark masses, the continuum limit of the finite volume spectrum exists and is assumed for
this discussion.

For a particular total momentum P, the relationship between the finite-volume center-of-mass
energies E¢y, determined in lattice QCD and elastic nucleon-pion scattering amplitudes specified
in the well-known K -matrix is given by the determinantal equation

det[K ' (Ecm) — BY (Eem)] +0(e™ME) =0, A3)

where K is proportional to the K-matrix and Bf (E.y,) is the so-called box matrix, using the
notation of Ref. [57]. This relationship holds below the nucleon-pion-pion threshold, up to cor-
rections which vanish exponentially for asymptotically large M L, where L is the side length of
the cubic box of volume L3 and M the smallest relevant energy scale. The determinant is taken
over all scattering channels specified by total angular momentum J, the projection of J along
the z-axis m ;, and the orbital angular momentum £. For elastic nucleon-pion scattering the total
spin § = 1/2 is fixed, and therefore not indicated explicitly. The K-matrix is diagonal in J and
m j, and, for elastic nucleon-pion scattering, additionally diagonal in £. The K -matrix in Eq. (3)
explicitly includes threshold-barrier factors which are integral powers of gem = /g2, with

EZ, my+my  (my—m})?
4 2 4E2

; “

2 _
9em =
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Table 1

A list of the lowest contributing partial waves for each irrep of the finite-volume little group A in momentum
class d employed in this work. All partial waves with £ < £max for £max = 2 are shown and each partial
wave is denoted by (2J, £). The superscript nocc denotes the number of multiple occurrences (subductions)
of the partial wave in the irrep. The pattern of partial wave mixing is evidently more complicated for irreps
with non-zero total momentum.

d A dim. contributing (2J, £)"oc¢ for {max = 2
(0,0,0) Gy 2 (1,0)
Gig 2 1,1)
Hy 4 3,1),(5,2)
Hy 4 (3.2).5,2)
Gag 2 (5,2
(0,0, n) Gy 2 (1,0), (1,1, 3,1),(3,2), (5,2
G, 2 (3. 1),3,2), (5,22
0,n,n) G 2 (1,0), (1, 1), 3. D2, 3,22, (5,2
(n.n.n) 2 (1,0), (1, 1), 3. 1), 3.2). (5.2)
Fi 1 (3.1),3,2). (5.2)
F 1 (3.1),3,2), (5,2)

so that K ~! is smooth near the nucleon-pion threshold. Each diagonal element of K is associated
with a particular partial wave specified by J ¥, where P is the parity, or equivalently (2J, £), so
that

Kj} o =8108wqam cotd e(Eem) | )
where 8¢ (Eqm) is the scattering phase shift.

The box matrix BP (E.n) encodes the reduced symmetries of the periodic spatial volume,
and is in general dense in all indices. The finite-volume energies used to constrain K from
Eq. (3) possess the quantum numbers associated with symmetries of the box, namely a par-
ticular irreducible representation of the finite-volume little group for the total spatial momentum
P = ZT”d , with d € Z3. The matrices in Eq. (3) are therefore block-diagonalized in the basis
of finite-volume irreducible representations (irreps), with each energy analyzed using a single
(infinite-dimensional) block. Since the subduction from infinite-volume partial waves to finite-
volume irreps is not in general one-to-one, an additional occurrence index n is required to specify
the matrix elements in each block. A particular block is denoted by the finite-volume irrep A (d?)
and a row of this irrep A. Since the spectrum is independent of the row A, this index is hence-

2
Ton. 1w
After transforming to the block diagonal matrix, the K matrix has the form given by Eq. (35) in
Ref. [57].

In practical applications, the matrices in Eq. (3) are truncated to some maximum orbital angu-
lar momentum £, . Threshold-barrier arguments ensure that, at fixed E.p, higher partial waves
are suppressed by powers of g.n, but systematic errors due to finite £, must be assessed. The
expressions for all elements of B2 (d?) relevant for this work are given in Ref. [57], although
some are present already in Ref. [65]. The occurrence pattern of lowest-lying partial waves in the
finite-volume irreps is given in Table 1.

Employing this formalism for nucleon-pion scattering presents additional difficulties com-
pared to simpler scattering processes. First, due to the non-zero nucleon spin, two partial waves

forth omitted. For a particular block, the block-diagonalized box-matrix is denoted B
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Table 2

Parameters of the D200 ensemble produced by the CLS consortium [66]. The lattice spac-
ing a is from Ref. [74] (with both statistical and systematic errors) and follows the strategy
of Ref. [73]. The number of gauge configurations employed here is specified by Nmeas-
The pion mass my; and nucleon mass my determinations are discussed in Sec. 3.3. The
kaon mass, denoted mg, and the pion and kaon decay constants, denoted fr and fk, are
taken from Ref. [73].

