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Abstract

Elastic nucleon-pion scattering amplitudes are computed using lattice QCD on a single ensemble of gauge 
field configurations with Nf = 2 + 1 dynamical quark flavors and mπ = 200 MeV. The s-wave scattering 
lengths with both total isospins I = 1/2 and I = 3/2 are inferred from the finite-volume spectrum below the 
inelastic threshold together with the I = 3/2 p-wave containing the �(1232) resonance. The amplitudes 
are well-described by the effective range expansion with parameters constrained by fits to the finite-volume 
energy levels, enabling a determination of the I = 3/2 scattering length with statistical errors below 5%, 
while the I = 1/2 scattering length is somewhat less precisely evaluated. Systematic errors due to excited 
states and the influence of higher partial waves are controlled, providing a step toward future computations 
down to physical light quark masses with multiple lattice spacings and volumes.
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1. Introduction

Nucleon-pion (Nπ) scattering is a fundamental nuclear physics process. Because the pion is 
the lightest hadron, pion exchange between nucleons governs the long-range nuclear force and 
contributes to the binding of protons and neutrons into atomic nuclei. Nucleon-pion scattering 
also gives rise to the narrow �(1232) resonance which influences many nuclear processes, in-
cluding lepton-nucleon and lepton-nucleus scattering relevant to a range of electron-nucleus and 
neutrino-nucleus scattering experiments.

While Nπ scattering is well understood experimentally and phenomenologically, such as 
through the Roy-Steiner equations [1], the ability to determine the amplitudes directly from quan-
tum chromodynamics (QCD) is hampered by its non-perturbative nature at low energies. After 
QCD was established as the underlying theory of the strong nuclear force, chiral perturbation 
theory (χPT) [2] and chiral-EFT [3,4] were developed to systematically describe the low-energy 
dynamics of pions and nucleons in an effective field theory (EFT) framework. For a recent re-
view, see Ref. [5]. While EFT methods are generally effective in treating low-energy hadron 
scattering processes, a number of challenges can only be addressed with first-principles QCD 
calculations, for which lattice QCD is an essential non-perturbative tool.

For example, many of the low-energy constants (LECs) of nuclear EFTs are difficult to deter-
mine from experimental information alone. Lattice QCD can assist in the determination of LECs 
by carrying out computations at a variety of quark masses and by computing processes which 
are difficult to measure experimentally, such as hyperon-nucleon and three-nucleon interactions, 
as well as short-distance matrix elements of electroweak and beyond-the-Standard Model opera-
tors. See recent reviews for further discussion [6–10]. The beneficial interplay between EFTs and 
lattice computations is already developing for meson-meson scattering [11–16], but few lattice 
studies of meson-baryon scattering amplitudes currently exist.

Another important issue concerns the convergence of EFTs, which are asymptotic expan-
sions in small momenta and light quark masses with convergence not guaranteed at the physical 
quark masses. Lattice QCD has already provided numerical evidence that SU(2) baryon χPT 
is not converging at or slightly above the physical pion mass for the nucleon mass and axial 
coupling [17–19]. Including explicit � degrees of freedom may improve convergence of SU(2)

baryon χPT, but introduces a plethora of additional unknown LECs. Lattice QCD calculations 
of Nπ scattering at various pion masses can help verify the convergence pattern and whether 
it is improved with explicit �s [20], as well as constrain the additional LECs. Nπ scattering 
is additionally important because of the current tension between lattice QCD determinations 
of the nucleon-pion sigma term [21–24] σπN and phenomenological determinations [1,25] (see 
Ref. [26] for a possible resolution). σπN plays an important role in the analysis of direct dark 
matter detection experiments [27]. Controlled lattice QCD calculations of Nπ scattering may 
help understand this tension.

As a final example, a future prospect for lattice QCD is the determination of inputs to models 
of neutrino-nucleus scattering cross sections to aid next-generation experiments, like DUNE [28]
and Hyper-K [29], designed to measure unknown properties associated with neutrino oscillations. 
The importance of lattice QCD input was recently highlighted by current lattice QCD results 
for elastic nucleon form factors [30]. The frontier for these lattice QCD applications is the �-
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resonance and pion-production contributions to inelastic νN structure. To carry out this program, 
it is essential to first demonstrate control of Nπ scattering, a necessary component of nucleon 
inelastic resonant structure.

Lattice QCD calculations of two-pion systems are well established (for a recent review, see 
Ref. [31]), and there are now numerous three-meson results [32–38]. In contrast, there are few 
nucleon-pion scattering studies in lattice QCD. Ref. [39] included nucleon-pion operators to ex-
tract the spectrum in the I = 1/2 channel at a single lattice spacing using a 163 × 32 lattice 
volume with mπ ≈ 266 MeV and obtained an estimate of the scattering length with a signifi-
cance of roughly four standard deviations. Refs. [40] and [41] each employ a single ensemble 
with mπ � 250 MeV to evaluate scattering phase shifts relevant to the � resonance, but neither 
presented statistically significant results for the scattering lengths. There is also older work which 
employs the quenched approximation [42] and preliminary unpublished results for the I = 3/2
amplitudes [43–45]. The determination of finite-volume nucleon-pion energies in Ref. [46] is 
performed close to the physical quark masses, but scattering amplitudes are not computed. 
Lattice computations of meson-baryon scattering lengths in other systems have also been per-
formed [47,48].

Recent advances in lattice QCD computations of multi-hadron scattering amplitudes are due 
in part to stochastic algorithms employing Laplacian-Heaviside (LapH) smearing to efficiently 
compute timeslice-to-timeslice quark propagators [49,50] which enable definite momentum 
projections of the constituent hadrons in multi-hadron interpolators and the evaluation of all 
needed Wick contraction topologies. Recently, these algorithms have been successfully applied to 
meson-baryon scattering amplitudes [40,46]. Alternatively, Ref. [41] employs sequential sources, 
while the scattering channels in Refs. [47,48] are chosen to avoid same-time valence quark prop-
agation and can be straightforwardly implemented with point-to-all. The LapH approach has also 
been employed to three-meson [32,34–38,51–53] and two-baryon [54–56] amplitudes.

