Integrating Computing

into Preservice Teacher
Preparation Programs
across the Core: Language,
Mathematics, and Science

LAUREN E. MARGULIEUX
PATRICK ENDERLE

PIER JUNOR CLARKE
NATALIE KING
CAROLINE SULLIVAN
MICHELLE ZOSS

JOYCE MANY

*Author affiliations can be found in the back matter of this article

ABSTRACT

This paper describes the beginning of a design-based research project for integrating
computing activities in preservice teacher programs throughout a middle and secondary
education department. Computing integration activities use computing tools, like
programming, to support learning in non-computing disciplines. The paper begins with
the motivation for integrating computing that encouraged widespread buy-in, design
goals, and design parameters. The primary motivating factor for this work was preparing
teachers to use technology to support learning in their classrooms. Involving computing
education faculty in the preparation enabled the activities to include computer science
and spread computational literacy. The paper also describes the process and year-long
timeline for designing and implementing the integrations, followed by the details of the
computing integrated activities. Last, the paper describes preservice teachers’ reactions
to computing integration, focusing on before-and-after perceptions and knowledge
of computing. Preservice teachers perceptions and knowledge of computing evolved
similarly to teachers who engage in different approaches to learning about integrated
computing, such as in elective or educational technology courses, suggesting that this
approach is effective for engaging all teachers in integrating computing. In particular,
the common feature that ignited teachers’ excitement about integrating computing was
offering new opportunities to improve student learning and providing engaging activities
within their non-computing discipline.
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Computer science is becoming a fundamental literacy for
citizens and should be accessible, if not required, for all K-12
students (Bocconi et al., 2016; DeLyser et al., 2018). Similar
to other literacies like language, mathematics, and science,
all citizens do not need to understand advanced concepts in
computer science, but they need computational literacy to
succeed in their professional and personal lives (Wing, 2006;
Grover & Pea, 2013). Computational literacy is important for
effective cybersecurity, productive use of technology, and
making creative and powerful solutions to problems (Lynch
et al,, 2020; Usta & Mirasyedioglu, 2021). An exemplar is
children creating apps in Android App Inventor to solve
problems in their schools and communities.!

A critical issue in the spread of computational literacy is
the inequitable access to computing education in schools
and communities. Women, people who are Black, Latinx,
and Native American, individuals with disabilities, and
those who live in low income or rural communities are
underrepresented (Google & Gallup, 2016, 2017). Many
resources have been devoted to programs that increase
computational literacy, but they are often optional (e.g.,
after school programs, summer enrichment, or elective
courses; Google & Gallup, 2016, 2017). Despite the efficacy
of these programs for some students, they can perpetuate
existing inequities because underrepresented groups
are often not encouraged to participate in them or feel
unwelcome (Margolis & Fisher, 2002).

An effective strategy to combat inequities in computer
science is to make computing a requirement for all
students, just like language, math, and science (Bocconi
et al, 2016; Delyser et al.,, 2018, Yadav et al,, 2017). As
any educator will recognize, however, finding time in the
school day for required computing instruction can be an
insurmountable challenge. Thus, many recent efforts have
focused on integrating computing instruction in required,
core courses (Yadav et al., 2014). This approach introduces
all students to computing concepts and provides educators
with powerful technology to use in their teaching practice
(Grgurina & Yeni; 2021; Kale et al., 2018; Kong & Lai, 2021;
Lynch, 2017). Thus, computing integration can improve
computational literacy while providing tools for learning
whenitis designed to serve both disciplinary and computing
goals (Guzdial, 2019; Lynch et al., 2020; Tedre et al., 2018).
Our goal for the current project was to design computing
integrations for preservice teacher (PST) programs that
would both improve computational literacy and provide
PSTs with tools, while not requiring additional instructional
time to teach content within their field.

Just as educators struggle to fit computing instruction
into the school day, colleges of education struggle to fit
computing instruction into PST preparation programs.
Some colleges of education offer instruction in computing

education to non-computing PSTs through an elective course
about computing integration (Yadav et al., 2016; 2017). This
approach provides extended instruction about computing
and how to teach it. The drawbacks, however, are that 1) all
PSTs across grade bands and disciplines are taking the same
course, meaning that some instruction and peer interactions
might not easily map to PSTs’ intended contexts, and 2)
these courses are often optional, which can perpetuate
inequity. Using a different approach, some universities have
redesigned their required educational technology courses to
include computing integration (Delyser et al., 2018; Mouza
et al. 2017; Yang & Mouza, 2021), but many universities do
not require an educational technology course.

Instead of a standalone computing integration course
or educational technology course, we designed computing
integrated activities for disciplinary teaching methods
courses. Teaching methods courses within a specific grade
band and discipline introduce PSTs to pedagogical content
knowledge and useful educational technologies for their
specific context (Kong & Lai, 2021). This approach ensured
that all of our teachers would learn computing integrated
activities, increasing the number and diversity of PSTs
using computing integration. Furthermore, because these
activities are designed for and taught in methods courses,
we were able to connect them to the pedagogical content
knowledge, sociocultural, and critical aspects of learning
environments (Lucarelli et al., 2021), as Kafai and Proctor
(2021) call for while teaching computational literacies.

This initiative gained traction with teacher preparation
faculty in part because it aligned with a year-long focus to
update PSTs’ preparation to use technology effectively. In
the fall, six internal mini-grants of $500 each incentivized
the redevelopment of courses with an increased emphasis
on infusing learning technology in ways consistent with the
International Society for Technology in Education (ISTE)
standards for students and educators, which now includes
computational thinking. The mini-grants promoted
innovation and collaboration among faculty members in
teacher preparation and educational technology.

Ultimately, a system was designed in which all PSTs in
the middle and secondary education programs would have
exposure to computing integration through their required
coursework. All PSTs completed an online, hour-long module
on computational thinking (CT) and computing integration.
Then PSTs in English Language Arts, mathematics, and
science spent a week of their methods courses learning
computing integration activities that were designed
between their professor and a computing education faculty
member. Some of those PSTs implemented the computing
integration activities with students through student teaching
or practicum experiences. Though this approach has limited
instruction on computing concepts, it served the goal of
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introducing all PSTs to computing integration so that they
are prepared to use computing activities with their classes.
Computing integration activities have been a popular
area of study for at least the past five years. Thus, the
primary goal of this research was to compare our system
of integrating computing in PST programs, which has
relatively little but targeted computing instruction, to
other implementations that provide more comprehensive
instruction to a broader audience. To explore the efficacy of
this system, we addressed the following research questions.

