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Abstract—Identifying whether the wireless channel between
two devices (e.g., a base station and a client device) is Line-of-
Sight (LoS) or non-Line-of-Sight (nLoS) has many applications,
e.g., it can be used in device localization. Prior works have
addressed this problem, but they are primarily limited to sub-
6 GHz systems, assume sophisticated radios on the devices,
incur additional communication overhead, and/or are specific
to a single class of devices (e.g., a specific smartphone). In
this paper, we address this channel classification problem for
wireless devices with mmWave radios. Specifically, we show
that existing beamforming training messages that are exchanged
periodically between mmWave wireless devices can also be used
in a deep learning model to solve the channel classification
problem with no additional overhead. We then extend our
work by developing a transfer learning model (t-LNCC) that is
trained on simulated data, and can successfully solve the channel
classification problem on any commercial-off-the-shelf (COTS)
mmWave device with/without any real-world labeled data. The
accuracy of t-LNCC is more than 95% across three different
COTS wireless devices, when there is a small sample of labeled
data for each device. We finally show the application of our
classification problem in estimating the distance between two
wireless devices, which can be used in localization.

I. INTRODUCTION

MmWave communication is one of the essential components
of next-generation wireless networks to support extremely high
data rate services. The mmWave frequency bands provide an
order of magnitude more spectrum than already congested sub-
6 GHz bands, which can boost communication capacity. How-
ever, mmWave systems suffer from high path loss and high
noise power. To address these challenges, mmWave systems
use an array of antennas and form highly directional beams!
at both the transmitter (Tx) and receiver (Rx) to increase the
signal-to-noise ratio (SNR). These directional (narrow) beams
also reduce the interference, boost the capacity, and increase
the security of communication. However, before a Tx and Rx
can communicate with each other and take advantage of the
aforementioned benefits, they need to find appropriate beams
to communicate with each other. In all existing mmWave
standards, e.g., 5G New Radio (NR) or mmWave WiFi (i.e.,
802.11 ad/ay) the beam search process happens periodically
at the beginning of each communication interval (commonly
referred to as beam training interval).

Our goal in this paper is to use this existing message passing
overhead (at the beginning of each beam training interval)

I'We use the words “beams” and “sectors” interchangeably.

to solve the LoS/nLoS channel classification problem. Ad-
dressing this problem is beneficial in many other applications.
For example, it can be used to solve the proximity (distance)
estimation between two devices, which can itself be used by
a wide variety of localization algorithms [1]. In addition, a
base station (BS) with knowledge about LoS/nLoS channel
condition can use it to reduce the overhead of beam search
(and hence initial access) in mmWave systems [2] or use
the information to better adapt the transmission strategy to
maintain the link quality of service [3].

Moreover, our goal in this paper is to develop a framework
that can solve this channel classification problem for any
kind of wireless device or new mmWave devices as they
are released. For example, consider an indoor mall scenario,
which employs many mmWave (e.g., mmWave WiFi) BSs.
As new devices (e.g., new mmWave equipped smartphones
or augmented-reality glasses) are developed and released, the
network operator can run a software update on all BSs, which
allows them to solve the channel classification problem for all
such new client devices. The BSs can then use this information
in other applications, e.g., to localize the clients and show them
ads, determine the direction of the clients, or better adapt the
links for clients in nLoS channel conditions.

A. Related Work

A typical approach to solve the LoS/nLoS channel clas-
sification problem is to rely on statistical parameters of the
channel impulse response (CIR), and then conduct a binary
hypothesis test to identify the channel condition [3], [4].
Typical parameters that are used include root mean square
(RMS) delay spread, mean excess delay, the Rician K-factor,
and skewness, among others. More recently, machine learning
(ML) based classification approaches are used to solve the
LoS/nLoS channel classification problem with higher accu-
racy, such as support vector machine (SVM) and relevance
vector machine (RVM) [4], [5]. These approaches use the same
CIR parameters as the features but don’t require any statistical
models. All these works are limited to sub-6 GHz systems and
moreover require access to CIR data, which may not be easily
obtained from existing (standardized) communication packets
that are exchanged between COTS wireless devices.

