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We present a robust technique for computationally studying surface polariton modes in hybrid
materials. We use a semi-classical model that allows us to understand the physics behind the
interactions between collective excitations of the hybrid system and develop a scattering and transfer
matrix method that imposes the proper boundary conditions to solve Maxwell’s equations and derive
a general equation describing the surface polariton in a heterostructure consisting of N constituent
materials. We apply this method to a test structure composed of a topological insulator (TI) and
an antiferromagnetic material (AFM) to study the resulting surface Dirac plasmon-phonon-magnon
polariton (DPPMP). We find that interactions between the excitations of the two constituents result
in the formation of hybridized modes and the emergence of avoided-crossing points in the dispersion
relations for the DPPMP. For the specific case of a Bi2Se3 TI material combined with a 3D AFM
such as NiO, MnF2 or FeF2, the polariton branch with low frequency below 2 THz redshifts upon
increasing the thickness of TI thin film, which leads to an upper bound on the thickness of the TI layer
that will allow an observable signature of strong coupling and the emergence of hybridized states.
We also find that the strength of the coupling between the TI and the AFM, which is parameterized
by the amplitude of the avoided-crossing splitting between the two polariton branches at the magnon
resonance frequency, depends on the magnitude of the magnetic dipole and the line width of the
magnon in the AFM material as well as on the Fermi energy of Dirac plasmon in the TI. Finally, we
show that materials with extremely high quality, i.e. low scattering loss rate, are essential to achieve
an experimentally-observable strong coupling between a TI and 3D AFM material. The overall
analysis identifies the material properties that are necessary to achieve experimentally-observable
strong coupling for the interaction between THz excitations in a TI/AFM heterostructure and can
thereby guide experimental e↵orts.

I. INTRODUCTION

Surface Dirac plasmon polaritons (DPP), the electro-
magnetic collective modes of electrons that are localized
evanescent waves in the direction perpendicular to the
surface and propagate on the surface of a topological in-
sulator (TI), can be used for a broad range of interdisci-
plinary applications in sensing, imaging, detection, and
photonic data storage in the THz spectral windows [1–6].
Likewise, magnons, which are the collective excitations of
electronic spins in a magnetic material, can be used in
realizing high frequency information storage, quantum
computing, information transport, and data processing
on the micro-scale and nano-scale with extremely low en-
ergy consumption owing to the absence of charge trans-
port [7–15]. If material constituents such as TIs and mag-
netic materials are combined to form a hybrid material,
an incident electromagnetic (EM) wave can excite the in-
ternal degrees of freedom of all constituent materials, re-
sulting in the generation of collective excitations (i.e. po-
laritons) with emergent properties that provide a possible
foundation for novel devices with unique optical and elec-
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trical functionalities. For example, the plasmon-magnon
interaction can result in a new type of polariton that
combines both spin and charge collective excitations into
a coherent mode with intriguing and non-trivial proper-
ties [16, 17]. The creation and properties of such hybrids
has been of interest for some time [18, 19], but there
is still no comprehensive study of such interactions due
to the large gap between plasmon and magnon energies
in conventional semiconductors or metal systems. Recent
advances in the synthesis and fabrication of materials and
heterostructures with clean and well controlled interfaces
now make it possible to explore the interaction between
such excitations. Examples of materials that are now
accessible for such studies include graphene and 3D TIs
such as Bi2Se3, Bi2Te3, Sb2Te3, all of which host a Dirac
plasmon on their surface with energy in the THz spectral
window [20–25], and 3D antiferromagnetic (AFM) mate-
rials such as NiO, MnF2, FeF2 [26–30] or 2D AFM van
der Waals materials like FePS3 or CrI3 [31–35] that have
magnon energies in the same THz frequency regime.

There have been several prior investigations of the cou-
pling between Dirac plasmons in graphene and magnons
in AFMs[17, 36]. For instance, Bludov and co-authors
used a simple model that neglected all dissipation in
the system to study the interaction between a graphene
layer and an AFM[17]. They found that the dispersion
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of the surface magnon-plasmon polariton in this sys-
tem changed drastically upon varying the carrier den-
sity of the graphene or the sign of the group velocity.
Pikalov and co-workers extended the study of Bludov by
taking into account the damping of both the magnons
and plasmons[36]. The authors in these works, however,
have not focused on the strength of the interaction be-
tween Dirac plasmons and magnons in their system. In
particular, they have not explicitly considered the rela-
tionship between the coupling strength and the intrin-
sic properties of the involved materials, which is critical
to provide guidance toward materials that could achieve
experimentally-observable strong coupling in such hybrid
material systems. To the best of our knowledge, there has
not yet been any comprehensive examination of the in-
teraction between a TI and an AFM that considers both
electric and magnetic degrees of freedom. Notably, inter-
actions between the Dirac plasmon mode and the lattice
vibrations, i.e. phonons, in a bulk TI significantly al-
ter the dispersion of the surface Dirac plasmon polariton
in the TI, resulting in the formation of Dirac plasmon
phonon polariton mode that is di↵erent from the polari-
ton modes of 2D materials like Graphene [24]. In the
case of chalcogenide materials with a rhombohedral lat-
tice and quantum layer structure like that of Bi2Se3, two
characteristic phonon modes are observable when the AC
electric field is perpendicular to the c axis: the alpha
phonon, also known as the (Eu1) mode, and the beta
phonon, also known as the (Eu2) mode [37]. The strong
alpha phonon mode oscillation contributes to a large vari-
ation in the Bi2Se3 permittivity in the THz regime we
consider in this work.

Here we present a comprehensive theoretical study of
the formation of surface Dirac plasmon-phonon-magnon
polaritons in a TI/AFM bilayer structure. Using a semi-
classical approach, we investigate the surface polariton
modes in a heterostructure by employing the scattering
and transfer matrix method to solve Maxwell’s equations
for an EM wave propagating in the considered system
and subject to specific boundary conditions that deter-
mine the surface modes. We then derive an analytic
equation describing the surface Dirac plasmon-phonon-
magnon polariton (DPPMP) in a TI/AFM bilayer as-
sociated with the p-polarization of incident light mode,
which allows us to explore the properties of the surface
DPPMP as a function of the structural parameters of
the constituent materials. The computational and an-
alytical developments presented in this work go beyond
previously reported techniques for the description of sur-
face polariton modes in an optical layered structure. For
example, in reference [17] Bludov and co-workers devel-
oped the transfer matrix technique for the specific case
of Graphene and an AFM layer. In reference [38], the
surface plasmon mode in a multilayer structure is dis-
cussed in terms of the transfer matrix method, but this
technique will struggle with numeric convergence when
considering a large number of layers with finite thick-
ness. In this work we employ both transfer matrices and

scattering matrices to study the surface plasmon modes
in a heterostructure. Further, by combining transfer and
scattering matrix methods with proper boundary condi-
tions for the electric and magnetic fields of polaritons ex-
cited on the surface of multilayer structures we straight-
forwardly obtain equations describing the mode that are
general and concise rather than considering the other as-
pects of the scattering problem with reflection coe�cients
as in refs [38]. The advantage of the approach we report
here is that the imposed boundary conditions together
with the transfer matrix directly give us a simple analyt-
ical derivation for the case of a material with few layers.
Meanwhile, the scattering matrix approach provides an
advanced and accurate tool for dealing with more realis-
tic multilayer structures.
This paper is organized as follows: In Sec. II we de-

scribe the methods and models employed in this paper to
study the interaction between a TI and AFM. We first re-
view the basic theory starting with Maxwell’s equations
and standard boundary conditions (Sec. IIA). We then
give the solutions to Maxwell’s equations for the bulk
mode within each constituent material (Sec. IIB). Us-
ing the scattering (or equivalently transfer) matrix tech-
nique, we then obtain a general equation for the sur-
face polariton mode in a heterostructure (Sec. IIC). In
Sec. III we apply the method presented in Sec. II to
a TI/AFM bilayer structure, beginning with a general
consideration of the formation of Dirac plasmon-phonon-
magnon polaritons in this system (Sec. IIIA). We then
discuss the dependence of these dispersion relations on
various combinations of constituent TI and AFM ma-
terials and explore the material properties required to
obtain an experimentally-observable strong-coupling be-
tween the TI and AFM (Sec. IIIB-D). Finally, conclu-
sions and perspectives are provided in Sec. IV.