1. What knowledge of computing do PSTs have after an
hour of instruction on CT concepts and an hour of
preparing a computing integrated activity?

2. What are the alignments that PSTs recognized between
their primary disciplinary and computing that enabled
them to integrate computing?

We compare the results of this system to the patterns of
results from standalone computing and CT integration
courses to examine its relative efficacy.

COMPUTING INTEGRATION DESIGN
GOALS AND PARAMETERS

Computing integration can provide engaging learning
experiences and outcomes for both computing and the
primary discipline, but it must balance the goals and contexts
of both fields (Hur, 2021; Kale et al., 2018; Lynch et al., 2020).
The benefit of introducing integration activities in teaching
methods courses is that the design caters to the specific
needs of each program (i.e., the Technological Pedagogical
Content Knowledge, Kong & Lai, 2021) and every PST learns
the activities. The tradeoff is that the teaching methods
courses are already full of content to meet the requirements
for credentialing and successful teaching practice.

Based on these needs, PST programs already have strict
requirements. In addition to disciplinary content, all PSTs
also learn pedagogical concepts and practices. Some of
these concepts and practices are required for credentialing,
such as the Interstate Teacher Assessment and Support
Consortium (InTASC) standards and ISTE standards. Other
concepts and practices are not required for credentialing
but are required to prepare PSTs to support student learning
in various contexts. For example, many of our teachers will
work in schools in low-income neighborhoods, which has
implications for the technology that they will have access
to in their classroom. These kinds of practical implications
are discussed in our PSTs” teaching methods courses.

Within the context of methods classes, the level of
computing knowledge that can be added to the required

coursework is limited. From a computing education
perspective, more instruction about computer science
would be preferred, but the primary gquiding factors
were usefulness of concepts to PSTs” practice. Even with
limited time for computing instruction, it was important
to the computing education (CSEd) faculty, author
Margulieux, that the activities included programming.
While many computing integration activities do not require
programming, it is a key tool in computing and affords the
flexibility that is necessary for creative computing solutions
(Guzdial, 2019). The CSEd author also argues that it is
important to demystify programming for many PSTs who
have little to no experience with it. Programming activities
also provide immediate feedback compared to unplugged
computing activities, which is beneficial as teachers explore
its affordances (§iaulys & Dagiene, 2021). Furthermore, a
longitudinal study revealed that programming experience
was important to retention of underrepresented groups in
computing fields (Weston et al.,, 2019), aligning with our
goal to broaden participation in computing.

Layered with computing education goals, the other
programs had their own goals for this initiative. The director
of preservice programs in middle and secondary education,
author Sullivan, assigned the online computational
thinking module as part of her course that is required
for all PSTs. Her goals for including the module were to
ensure that PSTs had exposure to computing, regardless
of how technology was used in individual programs, and
address challenges that teachers had in terms of access
and availability of technology in their schools. Thus, one of
the strategies in this project was to establish a framework
for using technology from which PSTs could extrapolate to
their classroom context. The other goal for the module was
to prepare PSTs for computing integration activities in their
methods courses.

Discipline-specific methods courses had unique
approaches for computing integration. In the English
Language Arts methods course, a primary goal was to
prepare PSTs to effectively use digital tools for learning,
aligned with a national goal by the National Council of
Teachers of English (NCTE). NCTE’s Definition of Literacy
in_a Digital Age positions teachers as agents of change
and arbiters of technology who have the responsibility
to evaluate the use of digital tools for learning (Witte et
al., 2019). The position charges teachers and students
to consume, curate, and create actively across contexts.
The English methods course addresses this imperative by
giving PSTs experience in using tools for their learning and
then adapting those tools for teaching.

In the mathematics methods course, one primary goal
was to prepare PSTs to use a different approach to build
conceptual understandings of mathematical concepts. The
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course instructor, author Junor Clarke, agrees with Buteau,
Muller, Mgombelo, and Sacristan (2018) that computational
thinking and computing integration is a way of empowering
learners to use computers to act like mathematicians and
develop 21%t-century skills. She believes it is necessary and
critical that education faculty and their PSTs in college
courses be aware and be able to embed and implement
computing in their current curricular concepts.

In the science methods courses, a primary goal was to
give PSTs tools to increase engagement during instruction
and to teach computational thinking, a newly included
concept in science standards. The instructors, authors
Enderle and King, agree that computational thinking is
becoming a fundamental literacy (Bocconi et al., 2016),
yet it is ill-defined as a scientific practice in the Framework
for K-12 Science Education (NRC, 2012) and the Next
Generation Science Standards (NGSS Lead States, 2013).
Thus, another goal was to improve learning about scientific
practices by engaging in computing activities that use
science ideas and computational thinking. To achieve these
goals, the project had the following design parameters

e Assume no prior knowledge of computing or
computational thinking.

e Activities must be authentic for the primary discipline
and computing.

» Activities must be accessible to PSTs and not
dependent on a specific culture.

* Activities must be modifiable to fit the context of
teachers’ future classrooms.

e Activities must not require technology other than
computer and internet.

DESIGN PROCESS

This section describes the process taken to begin this
design-based research project. The implementation
section highlights details for each discipline. Table 1 shows
the activities with their timeline and who participated. The
process took a year, which was partially dictated by when
courses were offered.

The CSEd faculty member met individually with each
PST faculty member to identify relevant concepts and
topics. She brought general ideas to the first meeting (e.g.,
programming a visualization of a scientific phenomenon)
to exemplify possibilities, but the discussion focused on
topics in which teachers could improve their practice by
using computing (e.g., students can make a dynamic
visualization of a scientific phenomenon rather than a
static visualization). Based on the topic identified in the first
meeting, the CSEd faculty member either found existing
activities for computing integration or developed them
herself (details in the implementation section). Finally, both
faculty members designed a lesson plan to implement the
activities.