Other recent works have addressed the LoS/nLoS channel
classification problem for mmWave systems, e.g., (i) mean
shift clustering method [6] uses the Time Difference of Arrival
(TDOA) and Angle of Arrival (AoA) of the received signals



at multiple BSs, (ii) least-squares support vector machine
(LSSVM) method [7] employs mobile signal parameters such
as time delay, power, and AoA across multiple BSs, and
(iii) Gradient Boosting Decision Trees (GBDT) method [3]
gathers mmWave received signal strength, maximum path
power, mean/RMS of excess and spread delay, respectively,
and kurtosis to solve the channel classification problem. In
practice, such data may not be easily available in COTS
devices or as part of standardized messages that are exchanged
between real devices. For example, TDOA or AoA estimation
typically requires sophisticated radios with at least multiple
RF chains, whereas none of the COTS that we examined use
such radios. Further, channel impulse response data gathering
such as mean/RMS path delay estimation may not be easily
obtained from standardized communication messages that are
exchanged between COTS devices.

In contrast to all prior work, our goal in this paper is to
only (i) rely on ordinary COTS mmWave devices, (ii) solve
the problem leveraging a single BS, and (iii) use standard
compatible communication messages (with no additional over-
head) to solve the channel classification problem. Specifically,
we rely on routine periodic sector sweep messages (which are
embedded in all mmWave standards), which then allows us
to obtain periodic channel classification estimates (e.g., every
100 msec in real mmWave WiFi devices).

B. Research Contributions

In this paper, we focus on wireless devices equipped with
802.11 ad/ay chipsets, and use the existing communication
messages that are periodically exchanged between such de-
vices to solve the channel classification problem. While we
focus on WiFi, we emphasize that the methods proposed in this
paper are also applicable to 5G cellular chipsets (devices). In
particular, our key contributions can be summarized as follows:

« Data Gathering: We gathered empirical data of mmWave
sectors’ SNR values in both indoor and outdoor environ-
ments using three different COTS devices over a two-month
period. In addition, we developed a simulator, calibrated
with 3GPP specifications [8], and used it to generate the
corresponding simulated data in different environments.

« Baseline LoS/nLoS Channel Classification (base-LNCC):
We design a deep neural network based model for mmWave
channel classification and train the model using simulated
data. We show that base-LNCC has more than 98% accuracy
when tested over unseen simulated data.

o Transfer Learning for LoS/nLoS Channel Classification
(t-LNCC): We design a transfer learning model (t-LNCC)
that is trained on a source domain (simulated data) to
learn the features of the target domain (empirical data). We
then develop three variations of t-LNCC distinguished by
whether they use labeled empirical data as part of model
training. We show that using a few samples of labeled
empirical data (referred to as semi-supervised t-LNCC)
results in more than 93% accuracy across all COTS devices.

« MmWave Proximity Detection: We demonstrate the appli-
cation of LoS/nLoS channel classification problem by using

it to solve the proximity (distance) estimation between two
points. The resulting distance estimate can then be used in
other applications, e.g., localization through triangulation.

We elaborate on these contributions next, starting with some
background on 802.11 ad/ay, followed by LoS-nLoS channel
classification through base-LNCC and t-LNCC, applications of
LoS/nLoS channel classification, evaluation, and conclusion.

II. BACKGROUND

We train and evaluate our classification models using beam
training data (i.e., beams vs SNR values) gathered during the
Initial Access (IA), in which the BS and client establish a
connection. During the IA, the BS and clients perform a beam
search to identify the best beam pair (i.e., highest SNR) that
should be used for communication between each client and the
BS [9]. This beam search process is conducted periodically in
order to better accommodate variations in the environment and
mobility of the clients. In this section, we focus on the basics
of the beam search process in 802.11 ad/ay (i.e., mmWave
WiFi). A similar process is used in 5G NR.