II. THEORY

Interactions between light and matter can be investi-
gated within three conceptual frameworks [39, 40]. (1)
Classical description, in which the collective excitations
are considered as harmonic oscillators and their coupling
relates to the exchange energy between the two oscilla-
tors. In this scheme, the coupling strength between the
two oscillators is an input parameter used to fit the dis-
persion relation !(k) to experimental data. For this rea-
son classical models make it di�cult to understand the
physical origin of the coupling strength or its relationship
to the properties of the constituent materials[41]. (2)
Semi-classical description, in which Maxwell’s equations
are used in combination with the optical response func-
tions to describe polaritons. This approach allows one
to relate the interaction between two excitations with
the structural parameters of the constituent materials
through the optical response functions. (3) Quantum
mechanical representation, in which the polaritons are
hybrid modes, a linear superposition of a matter and
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photon state. The interaction between the matter and
photon states is described through the interacting part
of the total Hamiltonian. In all three pictures, the hy-
bridized modes are created when two or more distinct
excitations interact with su�cient strength to form new
modes that cannot be represented by considering either
excitation alone. The signature of hybridized states is
an avoided-crossing between the two modes at the point
where they would be degenerate in the absence of any
interaction. Our goal in the present work is to study
the coupling between a TI and an AFM that results in
the formation of surface Dirac plasmon-phonon-magnon
polariton (DPPMP). We then characterize the proper-
ties of the surface DPPMP as a function of the struc-
tural and material properties of the constituent materi-
als to quantify the coupling between the TI and AFM
through the magnetic degree of freedom. These data al-
low us to understand the physics behind the coupling
constant and predict material combinations that might
have stronger coupling. To achieve this goal we use the
semi-classical approach in which we are going to solve
Maxwell’s equations to derive the dispersion relationship
of the surface DPPMP in a TI/AFM structure. In the
following parts of this section we first present a robust
technique to obtain the solutions of Maxwell’s equation
for an EM wave propagating in a heterostructure com-
posed of N constituent materials using state-of-the-art
scattering and transfer matrix methods that are compu-
tationally e↵ective and capable of dealing with a com-
plex heterostructure [42–46]. Combining these methods
with proper boundary conditions describing the surface
polariton, an evanescent wave that decays quickly along
the propagation direction, we then obtain a general equa-
tion determining the surface polariton mode in the het-
erostructure. We will discuss how to solve this equation
numerically in general and then apply it to a specific
case with a simple structure involving a TI thin film and
an AFM material where an analytical description can be
acquired.

A. Maxwell’s equations and boundary condition

We consider a heterostructure composed of N layers
with an EM wave beam incident from the left hand side
(see Fig. 1). We denote the z-axis as the growth direction
of the structure. The dimension of the heterostructure
along y-direction is infinite while along the x-direction
it is finite with a width W , as depicted in Fig. 1. As
depicted in Fig. 2, we set the direction of propagation of
the EM wave in the system to be parallel to the x-z plane
along the positive direction so that for s-polarization the
electric field of the EM wave is polarized along the y-axis.
For p-polarization the magnetic field of the EM wave is
polarized along the y-direction.

The EM wave propagating within each part of the
structure is a solution of Maxwell’s equations subject to
the standard EM boundary conditions at the interfaces

FIG. 1. (a) Schematic of a multilayer structure consisting of
N constituent layers that have the same width W along the
x-direction. The z-axis is chosen as the growth direction of
the structure. The thickness, permittivity, permeability in the
m

th layer, and optical conductivity of the carrier sheet at mth

surface/interface are denoted by dm, "m, µm and �m, respec-
tively, whereas Im indicates the interface matrix at the m

th

interface. (b) Schematic of the amplitudes of incoming and
outgoing EM waves used in the scattering matrix approach.
The EM wave is incident on the left surface in the figure.

TI
AFM

Substrate

FIG. 2. The electric and magnetic components of EM wave
corresponding to the TE and TM polarization.

between two materials. In the absence of free volume
currents and charges, Maxwell’s equations read [47, 48]:

r ·D = 0 (1)

r⇥E = �
@B

@t
(2)

r ·B = 0 (3)

r⇥H =
@D

@t
(4)
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with

D = "0"E (5)

B = µ0µH (6)

where E, D, B, and H are the electric, displacement,
magnetic, and magnetizing field of the EM wave, respec-
tively; "0 and µ0 are the permittivity and permeability
of free space, respectively; " and µ are, respectively, the
relative permittivity and permeability of the media. The
boundary conditions at the m

th interface are given by:

n⇥ (Hm+1 �Hm)|z=zm
= Jm (7)

n⇥ (Em+1 �Em)|z=zm
= 0 (8)

n · (Dm+1 �Dm)|z=zm
= ⇢m (9)

n · (Bm+1 �Bm)|z=zm
= 0 (10)

where n is a unit vector perpendicular to the m
th inter-

face, Jm is the in-plane current, and ⇢m is the carrier
density of the electron gas at the m

th interface.
Taking the curl of equations 2 and 4 and inserting 5

into 1 and 6 into 3, one obtains:

µ"

c2

@
2
E

@t2
+r · (r ·E)�r2

E = 0 (11)

r · ("0"E) = 0 (12)

µ"

c2

@
2
H

@t2
+r · (r ·H)�r2

H = 0 (13)

r · (µ0µH) = 0 (14)

These are the wave equations we solve to obtain the dis-
persion relationship between the energy (frequency) of
the EM wave in the material and the wave vector. In
the next section we will give detailed solutions for these
equations to derive the bulk polariton mode in each con-
stituent material, i.e. the TI and AFM.

B. Bulk polariton modes

We now consider the bulk polariton modes within each
constituent material of the heterostructure displayed in
Fig. 1. Because the propagation direction of the EM
wave lies in the x-z plane, within the m

th bulk material
shown in Fig. 2 the solutions to the wave equations 11,
12, 13,14 can be explicitly written as:

Em =

0

@
Ex,m

Ey,m

Ez,m

1

A = e
i(kx,mx�!t)

2

4
e
ikz,mz 0 e

�ikz,mz 0
0 e

ikz,mz 0 e
�ikz,mz

�
kx,m

kz,m
e
ikz,mz 0 kx,m

kz,m
e
�ikz,mz 0

3

5

0

B@

Ax,m

Ay,m

Bx,m

By,m

1

CA (15)

and

Hm =

0

@
Hx,m

Hy,m

Hz,m

1

A =
e
i(kx,mx�!t)

µ0µm

2

64
0 �

kz,m

! e
ikz,mz 0 kz,m

! e
�ikz,mz

1
!

⇣
k2
x,m+k2

z,m

kz,m

⌘
e
ikz,mz 0 �

1
!