This work is part of an ongoing project to obtain Nπ scattering amplitudes from lattice QCD, 
which requires computations using several Monte Carlo ensembles to reach the physical pion 
mass and extrapolate to the continuum limit. Nucleon-pion correlation functions in lattice QCD 
suffer from an exponential degradation in the signal-to-noise ratio with increasing time separa-
tion, which hampers the determination of nucleon-pion energies from the large-time asymptotics. 
This difficulty worsens as the quark mass is decreased to its physical value. One important ob-
jective of this work is to determine if the stochastic-LapH approach of Ref. [50] is viable for 
computing nucleon-pion scattering amplitudes close to the physical values of the quark masses. 
Another objective is to compare two different methods [57] of extracting the K-matrix from 
finite-volume energies. The results presented here extend those of Ref. [40]. An update with in-
creased statistics on the same mπ = 280 MeV ensemble used in Ref. [40] is not included here 
due to instabilities discovered in the gauge generation of that ensemble, as detailed in Ref. [58].

Both the total isospin I = 1/2 and I = 3/2 scattering lengths at light quark masses corre-
sponding to mπ = 200 MeV are computed in this work. The results are

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22), (1)

where the errors are statistical only. The Breit-Wigner parameters for the �(1232)-resonance are 
also determined from the I = 3/2, JP = 3/2+ partial wave

m�

mπ

= 6.257(35), g�,BW = 14.41(53), (2)

where the corresponding scattering phase shift is shown in Fig. 7. Since only a single ensemble of 
gauge field configurations is employed, the estimation of systematic errors due to the finite lattice 
3
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size, lattice spacing, and unphysically large light quark mass is left for future work. However, 
systematic errors due to the determination of finite-volume energies, the reduced symmetries of 
the periodic simulation volume, and the parametrization of the amplitudes are addressed. The 
methods presented here therefore provide a step toward the lattice determination of the nucleon-
pion scattering lengths at the physical point with controlled statistical and systematic errors.

The remainder of this work is organized as follows. Sec. 2 discusses the effects of the fi-
nite spatial volume, including the corresponding reduction in symmetry and the relation between 
finite-volume energies and infinite-volume scattering amplitudes. Sec. 3 presents the computa-
tional framework, including the lattice regularization and simulation, the measurement of corre-
lation functions, and the determination of the spectrum from them. Results for the amplitudes are 
presented and discussed in Sec. 4, while Sec. 5 concludes.

2. Finite-volume formalism

The Euclidean metric with which lattice QCD simulations are necessarily performed compli-
cates the determination of scattering amplitudes. It was shown long ago by Maiani and Testa [59]
that the direct application of an asymptotic formalism to Euclidean correlation functions does not 
yield on-shell scattering amplitudes away from threshold. Instead, lattice QCD computations ex-
ploit the finite spatial volume to relate scattering amplitudes to the shift of multi-hadron energies 
from their non-interacting values [60]. See Ref. [61] for a more complete investigation of the 
Maiani-Testa theorem, and Refs. [62,63] for an alternative approach to computing scattering 
amplitudes from Euclidean correlation functions based on Ref. [64].

This section summarizes the relationship between finite-volume spectra and elastic nucleon-
pion scattering amplitudes. Due to the reduced symmetry of the periodic spatial volume, this 
relationship is not one-to-one and generally involves a parametrization of the lowest partial wave 
amplitudes with parameters constrained by a fit to the entire finite-volume spectrum. Symmetry 
breaking due to the finite lattice spacing is also present, but ignored. At fixed physical volume 
and quark masses, the continuum limit of the finite volume spectrum exists and is assumed for 
this discussion.

For a particular total momentum P , the relationship between the finite-volume center-of-mass 
energies Ecm determined in lattice QCD and elastic nucleon-pion scattering amplitudes specified 
in the well-known K-matrix is given by the determinantal equation

det[K̃−1(Ecm) − BP (Ecm)] + O(e−ML) = 0 , (3)

where K̃ is proportional to the K-matrix and BP (Ecm) is the so-called box matrix, using the 
notation of Ref. [57]. This relationship holds below the nucleon-pion-pion threshold, up to cor-
rections which vanish exponentially for asymptotically large ML, where L is the side length of 
the cubic box of volume L3 and M the smallest relevant energy scale. The determinant is taken 
over all scattering channels specified by total angular momentum J , the projection of J along 
the z-axis mJ , and the orbital angular momentum �. For elastic nucleon-pion scattering the total 
spin S = 1/2 is fixed, and therefore not indicated explicitly. The K-matrix is diagonal in J and 
mJ , and, for elastic nucleon-pion scattering, additionally diagonal in �. The K̃-matrix in Eq. (3)
explicitly includes threshold-barrier factors which are integral powers of qcm = √

q2
cm, with

q2
cm = E2

cm

4
− m2

π + m2
N

2
+ (m2

π − m2
N)2

4E2
cm

, (4)
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Table 1
A list of the lowest contributing partial waves for each irrep of the finite-volume little group � in momentum 
class d employed in this work. All partial waves with � ≤ �max for �max = 2 are shown and each partial 
wave is denoted by (2J, �). The superscript nocc denotes the number of multiple occurrences (subductions) 
of the partial wave in the irrep. The pattern of partial wave mixing is evidently more complicated for irreps 
with non-zero total momentum.

d � dim. contributing (2J, �)nocc for �max = 2

(0,0,0) G1u 2 (1,0)

G1g 2 (1,1)

Hg 4 (3,1), (5,2)

Hu 4 (3,2), 5,2)

G2g 2 (5,2)

(0,0, n) G1 2 (1,0), (1,1), (3,1), (3,2), (5,2)

G2 2 (3,1), (3,2), (5,2)2

(0, n,n) G 2 (1,0), (1,1), (3,1)2, (3,2)2, (5,2)3

(n,n,n) G 2 (1,0), (1,1), (3,1), (3,2), (5,2)2

F1 1 (3,1), (3,2), (5,2)

F2 1 (3,1), (3,2), (5,2)

so that K̃−1 is smooth near the nucleon-pion threshold. Each diagonal element of K̃ is associated 
with a particular partial wave specified by JP , where P is the parity, or equivalently (2J, �), so 
that

K̃−1
J�,J ′�′ = δJJ ′δ��′q2�+1

cm cot δJ�(Ecm) , (5)

where δJ�(Ecm) is the scattering phase shift.
The box matrix BP (Ecm) encodes the reduced symmetries of the periodic spatial volume, 

and is in general dense in all indices. The finite-volume energies used to constrain K from 
Eq. (3) possess the quantum numbers associated with symmetries of the box, namely a par-
ticular irreducible representation of the finite-volume little group for the total spatial momentum 
P = 2π

L
d , with d ∈ Z3. The matrices in Eq. (3) are therefore block-diagonalized in the basis 

of finite-volume irreducible representations (irreps), with each energy analyzed using a single 
(infinite-dimensional) block. Since the subduction from infinite-volume partial waves to finite-
volume irreps is not in general one-to-one, an additional occurrence index n is required to specify 
the matrix elements in each block. A particular block is denoted by the finite-volume irrep �(d2)

and a row of this irrep λ. Since the spectrum is independent of the row λ, this index is hence-

forth omitted. For a particular block, the block-diagonalized box-matrix is denoted B�(d2)

J �n,J ′�′n′ . 