a[fm] (L/a)3 x T/a Nmeas amy amg
0.0633(4)(6) 643 x 128 2000 0.06617(33) 0.15644(16)
afx afk amy
0.04233(16) 0.04928(21) 0.3148(23)

contribute for each non-zero ¢, one with J = £ 4+ 1/2 and the other with J = ¢ — 1/2. Sec-
ondly, off-diagonal elements of the box matrix induce mixings of different partial waves in the
quantization condition. For £y« = 2, energies Ecy, in irreps with d? = 0 determine the quantity
qczlfl“coté J70(Ecm) for s- and p-waves, while these partial waves cannot be unambiguously iso-
lated for levels in irreps with non-zero total momentum. This complication necessitates global

fits of all energies to determine the desired partial waves, which are discussed in Sec. 4.
3. Spectrum computation details

This section details the numerical determination of finite-volume nucleon-pion energies used
to constrain the ¢ < 2 partial waves of the / = 1/2 and I = 3/2 elastic nucleon-pion scattering
amplitudes. Properties of the single ensemble of gauge field configurations are given in Sec. 3.1,
and computation of the nucleon-pion correlation functions from them is discussed in Sec. 3.2.
The subsequent determination of the finite-volume spectra from the correlation functions is de-
tailed in Sec. 3.3.

3.1. Ensemble details

This computation uses the D200 ensemble of QCD gauge configurations generated by the
Coordinated Lattice Simulations (CLS) consortium [66], whose properties are summarized in
Table 2. It was generated using the tree-level improved Liischer-Weisz gauge action [67] and a
non-perturbatively O(a)-improved Wilson fermion action [68]. Open temporal boundary condi-
tions [69] are employed to reduce the autocorrelation of the global topological charge. However,
all interpolating fields must be sufficiently far from the boundaries to reduce spurious contri-
butions to the fall-off of temporal correlation functions. An analysis of the zero-momentum
single-pion and p-meson correlators in Ref. [70] suggests that a minimum distance of 1 fpng =, 2
is sufficient to keep temporal boundary effects below the statistical errors in the determination of
energies. The time ranges for the correlators employed here are such that m g 2 2.3.

A complete description of the algorithm used to generate the D200 ensemble is presented in
Ref. [66], but some details relevant for the present work are given below. All CLS ensembles use
twisted-mass reweighting [71] for the degenerate light quark doublet and the Rational Hybrid
Monte Carlo (RHMC) approximation for the strange quark [72]. Both representations of the
fermion determinants require reweighting factors to change the simulated action to the desired
distribution. All primary observables are therefore re-weighted according to
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Fig. 1. Relative error of the zero-momentum nucleon (left) and pion (right) correlators, denoted R Nbin (1), for several bin
sizes Npip. All points are normalized by the Nypi, = 5 value with errors estimated using the bootstrap procedure with
N = 1000 resamples. All subsequent analysis, which does not employ any correlation functions with 7/a < 8 — 10,
ignores autocorrelation and uses Np;, = 20.

(4= AW ©
(W)w
where (...)w denotes the ensemble average with respect to the simulated action. W is the product
of two factors W = Wy W, where Wy and W are the reweighting factors for the light and strange
quark actions. They are estimated stochastically on each gauge configuration as in Ref. [66].

The lattice scale is determined at a fixed value of the gauge coupling according to the massless
scheme described in Ref. [73] and updated in Ref. [74]. Specifically, the kaon decay con-
stant fk is enforced to take its physical value at the physical point where the pion and kaon
masses take their physical values. This point is identified along a trajectory in which the bare
light- and strange-quark masses are varied, keeping the sum of the (renormalized) quark masses
fixed. The heavier-than-physical pion mass m, = 200 MeV for the D200 therefore results in
mg = 480 MeV, which is less than the physical value. In practice, the bare quark mass tuning
satisfies the trajectory condition only approximately. In order to correct any mistuning a pos-
teriori, Ref. [73] applies slight shifts to the quark masses to ensure the trajectory condition is
respected in the scale determination. No such shift is applied here.

In this study, correlation function measurements are separated by four molecular dynamics
units (MDU’s). To check for autocorrelations, the original measurements are binned by averag-
ing Npip consecutive gauge configurations. The dependence of the relative errors on Ny, for the
single-nucleon and single-pion correlators is shown in Fig. 1. Although evidence of autocorre-
lation remains for ¢t /a < 8 — 10 between Npin = 20 and 40, these early timeslices are not used
in the analysis, suggesting that Ny;, = 20 is sufficient to account for any autocorrelations in our
energy determinations.

3.2. Correlation function construction

The determination of finite-volume nucleon-pion energies requires a diverse set of tempo-
ral correlation functions measured on the D200 gauge field ensemble. In addition to diagonal
correlation functions between single-pion and single-nucleon interpolating operators, correlation
matrices between all operators in each irrep are required. For the I = 3/2 irreps in Table 1 where
the resonant (2J, £) = (3, 1) partial wave contributes, single-baryon operators are included in
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Table 3

Parameters of the stochastic LapH implementation used to compute temporal correlators in this work. Np is the number
of Dirac matrix inversions required per configuration and (p, np) the stout smearing parameters for the spatial links in
the gauge-covariant Laplace operator. Ney denotes the dimension of the LapH subspace. ng‘x and N{fl are the number of
stochastic sources for fixed and relative quark lines, respectively. Notation used to specify the dilution scheme for each
line type is explained in the text, and the number of source times on each configuration is Ny, .