⇣
k2
x,m+k2

z,m

kz,m

⌘
e
�ikz,mz

0 kz,m

! e
ikz,mz 0 kz,m

! e
�ikz,mz

3

75

0

B@

Ax,m

Ay,m

Bx,m

By,m

1

CA

(16)

where A(x,y),m and B(x,y),m are the amplitudes of
the x- and y- components of forward- and backward-
propagating EM waves, respectively, ! is the frequency of
the EM wave, kx,m and kz,m are the x- and z-components

of the wave vector of the EM wave within the m
th layer,

and x and z are the coordinates along the x- and z- di-
rections.

Substituting Eq. 15 into Eq. 11, and after some alge-
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bra, one obtains:

�
k
2
x,m + k

2
z,m

�
I �

"mµm!
2

c2

�0

@
X

Y

Z

1

A = 0 (17)

which possesses nontrivial solutions when

det

����k
2
mI �

"mµm!
2

c2

���� = 0 (18)

where

0

@
X

Y

Z

1

A =

2

4
e
ikz,mz 0 e

�ikz,mz 0
0 e

ikz,mz 0 e
�ikz,mz

�
kx,m

kz,m
e
ikz,mz 0 kx,m

kz,m
e
�ikz,mz 0

3

5

0

B@

Ax,m

Ay,m

Bx,m

By,m

1

CA (19)

Here km =
q
k2x,m + k2z,m is the total wave vector of the

EM wave, I is the identity matrix, and "m and µm are,
respectively, the dielectric function and magnetic perme-
ability tensors associating with the m

th material in the
layered structure. In general, one can numerically solve
equation 18 using the eigenvalue algorithm to obtain the
dispersion of bulk polariton mode !(km) of an EM wave
propagating within the m

th layer of the considered sys-
tem for an arbitrary magnetic configuration (i.e. arbi-
trary µm) in the magnetic material.

In figure 3 we plot the dispersion relationship of bulk
polariton mode ! (k) corresponding to a bare TI (Bi2Se3,
red curve) and a bare AFM (FeF2, blue line) associated
with TM-polarization and compare them to the bare pho-
ton mode (dashed black line). For FeF2 we assume that
the magnetization is along the x-axis. We see the sig-
nature of a magnon collective excitation in the disper-
sion relationship of bulk magnon polariton mode in FeF2

by the presence of a clear anti-crossing point near the
magnon frequency 1.59 THz. The anticrossing is visible
due to the low scattering loss rate (small line width) of
the magnon in FeF2. We note that we do not directly see
a mode associated with the magnon itself (i.e. constant
at 1.59 THz), rather we see the anticrossing in the disper-
sion relation of bulk magnon polariton mode only when
the EM wave is nearly degenerate in energy with the
magnon. In the same way, the ↵ and � phonons in Bi2Se3
cause the kinks in the dispersion relation of bulk Dirac
plasmon-phonon polariton mode of Bi2Se3 around 2 and
4 THz. The wave vector, and hence the momentum, of
the bulk magnon polariton mode in FeF2 is always larger
than that of light in this regime. Furthermore, as a con-
sequence of weak coupling between the EM wave and the
magnon in FeF2 the dispersion of bulk magnon polari-
ton in the FeF2 is almost linear. In contrast, the strong
interaction with the ↵ phonon [46] causes the wave vec-
tor of the bulk Dirac plasmon-phonon polariton in the
Bi2Se3 at low frequency to increase dramatically from 0
to 6 ⇥ 107 cm

�1, then decrease down to 1 ⇥ 106 cm
�1

before reaching the bare photon’s dispersion, i.e. k = !
c

at very high frequency (not show).

In a simple picture, one could expect that when a TI

FIG. 3. The dispersion of bulk Dirac plasmon-phonon polari-
ton mode in Bi2Se3 (red curve) and bulk magnon polariton
in FeF2 (blue line); the dashed black line represents the bare
photon’s dispersion relationship ! = ck. The magnetization
of the AFM material (FeF2) is along the x-axis.

and AFM (e.g. Bi2Se3 and FeF2) are put together to
make a hybrid material, the EM wave can interact with
both the electric and magnetic excitations in each con-
stituent material via electric and magnetic dipoles. As
a result, the dispersion of the EM wave in the hybrid
structure will be totally di↵erent from those of either of
the bare materials. In the next part we will develop a
mathematical tool for investigating the surface polariton
in the generic heterostructure depicted in Fig. 1. We
then apply it to study the surface DPPMP in a TI/AFM
bilayer.

C. Surface modes

Let us now turn to the study of surface polaritons,
which is the main goal of this work. Starting with the
standard boundary conditions for the EM wave at the
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m
th interface of the structure shown in Fig. 1 we have:

n⇥ (Em+1 �Em)|m = 0 (20)

n⇥ (Hm+1 �Hm)|m = Jm (21)

where

n =

0

@
0
0
1

1

A , Jm = �mEm+1, �m =

✓
�
xx
m �

xy
m

�
yx
m �

yy
m

◆
(22)

Here �m is the optical conductivity tensor of correspond-
ing two-dimensional carrier gas at mth-interface. Substi-
tuting Eqs. 15 and 16 into Eqs. 20 and 21, one obtains

0

B@

Ax,m

Ay,m

Bx,m

By,m

1

CA = Im

0

B@

Ax,m+1

Ay,m+1

Bx,m+1

By,m+1

1

CA (23)

where Im is an interface matrix that relates the ampli-
tudes of the EM wave in the adjacent mth and (m+1)th

layers. If we define:

U =

✓
1 0 1 0
0 1 0 1

◆
, V =

✓
1 0 0
0 1 0

◆
(24)

then the interface matrix Im will read:

Im =

✓
U

Lm

◆�1 ✓
U

Rm

◆
(25)

where

Lm =
V

µ0µm

0

B@
0 �

kz,m

! 0 kz,m

!
k2
x,m+k2

z,m

!kz,m
0 �

k2
x,m+k2

z,m

!kz,m
0

0 kx,m

! 0 kx,m

!

1

CA

(26)
and

Rm =
V

µ0µm+1

0

B@
0 �

kz,m+1

! 0 kz,m+1

!
k2
x,m+1+k2

z,m+1

!kz,m+1
0 �

k2
x,m+1+k2

z,m+1

!kz,m+1
0

0 kx,m+1

! 0 kx,m+1

!

1

CA+

✓
��

yx
m ��

yy
m ��

yx
m ��

yy
m

�
xx
m �

xy
m �

xx
m �

xy
m

◆
(27)

and the propagation matrix between the m
th and (m + 1)th interfaces is defined by

Pm,m+1 =

0

BB@

e
�ikz,m+1dm+1 0 0 0

0 e
�ikz,m+1dm+1 0 0

0 0 e
ikz,m+1dm+1 0

0 0 0 e
ikz,m+1dm+1

1

CCA (28)

The amplitudes of EM waves in the outer and inner
region can be related by [46]

✓
A0

B0

◆
= I0P0,1I1 . . . PN�1,NIN

✓
AN+1

BN+1

◆
(29)

The transfer matrix is then defined as:

T = I0P0,1I1 . . . PN�1,NIN =


T11 T12

T21 T22

�
(30)

where Ti,j (i, j = 1, 2) is itself a 2⇥ 2 matrix and

Am =

✓
Ax,m

Ay,m

◆
, Bm =

✓
Bx,m

By,m

◆
(31)