MmWave Beamforming. Beamforming focuses the wire-
less signal in a specific direction rather than spreading it
in all directions, which helps combat huge propagation and
penetration losses in mmWave bands. An array of antennas are
adopted for beamforming in mmWave systems to increase the
link capacity and transmission coverage. Adjusting the phase
of each signal transmitted from each antenna in the array of
antennas steers the beam to a desired direction. In mmWave
systems, the BS and client need to find the beam pair that
results in the highest SNR for fastest communication. This
procedure is shown for the BS in Fig. 1(a).

MmWave Initial Access. Initial access in mmWave systems
is a procedure that allows a client device to discover a
cell, helps the BS and clients to find appropriate beams to
communicate with each other, and allows the BS to send
management and control information to all the clients.
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Fig. 1. (a): During the beacon transmission interval (BTI), BS sequentially
sends sector sweep (SSW) frames on each of its sectors. Each client uses
an omni antenna pattern and records the beam ID and signal strength
of all the received SSW frames; (b): Association beamforming training
(A-BFT) is composed of a few slots. A client randomly chooses an A-BFT
slot to conduct its sector sweep.



In 802.11 ad/ay, this is handled at the beginning of each
beacon interval (BI) [10], [11]. The length of a BI is typically
100 ms, i.e., the BI is repeated every 100 ms. Our model can
classify the channel condition (LoS vs nLoS) based on the data
gathered at the beginning of every BI (referred to as beacon
header interval). Therefore, the BS and each client can identify
their channel condition every 100 ms. The BI is composed of
two parts: (i) beacon header interval (BHI), which helps with
BS discovery, beam training, and control and management
information exchange, and (ii) the data transmission interval
(DTI), which is used for data communication. The duration of
BHI is much smaller than the DTI, e.g., only a few msec.

The BHI, as depicted in Fig. 1(b), consists of three sub-
intervals: (i) beacon transmission interval (BTI), in which the
BS transmits multiple frames, each of them on a different
sector, (ii) association beamforming training (A-BFT) in which
the client devices train their sectors for communication with
the BS, and (iii) announcement transmission interval (ATI)
in which the BS exchanges management information with
associated and beam-trained client devices.

In this paper, we only consider the BTI sub-interval, which
allows a client to use the data exchanged during this interval
to identify its channel condition (LoS vs nLoS) with respect
to the BS. Similarly, the BS can use the message passing
during the A-BFT interval to identify its channel condition
with respect to the client. The BTI is described as follows.

Beacon Transmission Interval (BTI): The BTI comprises
multiple beacon frames, each transmitted sequentially by the
BS on a different BS sector (beam) to cover the desired
directions. This process is referred to as BS sector sweep and
is used for network announcement and beamforming training
of the BS’s sectors. During the BS sector sweep, all clients
stay in reception mode using an omni (or quasi-omni) antenna
pattern. Each client records the signal strength and beam ID
of every sector sweep frame (SSW frame) received from the
BS. Fig. 1(a) shows this operation. Our classification model
utilizes the measured SNR values of all received beams to
identify the channel condition at the client device. So, the
input to our classification model is a vector of SNR values
and the corresponding beam IDs.

IITI. LoS - NLOS CHANNEL CLASSIFICATION

In this section, we propose a deep neural network-based
LoS/nLoS Channel Classification (LNCC) model to classify
the channel condition. We build LNCC in two stages. In the
first stage, we design the base-LNCC, which is trained and
evaluated using the simulated data. In the second stage, we
extend our base-LNCC model to incorporate transfer learning
functionalities leveraging the adversarial domain adaptation
approach. We refer to this extended model as -LNCC. We
train t-LNCC on data from one domain (e.g., simulated data)
and evaluate it using data from another domain (e.g., empirical
data). We describe the two models as follows.

A. Base-LNCC

System Design. The wireless channel condition is cate-
gorized into two classes (LoS or nLoS). Thus, our classi-
fication problem is binary. Deep learning (DL) shows high
performance in tackling classification problems in different
applications. Therefore, we developed a DL model, base-
LNCC, to classify the mmWave wireless channel condition
during the first stage. Base-LNCC consists of six layers,
including the visible layer (input layer), four hidden layers,
and the output layer. The first two hidden layers consist of
256 neurons each, while the last two hidden layers have 128
neurons each. We use Rectified Linear Unit (ReLU) activation
function in each of the hidden layers.