Np (p.np) Nev Nfx N Noise dilution N
2176 (0.1,36) 448 6 2 (TE.SFLI16)fix (TI8,SF,LI16) e 4

addition to nucleon-pion operators resulting in additional valence quark-line topologies. These
topologies include those with lines that start and end on the same timeslice.

Our operator construction is described in Ref. [75] and our method of evaluating the tempo-
ral correlators is detailed in Ref. [50]. Well-designed multi-hadron interpolators are comprised
of individual constituent hadrons each having definite momenta. Evaluating the temporal corre-
lations of such operators requires all-to-all quark propagators, where all elements of the Dirac
matrix inverse are computed. The stochastic-LapH approach [50] enables the efficient treatment
of this inverse, provided at least one of the quark fields is LapH smeared [49]. This smearing
procedure is effected by a projection onto the space spanned by the N, lowest eigenmodes of
the gauge-covariant three-dimensional Laplace operator in terms of link variables which are stout
smeared [76] with parameters (p, n,). Although the Ny required to maintain a constant smear-
ing radius grows with the spatial volume, the growth of the number of Dirac matrix inversions
Np can be significantly reduced with the introduction of stochastic estimators in the LapH sub-
space. Such estimators are specified by the number of dilution projectors in the time (“T”), spin
(‘S’), and Laplacian eigenvector (‘L) indices, for which ‘F’ denotes full dilution and ‘In’ some
number of uniformly interlaced projectors. Different dilution schemes are used for fixed-time
quark lines, denoted ‘fix’, which propagate between different timeslices, and relative-time lines
(‘rel’) which start and end at the same time. In this work, the relative-time quark lines were only
used at the sink time, while the fixed-time lines were used for quark propagation starting and
ending at the source time. Both the dilution schemes and the number of stochastic sources used
for each type of line are specified in Table 3. Source times ty = 35, 64 were used for correlations
going forwards in time, and fy = 64, 92 were used for correlations going backwards in time.

A beneficial property of the stochastic estimators is the factorization of the inverse of the
Dirac matrix, which enables correlation construction to proceed in three steps: (1) Dirac matrix
inversion, (2) hadron sink/source construction, and (3) correlation function formation. After de-
termining the stochastically-estimated propagators in step (1), the hadron source/sink tensors are
computed in step (2). These tensors are subsequently reused to construct many different correla-
tion functions in step (3), which consists of optimized [32] tensor contractions. Averages over the
Ny, =4 different source times (two for forward propagation and two for backward propagation),
all possible permutations of the available noise sources in a given Wick contraction, all total
momenta of equal magnitude, and all equivalent irrep rows are performed to increase statistics.

3.3. Determination of finite-volume energies
Once the correlation functions computed as described in Sec. 3.2 are available, the determi-

nation of finite-volume energies can commence. From the (binned) correlator and reweighting
factor measurements, the reweighted correlation functions are computed as secondary observ-



J. Bulava, A.D. Hanlon, B. Horz et al.

Nuclear Physics B 987 (2023) 116105

0.12] = — R
011 $  data 0.50 ¢ data
0.10{ 0.45
= :EEz
S
3 0.09 . S} 0.40
v ) = 0.35 - \\*ﬁ_‘_;_ls;;
= s
0.07 e . A . 11
0.30
10 20 10 20
t/a t/a
0.0675 §  single-exponential 0.325 I E
’ ¥ double-exponential E
0.320 I TT E } { [
0.0670 I T |
- . I Inm
g S0315( | I
00065 | T l l . S T
T T 0.310
I J $  single-exponential
0.0660 T - I 0.305 §  double-exponential
S ' geometric
5 10 15 20 5 10 15 20
tmm/a tmin/a

Fig. 2. Fits to determine am; and amy. Bottom row: Variation of the fit range [fyin, fmax] With tmax = 25a for
correlated-x 2 fits. Both single- and double-exponential fits are shown and the horizontal band indicates the two-
exponential fit range chosen so that statistical errors are dominant. Top row: the chosen two-exponential fits overlayed
on standard effective masses for amy (left) and amy (right).

ables according to Eq. (6). Their statistical errors and covariances are used in fits to determine
energies and estimated by the bootstrap procedure with Ng = 800 samples.

In order to ensure that #,,q is sufficiently large, a maximum time separation tp,x = 25a is
enforced globally in the analysis. Energies are determined from correlated- x 2 fits to both single-
and two-exponential fit forms, which are additionally compared to a “geometric series” form

Ae Et
Ct)= ; (7

_ Be—Mt’
which consists of four free parameters. We also explored a “multi-exponential” variant of the
geometric series, with the replacement Be ™! — Y~ B, e=Mn!,

The application of our approach to determining the nucleon and pion masses is shown in
Fig. 2. As usual, a fit range is desired so that statistical errors on the energies are larger than sys-
tematic ones. This optimal range is selected according to several criteria. First, a good fit quality
q 2 0.2 —0.3 is enforced to ensure that the fit describes the data within the usual 68% confidence
interval quoted for statistical errors. Second, the absence of any statistically significant change
in the energy upon variation of #ni, around the chosen fit range further suggests that the asymp-
totic large-time behavior is applicable. Finally, consistency across different fit forms supports the
hypothesis that the energy determination is statistics limited. For the pion, consistency between
single- and two-exponential fits, as well as the mild variation with #;,, suggests that statistical
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errors are dominant. As is evident in amf\ff, single-exponential fits for amy are unsuitable, but

consistency between the double-exponential and geometric fit forms is reassuring.