After transforming to the block diagonal matrix, the K̃ matrix has the form given by Eq. (35) in 
Ref. [57].

In practical applications, the matrices in Eq. (3) are truncated to some maximum orbital angu-
lar momentum �max. Threshold-barrier arguments ensure that, at fixed Ecm, higher partial waves 
are suppressed by powers of qcm, but systematic errors due to finite �max must be assessed. The 
expressions for all elements of B�(d2) relevant for this work are given in Ref. [57], although 
some are present already in Ref. [65]. The occurrence pattern of lowest-lying partial waves in the 
finite-volume irreps is given in Table 1.

Employing this formalism for nucleon-pion scattering presents additional difficulties com-
pared to simpler scattering processes. First, due to the non-zero nucleon spin, two partial waves 
5
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Table 2
Parameters of the D200 ensemble produced by the CLS consortium [66]. The lattice spac-
ing a is from Ref. [74] (with both statistical and systematic errors) and follows the strategy 
of Ref. [73]. The number of gauge configurations employed here is specified by Nmeas. 
The pion mass mπ and nucleon mass mN determinations are discussed in Sec. 3.3. The 
kaon mass, denoted mK, and the pion and kaon decay constants, denoted fπ and fK, are 
taken from Ref. [73].

a[fm] (L/a)3 × T/a Nmeas amπ amK

0.0633(4)(6) 643 × 128 2000 0.06617(33) 0.15644(16)

afπ afK amN

0.04233(16) 0.04928(21) 0.3148(23)

contribute for each non-zero �, one with J = � + 1/2 and the other with J = � − 1/2. Sec-
ondly, off-diagonal elements of the box matrix induce mixings of different partial waves in the 
quantization condition. For �max = 2, energies Ecm in irreps with d2 = 0 determine the quantity 
q2�+1

cm cot δJ�(Ecm) for s- and p-waves, while these partial waves cannot be unambiguously iso-
lated for levels in irreps with non-zero total momentum. This complication necessitates global 
fits of all energies to determine the desired partial waves, which are discussed in Sec. 4.

3. Spectrum computation details

This section details the numerical determination of finite-volume nucleon-pion energies used 
to constrain the � ≤ 2 partial waves of the I = 1/2 and I = 3/2 elastic nucleon-pion scattering 
amplitudes. Properties of the single ensemble of gauge field configurations are given in Sec. 3.1, 
and computation of the nucleon-pion correlation functions from them is discussed in Sec. 3.2. 
The subsequent determination of the finite-volume spectra from the correlation functions is de-
tailed in Sec. 3.3.

3.1. Ensemble details

This computation uses the D200 ensemble of QCD gauge configurations generated by the 
Coordinated Lattice Simulations (CLS) consortium [66], whose properties are summarized in 
Table 2. It was generated using the tree-level improved Lüscher-Weisz gauge action [67] and a 
non-perturbatively O(a)-improved Wilson fermion action [68]. Open temporal boundary condi-
tions [69] are employed to reduce the autocorrelation of the global topological charge. However, 
all interpolating fields must be sufficiently far from the boundaries to reduce spurious contri-
butions to the fall-off of temporal correlation functions. An analysis of the zero-momentum 
single-pion and ρ-meson correlators in Ref. [70] suggests that a minimum distance of mπtbnd � 2
is sufficient to keep temporal boundary effects below the statistical errors in the determination of 
energies. The time ranges for the correlators employed here are such that mπtbnd � 2.3.

A complete description of the algorithm used to generate the D200 ensemble is presented in 
Ref. [66], but some details relevant for the present work are given below. All CLS ensembles use 
twisted-mass reweighting [71] for the degenerate light quark doublet and the Rational Hybrid 
Monte Carlo (RHMC) approximation for the strange quark [72]. Both representations of the 
fermion determinants require reweighting factors to change the simulated action to the desired 
distribution. All primary observables are therefore re-weighted according to
6
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Fig. 1. Relative error of the zero-momentum nucleon (left) and pion (right) correlators, denoted RNbin (t), for several bin 
sizes Nbin. All points are normalized by the Nbin = 5 value with errors estimated using the bootstrap procedure with 
NB = 1000 resamples. All subsequent analysis, which does not employ any correlation functions with t/a � 8 − 10, 
ignores autocorrelation and uses Nbin = 20.

〈A〉 = 〈AW 〉W

〈W 〉W
(6)

where 〈...〉W denotes the ensemble average with respect to the simulated action. W is the product 
of two factors W = W0W1, where W0 and W1 are the reweighting factors for the light and strange 
quark actions. They are estimated stochastically on each gauge configuration as in Ref. [66].

The lattice scale is determined at a fixed value of the gauge coupling according to the massless 
scheme described in Ref. [73] and updated in Ref. [74]. Specifically, the kaon decay con-
stant fK is enforced to take its physical value at the physical point where the pion and kaon 
masses take their physical values. This point is identified along a trajectory in which the bare 
light- and strange-quark masses are varied, keeping the sum of the (renormalized) quark masses 
fixed. The heavier-than-physical pion mass mπ = 200 MeV for the D200 therefore results in 
mK = 480 MeV, which is less than the physical value. In practice, the bare quark mass tuning 
satisfies the trajectory condition only approximately. In order to correct any mistuning a pos-
teriori, Ref. [73] applies slight shifts to the quark masses to ensure the trajectory condition is 
respected in the scale determination. No such shift is applied here.

In this study, correlation function measurements are separated by four molecular dynamics 
units (MDU’s). To check for autocorrelations, the original measurements are binned by averag-
ing Nbin consecutive gauge configurations. The dependence of the relative errors on Nbin for the 
single-nucleon and single-pion correlators is shown in Fig. 1. Although evidence of autocorre-
lation remains for t/a � 8 − 10 between Nbin = 20 and 40, these early timeslices are not used 
in the analysis, suggesting that Nbin = 20 is sufficient to account for any autocorrelations in our 
energy determinations.