To implement the activities, the CSEd faculty member
visited the teaching methods courses for one week. The
primary instructor was present and helped to facilitate
discussions and make connections to teaching practice
in the discipline. The guest instructor introduced the
motivation for computing integration, general areas
within the discipline suitable for computing integration,
the programming tool, and the activities. Because the
instruction was given by the same person, the CSEd faculty
member, fidelity of implementation was not a concern.
All PSTs received the same instruction, except that the
discipline-specific activity was matched to their disclipline.

INTEGRATION IMPLEMENTATION

Each of the computing integration activities is described
below, including

* The programming language

o Block-based or text-based

o Discipline-specific or interdisciplinary
* The type of programming activity

o Modify an existing program or creating a program
* Why the topic in each discipline was chosen

To prepare PSTs for these activities and introduce them to
the contrast between consuming technological solutions

ACTIVITY TIMELINE  PEOPLE

CSEd and PST faculty meet collectively to discuss possibilities, goals, and parameters September  CSEd & PST faculty
Individual meetings between CSEd and PST faculty to design and develop computing integration Spring CSEd & PST faculty

(1-4 meetings per pair)

General computational thinking module was given to all PSTs in middle and secondary programs Summer CSEd, PST faculty, and PSTs
Computing integration activities in the methods courses and student teaching Fall CSEd, PST faculty, and PSTs

Table 1 Activities Related to Computing Integration Across the Department.
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and producing technological solutions through computing,
the CSEd faculty and middle secondary program director,
authors Margulieux and Sullivan, developed an hour-
long module about computational thinking concepts and
practices based on definitions of computational thinking
from the literature (Aho, 2012; Armoni, 2016; Barr &
Stephenson, 2011; Brennan & Resnick, 2012; Cuny, Snyder,
&Wing, 2011; Denning, 2017; Grover &Peq, 2013; Tang et al.,
2020; Weintrop et al., 2016; Wing, 2006, 2008). While none
of the definitions from the literature match exactly, the
five most common concepts among definitions are more
prevalent than the others. Using this frequency distribution
to identify the cut-off for inclusion, the concepts included
were abstraction, algorithms, automation, decomposition,
and debugging. All five concepts can be easily applied to
other disciplines while including concepts that are unique
to computing (i.e., automation and debugging).

In total, the CT module had six units. Besides the 5 CT
concepts, we started with the motivation for computing
integration and a set of three questions for thinking
about computing integration. Interestingly, our set of
three questions for thinking about computing closely
align with Grgurina and Yeni’s (2021) three steps for the
CT program solving process, though they were developed
separately. Their three steps are, “translating the problem
under scrutiny into computational terms, constructing a
computational solution, and using that computational
solution in the domain,” (p. 4; Grgurina & Yeni, 2021).

1. Motivation for computing integration and core
questions
a. Is acomputer well-suited to help me solve this
problem (or part of it)?
b. How would I get a computer (design a system) to
solve this problem?
c. Does the computer solve the problem accurately
and efficiently?
2. Abstraction with related concepts and practices:
defining parameters, conditionals, test cases
3. Algorithms with related concepts and practices:
mental models, logical thinking, iterative design
4. Automation with related concepts and practices:
sequencing, humans as computers versus machines
5. Deconstruction with related concepts and practices:
iterative design and abstraction
6. Debugging with related practice: rubber duck
debugging

The CT module was designed to follow a general formula for
each CT concept. First was a definition of the concept. The
second was examples of the concept in three disciplines,

rotating through a subset of English, foreign language,
mathematics, science, and humanities. The third was an
activity to practice applying the concept, building upon a
module-long paper airplane example. Last was a reflection
including questions and discussions of how the concept
related to PSTs’ primary discipline.

PSTs engaged with the CT module, including completing
a multiple-choice quiz at the end of each unit, online
during a summer course. PSTs were split into groups based
on grade band and discipline and asked to discuss the
concepts in a discussion board. When visiting the methods
courses, the guest instructor reviewed these concepts
again, focusing on examples within the discipline, before
introducing the integration activities.

ENGLISH LANGUAGE ARTS ACTIVITIES

Computing integration is less common in language than
in mathematics or science (Lynch et al,, 2020), so fewer
ideas from previous work informed the initial meeting.
Most integrated computing in language revolves around
digital storytelling, but it is often used as a bridge that
prioritizes introducing students to computing rather than
using computing to promote language learning (Kordaki
& Kakavas, 2017; Parsazadeh et al., 2021). In the initial
meeting, the language education faculty member, author
Zoss, did not specify a topic that needed to be the focus
of the activity and instead focused on computing as a
tool to promote creativity and student engagement. Thus,
the CSEd faculty member looked for an activity that used
a block-based language to foreground the functionality
of programming without requiring much pre-training
of the computing tool. She also wanted to start with
a sophisticated program that teachers could modify
creatively to achieve different language learning objectives.
The faculty members settled on a chatbot modeled on
Lady Macbeth? developed in Pencil Code as part of Google’s
Exploring Computational Thinking resources.

Because the program is relatively sophisticated, PSTs
first used the chatbot, asking questions to the programmed
Lady Macbeth. After PSTs became acquainted with using
the program, they read the code of the program to explore
how the control statements were designed to produce
responses based on the users’ questions. Then, PSTs were
asked to predict the outputs to certain questions and test
those predictions (e.g., how would the program respond if
you used two keywords?) to develop a better understanding
of how the program worked. Progressing from using the
program to modifying the program, PSTs made small
changes to the program (e.g., the program recognized “hi”
and “hello” as inputs, and PSTs were asked to add another
greeting to this list, like “hey” in Figure 1).
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1 replyto = (words) ->J

2 for word in words |

2 switch word

4 when "hello", "hi", "hey";

5 \rétum "Hello. I'm waiting."

& |

7 # For example, if asked "Who are you?"

8 when "name", "who"

9 return "Lady Macbeth."
10
11 # E.g.! "Have you heard about the murder?"
12 when "power", "kill", "duncan", "murder", "king"
e return ["®
14 I love power.
15 I will do anything for power.

i
16
1

Figure 1 A Segment of the Program Used to Create a Chatbot in
an English Language Arts Activity.

