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We present the estimation of the long distance behaviour of the vector-vector correlator computed

on a lattice QCD ensemble generated with 2 + 1 flavour physical Wilson clover quarks. The long

distance regime of the correlator is dominated by multi-hadronic scattering states. We reconstruct

the correlator in this regime using the 𝜋𝜋 scattering states in the 𝐼 = 1 channel. The vector-vector

correlator appears in the integrand to estimate the hadronic vacuum polarization contributions to

the anomalous magnetic moment of the muon. Therefore, an improved estimation of the correlator

will help resolve the tension between (𝑔 − 2)𝜇 experiment and theory.
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1. Introduction

Recently, advances in novel algorithms and improved computational resources have enabled

the lattice community to perform simulations using physical quark masses. This marks a significant

development because previous simulations used quark masses that were much heavier than those

found in nature, making it difficult to accurately model physical phenomena. With the ability to

perform simulations using physical quark masses, the lattice community can now access relevant

scattering thresholds, which are essential for studying meson-meson, meson-baryon and baryon-

baryon scattering systems. This is the reason we often encounter the contributions from the relevant

multi-hadronic states in all hadronic observables in our lattice calculations. In this conference there

have been several talks depicting the effect of multi-hadronic states such as N𝜋 contamination in

the nucleon structure observables [1, 2].

In this talk, we demonstrate the reconstruction of one such observable relevant for the high

precision determination of the hadronic contribution to the anomalous magnetic moment of the

muon (𝑎HVP
𝜇 ) for flavour 𝑓 , using the multi-hadronic 𝜋 𝜋 scattering states, which is defined by,

(
𝑎

hvp
𝜇

) 𝑓
=
(𝛼
𝜋

)2
∫ ∞

0

𝑑𝑥0
𝐺 (𝑥0) 𝐾 (𝑥0)

𝑚𝜇
(1)

where 𝛼 is the fine structure constant, 𝐾̃ is the analytically determined QED kernel and 𝑚𝜇 is

the mass of the muon. Due to the small mass of the muon (≈ 105 MeV), the contribution to

its anomalous magnetic moment is dominated by low 𝑄2 values or, in other words, long-distance

contributions on hadronic scales. The observable in spotlight receives major non-perturbative

long distance contributions from the correlation function of the electromagnetic current of the

light quarks, otherwise called the vector-current correlator (𝐺 (𝑥0)). The 𝐺 (𝑥0) is an important

quantity which relates how individual quarks interact with the electromagnetic current weighted

by their corresponding charges. Here, we focus on the light quark(𝑢 and 𝑑) contributions. The

quantum numbers and the low energy regime for the vector correlator helps determine the relevant

multi-hadronic states which contribute towards its finite-volume reconstruction.

2. Methodology

Lattice Setup: We performed our measurements on ensembles which were generated using

non-perturbatively O(𝑎) improved Wilson fermion action and a tree-level O(𝑎2) improved Lüscher-

Weisz gauge action [3]. The details of the ensemble are given below:

Ensemble Name Box Size lattice spacing 𝑚𝜋 𝐿 𝑁𝑐𝑜𝑛 𝑓 𝑖𝑔𝑠 Smearing

E250(963 × 192) 6.2 fm 0.06426 fm 4.1 353 (𝜌stout, 𝑁stout) = (0.1, 36)

Table 1: Lattice Description

Distillation Setup: We employ the stochastic LapH method to treat all-to-all quark propaga-

tors [4, 5] which has been described below.
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quark-line type dilution scheme 𝑡0/𝑎 𝑁𝜂 𝑁𝑒𝑣

fixed (TF,SF,LI16) 4 random 6 1536

relative (TI12,SF,LI16) interlaced 2 1536

Table 2: Dilution scheme, source times 𝑡0, number of noise sources 𝑁𝜂 and number of Laplacian eigenvectors

𝑁𝑒𝑣 used to estimate quark propagation in the computation of the spectrum on Ensemble E250.

Interpolating operators: The operator basis chosen are the following:

𝜌+( �𝑃, 𝑡) =
1

2𝐿3/2

∑
�𝑥

𝑒−𝑖
�𝑃 · �𝑥𝑑Γ𝑢(𝑡) , (2)

where Γ = 𝛾𝑖 (1 ± 𝛾4) and linear combinations of 𝜋𝜋 operators of the form,

(𝜋𝜋) ( �𝑝1, �𝑝2, 𝑡) = 𝜋
+( �𝑝1, 𝑡)𝜋

0( �𝑝2, 𝑡) − 𝜋
0( �𝑝1, 𝑡)𝜋

+( �𝑝2, 𝑡) . (3)

where �𝑃, i.e. �𝑝1 + �𝑝2 = �𝑃 ≡ (2𝜋/𝐿) �𝑑, where �𝑑 is a vector of integers. We construct a cor-

relation matrix using these interpolators for each center-of-mass momentum and its irreducible

representations and employ a variational approach to extract the finite volume spectrum.

Spectrum extraction: We solve the variational problem using the Generalized EigenValue

Problem (GEVP) on the correlation matrices 𝐶 (𝑡) [6–8].

𝐶 (𝑡)𝑣(𝑡, 𝑡0) = 𝜆(𝑡, 𝑡0)𝐶 (𝑡0)𝑣(𝑡, 𝑡0). (4)

where 𝑡0 is the first time slice where the signal begins, 𝑣(𝑡, 𝑡0) is the GEVP optimized eigenvector

extracted and the eigenvalues 𝜆(𝑡, 𝑡0) represent the exponentially decaying finite-volume correlators

parametrized by 𝐴𝑛 exp−𝐸𝑛 (𝑡 ) with 𝐴𝑛’s being the overlap factors. The finite volume energies

𝐸𝑛 (𝑡)’s are then extracted using the ratio fits [9] because it is effective in removing the contamination

from higher excited states at earlier time slices.