3.2. Correlation function construction

The determination of finite-volume nucleon-pion energies requires a diverse set of tempo-
ral correlation functions measured on the D200 gauge field ensemble. In addition to diagonal 
correlation functions between single-pion and single-nucleon interpolating operators, correlation 
matrices between all operators in each irrep are required. For the I = 3/2 irreps in Table 1 where 
the resonant (2J, �) = (3, 1) partial wave contributes, single-baryon operators are included in 
7
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Table 3
Parameters of the stochastic LapH implementation used to compute temporal correlators in this work. ND is the number 
of Dirac matrix inversions required per configuration and (ρ, nρ ) the stout smearing parameters for the spatial links in 
the gauge-covariant Laplace operator. Nev denotes the dimension of the LapH subspace. Nfix

R and N rel
R are the number of 

stochastic sources for fixed and relative quark lines, respectively. Notation used to specify the dilution scheme for each 
line type is explained in the text, and the number of source times on each configuration is Nt0 .

ND (ρ,nρ) Nev Nfix
R N rel

R Noise dilution Nt0

2176 (0.1,36) 448 6 2 (TF,SF,LI16)fix(TI8,SF,LI16)rel 4

addition to nucleon-pion operators resulting in additional valence quark-line topologies. These 
topologies include those with lines that start and end on the same timeslice.

Our operator construction is described in Ref. [75] and our method of evaluating the tempo-
ral correlators is detailed in Ref. [50]. Well-designed multi-hadron interpolators are comprised 
of individual constituent hadrons each having definite momenta. Evaluating the temporal corre-
lations of such operators requires all-to-all quark propagators, where all elements of the Dirac 
matrix inverse are computed. The stochastic-LapH approach [50] enables the efficient treatment 
of this inverse, provided at least one of the quark fields is LapH smeared [49]. This smearing 
procedure is effected by a projection onto the space spanned by the Nev lowest eigenmodes of 
the gauge-covariant three-dimensional Laplace operator in terms of link variables which are stout 
smeared [76] with parameters (ρ, nρ). Although the Nev required to maintain a constant smear-
ing radius grows with the spatial volume, the growth of the number of Dirac matrix inversions 
ND can be significantly reduced with the introduction of stochastic estimators in the LapH sub-
space. Such estimators are specified by the number of dilution projectors in the time (‘T’), spin 
(‘S’), and Laplacian eigenvector (‘L’) indices, for which ‘F’ denotes full dilution and ‘In’ some 
number of uniformly interlaced projectors. Different dilution schemes are used for fixed-time 
quark lines, denoted ‘fix’, which propagate between different timeslices, and relative-time lines 
(‘rel’) which start and end at the same time. In this work, the relative-time quark lines were only 
used at the sink time, while the fixed-time lines were used for quark propagation starting and 
ending at the source time. Both the dilution schemes and the number of stochastic sources used 
for each type of line are specified in Table 3. Source times t0 = 35, 64 were used for correlations 
going forwards in time, and t0 = 64, 92 were used for correlations going backwards in time.

A beneficial property of the stochastic estimators is the factorization of the inverse of the 
Dirac matrix, which enables correlation construction to proceed in three steps: (1) Dirac matrix 
inversion, (2) hadron sink/source construction, and (3) correlation function formation. After de-
termining the stochastically-estimated propagators in step (1), the hadron source/sink tensors are 
computed in step (2). These tensors are subsequently reused to construct many different correla-
tion functions in step (3), which consists of optimized [32] tensor contractions. Averages over the 
Nt0 = 4 different source times (two for forward propagation and two for backward propagation), 
all possible permutations of the available noise sources in a given Wick contraction, all total 
momenta of equal magnitude, and all equivalent irrep rows are performed to increase statistics.

3.3. Determination of finite-volume energies

Once the correlation functions computed as described in Sec. 3.2 are available, the determi-
nation of finite-volume energies can commence. From the (binned) correlator and reweighting 
factor measurements, the reweighted correlation functions are computed as secondary observ-
8
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Fig. 2. Fits to determine amπ and amN. Bottom row: Variation of the fit range [tmin, tmax] with tmax = 25a for 
correlated-χ2 fits. Both single- and double-exponential fits are shown and the horizontal band indicates the two-
exponential fit range chosen so that statistical errors are dominant. Top row: the chosen two-exponential fits overlayed 
on standard effective masses for amπ (left) and amN (right).

ables according to Eq. (6). Their statistical errors and covariances are used in fits to determine 
energies and estimated by the bootstrap procedure with NB = 800 samples.

In order to ensure that tbnd is sufficiently large, a maximum time separation tmax = 25a is 
enforced globally in the analysis. Energies are determined from correlated-χ2 fits to both single-
and two-exponential fit forms, which are additionally compared to a “geometric series” form

C(t) = Ae−Et

1 − Be−Mt
, (7)

which consists of four free parameters. We also explored a “multi-exponential” variant of the 
geometric series, with the replacement Be−Mt → ∑

n Bne
−Mnt .

The application of our approach to determining the nucleon and pion masses is shown in 
Fig. 2. As usual, a fit range is desired so that statistical errors on the energies are larger than sys-
tematic ones. This optimal range is selected according to several criteria. First, a good fit quality 
q � 0.2 −0.3 is enforced to ensure that the fit describes the data within the usual 68% confidence 
interval quoted for statistical errors. Second, the absence of any statistically significant change 
in the energy upon variation of tmin around the chosen fit range further suggests that the asymp-
totic large-time behavior is applicable. Finally, consistency across different fit forms supports the 
hypothesis that the energy determination is statistics limited. For the pion, consistency between 
single- and two-exponential fits, as well as the mild variation with tmin, suggests that statistical 
9
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errors are dominant. As is evident in ameff
N , single-exponential fits for amN are unsuitable, but 

consistency between the double-exponential and geometric fit forms is reassuring.
For the nucleon-pion channels, excited state energies are determined in addition to ground 

states. This requires a large basis of interpolating operators in each irrep and two-point correla-
tions between them. The resulting Nop × Nop hermitian matrix, denoted Cij (t), is rotated [77]
using eigenvectors vn(t0, td) of the generalized eigenvalue problem (GEVP)

C(td)vn(t0, td) = λn(t0, td)C(t0)vn(t0, td). (8)

In our single-pivot approach, the correlation matrix is rotated by these vectors for all t , and the 
diagonal elements of the rotated matrix, denoted Dn(t), are correlators with optimal overlap 
onto the lowest Nop states. Although diagonalizing separately on each time-slice ensures that the 
optimized correlators are increasingly dominated by the desired state for asymptotically large 
times [78,79], in practice, the single-pivot method produces nearly identical results if (t0, td) are 
chosen appropriately. Systematic errors related to this are controlled by ensuring that extracted 
energies are insensitive to (t0, td) and Nop and by ensuring that the rotated correlation matrix 
remains diagonal within statistical errors for all time separations t > td. The advantages of di-
agonalizing on a single set of times include a better signal-to-noise ratio for large times and no 
need for eigenvector pinning in which eigenvectors are re-ordered for diagonalizations at differ-
ent times and bootstrap samples.