For the nucleon-pion channels, excited state energies are determined in addition to ground
states. This requires a large basis of interpolating operators in each irrep and two-point correla-
tions between them. The resulting Nop x Nop hermitian matrix, denoted C;;(2), is rotated [77]
using eigenvectors vy, (fo, tg) of the generalized eigenvalue problem (GEVP)

C(tq)vn (to, ta) = An (10, ta) C (1) vy (10, 1d). (8)

In our single-pivot approach, the correlation matrix is rotated by these vectors for all ¢, and the
diagonal elements of the rotated matrix, denoted D, (f), are correlators with optimal overlap
onto the lowest Ny, states. Although diagonalizing separately on each time-slice ensures that the
optimized correlators are increasingly dominated by the desired state for asymptotically large
times [78,79], in practice, the single-pivot method produces nearly identical results if (¢, #q) are
chosen appropriately. Systematic errors related to this are controlled by ensuring that extracted
energies are insensitive to (fo, z4) and Nop and by ensuring that the rotated correlation matrix
remains diagonal within statistical errors for all time separations ¢ > #q. The advantages of di-
agonalizing on a single set of times include a better signal-to-noise ratio for large times and no
need for eigenvector pinning in which eigenvectors are re-ordered for diagonalizations at differ-
ent times and bootstrap samples.
After forming the optimized correlators, the following ratio is taken

Dy (1)
Cr(d%, 1) Cx(d%, 1)

with d2 and d3; chosen so that

: 2rdy \? 2rdn\?
E;on.mt.:\/m%_'_( 7TL71> +\/m12\1+< 7TLN> (]O)

corresponds to the closest non-interacting energy. The ratio R, (¢) is then fit to the single-
exponential ansatz R,(t) = A,e *Fn to determine the energy shift aAE,, from which the
lab-frame energy is reconstructed a EM® = aAE, + a EM™nt. Although the ratio fits enable
somewhat smaller tni, when AE), is small, they offer little advantage for states which are sig-
nificantly shifted from non-interacting levels. Nonetheless, ratio fits are employed for all levels
in the nucleon-pion irreps, and are typically consistent with single- and double-exponential fits
directly to D, ().

A sample illustration of the procedure for nucleon-pion energies is shown in Fig. 3 for the sec-
ond level in the I = 1/2 G(3) irrep. Due to partial wave mixing, the single-nucleon state is also
present in this irrep. The GEVP is therefore required to properly isolate the desired higher-lying
nucleon-pion energies. Analogous plots for all levels are given in Appendix A and Appendix B
for the GEVP- and fy;,-stability plots, respectively.

The spectra resulting from this analysis are shown in Figs. 4a and 4b for the I = 1/2 and
I =3/2 channels, respectively.

R,(t) = (&)

4. Scattering parameter results and discussion
This section details the determination of the scattering parameters from the finite-volume
energies. The parameterizations of the K matrix elements are presented, and best-fit values for

the parameters are summarized. Lastly, a comparison with chiral perturbation theory is made.
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Fig. 3. Example determination of the spectrum in the I = 1/2 G(3) irrep. Left: #,;,-plot for the second level including
single- and two-exponential fits to Dy, (¢) as well as single-exponential fits to the ratio R, (¢) in Eq. (9). All fits employ
the GEVP of Eq. (8) with Nop =4 and (, 4) = (8a, 16a). The horizontal band represents the chosen 7, from the ratio
fit. Right: stability under variation of the GEVP parameters for the entire spectrum in this irrep. For each level #, is
fixed while (Nop, t9, 2q) are varied as shown in the legend. The elastic and inelastic thresholds are represented by dotted
lines.

4.1. Scattering parameter determinations

The energies shown in Figs. 4a and 4b are next used to determine scattering amplitudes
via the relations in Sec. 2. Although these relations are only applicable to energies below the
nucleon-pion-pion threshold, the slow growth of three-body phase space near threshold sup-
presses corrections to Eq. (3) and the coupling of nucleon-pion-pion states to our operator basis
is naively suppressed by the spatial volume, so energies somewhat above the inelastic thresh-
old are expected to be appropriate for inclusion in our global fits. Nevertheless, we restrict our
attention to center-of-mass energies below or within one standard deviation of the threshold
Ecm =2my; + my.

The goal of this analysis is a parametrization of the J© = 1/2~ partial wave for both isospins,
and the 3/2% wave with I = 3/2. As discussed in Sec. 2, energies from irreps with zero total
momentum directly provide points for these partial waves up to corrections from £ > 3 contri-
butions. However, mixing among the desired waves, as well as with others, generally occurs for
energies in irreps with non-zero total momentum. The zero-momentum points are therefore a
useful guide when plotted together with the partial wave fits.