Matrix element: We determine the matrix element of the electromagnetic current correspond-

ing to the light quarks,

𝑗em
𝜇 =

2

3
𝑢̄𝛾𝜇𝑢 −

1

3
𝑑𝛾𝜇𝑑 (5)

which quantifies the overlap of the current operator at time 𝑇 with the interpolating operators 𝑂

defined in Eq. 2 and Eq. 3 at time 𝑇0. This matrix element projected onto definite momentum �𝑑 and

irrep Λ is defined as,

𝐷 (Λ, �𝑑) (𝑇 − 𝑇0) =
〈
𝑗 (Λ,

�𝑑) (𝑇)𝑂̄ (Λ, �𝑑) (𝑇0)
〉

(6)

The GEVP optimized finite volume matrix elements 𝐷̂ (Λ, �𝑑)
𝑛 (𝑡) at 𝑡 = 𝑇 − 𝑇0 are computed using

the GEVP optimized eigenvectors 𝑣𝑛’s defined in Eq. 4, as shown below:

𝐷̂ (Λ, �𝑑)
𝑛 (𝑡) = (𝐷 (𝑡), 𝑣𝑛) , (7)

where the 𝑛 represents the GEVP index. For the sake of simplicity, in the next sections we omit the

(Λ, �𝑑) notation. We construct three ratios using these overlap correlators in order to reliably extract
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Figure 1: E250 spectrum for different irreps in different moving frames.

the desired matrix element.

𝑅 (𝑛)
1

(𝑡) =

							
𝐷̂𝑛 (𝑡)√
𝐶̂𝑛 (𝑡)e−𝐸𝑛𝑡

							 , 𝑅 (𝑛)
2

(𝑡) =

				 𝐷̂𝑛 (𝑡)

𝐴𝑛e−𝐸𝑛𝑡

				 , (8)

𝑅 (𝑛)
3

(𝑡) =

				 𝐷̂𝑛 (𝑡)𝐴𝑛

𝐶̂𝑛 (𝑡)

				
where 𝐶̂𝑛 (𝑡) are the GEVP optimized correlators and the 𝐴𝑛 are the overlap factors extracted from

the single exponential ratio fits to the eigenvalues extracted from GEVP. These ratios by construction

are expected to plateau for asymptotically large 𝑡. It has been observed that 𝑅 (𝑛)
1

(𝑡) has the least

noisy signal because it doesn’t have contributions from the systematic uncertainties in 𝐴𝑛.

Vector-Vector correlator reconstruction: The vector-vector correlator in Eq (1)𝐺 (𝑥0) when

computed on a finite volume receives contributions from the 𝜋 𝜋 states in the 𝐼 = 1 channel because

this channel is enhanced by the existence of the 𝜌(770) resonance. Therefore, we reconstruct the

integrand using the plateau values of 𝑅 (𝑛)
1

and the GEVP extracted energies 𝐸𝑛 as follows:

𝐺𝑢𝑑
𝑛max

(𝑥0) =
10

9

𝑛max∑
𝑛=0

			𝑅 (𝑛)
1

			2 𝑒−𝐸𝑛𝑥0 (9)

Reconstruction using Time-like form factor: The VV correlator being enhanced by the 𝜌

resonance at low energies can be reconstructed using the Time-like Pion form factor |𝐹𝜋 (𝜔) | as

follows:

𝐺𝜌𝜌 (𝑥0)ext =
∫ ∞

0

𝑑𝜔𝜔2𝜌
(
𝜔2

)
𝑒−𝜔𝑥0 (10)

where,

𝜌
(
𝜔2

)
=

1

48𝜋2

(
1 −

4𝑚2
𝜋

𝜔2

) 3
2

|𝐹𝜋 (𝜔) |
2 (11)
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The computation of the |𝐹𝜋 (𝜔) | needs input from the 𝜌(770) resonance parameters.

Extraction of resonance parameters: We employ the Lüscher quantization condition[10–12]

as shown below, to compute the infinite volume resonance parameters using the finite volume energy

spectrum. The Lüscher quantization condition for elastic 𝜋𝜋 scattering is

det

(
+ i𝑡ℓ (𝑠) ( + iM

�𝑃)

)
= 0 (12)

where 𝑡ℓ (𝑠) is parametrized by the scattering phase-shift and M
�𝑃 represents the finite volume

spectrum from the frame with center of mass momentum �𝑃.

3. Results and Discussion
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Figure 2: The matrix element between the 0th energy level from GEVP and the VV correlator & 6th energy

level from GEVP and the VV correlator. The green band represents the selected plateau average.

The plateau average examples for two different matrix elements between two GEVP optimized

scattering states and the VV correlator has been depicted in Fig. (2). The selection of the plateau

is a source of systematic uncertainty in the calculation. Utilizing these 𝑅 (𝑛)
1

plateau averages and

th GEVP obtained energy levels, we reconstruct the integrand in Eq. (1). It is worth noting that the

8th state reconstruction is within 1-𝜎 interval of the 7th reconstruction indicating a saturation of the

𝑛-state contributions to the VV correlator.

4. Summary

We report the status of 𝜋𝜋 state reconstruction of the vector-vector correlator at the physical

point pursued by the Mainz group, in order to aid the calculation of the 𝑎
hvp
𝜇 contribution to

(𝑔−2)𝜇. The analysis is performed on an 𝑁 𝑓 = 2+1 CLS ensemble using the stochastic distillation

framework. The calculation of the time-like pion form factor is currently underway and efforts are

being made to increase the statistics.
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