After forming the optimized correlators, the following ratio is taken

Rn(t) = Dn(t)

Cπ(d2
π , t)CN(d2

N, t)
, (9)

with d2
π and d2

N chosen so that

Enon. int.
n =

√
m2

π +
(

2πdπ

L

)2

+
√

m2
N +

(
2πdN

L

)2

(10)

corresponds to the closest non-interacting energy. The ratio Rn(t) is then fit to the single-
exponential ansatz Rn(t) = Ane−�Ent to determine the energy shift a�En, from which the 
lab-frame energy is reconstructed aElab

n = a�En + aEnon.int.
n . Although the ratio fits enable 

somewhat smaller tmin when �En is small, they offer little advantage for states which are sig-
nificantly shifted from non-interacting levels. Nonetheless, ratio fits are employed for all levels 
in the nucleon-pion irreps, and are typically consistent with single- and double-exponential fits 
directly to Dn(t).

A sample illustration of the procedure for nucleon-pion energies is shown in Fig. 3 for the sec-
ond level in the I = 1/2 G(3) irrep. Due to partial wave mixing, the single-nucleon state is also 
present in this irrep. The GEVP is therefore required to properly isolate the desired higher-lying 
nucleon-pion energies. Analogous plots for all levels are given in Appendix A and Appendix B
for the GEVP- and tmin-stability plots, respectively.

The spectra resulting from this analysis are shown in Figs. 4a and 4b for the I = 1/2 and 
I = 3/2 channels, respectively.

4. Scattering parameter results and discussion

This section details the determination of the scattering parameters from the finite-volume 
energies. The parameterizations of the K matrix elements are presented, and best-fit values for 
the parameters are summarized. Lastly, a comparison with chiral perturbation theory is made.
10
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Fig. 3. Example determination of the spectrum in the I = 1/2 G(3) irrep. Left: tmin-plot for the second level including 
single- and two-exponential fits to Dn(t) as well as single-exponential fits to the ratio Rn(t) in Eq. (9). All fits employ 
the GEVP of Eq. (8) with Nop = 4 and (t0, td) = (8a, 16a). The horizontal band represents the chosen tmin from the ratio 
fit. Right: stability under variation of the GEVP parameters for the entire spectrum in this irrep. For each level tmin is 
fixed while (Nop, t0, td) are varied as shown in the legend. The elastic and inelastic thresholds are represented by dotted 
lines.

4.1. Scattering parameter determinations

The energies shown in Figs. 4a and 4b are next used to determine scattering amplitudes 
via the relations in Sec. 2. Although these relations are only applicable to energies below the 
nucleon-pion-pion threshold, the slow growth of three-body phase space near threshold sup-
presses corrections to Eq. (3) and the coupling of nucleon-pion-pion states to our operator basis 
is naively suppressed by the spatial volume, so energies somewhat above the inelastic thresh-
old are expected to be appropriate for inclusion in our global fits. Nevertheless, we restrict our 
attention to center-of-mass energies below or within one standard deviation of the threshold 
Ecm = 2mπ + mN.

The goal of this analysis is a parametrization of the JP = 1/2− partial wave for both isospins, 
and the 3/2+ wave with I = 3/2. As discussed in Sec. 2, energies from irreps with zero total 
momentum directly provide points for these partial waves up to corrections from � ≥ 3 contri-
butions. However, mixing among the desired waves, as well as with others, generally occurs for 
energies in irreps with non-zero total momentum. The zero-momentum points are therefore a 
useful guide when plotted together with the partial wave fits.

Each partial wave is parametrized using the effective range expansion. For the I = 3/2, JP =
3/2+ wave, the next-to-leading order is included

q3
cm

m3
π

cot δ3/2+ = 6π
√

s

m3
πg2

�,BW

(m2
� − s), (11)

where 
√

s = Ecm = √
m2

π + q2
cm +

√
m2

N + q2
cm, and the effective range fit parameters are re-

organized to form the conventional Breit-Wigner properties of the �(1232) resonance, denoted 
g2

�,BW and m�. For the other waves, the leading term in the effective range expansion is sufficient

q2�+1
cm

m2�+1
π

cot δI
JP =

√
s

mπAI
JP

, (12)

where the overall 
√

s factors are adopted from standard continuum analysis [80], and the single 
fit parameter AI

P is trivially related to the scattering length

J

11
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Fig. 4. The low-lying I = 1/2 and I = 3/2 nucleon-pion spectra in the center-of-momentum frame on the D200 ensemble 
described in Table 2. Each column corresponds to a particular irrep � of the little group of total momentum P 2 =
(2π/L)2d2, denoted �(d2). Dashed lines indicate the boundaries of the elastic region. Solid lines and shaded regions 
indicate non-interacting Nπ levels and their associated statistical errors. Levels employed in subsequent fits to constrain 
the scattering amplitudes are shown with solid symbols. For I = 3/2, all well-constrained levels with overlap below the 
Nππ threshold are included. For the I = 1/2 channel, we are only interested in the scattering length, so only the ground 
state in each irrep is used to determine the I = 1/2 amplitude near the Nπ threshold.

m2�+1
π aI

JP = mπ

mπ + mN

AI
JP . (13)

Two different fit strategies are employed to determine the parameters from the finite-volume 
energies. The first, called the “spectrum method” [81], obtains best-fit values of the model pa-
rameters {pn} by minimizing

χ2 ({pn}) =
∑
ij

(
q2

cm,i

m2
π

− q
2,QC
cm,i

m2
π

({pn})
)

C−1
ij

(
q2

cm,j

m2
π

− q
2,QC
cm,j

m2
π

({pn})
)

, (14)

where the q2
cm,i are the center-of-mass momenta squared computed from lattice QCD, with co-

variance matrix C, and q2,QC
cm,i ({pn}) are the center-of-mass momenta squared evaluated from the 

model fit form for a given choice of parameters {pn}. The fact that the model depends on mN/mπ , 
and is therefore not independent of the data to be fit, complicates the evaluation of the covariance 
matrix C. As discussed in Ref. [57], a simple way to avoid this complication so that C is just the 
covariance matrix of the data is to introduce model parameters for mπL and the ratio mN/mπ , 
12
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and include appropriate additional terms in the χ2 of Eq. (14). Given the relatively small errors 
on mN/mπ and mπL, these additional terms have little effect on the fit parameters and the re-
sultant χ2, and are subsequently ignored. Note that the evaluation of the (q2,QC

cm,i /m2
π )({pn}) for 

a particular choice of the parameters requires the determination of roots of Eq. (3), a procedure 
which can be delicate for closely-spaced energies.