In the same manner, we define a scattering matrix S0,m

that connects the amplitudes of the EM wave on the left
side of the 0th surface (denoted by I0 in Fig. 1) to those
on the right side of the m

th interface (denoted by Im in

Fig. 1) of the structure:
✓
Am

B0

◆
= S0,m

✓
A0

Bm

◆
(32)

and a transfer matrix Mm,l that connects the amplitudes
of the EM wave on the right side of the m

th interface to
those on the right side of the l

th interface (l > m) of the
structure:

✓
Am

Bm

◆
= Mm,l

✓
Al

Bl

◆
(33)

Then the scattering matrix S0,l = S0,m ⌦Mm,l that re-
lates the outgoing and incoming states on the left side of
the 0th surface to those on the right side of lth interface,

✓
Al

B0

◆
= S0,l

✓
A0

Bl

◆
(34)

will be obtained via a recursive method:
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S
11
0,l =

h
I �

�
M

11
m,l

��1
S
12
0,mM

21
m,l

i�1 �
M

11
m,l

��1
S
11
0,m (35)

S
12
0,l =

h
I �

�
M

11
m,l

��1
S
12
0,mM

21
m,l

i�1 �
M

11
m,l

��1 �
S
12
0,mM

22
m,l �M

12
m,l

�
(36)

S
21
0,l = S

22
0,mM

21
m,lS

11
0,l + S

21
0,m (37)

S
22
0,l = S

22
0,mM

21
m,lS

12
0,l + S

22
0,mM

22
m,l (38)

where O
11
m,l, O

12
m,l, O

21
m,l, O

22
m,l are 2 ⇥ 2 block elements

of the matrix Om,l (O ⌘ S,M), I is the identity matrix.
Overall, one can construct the total scattering matrix
S = S0,N = S0,1 ⌦ M1,2 ⌦ ... ⌦ MN�1,N that links the
amplitudes of EM waves in the outer and inner region:

✓
AN+1

B0

◆
= S

✓
A0

BN+1

◆
(39)

leading to the well-known relationship between the scat-
tering matrix S and the transfer matrix T :

S =


T

�1
11 �T

�1
11 T12

T21T
�1
11 T22 � T21T

�1
11 T12

�
=


t r

0

r t
0

�
(40)

where t, t
0 and r, r

0 are each 2 ⇥ 2 matrices indicating
the transmission and reflection coe�cients of the total
electromagnetic wave which is in general with both TE-
and TM-polarization. Here t and r are, respectively, the
transmission and reflection associated with an incident
wave propagating along the +z direction, whereas t0 and
r
0 correspond to the incident wave propagating along the
-z direction. This formulation allows for an explicit pic-
ture of the reflection and transmission coe�cients for
the TE and TM polarized EM waves propagating in the
structure.

In order to apply these techniques to investigate the
surface polariton, we note that a key feature of the sur-
face polariton mode is that it is an evanescent wave
that carries energy propagating laterally, i.e , in the x-
direction in our coordinate system, while decaying expo-
nentially in the z direction. Without loss of generality,
we consider a Cartesian coordinate system as depicted in
Fig. 1a with the origin O at the left surface of the struc-
ture (see Fig 1b). This leads to the condition A0 = 0 for
the surface polariton excited on the surface of the struc-
ture corresponding to the interface matrix I0 indicated in
Fig. 1. Further, at the right hand side of the terminated
surface of the structure, i.e the surface associated with
interface matrix IN in Fig. 1, the EM wave is strictly
outgoing wave (i.e. nothing is incident from the right).
This yields BN+1 = 0. With these boundary conditions,
the amplitudes of the EM wave determining the surface
polariton mode of the heterostructure shown in Fig. 1,
in the transfer matrix formalism, are given by:

✓
0
B0

◆
=


T11 T12

T21 T22

�✓
AN+1

0

◆
(41)

which possesses non-trivial solutions only if

det [T11] = 0 (42)

In term of the scattering matrix, we re-write Eq. 39
as:

S
�1

✓
AN+1

B0

◆
=

✓
A0

BN+1

◆
(43)

Applying the condition A0 = BN+1 = 0, we obtain the
condition for non-trivial solutions:

1

det|S|
= 0 (44)

Equations 42 and 44 are general equations that allow
us to determine the surface polariton mode dispersion
! (kx) for a general heterostructure with N layers. To
solve those equation 42 and 44 numerically, we vary the
frequency ! and the in-plane wave vector kx. The surface
polariton mode then corresponds to the local maximum
of the function F (!, kx) =

1
det|T11| or F

0 (!, kx) = det|S|.

For this reason, a plot of F or F
0 as a function of !

and kx accurately represents the dispersion relation. No-
tably, Eq. 42 allows for a simple analytical derivation of
the surface polariton mode in a structure with few lay-
ers. Meanwhile, Eq. 44 gives better numeric convergence
when there are a large number of layer. This is due to
the advantages of the scattering matrix method, which
relates the incident and outgoing fields and avoids their
mixture [42–45].

III. RESULTS AND DISCUSSIONS

We now apply the methods presented in the previous
section to investigate the interactions between a TI and
an AFM. The input parameters for our calculations are
the thickness of the corresponding material constituents,
the frequency dependent dielectric functions, the perme-
ability tensors, and the optical conductivities of the two
dimensional carriers on the surface and at the interface
between two materials.
In the absence of an external magnetic field, the optical

conductivity tensor of the two-dimensional carrier gas on
the surface and at the interface between two materials
takes a diagonal form:
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O z

TI
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⊗
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𝜖𝐴𝐹𝑀 , 𝜇𝐴𝐹𝑀

y(a) (b)

FIG. 4. (a) The structure under consideration in the remain-
der of this work. A TI is deposited on top of an AFM with
arbitrary magnetization direction. An EM wave with, in gen-
eral, both TE- and TM- polarization is incident on the top
surface of the TI material to excite the electric degree of free-
dom in the TI thin film, which can then couple with the mag-
netic degree of freedom in the AFM layer. (b) A finite TI film
with thickness dTI in contact with a half-infinite AFM. Ai,j

and Bi,j , with i ⌘ x, y and j ⌘ 0, 2, are the amplitudes of
the forward- and backward-propagating EM waves in the air
(indicated by j = 0) and within the AFM material (indicated
by j = 2).

� =

✓
� 0
0 �

◆
(45)

i.e, �xx = �
yy

⌘ � and �
xy = �

yx = 0. The magnetic
permeability tensor of a magnetic layer can be written as
[49]:

µ =

2

4
µxx 0 0
0 µyy 0
0 0 µzz

3

5 (46)

where µ⇠⇠ = 1 if the magnetization is along the ⇠-

direction and µ⇠⇠ = 1 + 4⇡ 2�2HaM
⌦2

0�(!+i/⌧mag)
2 otherwise.

⇠ ⌘ x, y, or z. Here Ha is the anisotropy field, He

is the exchange field, M is the sublattice magnetiza-
tion, ⌦0 = �

p
(2He +Ha)Ha is the resonance frequency,

� = g
e

2mc is the gyromagnetic ratio in cgs units, g is the
Lande g-factor, and ⌧mag is the damping constant for the
AFM.

The dielectric function of corresponding layers, which
are isotropic materials considered in this work, in the
structure is given by the Drude-Lorentz model [50]:

" (!) = "1 �
!
2
p

!2 + i�!
+

NX

n=1

!
2
p,n

!0,n � !2 � i�n!
(47)

where "1 is the dielectric constant at high frequency
(! ! 1), the second term on the right hand side of Eq.
47 indicates the Drude bulk contributions, and the third
term is a sum of all contributions from the other Lorentz
oscillators presenting in the system.