Some of these changes could be completed in the block-
based interface, but others required the PSTs to access the
text-based interface to make changes. Asking the PSTs,
through a scaffolded task, to change the program in the
text-based interface gave them the skills to customize the
original program in creative ways. To reinforce the extent
to which they could modify the program to serve their
needs, the instructor discussed how they could change the
program to become a dictionary of literary devices. Users
could ask about a literary device, and the program would
output a definition and example. The PSTs then had time
outside of class to modify the chatbot for a literary text
that they used in a long-term planning activity.

MATHEMATICS ACTIVITIES

For the secondary mathematics teaching methods course,
the CSEd and Math faculty decided to introduce PSTs to a well-
established and popular curriculum for integrating algebra
and computing called Bootstrap.? The Bootstrap curriculum
for Algebra has been refined through many iterations based
on data collected in authentic classroom environments
(Schanzer et al., 2018). It has learning objectives connected
to national standards in mathematics (Common Core) and
computer science (Computer Science Teachers’ Association).
The programming language is a text-based language that
can be used to solve problems in multiple disciplines.

The evidence-based curriculum is free to use, and
one goal for the integration was to introduce PSTs to the
curriculum and make them comfortable enough to use it in
their algebra courses. It takes about 25 hours to complete,
so one methods course was not sufficient to work through
the entire curriculum. Instead, PSTs were introduced
to the first of ten units, emphasizing connections to a
conceptual understanding of mathematics and how the
computing component allows students to explore different
representations and applications of mathematical

functions. Then the instructor introduced PSTs to the
remaining resources available and discussed how to
engage with each component.

Unlike the other implementations, the primary instructor
of the course, author Junor Clarke, lead the computing
integration class while the CSEd faculty provided support.
Thus, this integration made many more connections
throughout the class to how the PSTs could use this in
their classroom at a more granular level. For example, the
Bootstrap curriculum provides lesson plans for each unit,
and Dr. Junor Clarke demonstrated activities that teachers
could use to complete each segment of the lesson plan. In
the other implementations, the activities were taught only
at the lesson plan level, and PSTs would need to decide how
each segment of the lesson plan would be implemented.
The approach that Dr. Junor Clarke took is likely valuable to
those in her course, and she spent a considerable amount
of time exploring and learning the Bootstrap curriculum to
be able to teach it independently.

SCIENCE ACTIVITIES

Faculty members designed two integrations with science,
one for middle school and another for high school. Science
education faculty, authors Enderle and King, engaged in
both integrations. In the initial meeting for middle school,
the following design specifications were set: 1) use an
interactive scientific model of a phenomenon to help
visualize it, and 2) use an interdisciplinary programming
language for activities because middle school PSTs specialize
in at least two subjects. Modeling and simulations to
visualize scientific phenomena is a common area to connect
science with computing (Grgurina & Yeni, 2021; Weintrop
et al,, 2016). However, many of these tools foreground the
visualization and do not automatically show the program
that creates it, e.g., PhET and Netlogo, which does not
serve our goals of teaching programming. The CSEd faculty
recommended a block-based language so that PSTs could
use advanced concepts to create visualizations without
learning complex syntax. The team chose Pencil Code to
meet the design specifications because it is block-based and
uses turtle graphics. Turtle graphics, a paradigm in which the
programmer tells a digital turtle how to move around a space
and often includes drawings or other visual components,
were deemed appropriate for creating visualizations.

Based on the timeframe of the course, the selected
topic was electromagnetic waves. Therefore, the CSEd
faculty created an activity using Pencil Code for modeling
electromagnetic waves. To introduce the activity, Dr. King
guided the PSTs through a review of relevant scientific
concepts for waves, in which PSTs defined the components
of a wave and drew waves on whiteboards. After a tutorial
of Pencil Code, the guest instructor walked PSTs through
a simplified wave model with only wavelength and not
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amplitude. For homework PSTs were asked to expand on

their models so that they included amplitude (see Figure 2).
The Pencil Code models were designed to include variables.

The variables supported easy manipulation of values in the
model and, at Science ed faculty member’s request, the

use of equations to connect to mathematical concepts.

The models also included functions and for loops at the
CSEd faculty member’s request to include more computing
concepts. Though a more elegant program might include
the wavelength and amplitude as parameters of the wave
function, this design better suited the project’s goals and

simplified the concept of functions by excluding parameters.

A
speed 2®|
#Define wave properties

wavelength = 50

velocity = 100

aﬁpli tude = 100

frequency = velocity [/ wavelengthJJ

#Define wave function

wave = () —%
fd v amplitude

re v9®|
fd wavelength / 2”

rt v9®|
fd amplitude = ZJ

_lt v9®|

Bl wavelengthll 2”

1t v 90

fd v amplitude
J

#Draw resting line

moveto v -300, v 6|

pen vblack) 5
vt v 90

£d v 600
Enoveto v -30051v 0] L_
1t va0

#Draw wave

pen vpurplel §|
for [luolell
|—w3ve( )J
~_J

label frequency I

Figure 2 Program Used to Create Wave Visualization in Science
Activity.

The activity for the secondary science methods course
was quite different. It was implemented near the end of
the semester, and there was no particular science topic that
needed to be included. Instead, the team opted to introduce
the PSTs to NetLogo and provide PSTs autonomy to choose a
topic. NetLogo is a text-based language originally designed
for creating simulations in science, but it has expanded to
other disciplines. NetLogo also offers an expansive collection
of pre-made simulations, which were used as the basis for the
activity. After introducing the PSTs to NetLogo and its library
of simulations, instructors asked them to pick a simulation
that they could use in their classrooms. Once PSTs selected a
topic, instructors asked them to access the source code and
try to match the code to its functionality in the simulation.
PSTs then read through the code and modified a piece of it
(e.g., delete a graph or change the output of something) and
test whether their change worked to change the simulation
as desired. The CSEd and Science faculty helped PSTs as they
read and modified the code. The goal of this activity was to
share the NetLogo simulations for PSTs to use. Furthermore,
the activity was meant to empower PSTs to modify pre-built
simulations to work better for their classroom and to show
them that they, and their students, could understand and
modify code to make it work for them, even if they did not
have the skill to write it independently.