The second method, called the “determinant residual” method [57], employs the determinants 
of Eq. (3) themselves as the residuals to be minimized. These determinants depend on the fit 
parameters through the K-matrix, which are adjusted to minimize the residuals and best satisfy 
Eq. (3). This approach avoids the subtleties associated with root-finding, but has other difficulties. 
For the spectrum method, the covariance between the residuals is, to a good approximation, 
simply the covariance between the q2

cm,i/m2
π , which can be estimated once and does not depend 

on the fit parameters. Conversely, for the determinant residual method, the covariance must be 
re-estimated whenever the parameters are changed. Since the statistical errors on the determinant 
are typically larger than those on q2

cm,i/m2
π , this approach is less sensitive to higher partial waves, 

and results in a smaller χ2 compared to the spectrum method.
For the I = 3/2 fits, the JP = 1/2+, 3/2−, and 5/2− partial waves are added to the spectrum 

method fits along with the ground states in the G1g(0) and Hu(0) irreps. The I = 3/2 spectrum 
in the G2g(0) irrep was not computed, and irreps in the I = 1/2 channel which do not con-
tain the s-wave were also omitted. This choice was made for computational simplicity, although 
these irreps may be beneficial to further constrain higher partial waves in future work. The de-
terminant residual method was found to be less able to constrain higher partial waves and was 
only used in fits that included just the JP = 1/2−, 3/2+ waves. Nonetheless, the consistency 
between these different fitting methods, as well as those including higher partial waves, suggest 
that uncertainties on amplitude parameters are statistics dominated.

For the I = 1/2 channel, �max = 0 is employed. Although the small number of levels pre-
cludes a sophisticated estimate of the effect of higher partial waves, the influence of the omitted 
p-waves can be explored by examining the influence of the highest-lying level on the fit. Table 5
indicates that the effective range is insensitive to the omission of the lowest-lying nucleon-pion 
level in the G1(4) irrep. These I = 1/2 fits are also insensitive to an additional term in the effec-
tive range expansion, and exhibit no statistically significant difference between the spectrum and 
determinant-residual methods.

Results from fits using both the spectrum and determinant-residual methods including various 
partial waves are given in Tables 4 and 5 for I = 3/2 and I = 1/2, respectively. In addition to 
the desired partial waves, fits using the spectrum method are mildly sensitive to the JP = 1/2+, 
3/2−, and 5/2− waves with I = 3/2. Although not included in the table, the determination of the 
effective range for both isospins is robust to the addition of the next term in the effective range 
expansion. Results for the partial waves from the fit including only the desired partial waves are 
shown with the points from the total-zero momentum irreps in Figs. 5 and 6 for the I = 3/2
and I = 1/2 partial waves, respectively. The phase shift δ3/2+ has the characteristic profile of 
the �(1232) resonance and is shown in Fig. 7. Since the scattering length is the only desired 
parameter from the I = 1/2 spectrum, only the lowest nucleon-pion levels from each irrep are 
included in the fit, as denoted by the solid symbols in Fig. 4a. Full exploration of the elastic 
I = 1/2 spectrum likely requires additional operators beyond the scope of this work, due to the 
strongly-interacting JP = 1/2+ wave containing the N(1440) Roper resonance.

The spectrum method enables an additional visualization of the quality of fits to the finite-
volume spectra. The residual is constructed using model values of q2,QC

cm /m2
π which depend on 
13
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Table 4
Results for the fits in the I = 3/2 channel. Npw is the number of partial waves included in the fit. Two different fit forms 
are included, the one denoted Npw = 2 includes only the desired partial waves, namely JP = 1/2− and 3/2+ , while the 
one with Npw = 5 includes all s-, p-, and d-waves, employing the two additional energy levels in the G1g(0) and Hu(0)

irreps. For the Npw = 2 fit, results from the determinant-residual method, denoted ‘DR’, are shown in addition to the 
spectrum method, denoted ‘SP’.

Fit Npw A1/2− g�,BW M�/Mπ A1/2+ A3/2− A5/2− χ2 dofs

SP 2 −1.56(4) 13.8(6) 6.281(16) — — — 44.38 23 − 3
DR 2 −1.57(5) 14.4(5) 6.257(36) — — — 14.91 23 − 3
SP 5 −1.53(4) 14.7(7) 6.290(18) −0.19(6) −0.46(12) 0.37(10) 30.17 25 − 6

Table 5
Results for fits to the I = 1/2 spectrum in Fig. 4a. Npw is the number of partial waves 
included in the fit. Due to the small number of levels, all fits include only the desired 
JP = 1/2− partial wave. Nonetheless, the effect of the omitted p-waves is estimated by 
removing the G1(4) level, which evidently has little influence on the result. ‘SP’ refers to 
the spectrum method, and ‘DR’ refers to the determinant-residual method.

Fit Npw A1/2− χ2 dofs

SP 1 0.82(12) 1.68 5 − 1
DR 1 0.92(22) 1.72 5 − 1
SP 1 0.82(13) 0.79 4 − 1

Fig. 5. The results from fits to the I = 3/2 spectrum in Fig. 4b using the spectrum method including the JP =
1/2−, 3/2+ partial waves only, omitting the Hu(0) and G1g(0) irreps. The lower panel of each partial wave shows 
the squares of the center-of-mass momenta of the finite-volume levels which contribute to fitting that partial wave. Most 
levels, shown with solid symbols, contribute to both partial waves, so solving for the partial wave phase shift shown in 
the upper panel cannot be done. When a particular level couples only to the partial wave shown, a phase shift point can 
be obtained from the energy level and is shown in the upper panel. Hollow symbols indicate such levels. For clarity, the 
levels in the lower panel are vertically spaced according to the (integer-valued) total momentum d2.

the parameters and can be compared with the input data from the spectrum. Such comparisons 
are shown in Fig. 8 for both the I = 1/2 and I = 3/2 spectra. Although not shown explicitly 
on the plot, the ground states in G1(1), G(2), G(3), and G1(4) with I = 3/2 are sensitive to 
the JP = 3/2+ partial wave. The �max = 0 approximation significantly increases the χ2 for 
these levels. Conversely, these levels therefore place significant constraints on the near-threshold 
behavior of the 3/2+ wave, in contrast to the higher-lying levels in the Hg(0), G2(1), F1(3), 
14
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Fig. 6. The result of fits to the I = 1/2 spectrum in Fig. 4a to determine the scattering length of the JP = 1/2− wave. 
As in Fig. 5, the lower panel shows the input spectra. For �max = 0, even levels with total non-zero momentum result in 
phase shift point in the upper panel. The level with largest q2

cm is not shown in the upper panel due to its large error.