ReLU is a non-linear activation function that allows the
model to converge quickly and perform a threshold wherein
the case of the input value is less than 0, it is set to O (neuron
will be deactivated); otherwise, a neuron will be activated [12].
ReLU is defined as follows:

S(z) = max(0, z) (1)

Here, z is the input to the hidden layer. We use the
sigmoid activation function for the output layer since our
model is a binary classification (LoS and nLoS classes), and
the probability is between 0 and 1. Sigmoid function is defined
as follows:

1
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For optimization, Adam, a gradient optimization technique
widely used in DL [13], is used. Finally, the loss function that
we choose is binary cross-entropy which works well with the
sigmoid function:

L=—Ylog(p(Y)) + (1 =Y)log(1-p(Y)))  3)

Here, Y is input’s label and p(Y') is the probability of
the predicted label. Our model structure and parameters are
selected and validated after conducting extensive experiments.

B. T-LNCC

DL involves complicated processes and requires many deci-
sions that are not theoretically nor mathematically ruled (e.g.,
number of hidden layers). Also, training a model from scratch
is complex and challenging (i.e., due to the lack of availability
of a large labeled dataset). Transfer learning techniques allow
transferring knowledge between similar domains. The idea
is to train a model using the source domain dataset Dy to
perform the source task T and transfer the pre-trained model
knowledge (e.g., weights of hidden layers) to a related domain
(target domain D,) to perform a task (target task 7;). An
alternative way for transfer learning is domain adaptation
(DA). DA works on extracting similar features between source
and target domains, so a classifier trained on the source domain
can perform efficiently on the related target domain. Transfer
learning approaches can be classified into four categories [14]:
(i) instance-based transfer learning,(ii) mapping-based transfer



learning, (iii) network transfer, and (iv) adversarial-based
transfer learning.

In this paper, we adopt adversarial learning for domain
adaptation that finds the transferable features of the two
domains which makes them indistinguishable. Our key idea
is to use a simulator calibrated with standardized channel
model [8] to obtain a large amount of source data, and then use
it (with/without labeled empirical data) to solve the channel
classification problem with COTS devices.

In particular, we use an adversarial learning model, which
trains a discriminator network to be unable to distinguish
between the source and target domains. The model will learn
the similarities or identical features of the two domains. This
way, the model that works well with the source domain will
also effectively work with the target domain. Two different
adversarial domain adaptation learning methods could be
used with transfer learning [15]: (i) unsupervised adversarial
learning is used when labeled samples are available from Dy,
but no labeled samples are available from the D,; (ii) semi-
supervised adversarial domain adaptation learning in which a
few labeled target samples are provided along with the samples
from Dy to train the model.

System Design. In this paper, we employ a modified
model of domain-adversarial neural network (DANN) used
in [15] to solve image classification. Most domain adaptation
approaches apply the domain adaptation and training processes
separately. However, DANN merges domain adaptation into
training processes so that the classifier (label predictor) is
trained symmetrically with the discriminator.

DANN involves three training processes: (i) feature extrac-
tor, which consists of one or more hidden layers and the last
hidden layer is the output layer. The output is the extracted
features which are considered as an input to both label
predictor and discriminator (domain predictor) parts; (ii) label
predictor, which could also have one or more hidden layers and
one output layer to predict the class label (e.g., LoS/nLoS);
and (iii) discriminator, which is used to discriminate between
the two domains, and it consists of one or more hidden layers
and one output layer (e.g., simulated/empirical data).

DANN aims to extract very similar features between the
source and target domains. In order to achieve this, gradient
reversal layer (GRL) is inserted between the features extractor
and the discriminator to flip the sign of gradient during the
backpropagation. Then, we subtract the label predictor and
discriminator gradients from each other. After that, we update
the weights of feature extractor layers based on the result
of gradients subtraction. This will ensure reaching a point
where all the extracted features are domain-invariant. For more
information, we refer readers to [15].