METHOD

To address the research questions and evaluate the effect
on PSTs of the CT instruction and computing integration
activity in the classroom and in student teaching,
researchers collected qualitative and quantitative data
about the process and outcomes of the intervention. The
project explored the effect of the intervention on PSTs’
knowledge and beliefs at three points: before CT instruction,
immediately after CT instruction, and after instruction
about a specific computing integration activity in their
methods course. Some cohorts also include a fourth data
point, after student teaching or practicum.

Because this project is an early-stage, design-based
research project, its primary objective is to identify, bottom-
up, variables and themes that are important to the design
of CT instruction across PST programs. As such, it does not
yet employ experimental or intervention methods, which
would be appropriate to examine the effect of variables and
themes in the next stage of design-based research. While we
have a relatively large sample size for this stage of the project,
our results cannot be interpreted within a cause-and-effect
paradigm because we do not have strong a priori expectation
of either cause or effect. The purpose of this work to develop
a basis for a priori hypotheses that can be tested later.
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PSTS, INSTRUCTORS, AND INSTITUTIONS
Across methods courses, 99 PSTs who participated in the
study had complete datasets and were included in the
analysis (see Table 2 for demographic information).

The instructors of the methods courses specialize in

education within their discipline and teacher preparation.

The CSEd faculty had little background with teacher
preparation in language, mathematics, or science. Our
approach combined areas of expertise using a co-teaching
model with the PSTs. For student teaching, we partnered
with local public schools in Atlanta, Georgia, which primarily
serve groups that are underrepresented in computing.

DATA COLLECTION SOURCES AND ANALYSIS

Throughout the project, we collected data from all PSTs
through a CT survey. The CT survey was based on the
survey from Yadav et al. (2014; see Appendix A for full
pre- and post-surveys). It was completed before the CT
instruction (pre-survey in July), at the end of CT instruction
approximately an hour later (post-survey in July), and
at the end of the methods course (post-post-survey in
September). The survey had a quantitative component
that asked PSTs to rate on a 5-point scale 1) their familiarity
with CT, 2) how easily CT can be integrated into other
subjects, 3) how comfortable they would be integrating
CT, and 4) their general comfort with using computers. The

qualitative component of the survey asked PSTs to explain/
define 1) CT, 2) how they might implement CT in their class,
3) barriers that they might face implementing CT, and 4) list
three things that someone who knows computing could do.
To supplement this data source, the CSEd faculty
member took notes during the methods course and student
teaching. Because she was engaged in instruction, these
are not systematic field notes from an impartial observer.
Instead, the notes recorded the topics discussed during
instruction and anything unexpected that occurred to
inform future design. Additional sources of data that not all
PSTs completed include reflections from PSTs during the CT
module, assignments to adapt the computing integration
activity introduced in the methods course, and post-student-
teaching reflections. Data from these additional sources are
used only to provide context for the primary data analysis.
To analyze quantitative data and quantitative coding, we
used only descriptive statistics. Inferential generalizations
were not a goal at this early stage of design-based
research, and the quantitative data collected was minimal.
Thus, most data analyses focused on qualitative data using
content analysis (Hsieh & Shannon, 2005) with NVivo 12
software. Content analysis allowed themes to emerge
from the data by iteratively coding the data to explore
different interpretations (see Table 3 for codes created
at each round of analysis). Each component of the data

PST race White = 40

African American or Black = 38

Latinx =10 Other or multiracial = 11

PST gender ~ Women =56 Men =38

Transgender or nonbinary =5

Table 2 Demographic Characteristics of PSTs Participants.

Initial Node RQ1: What knowledge of computing do PSTs have after an hour of instruction on CT concepts and an hour of preparing a
computing integrated activity?
First Round CT Definitions Expressions of Uncertainty

Second Round  ® Using technology
¢ Problem solving or thought process
e Listing concepts introduced in module
* Using computers to solve problems
¢ Decomposition

No additional nodes identified

Third Round No new nodes identified

Initial Node RQ2: What are the alignments that PSTs recognized between their primary disciplinary and computing that enabled them to
integrate computing?

First Round Effective Practices for Teaching CT

Second Round  * Using computers or CT as a tool for learning
¢ Teaching the computer as a way to learn

¢ Using the program to understand student thought processes

¢ Using examples that are personally meaningful

Third Round No new nodes identified

Table 3 Qualitative Codes Created in Each Round of Analysis.
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collection sources was coded, and one component could
be coded into multiple nodes.

The initial, exploratory nodes were based on which
research question the data addressed. During the first
round of analysis, researchers classified components into
the research question nodes and made additional nodes
for high-level themes within each research question. For
the first research question, additional nodes were added
for CT definitions and expressions of uncertainty. For the
second research question, a node was added for effective
practices for teaching CT to preservice teachers. During
the second round, researchers classified components
within each research question into the high-level themes
and made additional nodes for sub-themes, which are
described in Table 3 and the results. During the third round,
researchers classified components within the themes into
sub-themes and did not recognize additional thematic
nodes. All content was scored by two raters after the
coding scheme was finalized. Initial inter-rater reliability
was 82% agreement based on coding PST responses as
including or excluding a node (i.e., total agreement based
on binary judgments). Disagreements were resolved
through discussion.

RESULTS

The results section is organized around the research
question and the qualitative nodes identified through
content analysis. The qualitative nodes are supplemented
with descriptive quantitative data when applicable. First
is research question 1: What knowledge of computing do
PSTs have after an hour of instruction on CT concepts and
an hour of preparing a computing integrated activity?