Each partial wave is parametrized using the effective range expansion. For the I =3/2, J© =
3/2% wave, the next-to-leading order is included

3
Tem ot gy)0e = ?Tfﬁ(mi — ), an
My mz 8A BW

where /s = Ecm = /m2 + g%, + /m% + ¢2,. and the effective range fit parameters are re-

organized to form the conventional Breit-Wigner properties of the A(1232) resonance, denoted
gi pw and m a. For the other waves, the leading term in the effective range expansion is sufficient

20+1
qcm+ I _ \/E

2051 SO0y p = ———, (12)
my mnA]P

where the overall /s factors are adopted from standard continuum analysis [80], and the single
fit parameter A§ p is trivially related to the scattering length

11
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Fig. 4. The low-lying / = 1/2 and I = 3/2 nucleon-pion spectra in the center-of-momentum frame on the D200 ensemble
described in Table 2. Each column corresponds to a particular irrep A of the little group of total momentum P =
Q2r/ L)2d2, denoted A(d2). Dashed lines indicate the boundaries of the elastic region. Solid lines and shaded regions
indicate non-interacting Nz levels and their associated statistical errors. Levels employed in subsequent fits to constrain
the scattering amplitudes are shown with solid symbols. For I = 3/2, all well-constrained levels with overlap below the
N threshold are included. For the / = 1/2 channel, we are only interested in the scattering length, so only the ground
state in each irrep is used to determine the / = 1/2 amplitude near the Nz threshold.

20+1 1 Mz 1 (13)

m ap= Alp.
T mptmy

Two different fit strategies are employed to determine the parameters from the finite-volume
energies. The first, called the “spectrum method” [81], obtains best-fit values of the model pa-
rameters {p,} by minimizing

q2 qZ,QC 6]2 qZ»QC
2 cm,i cm,i -1 cm, j cm, j
= E — C. | —— —— , 14

ij

where the qczm ; are the center-of-mass momenta squared computed from lattice QCD, with co-

variance matrix C, and qfr’nQiC ({pn}) are the center-of-mass momenta squared evaluated from the

model fit form for a given choice of parameters {p, }. The fact that the model depends on mn/m,
and is therefore not independent of the data to be fit, complicates the evaluation of the covariance
matrix C. As discussed in Ref. [57], a simple way to avoid this complication so that C is just the
covariance matrix of the data is to introduce model parameters for m, L and the ratio my/my,
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and include appropriate additional terms in the x2 of Eq. (14). Given the relatively small errors
on my/my and m L, these additional terms have little effect on the fit parameters and the re-
sultant x2, and are subsequently ignored. Note that the evaluation of the (qczl’n(?iC / mjzz)({ pn}) for
a particular choice of the parameters requires the determination of roots of Eq. (3), a procedure
which can be delicate for closely-spaced energies.

The second method, called the “determinant residual” method [57], employs the determinants
of Eq. (3) themselves as the residuals to be minimized. These determinants depend on the fit
parameters through the K-matrix, which are adjusted to minimize the residuals and best satisfy
Eq. (3). This approach avoids the subtleties associated with root-finding, but has other difficulties.
For the spectrum method, the covariance between the residuals is, to a good approximation,
simply the covariance between the qczm’i / m%, which can be estimated once and does not depend
on the fit parameters. Conversely, for the determinant residual method, the covariance must be
re-estimated whenever the parameters are changed. Since the statistical errors on the determinant
are typically larger than those on qczm,i / m% , this approach is less sensitive to higher partial waves,

and results in a smaller x> compared to the spectrum method.

For the I = 3/2 fits, the J© = 1/2%,3/27, and 5/2~ partial waves are added to the spectrum
method fits along with the ground states in the G1(0) and H,(0) irreps. The I = 3/2 spectrum
in the G2g(0) irrep was not computed, and irreps in the / = 1/2 channel which do not con-
tain the s-wave were also omitted. This choice was made for computational simplicity, although
these irreps may be beneficial to further constrain higher partial waves in future work. The de-
terminant residual method was found to be less able to constrain higher partial waves and was
only used in fits that included just the J” = 1/27, 3/2% waves. Nonetheless, the consistency
between these different fitting methods, as well as those including higher partial waves, suggest
that uncertainties on amplitude parameters are statistics dominated.

For the I = 1/2 channel, £;,5x = 0 is employed. Although the small number of levels pre-
cludes a sophisticated estimate of the effect of higher partial waves, the influence of the omitted
p-waves can be explored by examining the influence of the highest-lying level on the fit. Table 5
indicates that the effective range is insensitive to the omission of the lowest-lying nucleon-pion
level in the G (4) irrep. These I = 1/2 fits are also insensitive to an additional term in the effec-
tive range expansion, and exhibit no statistically significant difference between the spectrum and
determinant-residual methods.