Fig. 7. Scattering phase shift of the I = 3/2, JP = 3/2+ partial wave containing the �(1232) resonance. The curve is 
obtained from a fit of the finite-volume energies shown in the lower panel using Eq. (3) and a Breit-Wigner form. The 
energies are computed on the single Nf = 2 +1 lattice QCD gauge field ensemble with a = 0.065 fm and mπ = 200 MeV 
described in Table 2. Levels used in the fit are shown in the lower panel, similar to Figs. 5 and 6, but no data points are 
shown in the upper panel to more clearly show the final fit form.

F2(3), and G2(4) irreps. The ground states in the G1g(0) and Hu(0) irreps are not shown on the 
plot, and only included in the Npw = 5 fit in Table 4.

The final results for the scattering lengths in this work are taken from the determinant residual 
method fit in Table 4 with Npw = 2 for I = 3/2 and the spectrum method fit for I = 1/2 including 
all five levels

mπa
3/2
0 = −0.2735(81) , mπa

1/2
0 = 0.142(22), (15)

which are already given in Eq. (1). In Fig. 9, the results from this work for the Breit-Wigner 
parameters of the �(1232) resonance in the I = 3/2, JP = 3/2+ partial wave are compared to 
the published numbers in Refs. [40] and [82] where, as is customary, the definition of the g�Nπ

coupling from leading-order effective field theory is used, as defined in Eq. (39) of Ref. [82]. 
15
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Fig. 8. The center-of-mass momentum q2
cm/m2

π for the I = 1/2 and I = 3/2 spectra together with model values from 
amplitude fits employing the spectrum method with Npw = 2 partial waves for I = 3/2. For I = 1/2, only the s-wave is 
included and the fit to all five points is shown.

When considering Fig. 9, keep in mind that the quark mass trajectory used here and in Ref. [40], 
which fixes the sum of the quark masses, differs from that used in Ref. [82], which fixes the 
strange quark mass to its physical value. A comparison of the scattering lengths determined here 
to past lattice QCD results is also shown in Fig. 9.

4.2. Comparison with phenomenology and chiral perturbation theory

Although the results here are only at a single pion mass, it is interesting to compare our 
scattering lengths to those extracted phenomenologically [83,84] from pionic atoms [85–87], as 
well as to those obtained from chiral perturbation theory. The proximity of mπ = 200 MeV to 
its physical value naively suggests that SU(2) baryon χPT may be applicable. While χPT may 
be poorly converging for gA and mN , the convergence pattern is an observable dependent issue 
which has not been explored for Nπ scattering.

Pionic hydrogen (πH ) is sensitive to one combination of the isoscalar (a+) and isovector (a−) 
scattering lengths and pionic deuterium (πD) is sensitive to a different combination, allowing for 
a percent level determination [83,84]. Phenomenological values extracted from a full πN partial 
16
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Fig. 9. Comparison of results from this work to previous lattice calculations. Top left: the Breit-Wigner mass m� . 
Bottom left: the coupling g�Nπ from leading-order effective field theory. Top right: the Nπ isodoublet scattering length 
mπa

1/2
0 in terms of the pion mass. Bottom right: the Nπ isoquartet scattering length mπ a

3/2
0 . Prior results are indicated 

by ‘Anderson et al. 2018’ [40], ‘Silvi et al. 2021’ [82], ‘Fukugita et al. 1995’ [42], and ‘Lang and Verduci 2012’ [39]. 
Physical point values are obtained using Refs. [92–94].

wave analysis have been reported in Ref. [88]. Ref. [27] determined the values of these scattering 
lengths in the isospin limit. While it is customary for the lattice community to use mπ = 135 MeV 
as the pion mass in the isospin limit, it is common in the phenomenological estimates to use the 
charged pion mass to determine the QCD quantities in the absence of QED corrections. In order 
to be consistent with the phenomenological estimates, we similarly use the charged pion mass 
when quoting results at the physical pion mass.

These scattering lengths are known to fourth order in the baryon chiral expansion [89–91] and 
expressed in Appendix F of Ref. [88] and Ref. [92] in a form convenient for extrapolating LQCD 
results. In terms of the s-wave a±

0 scattering lengths, the isospin 1/2 and 3/2 πN scattering 
lengths are given by

a
3/2
0 = a+

0 − a−
0 , a

1/2
0 = a+

0 + 2a−
0 . (16)

At leading order (LO), the scattering lengths are free of LECs and given by

mπa
3/2
0 [LO] = −ε2

π

2π

1 + μ
, mπa

1/2
0 [LO] = ε2

π

4π

1 + μ
, (17)

where

επ = mπ

4πFπ

, μ = mπ

mN

. (18)

The values of these input parameters on D200 and at the physical (charged) pion mass are

εD200
π = 0.1759(12), μD200 = 0.2102(19),

ε
phys
π = 0.12064(74), μphys = 0.14875(05) . (19)

A comparison of our results with the LO χPT predictions and phenomenological values in 
the isospin limit from Ref. [27] is presented in Table 6. Not only do our results disagree with 
LO χPT, but we also find the magnitude of mπa

3/2 exceeds that of mπa
1/2, in conflict with 
0 0
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Table 6
A comparison of our Nπ scattering length results at mπ = 200 MeV with phenomenological values in the 
isospin limit and predictions from leading order chiral perturbation theory. For the χPT predictions, the 
first error is from uncertainties on the input parameters, επ and μ, and the second error is a χPT truncation 
uncertainty given by επmπaI

0 [LO].
mπ (MeV) mπa

1/2
0 mπa

3/2
0

This work 200 0.142(22) −0.2735(81)

LO χPT 200 0.321(04)(57) −0.161(02)(28)

LO χPT 140 0.159(02)(19) −0.080(01)(10)