EVOLUTION OF CT DEFINITIONS

We examined PSTs’ definitions of CT across multiple time
points to examine how their understanding evolved as they
engaged with computing. The first definitions they provided
were on the CT survey before any instruction. On the pre-
survey, 42 of 99 PSTs said that they definitely had not heard
of CT before or might have heard of it. Only 16 had definitely
heard of it, but some of their definitions were of computing
in a mathematics context rather than a computer science
context. Overall, the PSTs offered a wide range of definitions
of CT with the most common responses being

 Using technology (26 PSTs) - “Incorporating computer
skills and technology into classroom settings and
lessons”

* Problem solving or thought process (39 PSTs) - “Possibly
a logical, methodological type of thought process”

On the post-survey at the end of the CT module, PSTs gave
more technically correct answers that closely mirrored
instruction,

* Listing concepts introduced in module (62 PSTs) -
“Computational thinking is applying automations,
algorithms, decomposition, and debugging to solve
problems”

* Using computers to solve problems (23 PSTs) -
“Problem solving methods through computers”

The same survey was given at the end of the instruction
in PSTs” methods course that focused on a specific activity
for integrating computing into their primary discipline.
The definitions still focused on the five CT concepts (i.e.,
abstraction, algorithms, automation, deconstruction, and
debugging) discussed in class, but they expanded to include
applicability of CT within their discipline while using the
computer as a tool. Most PSTs (n = 54) gave an answer like,

“CT is a problem-solving method that emulates
computational patterns and behaviors such as
how a computer would solve the problem. CT is
broken into five parts to make the process easier
to understand and make it easier to walk through
to find a solution to the problem. CT is usually
implemented when creating and executing
computer programs however it has been found
useful across disciplines including mathematics,
science, and the humanities. CT is also good on
eliminating whether or not a computer would be
useful to solve the problem or not. It encourages
problem solving and increases digital literacy.”

These responses were sometimes not entirely accurate, but
they represented an introductory, simple understanding of
the concepts rather than systematic misconceptions.

A third of PSTs (n = 31) repeated the three questions
used to define CT in class with minimal, but thoughtful,
additions.

“Thinking computationally basically means
answering three questions: Should a computer help
me solve this problem? How would I get a computer
to solve this problem? Does the computer solve

the problem accurately and efficiently? It is useful
because the steps involved with CT help students to
‘keep working’ or ‘keep trying’ to solve a problem.”

The middle school science PSTs (n = 11) completed
the survey again after student teaching. They provided
definitions of CT that were less reliant on using computers
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or listing CT concepts. Their understanding seemed
to have evolved to subject-independent process for
solving problems that could be enhanced with the use of
computers. It is important to note that middle school PSTs
specialize in two areas, so they were likely taking another
methods course concurrently. The common themes were

» Decomposition (4 PSTs) - “CT allows students to break
things down and understand better of the little things
that make up the bigger things.”

* Problem solving or thought process (3 PSTs) - “A step-
by-step process of learning and educating in which you
approach problems and information from an analytical
point of view”

* Using computers to solve problems (5 PSTs) - “You can
use computational thinking in every subject to show
how computers can be used to do more complex
problems, or repeated sets of data.”

As expected, PSTs definitions of CT evolved as they gained
experience with CT concepts and computing integrated
activities. The general GT module helped to improve the
factual accuracy of PSTs definitions of CT. After learning
the computing integrated activity, and especially after
practicing it in student teaching, PSTs definitions began
to become more conceptual in nature, though they still
included some factual inaccuracies.

EXPRESSIONS OF UNCERTAINTY

PSTs expressed doubts in their ability to implement a
computing integration activity during the intervention
but gained confidence through instruction. From the
pre-survey to the post-survey to the post-post-survey
on the question, “I am confident that I could integrate
computational thinking into my future classroom,” with a
scale of 1 - Not at all to 5 - Completely, confidence grew
evenly from 3.55 to 3.85 to 4.07. In contrast, in response
to the question, “Can computational thinking be integrated
into non-computing classes?” with a scale of 1 - Not

practically to 4 - Easily, scores increased, but not linearly.

The average increased from 3.04 before the CT module to
3.38 after the CT module. Scores increased only slightly
after the methods courses to 3.43. For the PSTs who
engage in student teaching, however, all but one PST gave
the highest rating, including those who originally said CT
could not practically be integrated. Because these ratings
were not used in an experimental paradigm, they describe
only the PSTs in the study and should not be generalized.
During the CT module, PSTs’ responses to reflection
questions suggested that they easily understood the five
CT concepts in relation to their prior knowledge about
their discipline. When introduced to the programming

environments during computing integration activities, the
PSTs were immediately active, with many starting to try
things before formal instruction began. While PSTs might
be uncertain at the beginning of instruction, they tended to
engage quickly in the activity and thoughtfully apply prior
knowledge to this new tool.

Based on the CSEd faculty member’s field notes during
student teaching, before class began many PSTs were
uncertain and nervous about the computing integrated
activities. They were motivated, however, by wanting to
provide hands-on learning activities for their students and
multiple methods of learning content. PSTs seemed much
more comfortable using the base pre-existing program
that the CSEd faculty member provided as a starting point
than the adapted programs that they had developed
through their methods class. PSTs who used the base
program focused more on disciplinary learning objectives,
like they would with any pedagogical tool, while those who
used adapted programs felt unsure about the validity or
accuracy of their program and focused more on computing
learning objectives. In a post-student-teaching reflection,
most PSTs said they would be excited to use a computing
integration activity in their class as long as someone else
had already developed the program or algorithm.

The positive reactions of the students during student
teaching motivated the PSTs to continue computing
integration. Many of the students had little experience
with computing or programming. Like the PSTs, students
immediately began trying out features when they opened
the programming environment. In one exchange, a student
said, “It’s a lot of testing, that’s the cool thing about this.”
In the middle school science class, students created their
own models and compared them. During the comparisons,
students said, “How did you do that?!” “I didn’t know
I could do this,” and “There’s different parts of science,
and [computing] is one of them.” In a post-student-
teaching reflection, many PSTs mentioned the excitement
of the students as a motivation to include a computing
integration activity in their future classroom, such as, “We
asked the students if they’d want to do something like this
in the future and all their hands shot up!”

EFFECTIVE PRACTICES FOR TEACHING CT TO PSTS
Effective practices for teaching PSTs was the focus of the
analysis of the second research question: What are the
alignments that PSTs recognized between their primary
disciplinary and computing that enabled them to integrate
computing?

PSTs were asked to reflect on CT concepts during the
general, hour-long CT module and discuss what resonated
most with them. The purpose of this question was to
identify parts of the instruction PSTs found most interesting
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or applicable to replicate or expand in the future. The PSTs
gave varied response to this question, though, suggesting
that PSTs resonated with different aspects of the instruction.