Results from fits using both the spectrum and determinant-residual methods including various
partial waves are given in Tables 4 and 5 for / = 3/2 and I = 1/2, respectively. In addition to
the desired partial waves, fits using the spectrum method are mildly sensitive to the J* = 1/2F,
3/27,and 5/2~ waves with I = 3/2. Although not included in the table, the determination of the
effective range for both isospins is robust to the addition of the next term in the effective range
expansion. Results for the partial waves from the fit including only the desired partial waves are
shown with the points from the total-zero momentum irreps in Figs. 5 and 6 for the I = 3/2
and I = 1/2 partial waves, respectively. The phase shift é3/,+ has the characteristic profile of
the A(1232) resonance and is shown in Fig. 7. Since the scattering length is the only desired
parameter from the 7 = 1/2 spectrum, only the lowest nucleon-pion levels from each irrep are
included in the fit, as denoted by the solid symbols in Fig. 4a. Full exploration of the elastic
I =1/2 spectrum likely requires additional operators beyond the scope of this work, due to the
strongly-interacting J© = 1/2% wave containing the N (1440) Roper resonance.

The spectrum method enables an additional visualization of the quality of fits to the finite-

volume spectra. The residual is constructed using model values of qcz,;qQC / m% which depend on

13



J. Bulava, A.D. Hanlon, B. Horz et al. Nuclear Physics B 987 (2023) 116105

Table 4

Results for the fits in the / = 3/2 channel. Npw is the number of partial waves included in the fit. Two different fit forms
are included, the one denoted Npw = 2 includes only the desired partial waves, namely J P /2~ and 3/2%, while the
one with Npw =5 includes all s-, p-, and d-waves, employing the two additional energy levels in the G 14(0) and Hy(0)
irreps. For the Npw = 2 fit, results from the determinant-residual method, denoted ‘DR’, are shown in addition to the
spectrum method, denoted ‘SP’.

2

Fit pr A1/2— gA.BW MAa /My A1/2+ A3/2— A5/2— X dofs
Sp 2 —1.56(4) 13.8(6) 6.281(16) — — — 4438 23 -3
DR 2 —1.57(5) 14.4(5) 6.257(36) — — — 1491 23 -3
Sp 5 —1.53(4) 14.7(7) 6.290(18) —0.19(6) —0.46(12) 0.37(10) 30.17 25—-6
Table 5
Results for fits to the / = 1/2 spectrum in Fig. 4a. Npy is the number of partial waves
included in the fit. Due to the small number of levels, all fits include only the desired
JP =127 partial wave. Nonetheless, the effect of the omitted p-waves is estimated by
removing the G1(4) level, which evidently has little influence on the result. ‘SP’ refers to
the spectrum method, and ‘DR’ refers to the determinant-residual method.
Fit Npw A /2 X2 dofs
Sp 1 0.82(12) 1.68 5-1
DR 1 0.92(22) 1.72 5-1
Sp 1 0.82(13) 0.79 4-1
251 |
500 \_4,\ P
P & Hy0) /
S8 e
g% 25 o R N
ol 7 PO
=5.0 o G ~eo
—5.0 1
T —.— T e M e —o—
o™ iRl l i e
0.0 0.5 1.0 15 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
((Jclll/mfr>2 <(I(:m/7”'7r)2
(a) JP =1/2" (b) JP =3/27F

Fig. 5. The results from fits to the I = 3/2 spectrum in Fig. 4b using the spectrum method including the J¥ =
1/27,3/2% partial waves only, omitting the Hy(0) and G1g(0) irreps. The lower panel of each partial wave shows
the squares of the center-of-mass momenta of the finite-volume levels which contribute to fitting that partial wave. Most
levels, shown with solid symbols, contribute to both partial waves, so solving for the partial wave phase shift shown in
the upper panel cannot be done. When a particular level couples only to the partial wave shown, a phase shift point can
be obtained from the energy level and is shown in the upper panel. Hollow symbols indicate such levels. For clarity, the
levels in the lower panel are vertically spaced according to the (integer-valued) total momentum d 2,

the parameters and can be compared with the input data from the spectrum. Such comparisons
are shown in Fig. 8 for both the I = 1/2 and I = 3/2 spectra. Although not shown explicitly
on the plot, the ground states in G{(1), G(2), G(3), and G1(4) with I = 3/2 are sensitive to
the J? = 3/2% partial wave. The £max = O approximation significantly increases the x> for
these levels. Conversely, these levels therefore place significant constraints on the near-threshold
behavior of the 3/2% wave, in contrast to the higher-lying levels in the H,(0), Ga(1), F1(3),
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Fig. 6. The result of fits to the = 1/2 spectrum in Fig. 4a to determine the scattering length of the J© = 1/2~ wave.

As in Fig. 5, the lower panel shows the input spectra. For £max = 0, even levels with total non-zero momentum result in
phase shift point in the upper panel. The level with largest qczm is not shown in the upper panel due to its large error.
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Fig. 7. Scattering phase shift of the / =3/2, J P 3/2% partial wave containing the A(1232) resonance. The curve is
obtained from a fit of the finite-volume energies shown in the lower panel using Eq. (3) and a Breit-Wigner form. The
energies are computed on the single Ny =2+ 1 lattice QCD gauge field ensemble with a = 0.065 fm and m; =200 MeV
described in Table 2. Levels used in the fit are shown in the lower panel, similar to Figs. 5 and 6, but no data points are
shown in the upper panel to more clearly show the final fit form.