We extend DANN algorithm to have multiple hidden layers
in each part. Also, we modify the activation functions that
shallow DANN uses to use ReL.U for all hidden layers of the
three parts. Instead of using softmax for the label predictor
part, we set sigmoid to be the activation function since it is
a binary classification. Finally, unlike DANN, we set binary
cross-entropy loss for both label predictor and discriminator.

Our modified DANN model, which we will call t-LNCC,
consists of three parts, as depicted in Fig. 2. For the first
part (features extractor), we use our base-LNCC model with
minor changes, removing the output layer since we use this
part to extract features (not to predict the label) and use
SGD optimizer instead of Adam. The second part is the label
predictor, which consists of two hidden layers, each with 128
neurons and the ReLU activation function, and the output
layer applies the sigmoid activation function. The third part
is the discriminator, which involves one hidden layer that has
128 neurons and applies the ReLU activation function, one
GRL which is inserted between features extracted and the first
hidden layer of the discriminator, and one output layer applies
the sigmoid activation function. We set both label predictor
(Ly) and discriminator (Lg) to use the binary cross-entropy
loss for the loss function. Those parameters and structure are
validated after extensive experiments.

C. Applications of MmWave LoS/nLoS Channel Classification

LoS/mLoS channel identification can be used in a wide
variety of applications. In this section, we propose to use it as
a solution to solve the proximity (distance) estimation between
two nodes with mmWave radios. This information can then be
used by localization algorithms (e.g., triangulation methods) to
localize the devices.

We emphasize that localization (particularly in indoor en-
vironments with no GPS signals) is a heavily studied topic,
particularly with sub-6 GHz RF radios (for an example survey
refer to [16]). Many of the techniques that are proposed for
mmWave systems, assume access to sophisticated radios, ideal
beam shapes, or reflective environments. For example, RF
signal-based localization can be classified based on Angle of
Arrival (AoA), Angle of Departure (AoD), Time of Arrival
(ToA), and Received Signal Strength (RSS). Techniques that
require AoA, AoD, or ToA require sophisticated radios (at
least with multiple RF chains), which may not be available
in COTS mmWave devices. For example, none of the three
COTS devices that we had access to have more than a single
RF chain. In addition, other works have used the direction of
narrow mmWave beams as an approximation of the angular
direction of the client. Practical mmWave beams, however, are
very different. For example, Fig. 3 shows two out of the 32
sectors (beams) that are used by our mmWave radio equipped
laptop as it conducts its beam search. Many of the beams have
high beamforming gains in multiple directions, which makes
it impractical to approximate the client angular direction with
the direction of the main beam.

We propose to use a curve fitting method to approximate
the proximity (distance) between two nodes, leveraging the
path loss formula. Path loss describes the attenuation of the
wireless signal strength in (db) with the distance, and it is
a linear function of distance (in logarithmic domain), and
can therefore, be approximated as aX+b, where X varies as
logarithm of the distance. Here, a is the path loss component,
and b is an offset, capturing other components in the path loss
formula. The a and b variables are a function of the channel
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Fig. 2. t-LNCC is a domain-adversarial neural network, which consists of three parts. Blue boxes show the features extractor layers, the orange
boxes show the classifier layers, and the green boxes show the domain discriminator layers in addition to the GRL layer which is in gray color.
Each of the boxes shows the number of units that layer has along with the activation function.
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Fig. 3. Measured SNR in azimuth plane of sectors 13 and 22 [17].

condition (LoS or nLoS). We conduct path loss measurements
with varying distance and use curve fitting methods to obtain
these two variable for a given environment and for each of the
two channel conditions. At run time, a BS or client can use
the received signal strength values obtained during the sector
sweep to first determine the LoS/nLoS channel condition, and
then use the corresponding a and b parameters (along with the
maximum beam SNR) to estimate the distance. We discuss this
in more detail in Section IV-C.

IV. PERFORMANCE EVALUATION

We evaluate our base-LNCC model using simulated data
to find its channel classification accuracy. Then, we evaluate
t-LNCC to evaluate the transfer learning performance with
COTS devices. Also, we show the benefit of channel classifica-
tion is estimating proximity (distance). Our experiments show
robust results with both base-LNCC when trained only with
simulated data and transferring learning (domain adaptation)
when trained with simulated data as the source domain and
empirical data as the target domain.