One general theme for some PSTs was using computers
or CT as a tool for learning (n = 32). This theme aligns with
the primary design goal of the project to provide a new tool
for teachers to use in their classrooms. For some PSTs, CT
was a new way of problem solving,

“T learned how to problem solve using different
methods, especially in ways that a computer would
execute. The part that resonated with me the most
is the rubber duck [debugging]. When we hit a
roadblock in problem-solving, we can explain our
problems and it helps to decode our goal.”

PSTs also identified the content they could teach with CT,
including computing concepts, “I never learned how to
code as a student, so therefore I think teaching my students
will be a great experience,” or teaching students about their
discipline with computing, “It was exciting to learn a new
way to relate scientific ideas to my future students with
technology they may not be introduced to yet.”

Another general theme emphasized “teaching” the
computer as a way to learn (n = 43). This theme aligns
with part of the instruction in the methods course that
compares writing a program to teaching a person. This part
of instruction explicitly stated that students could teach
concepts to the computer by writing a program.

“It really resonated with me that teaching is a good
way to learn...I can most certainly attest to teaching
being a great way to learn, and CT is just that:
explaining your processing down to the most finite
details so you know exactly what’s going on.”

In a related theme, a smaller group saw the program as
a tool to understand student thought processes (n = 17).
This theme also aligns with part of the instruction in the
methods course that by writing a program, students are
formalizing and externalizing their thought process, which
might help teachers or peers understand what piece is
missing when students are stuck.

“Tt also helps me as a teacher because I can ask

a student how they went through it and got the
answers that they did. Being able to reflect on each
step and figure out the student got from Ato Z is
very useful to student and teacher.”

Based on field notes, this theme might have been less popular
than teaching the computer as a way to learn because many

teachers were not confident in their ability to understand
students’ code. However, because this explanation is from
the researchers’ perspective, it would require more research
to determine its validity from the PSTs’ perspective.

The last general theme was PSTs appreciated the use
of examples that were personally meaningful to them
(n = 19). The examples could be relevant to them as a
teacher, “What really resonated with me was the way it
was so accessible. It introduced an entirely new concept
by making it relate to the things that are most important
to us; reaching our future students!” or to everyday life, “It
used real world issue to help us understand the concepts.”
This theme was also less common than the others, but it
was also not explicitly part of the design, except that it
follows fundamental instructional design.

LIMITATIONS

As design-based research in the early stages, the primary
goal of research at this point is to identify dimensions
and concepts that are relevant to measure in future work.
As a result, we cannot responsibly generalize any of our
findings beyond the PSTs with whom we worked because
that was not the goal of our measures. Instead, we have
identified themes in primarily qualitative data from a
sample of 99 PSTs across academic disciplines to better
understand and research this new paradigm of integrated
computing education. The themes identified from these
results of this early-stage design-based research project
will be explored more directly and measured more
explicitly in future work.

DISCUSSION

From a CSEd perspective, the primary motivator for
this project is to broaden participation in computing by
integrating computing into the teaching practices of other
academic disciplines and, thus, give students experience
computing. Addressing this broad goal required designing
instruction for PSTs within the constraints and requirements
of their preparation programs. Thus, the focus of our
design-based research was to explore how our instruction
1) achieved CS/CT learning objectives given the constraints
for CS/CTinstruction (i.e., RQ1 about knowledge of computing
given limited instruction), and 2) afforded PSTs to teach
computing within the context of their primary discipline(s)
(i.e., RQ2 about alignment between their primary discipline
and computing). In general, the results from this stage of
the project found that integrating computing instruction into
teaching methods courses, even though it greatly restrained
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the amount of instruction, was successful for achieving
learning objectives for both CS/CT and the primary discipline.

The results from this study are similar to those from other
studies about teacher preparation for integrated computing
that used different approaches, such as elective courses (e.g.,
Yadav et al., 2014, 2017) or educational technology courses
(e.g,, Yang & Mouza, 2021). In these different approaches,
PSTs typically receive at least two weeks of CS/CT instruction
(Kong & Lai, 2021; Rodrigues da Silva et al., 2020; Yadav et
al.,, 2014, 2017; Yang & Mouza, 2021) rather than the two
hours our PSTs received. Despite less instruction, our PSTs
developed increasingly accurate, though not conceptual,
knowledge of CT, just like teachers from other studies (Kong
& Lai, 2021; Mouza et al,, 2017; Rodrigues da Silva et al,,
2020; Yadav et al., 2014, 2016). Just like teachers from other
studies, our PSTs also improved their confidence in teaching
computing but were still fairly uncertain in their ability to
implement activities independently in their classrooms
(Kong et al., 2020; Rich et al,, 2017; Yadav et al., 2014, 2016,
2021). These similarities suggest that our more restricted
and highly targeted approach to computing integration in
methods courses, i.e., designed for teachers within a specific
discipline and within a specific grade band, does not produce
worse outcomes than more general CT/CS instruction.

The gold standard for computing integration instruction
would be that teachers are able to adapt or create
computing integration activities for the needs of their
students and classroom. By this standard, our approach
also performs similarly to other approaches, which is
that it fails. Multiple teacher educators have successfully
enabled teachers to implement pre-designed integrated
computing activities in their classroom by emphasizing
CT concepts and providing CS instruction in the context
of a specific integration activity (e.g., Kong & Lai, 2021,
Margulieux & Yadav, 2020; Rodrigues da Silva et al., 2020).
However, these approaches alone, without significant
ongoing professional development, classroom experience,
and online learning communities, do not provide teachers
with the skillset and self-efficacy to design and implement
their own computing integration activities (Hew & Hara,
2007; Rich et al., 2017; Yadav et al., 2021). In contrast,
Kong et al. (2020) found that in order to reach this
standard, teachers needed two full college courses that
included sustained programming instruction, equivalent
to the introductory programming instruction computer
science undergraduates receive. Whether this standard is
attainable in the future, it is not currently reasonable within
PST programs in the current study. Thus, similar outcomes
with other CT/CS integration approaches is sufficient to
justify the pursuit of this methods-course-based approach.