F>(3), and G2 (4) irreps. The ground states in the G1,(0) and Hy(0) irreps are not shown on the

plot, and only included in the Ny, =5 fit in Table 4.
The final results for the scattering lengths in this work are taken from the determinant residual
method fit in Table 4 with Ny, = 2 for I = 3/2 and the spectrum method fit for / = 1/2 including

all five levels
mpay> =—02735@81),  mqyay/* =0.142(22), (15)

which are already given in Eq. (1). In Fig. 9, the results from this work for the Breit-Wigner
parameters of the A(1232) resonance in the I =3/2, J¥ =3/2% partial wave are compared to
the published numbers in Refs. [40] and [82] where, as is customary, the definition of the gay
coupling from leading-order effective field theory is used, as defined in Eq. (39) of Ref. [82].
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Fig. 8. The center-of-mass momentum qczm / m72, for the 7 = 1/2 and I = 3/2 spectra together with model values from
amplitude fits employing the spectrum method with Npy = 2 partial waves for I =3/2. For I = 1/2, only the s-wave is
included and the fit to all five points is shown.

When considering Fig. 9, keep in mind that the quark mass trajectory used here and in Ref. [40],
which fixes the sum of the quark masses, differs from that used in Ref. [82], which fixes the
strange quark mass to its physical value. A comparison of the scattering lengths determined here
to past lattice QCD results is also shown in Fig. 9.

4.2. Comparison with phenomenology and chiral perturbation theory

Although the results here are only at a single pion mass, it is interesting to compare our
scattering lengths to those extracted phenomenologically [83,84] from pionic atoms [85-87], as
well as to those obtained from chiral perturbation theory. The proximity of m, =200 MeV to
its physical value naively suggests that SU (2) baryon x PT may be applicable. While x PT may
be poorly converging for g4 and my, the convergence pattern is an observable dependent issue
which has not been explored for N scattering.

Pionic hydrogen (;r H) is sensitive to one combination of the isoscalar (a™) and isovector (a™)
scattering lengths and pionic deuterium (7 D) is sensitive to a different combination, allowing for
a percent level determination [83,84]. Phenomenological values extracted from a full 7 N partial
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Fig. 9. Comparison of results from this work to previous lattice calculations. Top left: the Breit-Wigner mass mx .
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by ‘Anderson et al. 2018’ [40], ‘Silvi et al. 2021° [82], ‘Fukugita et al. 1995’ [42], and ‘Lang and Verduci 2012’ [39].
Physical point values are obtained using Refs. [92-94].

wave analysis have been reported in Ref. [88]. Ref. [27] determined the values of these scattering
lengths in the isospin limit. While it is customary for the lattice community to use m, = 135 MeV
as the pion mass in the isospin limit, it is common in the phenomenological estimates to use the
charged pion mass to determine the QCD quantities in the absence of QED corrections. In order
to be consistent with the phenomenological estimates, we similarly use the charged pion mass
when quoting results at the physical pion mass.

These scattering lengths are known to fourth order in the baryon chiral expansion [§9-91] and
expressed in Appendix F of Ref. [88] and Ref. [92] in a form convenient for extrapolating LQCD
results. In terms of the s-wave a(:)t scattering lengths, the isospin 1/2 and 3/2 7 N scattering
lengths are given by

ag/zza(')"—ao_, aé/2=a§+2a0_. (16)

At leading order (LO), the scattering lengths are free of LECs and given by

2 1/2 47

3/2
myay *[LO] = —€2 o myay/*[LO] =e,2,—1 o (17)
where
My my
= - 18
e 47TFJT s my ( )

The values of these input parameters on D200 and at the physical (charged) pion mass are

67].?200 — 01759(12)’ MDZOO = 02102(19),
™ =0.12064(74),  pP™ =0.14875(05). 1

A comparison of our results with the LO xPT predictions and phenomenological values in
the isospin limit from Ref. [27] is presented in Table 6. Not only do our results disagree with
LO xPT, but we also find the magnitude of mﬂag/ 2 exceeds that of mnaé/ 2, in conflict with
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Table 6

A comparison of our N scattering length results at m; =200 MeV with phenomenological values in the
isospin limit and predictions from leading order chiral perturbation theory. For the xPT predictions, the
first error is from uncertainties on the input parameters, €; and p, and the second error is a x PT truncation
uncertainty given by e my aé [LO].

my (MeV) mnaé/z mﬂag/z
This work 200 0.142(22) —0.2735(81)
LO xPT 200 0.321(04)(57) —0.161(02)(28)
LO xPT 140 0.159(02)(19) —0.080(01)(10)
Pheno. (isospin limit) [27] 140 0.1788(38) —0.0775(35)

both LO xPT and phenomenology. Note that the LO x PT predictions at the physical point are in
reasonable agreement with the phenomenological values, lying within one sigma of the estimated
x PT truncation uncertainty. With only one pion mass available in this work, the reasons for the
discrepancy of our results with LO x PT cannot be ascertained. Interestingly, our scattering length
results can be described at next-to-leading order (NLO) using a single LEC. At NLO, one finds