A. Surface polariton mode in a TI/AFM structure:
General considerations

We start with a general consideration of the forma-
tion of surface Dirac plasmon-phonon-magnon polari-
tions (DPPMP) in the TI/AFM structure shown in Fig.
4, where an AFM on a substrate (MgO) is capped with
a TI thin film. An EM wave with both TM- and TE-
polarization is incident on the top of the TI thin film
to excite the collective excitations, specifically (a) the
Dirac plasmons on the surface of the TI and at the in-
terface between the TI and AFM and (b) the magnon in
the AFM. These electric and magnetic excitations of the
system can interact with each other to create new hybrid
modes (i.e. DPPMPs) that manifest as a change in the
dispersion relation !(k). We analyze the emergence of
these DPPMPs below.
For the sake of simplicity, we assume that the AFM

is su�ciently thick to be considered as half-infinite. We
then indicate the amplitudes of incoming and outgoing
EM wave as denoted in Fig. 4(b). The surface DPPMP
dispersion relationship for this structure can be acquired
under the conditions Ax,0 = Ay,0 = Bx,2 = By,2 = 0,
which yield a transfer matrix determined by T = I0PI1

where I0 (I1) is the interface matrix between the air and
the TI (TI and AFM) and P is the propagation matrix
within the TI thin film. To construct the transfer matrix
T for the solutions of surface DPPMP in the system, we
first establish the interface matrices I0 and I1 by inserting
Eq. 46 into Eqs. 26 and 27. After some algebra, one
obtains:

Im =

0

B@

1 +A+ B 0 1�A+ B 0
0 1 + C +D 0 1� C +D

1�A� B 0 1 +A� B 0
0 1� C �D 0 1 + C �D

1

CA

(48)
where

A =
µ
m
yykz,m

�
k
2
x,m+1 + k

2
z,m+1

�

µ
m+1
yy kz,m+1

�
k2x,m + k2z,m

� (49)

B =
µ0µ

m
yykz,m!�m

k2x,m + k2z,m

(50)

C =
µ
m
xxkz,m+1

µ
m+1
xx kz,m

(51)

D =
µ0µ

m
xx!�m

kz,m
(52)

and m = 0, 1 with

µ
0
⇠⇠ = 1 (53)

µ
1
⇠⇠ = µ

TI
⇠⇠ (54)

µ
2
⇠⇠ = µ

AFM
⇠⇠ (55)

the permeability of the air, TI, and AFM, respectively.
Here ⇠ ⌘ x, y, or z, the coordinate axes; �0 and �1 are,
respectively, the optical conductivity of the Dirac plas-
mon on the surface of the TI layer and at the interface
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between the TI and the AFM. Using the explicit forms
of the interface matrices I0 and I1, together with the
propagation matrix

P =

0

BB@

e
�ikz,1dTI 0 0 0

0 e
�ikz,1dTI 0 0

0 0 e
ikz,1dTI 0

0 0 0 e
ikz,1dTI

1

CCA (56)

one can obtain the transfer matrix for the structure in
Fig. 4:

T = I0PI1 =

✓
T11 T12

T21 T22

◆
(57)

The surface DPPMP modes in the TI/AFM bilayer

satisfy

det [T11] = 0 (58)

Because we do not consider an external magnetic field,
the TE and TM modes are uncoupled, leading to a diag-
onal form for T11:

T11 =

✓
T

11
11 0
0 T

22
11

◆
(59)

Solutions of Eq. 58 would correspond to T
11
11 = 0 and

T
22
11 = 0, associated respectively with the TM - and TE-

polarization of the light incident on the structure. The
TE-polarization light cannot excite the Dirac plasmon on
the surface of the TI material [46], so we consider only the
TM -polarization of the EM wave determined by T

11
11 = 0,

which gives:

"
1 +

kz,0

�
k
2
x + k

2
z,1

�

µTI
yy kz,1

�
k2x + k

2
z,0

� +
µ0!kz,0�0

k2x + k
2
z,0

#"
1 +

µ
TI
yy kz,1

�
k
2
x + k

2
z,2

�

µAFM
yy kz,2

�
k2x + k

2
z,1

� +
µ0µ

TI
yy !kz,1�1

k2x + k
2
z,1

#
e
�ikz,1dTI

+

"
1�

kz,0

�
k
2
x + k

2
z,1

�

µTI
yy kz,1

�
k2x + k

2
z,0

� +
µ0!kz,0�0

k2x + k
2
z,0

#"
1�

µ
TI
yy kz,1

�
k
2
x + k

2
z,2

�

µAFM
yy kz,2

�
k2x + k

2
z,1

� �
µ0µ

TI
yy !kz,1�1

k2x + k
2
z,1

#
e
ikz,1dTI = 0

(60)

Eq. 60 is general because it applies to various kinds
of TI/AFM bilayer combination. This equation can be
solved numerically to obtain the dispersion of the sur-
face polariton in a TI/AFM structure once the optical
response function and thickness of the constituent ma-
terials are known. We note that for the p-polarization,
one has the magnetic field of the EM wave along the y-
direction. This suggests that magnetization of the AFM
along the y-direction would not exert any impact on the
spectrum of surface DPPMPs because the yy- compo-
nent of the permeability tensor will be 1 in this case
(µAFM

yy = 1). We therefore consider the case in which the
magnetization of the AFM is along x-direction, i.e. per-
pendicular to the magnetic field of the EM wave, which
yields an AFM permeability of the form:

µ
AFM
yy = µ

AFM = 1 + 4⇡
2�2

HaM

!
2
0 � (! + i/⌧mag)

2 (61)

Solving Eq. 18 for the considered configuration, we ob-

tain the bulk modes within each region given by:

kz,0 =

r
!2

c2
� k2x (62)

kz,1 =

r
"TIµTI!2

c2
� k2x (63)

kz,2 =

r
"AFMµAFM!2

c2
� k2x (64)

Here kx = q ⇡
W
⇡ where W is the width of the TI and

AFM ribbon along the x-direction. There is no magnetic
order in the TI materials in this consideration, so

µ
TI = µ

TI
yy = 1 (65)

Substituting the relations 65, 61, 62, 63 and 64 into Eq.
60, we finally obtain:

F
�1 =

✓
1 +

"
TI

kz,0

kz,1
+

�0kz,0

"0!

◆✓
1 +

"
AFM

kz,1

"TIkz,2
+

�1kz,1

"0"
TI!

◆
e
�ikz,1dTI

+

✓
1�

"
TI

kz,0

kz,1
+

�0kz,0

"0!

◆✓
1�

"
AFM

kz,1

"TIkz,2
�

�1kz,1

"0"
TI!

◆
e
ikz,1dTI = 0

(66)
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In the limit dTI ! 0, Eq. 66 reduces to

1 +
"
AFM

kz,0

kz,2
+

(�0 + �1) kz,0
"0!

= 0 (67)

This is an equation that describes the surface Dirac
plasmon-magnon polariton in a graphene-like/AFM sys-

tem [36]. The third term (�0+�1)kz,0

"0!
on the left hand side

includes the contribution from the two surfaces of the TI,
which are degenerate in the dTI ! 0 limit.

B. Parameters and relationships for specific
TI/AFM structures

To investigate the surface DPPMP in specific TI/AFM
structures, we consider three TI candidates, Bi2Se3,

Bi2Te3 and Sb2Te3, whose bulk dielectric function in the
far-IR range of interest is given by [46]:

"
TI = "1 +

S
2
↵

!2
↵ � !2 � i!�↵

+
S
2
�

!
2
� � !2 � i!��

(68)

where !x, �x, and Sx are the frequency, the scattering
rate, and the strength of the Lorentz oscillator associated
with the ↵ (x = ↵) and the � (x = �) phonons of the
TI thin film. Numerical values for all TI parameters are
taken from reference [22] and listed in Table I.