The success of our approach is also notable in the context
of the diversity of PSTs in our study. Part of our motivation for

computing integration is to teaching computing to teachers,
and eventually their students, who are from groups that are
underrepresented in computing. The PSTs who we worked
with are predominately from groups underrepresented
in computing, whether based on race (48% Black, African
American, or Latino/a/x) or gender (57% women). While our
research does not include racial or gender comparisons, it
is important to recognize that our successful PSTs included
those from underrepresented groups. Further, when we
observed student teaching with students who were from the
same underrepresented groups, the students were highly
engaged with the computing integration activity. While this
project is about broadening participation generally, rather
than addressing racial or gender diversity specifically, we
found no evidence our mandatory computing instruction
was less effective than elective computing instruction,
which tends to have less diversity of PSTs (Bocconi et al.,
2016; DelLyser et al., 2018, Yadav et al., 2017).

KEY DESIGN RESOURCES

To reach this stage of the design project, we needed buy-in
from each stakeholder. The computing education faculty
wanted to spread computational literacy; the disciplinary
education faculty wanted to provide technological tools to
support teaching and learning; and administration wanted
to update the use of technology in programs. Because the
motivations for each contributor were different, spending
time clarifying goals at the beginning of the process was
critical. After we agreed upon goals and an approach to
reach them, we could return to them throughout the design
process to guide decisions. This project was also supported
by the administration, who facilitated discussions between
areas that less frequently work together and incentivized
the work through the internal mini-grant program.

When designing the computing integration activities, a
few resources were key. First, it was important to start with
existing, well-designed computing integration activities. For
the mathematics activity, we were able to adopt an existing
activity as is. For the English activity, we started with a
chatbot program and adapted it to serve our needs. This
modification highlights the second key resource, someone
who can modify or create computing integration activities.
While many integration activities already exist, if the activity
needs to be about a specific topic, like waves in science,
creating an activity is useful. The computing education
faculty member who created activities is not a computer
scientist and has very little experience with programming.
It was sufficient with a low level of programming skill to
invest time figuring out how to implement the activities,
much like the teachers might do in their classrooms.

The last key resource was the pedagogical expertise of
the education faculty. Once we selected or created activities,
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the education faculty designed the lesson plans that ensured
activities helped achieve the learning objectives within their
disciplines. Their expertise allowed us to embed computing
and computational thinking within an authentic learning
environment that connected to teachers’ prior knowledge
and identities. This kind of situated computational literacy
is more sustainable and relevant across different areas
of education (Kafai & Proctor, 2021). In addition, the
computing learning objectives revolved around PSTs learning
to use and modify the integration activities. As with much
of computing, the real power comes from the adaptability
and creativity that it affords. Therefore, our goals were to
enable PSTs to flexibly use computing integration activities
in their classrooms to provide a powerful tool for learning
while spreading computational literacy to all students.

KEY TAKEAWAYS

The key takeaways that we learned from this early-stage
design-based research, which we will carry over to future
work, were

» PSTs’ knowledge: PSTs” knowledge evolved rapidly
through only a few hours of instruction. While they could
make modifications to computing integrated activities
by the end of their methods class, they were still most
comfortable using pre-designed activities with students.

* Faculty and PST motivation:

o Many education faculty and PSTs resonated with the
purpose of using programming as a tool to learn by
teaching the computer. They found this valuable for
learners from a metacognitive perspective to test their
knowledge and for teachers to be able to see how
learners were thinking, by formalizing and externalizing
their knowledge through creating a program.

o PSTs who used activities in student teaching also
liked how the activities created an interactive
learning environment, both for the students to work
independently while receiving immediate feedback
from the computer and to work with their peers while
sharing digital artifacts created with computingé.

* Programming education standard that did not carryover:
Programming education uses pseudocode, code-like
plain language, to conceptually represent programming
concepts without accurately writing correct syntax, and
it is often used as intermediate step to writing code. We
tried to use pseudocode in this way during instruction,
but PSTs were unfamiliar with code paradigms. As a
result, trying to write pseudocode was more confusing
than using block-based code or reading text-based code.

The first two takeaways regarding PSTs’ knowledge and
motivation align with other findings from the literature.
Just as we found that PSTs’ knowledge evolved faster

than their comfort in using activities in the classroom,
Hur (2021) also found that PSTs hesitated to teach
computing in classrooms, even though their confidence
and interest in computing rapidly increased through
a multi-week unit on computer science. Furthermore,
some of the key takeaways align with key pedagogical
supports that Jocius et al. (2021) found to help middle
and high school teachers be successful in integrating CT
into their classrooms in other disciplines. They identified
“articulating a key purpose for CT infusion, scaffolding, and
student collaboration,” (p. 175, Jocius et al., 2021), which
aligns with using programming as a metacognitive tool,
providing pre-designed activities, and using programming
as an interactive tool, respectively.

The final takeaway, however, we believe is a unique
contribution. Few academic programs teach programming
through computing integration activities rather than through
more traditional computer-science-focused programming
instruction. As we found, it is likely that not all instructional
techniques that work in standalone programming education
will work for learning programming through computer
integrations. Designers should be critical in the use of
these techniques, even if they are common and effective in
programming education.

In this paper, we have presented the early stages of a
design-based research project to evaluate the methods and
techniques our college of education is using to integrate
computing throughout our middle and secondary school
PST programs. We have highlighted important decisions
and discussions that we built our design around to fulfill
the goals of all stakeholders. In addition, we detailed
activities that we created and how we implemented them
with our PSTs. From this implementation, we presented
qualitative and descriptive quantitative data to illuminate
the experience of our PSTs as they learned about computing
integration and how it can be used in their classroom.
Finally, we reflect on key resources that made this project
successful so far and key takeaways that can be used to
continue this work at our university and others.

NOTES

! appinventor.mit.edu/explore/blog.
2 bit.ly/CTchatbot.
> https://www.bootstrapworld.org/materials/algebra/.

ADDITIONAL FILE

The additional file for this article can be found as follows:

* Appendix A. CT Survey - Pre-module and Post-class.
DOLI: https://doi.org/10.26716/jcsi.2022.11.15.35.51


https://appinventor.mit.edu/explore/blog
https://bit.ly/CTchatbot
https://www.bootstrapworld.org/materials/algebra/
https://doi.org/10.26716/jcsi.2022.11.15.35.s1
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