27 €x A
myay *[NLO] = —e2 T {1 + %ﬁ(gi +8C)} ,
moal?INLOj = 2 2% 1y _ & Be 2 g (20)
o T Y1t 4 my oA :

where A, =4 F; and we have defined the dimensionless LEC

C=mnyQ2ci —c2—c3), (29)

in terms of the ¢; LECs in the baryon chiral Lagrangian [95]. The scattering lengths in this work
can be described by these NLO formulae if C is in the range 0.6-0.7. The NLO phenomenological
determination finds a value of C = (.3, which is not significantly different from that needed
to describe our results. However, the phenomenological extraction of the LECs in Ref. [88] is
clouded by issues related to the A degrees of freedom [20] and is not stable until at least next-to-
next-to-next-to-leading order (N>LO) [88]. When results at additional pion masses, particularly
lighter ones, become available, a more thorough understanding of the pion mass dependence of
the scattering lengths can be achieved and a more quantitative comparison with the results from
the phenomenological analysis and x PT can be performed.

5. Conclusion

This work presents a computation of the lowest partial waves for the elastic nucleon-pion
scattering amplitude on a single ensemble of gauge configurations with m, = 200 MeV. The
s-wave scattering lengths are determined for both isospins / = 1/2 and I = 3/2 and compared
to determinations from LO xPT and a Roy-Steiner analysis [88]. To our knowledge, this is
the first (unquenched) lattice QCD determination of both nucleon-pion scattering lengths for
my < 250 MeV. The Breit-Wigner resonance parameters of the A(1232) in the J© = 3/2%
partial wave with / = 3/2 are determined as well.

A comparison of two different methods, the spectrum method and the determinant residual
method, of extracting K -matrix information from finite-volume spectra is also performed. Al-
though the determinant residual method avoids awkward root-finding, it was found to be less
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sensitive to higher partial wave contributions. Nonetheless, the consistency between these two
different fitting procedures is reassuring.

These results suggest that the methods used here will prove useful for future work at the phys-
ical values of the quark masses and for other lattice spacings. Larger volumes needed at smaller
quark masses will require an increase of Ny, the dimension of the LapH subspace discussed
in Sec. 3.2, but not the number of Dirac matrix inversions in the stochastic-LapH algorithm for
all-to-all quark propagators. Nevertheless, the increasingly severe signal-to-noise problem will
likely require more configurations and source times to achieve a similar statistical precision.

This work is part of a larger effort to compute baryon scattering amplitudes on lattice QCD
gauge field ensembles at quark masses in the chiral regime m, < 300 MeV where effective
theories may be applicable. As discussed in Sec. 3.2, the stochastic LapH approach to quark prop-
agation enables considerable re-use of the hadron tensors in multiple multi-hadron correlation
functions on the D200 ensemble employed here. Analyses are currently underway to compute the
analogous amplitudes for the NA — N X and NN systems. Hopefully this exploratory computa-
tion has sufficient statistical precision to impact chiral effective theories for these baryon-baryon
channels as well.
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Fig. A.10. Stability of the finite-volume spectra under variation of the GEVP as discussed in Sec. 3.3. Multiple values of
(Nop, tg, tq) for each level are shown with a horizontal displacement for clarity. Each irrep is shown in a column in the
same manner as Fig. 4 with n denoting the maximum Nop.
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Appendix A. Systematic errors from correlation matrix rotation

As discussed in Sec. 3.3, the optimized diagonal correlation functions D, (t) are obtained in
this work from the GEVP using a single-pivot approach which uses one choice of (1, z5). The
systematic error associated with this approach is estimated for each energy level by fixing the
fit range [fmin, fmax] and varying the GEVP metric and diagonalization times (¢, #q) defined in
Eq. (8), as well as the dimension of the input correlation matrix Nop. Taking both GEVP stability
and statistical precision into account, the parameters (fy, t3) = (8a, 16a) are found to work well
for all energies presented here. As shown in Fig. A.10, the spectrum is rather insensitive to
variations in (fo, #4) and Nop.
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Appendix B. Systematic errors from varying fit forms and time ranges

As discussed in Sec. 3.3, multiple fit ranges and fit forms are compared for every energy
level to ensure systematic errors associated with excited state contamination are smaller than the
statistical errors. Ultimately, single-exponential fits to the correlator ratios in Eq. (9) are chosen
due to their mild sensitivity to fmin and good statistical precision. The fit range is chosen to be
consistent with the double-exponential #i, plateau, defined as the range of fy,;, for which the
fitted energy exhibits no statistically significant variation. Most levels are additionally consistent
with the single-exponential fit plateau, although as shown in Fig. 2 for my, these fits may fail
to describe correlators with significant excited-state contamination. Plots analogous to the #pin-
plot in Fig. 3 are shown for each of the I = 1/2 levels in Fig. B.11 and the I = 3/2 levels in
Figs. B.12-B.16.
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Fig. B.11. Stability of the / = 1/2 spectrum illustrated by varying the fit range and fit form. The chosen fit for each level
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spectrum for a single irrep labeled in the same manner as Fig. 4. The chosen values are taken from ratio fits and compared
to both single- and double-exponential fits over a range of i, With tmax = 25a.
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Fig. B.15. Same as Fig. B.12 for I = 3,2 except that d = 3.
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Fig. B.16. Same as Fig. B.12 for I = 3/2 except that d* = 4.
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