TABLE I. The TI parameters used in this work, taken from [22].

Materials "1 S↵(cm
�1) !↵(cm

�1) �↵(cm
�1) S� (cm�1) !�(cm

�1) �� (cm�1)
Bi2Se3 1 675.9 63.03 17.5 100 126.94 10
Bi2Te3 85 716 50 10 116 95 15
Sb2Te3 51 1498.0 67.3 10 NA NA NA

TABLE II. The parameters for AFM materials used in this paper, taken from [28, 30, 36].

Materials Ha (Oe) He (Oe) M (G) !0 (THz) ⌧mag (ns) Lande factor TNeel (K)
NiO 6.4⇥ 103 9.7⇥ 106 400 1.01 0.175 2.05 523
MnF2 8⇥ 103 5.33⇥ 105 592 0.26 7.58 2.0 67
FeF2 2⇥ 105 5.4⇥ 105 560 1.59 0.11 2.25 78

The surface states of these TIs host two dimensional
spin-polarized (Dirac) plasmons that behave as a con-
ducting electron sheet whose optical conductivity is given
by

� =
e
2
EF

4⇡~2
�
i! � ⌧

�1
DP

� (69)

where EF is the Fermi energy of the surface states, ⌧DP

is the relaxation time of the Dirac plasmon, and e is the
electron charge. We note that the hybridized states at
the interface between a TI and another material (here
the AFM) may have an impact on the carrier density at
the interface [46, 51] and make it di↵erent than that on
the surface of a pristine TI layer. However, for simplic-
ity we neglect this e↵ect and assume the same optical
conductivity expression for the surface of the TI and the
interface between the TI and the AFM. In other words,
in the following �0 ⌘ �1 ⌘ � as given by Eq. 69.

We note that in the long-wavelength limit
(kxdTI ⌧ 1), the analytical expression for the sur-
face plasmon-phonon-polariton in the TI thin film was
derived in [51]

!
2
TI+ =

vF
p
2⇡n2De

2

"0h

kx

"top + "bot + kxdTI"TI
(70)

and

!
2
TI� =

2"0"TIhvF + e
2
p
2⇡nDdTIq

4"20"
2
TIh

2v2F + 2"0"TIe
2
p
2⇡nDdTI

k
2
x (71)

where the subscripts TI+ and TI� stand for the optical
and acoustic mode, respectively. Here vF is the Fermi
velocity for the Dirac plasmon in the TI; n2D is the sheet
carrier concentration of the entire TI thin film, includ-
ing the contribution from both surfaces; "top, "bot and
"TI are the permittivity of the top and bottom dielec-
tric media and the TI, respectively; kx is the in-plane
wave vector; and dTI is the thickness of the TI layer.
In this work, we focus on the optical mode of the sur-
face plasmon polariton in the TI because only this mode
can be excited in a traditional optical experiment since
the acoustic mode does not have any contribution in the
optical dipole matrix element [52].
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We also consider three AFM candidate materials,
NiO, MnF2 and FeF2, which all support THz frequency
magnons [30]. We note that the Neel temperature of NiO
is about 523 K while that of FeF2 and MnF2 are, respec-
tively, 78 K and 67 K [28]. We therefore imagine that
the NiO sample could be studied experimentally at room
temperature while the FeF2 and MnF2 samples would
be investigated at low temperature. We assume that the
samples are below their Neel temperatures in the calcula-
tions we conduct here. The frequency-dependent perme-
ability of these AFMs is given given by Eq. 46. The mag-
netic parameters and magnon frequencies of each AFM
are listed in Table II. The permittivity of these AFMs
are taken to be the same, with the characteristic value
"
AFM = 5.5.
In order to gain physical insight into the formation of

surface DPPMP modes in these TI/AFM structures, in
parts III C and IIID we consider ideal materials in which
we set the scattering rate of all excitations to zero. In
part III E we study how the non-zero realistic line widths
of these excitations influence the coupling between a TI
and AFM and the formation of hybridized states.

C. Formation of surface Dirac
plasmon-phonon-magnon polaritons in TI/AFM

structures

We begin with the dispersion relations of surface
plasmon-phonons in a Bi2Se3 TI layer interacting with
a magnon in a FeF2 AFM. In Fig. 5 we plot the F as
given by Eq. 66 as a function of frequency ! and in-plane
wave vector kx. We apply this technique to Bi2Se3/FeF2

bilayers with two di↵erent thicknesses of Bi2Se3 film: (a)
dTI = 10 nm and (b) dTI = 200 nm. In both cases we
use a Fermi energy of the Dirac plasmon EF = 1 eV .
The color in Fig. 5 represents the magnitude of the func-
tion F whose maxima reveal the dispersion of the surface
DPPMP. In Fig. 5(a), for a rather thin Bi2Se3 layer, we
observe the formation of a surface DPPMP through anti-
crossings around 1.5 THz, 2 THz and 4 THz, i.e. where
the TI plasmon becomes degenerate with, respectively,
the energies of the magnon in the FeF2 material, the ↵-
phonon in the Bi2Se3, and the �-phonon in the Bi2Se3.

As shown in Fig. 5(b), when the thickness of the
Bi2Se3 layer is increased to dTI = 200 nm we continue to
see the contributions from ↵- and �-phonons in the dis-
persion, but the signature of the interaction between the
Bi2Se3 and FeF2 layer at 1.59 THz disappears. This is
because the dispersion of the upper branch of the surface-
plasmon-phonon polariton in a bare TI layer described by
Eq. 70 blueshifts to above 2 THz with increasing Bi2Se3
thickness due to the negative real part of its permittiv-
ity in this domain. In contrast, the lower mode, below
2 THz, redshifts because the real part of the permittivity
of Bi2Se3 is positive in this region. This redshift of the
lower branch mode below 2 THz causes this mode to no
longer intersect with the magnon resonant frequency at

FIG. 5. Surface DPPMP dispersion in Bi2Se3/FeF2 structure
calculated using Eq. 66 with the Fermi energy of Dirac plas-
mon on its surface EF = 1 eV and the thickness of TI layer
(a) dTI = 10 nm and (b) dTI = 200 nm.

1.59 THz. As a result, the anti-crossing associated with
TI/AFM interaction cannot be observed in Fig. 5(b). A
similar e↵ect is seen in all three types of TI materials
considered in this work; Fig. 6 shows the frequency-
dependent dielectric function of all three TIs, with the
transition from positive to negative values of the real part
of "TI at around 2 THz. This analysis indicates an upper
bound for the thickness of TI layer in which one could
observe the coupling between a TI and an AFM. Specifi-
cally, in the case of Bi2Se3/FeF2 structure, the thickness
of the TI layer should not exceed 120 nm.

D. Impact of material parameters and Fermi
energy on the coupling strength

We now consider the impact of material parameters
and Fermi energy on the strength of the interaction be-
tween a TI and an AFM. In Fig. 7 we show the disper-
sion of the DPPMP around the magnon frequency for
three di↵erent TI/AFM bilayers: (a) Bi2Se3/NiO, (b)
Bi2Se3/MnF2, and (c) Bi2Se3/FeF2. The thickness of
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FIG. 6. Frequency dependent dielectric function of topolog-
ical materials for corresponding Bi2Se3 (blue), Bi2Te3 (red)
and Sb2Te3 (green) with (a) the real part and (b) the imagi-
nary part.