Pheno. (isospin limit) [27] 140 0.1788(38) −0.0775(35)

both LO χPT and phenomenology. Note that the LO χPT predictions at the physical point are in 
reasonable agreement with the phenomenological values, lying within one sigma of the estimated 
χPT truncation uncertainty. With only one pion mass available in this work, the reasons for the 
discrepancy of our results with LO χPT cannot be ascertained. Interestingly, our scattering length 
results can be described at next-to-leading order (NLO) using a single LEC. At NLO, one finds

mπa
3/2
0 [NLO] = −ε2

π

2π

1 + μ

{
1 + επ

2

�χ

mN

(g2
A + 8C)

}
,

mπa
1/2
0 [NLO] = ε2

π

2π

1 + μ

{
1 − επ

4

�χ

mN

(g2
A + 8C)

}
, (20)

where �χ = 4πFπ and we have defined the dimensionless LEC

C = mN(2c1 − c2 − c3) , (21)

in terms of the ci LECs in the baryon chiral Lagrangian [95]. The scattering lengths in this work 
can be described by these NLO formulae if C is in the range 0.6-0.7. The NLO phenomenological 
determination finds a value of C ≈ 0.3, which is not significantly different from that needed 
to describe our results. However, the phenomenological extraction of the LECs in Ref. [88] is 
clouded by issues related to the � degrees of freedom [20] and is not stable until at least next-to-
next-to-next-to-leading order (N3LO) [88]. When results at additional pion masses, particularly 
lighter ones, become available, a more thorough understanding of the pion mass dependence of 
the scattering lengths can be achieved and a more quantitative comparison with the results from 
the phenomenological analysis and χPT can be performed.

5. Conclusion

This work presents a computation of the lowest partial waves for the elastic nucleon-pion 
scattering amplitude on a single ensemble of gauge configurations with mπ = 200 MeV. The 
s-wave scattering lengths are determined for both isospins I = 1/2 and I = 3/2 and compared 
to determinations from LO χPT and a Roy-Steiner analysis [88]. To our knowledge, this is 
the first (unquenched) lattice QCD determination of both nucleon-pion scattering lengths for 
mπ < 250 MeV. The Breit-Wigner resonance parameters of the �(1232) in the JP = 3/2+
partial wave with I = 3/2 are determined as well.

A comparison of two different methods, the spectrum method and the determinant residual 
method, of extracting K-matrix information from finite-volume spectra is also performed. Al-
though the determinant residual method avoids awkward root-finding, it was found to be less 
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sensitive to higher partial wave contributions. Nonetheless, the consistency between these two 
different fitting procedures is reassuring.

These results suggest that the methods used here will prove useful for future work at the phys-
ical values of the quark masses and for other lattice spacings. Larger volumes needed at smaller 
quark masses will require an increase of Nev, the dimension of the LapH subspace discussed 
in Sec. 3.2, but not the number of Dirac matrix inversions in the stochastic-LapH algorithm for 
all-to-all quark propagators. Nevertheless, the increasingly severe signal-to-noise problem will 
likely require more configurations and source times to achieve a similar statistical precision.

This work is part of a larger effort to compute baryon scattering amplitudes on lattice QCD 
gauge field ensembles at quark masses in the chiral regime mπ � 300 MeV where effective 
theories may be applicable. As discussed in Sec. 3.2, the stochastic LapH approach to quark prop-
agation enables considerable re-use of the hadron tensors in multiple multi-hadron correlation 
functions on the D200 ensemble employed here. Analyses are currently underway to compute the 
analogous amplitudes for the N� − N
 and NN systems. Hopefully this exploratory computa-
tion has sufficient statistical precision to impact chiral effective theories for these baryon-baryon 
channels as well.
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Fig. A.10. Stability of the finite-volume spectra under variation of the GEVP as discussed in Sec. 3.3. Multiple values of 
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Appendix A. Systematic errors from correlation matrix rotation

As discussed in Sec. 3.3, the optimized diagonal correlation functions Dn(t) are obtained in 
this work from the GEVP using a single-pivot approach which uses one choice of (t0, td). The 
systematic error associated with this approach is estimated for each energy level by fixing the 
fit range [tmin, tmax] and varying the GEVP metric and diagonalization times (t0, td) defined in 
Eq. (8), as well as the dimension of the input correlation matrix Nop. Taking both GEVP stability 
and statistical precision into account, the parameters (t0, td) = (8a, 16a) are found to work well 
for all energies presented here. As shown in Fig. A.10, the spectrum is rather insensitive to 
variations in (t0, td) and Nop.
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Appendix B. Systematic errors from varying fit forms and time ranges

As discussed in Sec. 3.3, multiple fit ranges and fit forms are compared for every energy 
level to ensure systematic errors associated with excited state contamination are smaller than the 
statistical errors. Ultimately, single-exponential fits to the correlator ratios in Eq. (9) are chosen 
due to their mild sensitivity to tmin and good statistical precision. The fit range is chosen to be 
consistent with the double-exponential tmin plateau, defined as the range of tmin for which the 
fitted energy exhibits no statistically significant variation. Most levels are additionally consistent 
with the single-exponential fit plateau, although as shown in Fig. 2 for mN, these fits may fail 
to describe correlators with significant excited-state contamination. Plots analogous to the tmin-
plot in Fig. 3 are shown for each of the I = 1/2 levels in Fig. B.11 and the I = 3/2 levels in 
Figs. B.12–B.16.

Fig. B.11. Stability of the I = 1/2 spectrum illustrated by varying the fit range and fit form. The chosen fit for each level 
is indicated by the solid black line and the corresponding errors are indicated by dotted lines. Each subplot contains the 
spectrum for a single irrep labeled in the same manner as Fig. 4. The chosen values are taken from ratio fits and compared 
to both single- and double-exponential fits over a range of tmin with tmax = 25a.
J. Bulava, A.D. Hanlon, B. Hörz et al. Nuclear Physics B 987 (2023) 116105
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Fig. B.12. Stability of fits to determine the I = 3/2 spectrum for total momentum having d2 = 0. As in Fig. B.11, a 
variety of fit ranges and fit forms is compared for each level. Each plot contains all fits for a single level in a particular 
irrep. Indexing for the levels begins at zero for the lowest and increases with increasing energy.
22
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Fig. B.13. Same as Fig. B.12 for I = 3/2 except that d2 = 1.
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Fig. B.14. Same as Fig. B.12 for I = 3/2 except that d2 = 2.
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Fig. B.15. Same as Fig. B.12 for I = 3/2 except that d2 = 3.
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Fig. B.16. Same as Fig. B.12 for I = 3/2 except that d2 = 4.
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