Bi2Se3 and Fermi energy of the Dirac plasmon in all
of these calculations is dTI = 10 nm and EF = 1 eV ,
respectively. One observes that the coupling strength,
defined by the magnitude of the separation � between
the upper and lower modes near the magnon frequency
and at a specific in-plane wavevector around the max-
imum anti-crossing point, increases from Bi2Se3/NiO
(Fig. 7a: �NiO ⇡ 0.015 THz) to Bi2Se3/MnF2 (Fig.
7b: �MnF2 ⇡ 0.028 THz) and has the largest value for
Bi2Se3/FeF2 (Fig. 7c: �FeF2 ⇡ 0.07 THz). This is
because the anisotropy constant K = �

2
MHa (where �

is the gyromagnetic ratio, M is the sublattice magneti-
zation and Ha is the anisotropy field) that determines
the magnitude of the magnetic dipole in the AFM is
the largest for FeF2 and smallest for NiO. We have also
performed similar calculations for di↵erent TI materi-
als combined with FeF2 (data not shown) in which we
used the same Fermi energy for the Dirac plasmon on
the surfaces of all the TI films. These calculations tell
us that the coupling strength between TIs and FeF2 is
almost independent of the change in TI materials. These
data suggest that the interaction between a surface Dirac
plasmon-phonon polariton in a TI with a magnon in an
AFM primarily depends on the amplitude of the mag-
netic dipole in the AFM material, which is mainly de-
termined by the magnetization and e↵ective anisotropy
field, i.e. intrinsic properties of the AFM. This is be-
cause the larger magnitude of the magnetic dipole of the
AFM leads to a stronger interaction between the local

FIG. 7. Surface DPPMP dispersion in the vicinity of magnon
frequency calculated using Eq. 66 for (a) Bi2Se3/NiO , (b)
Bi2Se3/MnF2, and (c) Bi2Se3/FeF2 bilayer structures. In all
cases dTI = 10 nm and EF = 1 eV .

spin moment in the AFM and the magnetic component
of the EM wave propagating in the system. As a result
of this increased coupling, the EM wave excites magnon
polaritons containing a larger number of magnons. This
stronger magnon polariton, in turn, mediates a stronger
interaction between magnon states in the AFM and Dirac
plasmon phonon states in the TI, resulting in a larger
contribution of magnons to the formation of Dirac plas-
mon phonon magnon hybrid modes. In other words, one
would expect, based on the data presented thus far, that
a larger magnetic dipole for an AFM should lead to a
stronger interaction between the surface DPP in a TI
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and the magnon in the AFM. However, as we will now
show, this is not the case for the surface DPPMP in the
TI/AFM bilayer at low Fermi energy, a regime typically
at EF < 0.4 eV for the materials investigated here.

FIG. 8. Surface DPPMP dispersion in Bi2Se3/FeF2 bilayer
structure calculated using Eq. 66 as a function of varying
Fermi energy of the Dirac surface plasmon. dTI = 10 nm

and the in-plane wave vector kx = 0.8 ⇥ 104 cm
�1 are kept

constant.

We now investigate the influence of the Fermi level of
surface states in the TI layer on the coupling between
the TI and AFM. In Fig. 8 we plot the energy of the
surface DPPMP modes in a Bi2Se3/FeF2 bilayer as a
function of the Fermi energy of the TI surface states
from 0 to 1 eV. We simply observe the blueshift of all
polariton branches because the higher Fermi level leads
to more electrons participating in the surface mode and
that shifts the dispersion to higher frequency per Eq.
70. A direct consequence of this blueshift is that in-
creasing Fermi level from zero will always shift the Dirac
plasmon-phonon-polariton closer toward resonance with
the magnon polariton mode, thereby increasing the cou-
pling strength. To understand how these shifts a↵ect
the coupling strength, in Fig. 9 we plot the dispersion
relations for the DPPMP in the Bi2Se3/MnF2 bilayer
for three di↵erent Fermi energies (a) EF = 0.1 eV , (b)
Ef = 0.4 eV , and (c) Ef = 1 eV . We plot in green
the dispersion of the bulk magnon polariton mode in the

MnF2, which is given by k
2 = "AFMµAFM!2

c2 . For low
Fermi level (EF = 0.1 eV , Fig. 9a) the Dirac plasmon-
phonon-polariton in the TI crosses the MnF2 magnon
resonance frequency ⌦0 = 0.26 THz at approximately
kx = 0.028 ⇥ 104 cm

�1. The magnitude of the anti-
crossing (�, which is a measure of the strength of the
coupling) is extremely small and barely visible in Fig. 9a.
This occurs because the surface Dirac plasmon-phonon-
polariton in the TI thin film at low Fermi energy is rel-
atively far out of resonance with the magnon polariton
mode in the AFM represented by the steepest green line

FIG. 9. Surface DPPMP dispersion in Bi2Se3/MnF2 struc-
ture calculated from Eq. 66 with dTI = 10 nm, Fermi energy
(a) EF = 0.1 eV , (b) Ef = 0.4 eV , and (c) Ef = 1 eV . The
green dotted line in all figures is the dispersion of the bulk
magnon polariton mode in the MnF2.

in Fig. 9a. Being relatively far from resonance reduces the
magnon contribution to the hybridized DPPMP state, re-
ducing the coupling strength. In contrast, for slightly
higher Fermi level (Ef = 0.4 eV , Fig. 9b) the Dirac
plasmon-phonon-polariton in the TI crosses the magnon
resonance frequency at approximately kx = 0.014 ⇥

104 cm
�1. The magnitude of the anti-crossing (�) is

significantly larger because the Dirac plasmon-phonon-
polariton in the TI are very close to the resonance point
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FIG. 10. TI-AFM coupling strength in the Bi2Se3/FeF2,
Bi2Se3/NiO, and Bi2Se3/MnF2 bilayer structures as a func-
tion of the Fermi energy of the Dirac plasmon in the TI film.
In all cases dTI = 10 nm. Note that we use the technique
presented in our previous work[46] to extract the strength of
the coupling between the TI and the AFM that we call �;
the magnitude of � is schematically depicted in Fig. 7. For
each bilayer the magnitude of � is extracted at the maximum
anti-crossing (around 1.6 THz for Bi2Se3/FeF2, at 1 THz for
Bi2Se3/NiO, and around 0.26 THz for Bi2Se3/MnF2).

with magnon polariton in the AFM at ! = 0.26 THz

and kx = 0.013 ⇥ 104 cm
�1 (i.e. the anticrossing fea-

ture in the green line). A further blueshift in the Dirac
plasmon-phonon-polariton in the TI caused by a further
increase in the Fermi Level (Ef = 1 eV , Fig. 9c) does not
further increase the magnitude of the anti-crossing (�).
To understand this saturation more clearly, in Fig. 10
we plot � as a function of Bi2Se3 Fermi level for bi-
layers constructed with all three candidate AFM mate-
rials. The magnitude of � for the Bi2Se3/MnF2 struc-
tures initially increases with increasing Fermi level and
then saturates for EF > 0.4 eV as described above with
reference to Fig. 9. For similar reasons, the magnitude
of � for the Bi2Se3/NiO structure initially increases and
then saturates for EF > 0.8 eV . In contrast, � for the
Bi2Se3/FeF2 structure increases monotonically with in-
creasing Fermi energy across the range of EF we consider
here. The increasing threshold for saturation of � is
directly related to the magnon frequency in the AFM.
MnF2 has the lowest magnon frequency and thus the
lowest saturation EF . FeF2 has the highest magnon fre-
quency and thus the highest saturation EF (above the
range of EF considered here). Taken together, this anal-
ysis suggests that one way to tune the magnitude of the
coupling between a TI and an AFM is by gating the elec-
trons on the surface of the TI thin film.

E. The role of linewidth

Thus far we have been considering ideal materials in
which we neglected all loss rates by setting the linewidths

FIG. 11. Surface DPPMP dispersion in Bi2Se3/FeF2 struc-
ture calculated using Eq. 66. For both calculations the Fermi
energy of the Dirac plasmon is EF = 0.7 eV , the thickness
of the TI layer is dTI = 80 nm, and the linewidths of the ↵-
and �- phonon in the TI and the magnon in the AFM are set
at the realistic values listed in Tables I and II. The linewidth
of the Dirac plasmon is (a) �D = 1

⌧DP
= 10 THz and (b)

�D = 1
⌧DP

= 0.1 THz.

to zero. This has allowed us to understand much of the
physics underlying the emergence of hybridized states
due to strong coupling. We will now consider realis-
tic material parameters by including dissipative e↵ects
via non-zero linewidths. We start by considering the in-
fluence of scattering rate (linewidth) on the dispersion
of the surface DPPMP for the Bi2Se3/FeF2 structure.
In Fig. 11 we plot the energies of the surface DPMP
modes for dTI = 80 nm, EF = 0.7 eV , and realis-
tic values of the loss rates in the system described by
the linewidths of the ↵- and �- phonons in the TI and
the magnon in the AFM as given in Tables I and II.
The linewidth (relaxation time) of the Dirac plasmon for
the calculation in Fig. 11(a) is �D = 1

⌧DP
= 10 THz

(⌧ = 0.1 ps). For Fig. 11(b) the linewidth (relax-
ation time) is �D = 1

⌧DP
= 0.1 THz (⌧ = 10 ps).

When the relaxation time of the Dirac plasmon is small
[Fig. 11(a)], the polariton branch below 2 THz is invisi-
ble and there is no anti-crossing signature in the vicinity
of ! ⇠ 1.6 THz. In contrast, for an increased relaxation
time for the Dirac plasmon [Fig. 11(b)], the polariton
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branch below 2 THz becomes clear and the anti-crossing
signature in the vicinity of ! ⇠ 1.6 THz becomes appar-
ent. This behavior of the polariton branch below 2 THz
is due to the dominance of the TI surface states at the
low frequency; at high frequency the ↵- and �- phonons
with smaller linewidths (see Table I) play an important
role. The line width of the AFM is very small in compar-
ison to that of TI and therefore has less impact on the
whole dispersion relation for the DPPMP. These calcula-
tions imply that the coupling between TI and AFM can
only be observed with extremely high TI quality (small
linewidth). Specifically, for Bi2Se3 our calculation pre-
dicts that the linewidth of the Dirac plasmon on the sur-
face of Bi2Se3 should not exceed 1 THz.

FIG. 12. Surface Dirac plasmon-phonon-magnon polariton
dispersion in Bi2Se3/FeF2 structure versus the variations of
TI’s linewidth (a) and AFM linewidth (b) calculated from
Eq. 66 with the Fermi energy of Dirac plasmon on its surface
EF = 1 eV and the thickness of TI layer dTI = 10 nm at a
fixed in-plane wave vector kx = 0.13⇥ 104 cm

�1.

Finally, we consider the e↵ect of scattering rate on the
coupling strength. For convenience and clarity, when we
consider the e↵ect of TI loss rate we will assume zero loss
(zero linewidth) for the AFM and vice versa. Computa-
tionally, we change the scattering loss rate in the TI by
adding a multiplicative factor ⌘TI to the initial values of
the linewidth of the ↵- and �- phonons (listed in Table I)
and the Dirac plasmon in the TI layer, which has initial
value �0 = 0.1 THz. In Fig. 12(a) we plot the dispersion
at a fixed in-plane wave vector of kx = 0.1⇥104 cm

�1 as
a function of ⌘TI . We find that the scattering loss rate in
the TI material has almost no impact on the strength

of the coupling between the TI and the AFM as in-
dicated by the persistently-observable splitting between
the upper mode at around 1.64 THz and lower mode at
1.55 THz. We note, however, that the two branches of
the polariton become progressively fainter upon increas-
ing the linewidth of the TI, as discussed previously. In
Fig. 12(b) we present an analogous plot as a function
of ⌘AFM . We find that the upper and lower polariton
modes merge into a single polariton when ⌘AFM ⇠ 25,
i.e. for a factor or 25 increase in the linewidth of the
magnon in the AFM relative to the base value listed in
Table II. This merge into a single polariton occurs be-
cause when linewidth in the AFM exceeds the coupling
strength (anti-crossing) and provides a benchmark for
the AFM linewidth that would require to be achieved
to create an experimentally-observable coupling between
the TI and the AFM. Together with the above analy-
sis, this result shows the critical importance of extremely
high quality samples for any experimental study of the
coupling between a TI and an AFM such as those theo-
retically explored here.

IV. CONCLUSIONS

In summary, we have presented a robust method for in-
vestigating the surface polariton modes in a heterostruc-
ture by using the scattering and transfer matrix method
with proper boundary conditions. We then apply this
technique to systematically study the interaction be-
tween a TI and an AFM in a TI/AFM bilayer mediated
by both the electric and magnetic degrees of freedom.
For the specific case of Bi2Se3 combined with the 3D
antiferromagnetic materials MnF2, NiO, or FeF2, we ex-
plore the limits for reaching the strong coupling regime
evidenced by the formation of DPPMP hybridized states
and emergence of an anti-crossing. Our calculations pre-
dict an upper bound for the thickness of the TI layer
that could be used to experimentally observation such
strong coupling with those AFMs. We quantify the de-
pendence of the coupling strength on the magnetic dipole
and linewidth of the magnon, which are intrinsic proper-
ties of the AFM material. We also quantify the depen-
dence of the coupling on the Fermi energy, and hence the
carrier concentration, of the Dirac plasmon on the sur-
face of the TI and at the interface between the TI and
the AFM. We find that the strength of the interaction
between a TI and an AFM can be tuned via gating the
electrons on the surface of the TI. We also find that the
saturation of the coupling strength primarily depends on
the magnetic dipole of the AFM material. Finally, we
show that extremely high material quality is essential to
experimentally observing strong coupling between the TI
and the 3D AFM considered in this work.
One of the most important results of the approach pre-

sented here is the physical insight it provides to guide and
prioritize work to characterize potential AFM materials
for reaching the strong coupling regime in such hybrid
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material structures. For example, FePS3, a 2D antiferro-
magnetic van de Waals material, has a magnon frequency
of about 3.7 THz [53] and an anisotropic constant (⇡
2.66 meV) [35, 54, 55] that is three orders of magnitude
larger than that of MnF2 (⇡ 0.0023 meV) [30]. This
suggests that FePS3 is an extremely promising material
for a TI / AFM heterostructure in which strong coupling
could be observed experimentally. Use of FePS3 may
even avoid the requirement of extremely high TI qual-
ity to observe a visible Dirac plasmon phonon magnon
polariton mode below 2 THz. However, we cannot use
the approach described here to quantitatively predict the
coupling in a heterostructure containing FePS3 because

we lack complete information of the suite of material
parameters necessary to formulate an analytical expres-
sion for the FePS3 permeability tensor. This illustrates
how the present work guides material development and
characterization e↵orts to focus on materials with large
anisotropic constants.
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