A. Base-LNCC

Simulator Setup and Data Gathering. We have developed
a standard compatible mmWave simulator that adopts the
channel and radio models standardized by the 3GPP [8]. The
channel model is a statistical model. In each simulation run, we
have a single BS and 20 clients. We set the carrier frequency
to 60 GHz and set the noise figure to 7 dB. For each run, we
use different phased antenna array sizes for all devices within

that run. The phased antenna array sizes that we consider are
8-antenna (4x2), 16-antenna (8x2) and (4x4), and 32-antenna
(8x4). We set BSs to act as Tx with directional antenna and
clients as Rx with an omnidirectional antenna. Each BS uses
36 beams to cover 120° of azimuth and 120° of elevation. We
ran the simulator for 4000 times and each time, we collect
20 samples (total 80000 samples). Each sample is a vector of
72 elements which are the SNR values and their IDs. After
cleaning (e.g., get rid of corrupted samples) and balancing
data, we end up with 50000 samples (25000 LoS and 25000
nLoS). The same process is repeated to gather another 50000
samples where the BS is set to use 62 beams. Note that we
will refer to the two datasets as 36 and 62 beams datatset,
respectively.

Base-LNCC Evaluation. We train our base-LNCC model
using the two simulated dataset (36 and 62 beams) separately.
For training, we ran the model for 100 epochs using a
batch of size 32. We use 10-fold Cross-Validation to test the
performance of our model on simulated data. Our purpose of
evaluating the base-LNCC model with simulated data before
using it as part of the t-LNCC model is to test how accurate a
deep learning baseline model is in classifying wireless channel
condition and learning specific features of the simulated data,
which will be used as source domain in the t-LNCC model.

Base-LNCC Results. Base-LNCC shows highly accurate
results using only beams’ SNR values, which are obtained at
the beginning of every beacon interval. We compare Base-
LNCC against Gradient Boosting Decision Tree (GBDT) [3],
which uses more data (Received signal strength, maximum
path power, mean excess delay, RMS delay spread, maximum
excess delay, kurtosis, skewness, and rise-time) for training
their model. Base-LNCC has an accuracy of 98.5% while the
GBDT has an accuracy of 97.9%.

B. T'LNCC

Experiment Setup and Data Gathering. We setup a
single-cell mmWave network in both indoor and outdoor
environments using a Talon AD-7200 router. We connect
different clients to the BS in both LoS and nLoS channel
conditions and gather BS beams’ SNR values at different client
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Fig. 4. (a): We gather data leveraging Talon AD-7200 router, Acer TravelMate laptop, ASUS-RoG Phone and AD-7200 as client; (b): Sample SNR
of RoG phone’s LoS and nLoS beams versus sector ID; (c): Sample SNR of Travelmate beams versus sector ID.

locations in and around a single family home.

Devices. We use a Talon-AD7200 as BS and different clients
such as Acer TravelMate laptop, AD-7200 router configured
as client, and an ASUS RoG phone to gather beam SNR’
connected to the BS. Fig. 4(a) shows a picture of our equip-
ment. Travelmate and TP-Link Talon AD7200 use qualcomm
QCA9500 IEEE 802.11 ad chipset, which uses a phase array
antenna with 32 elements and 36 sectors (beams). ASUS RoG
phone uses qualcomm QCA9500 IEEE802.11 ad chipset as
well but uses a phase array antenna with 8 elements and 62
sectors. The default firmware for the AD-7200 router neither
supports A-BFT SNR dump nor sniffer mode. To enable these
features, we modified the default firmware using Nexmon
framework [18] and installed that on the router to gather low-
level signal statistics. This framework is a jailbreak into the
802.11 ad default firmware, which allows to amend patches
in C language rather than assembly and it also provides new
attributes and programs such as a GCC plugin. Talon AD-7200
routers with Nexmon firmware can be configured as either an
BS or client [18]. In all of our experiments, we let the clients
get connected to the BS with the modified firmware to measure
their packets’ signal strengths. This is because the default BS
firmware does not provide any signal statistics.

Single Family Home Environment We choose a stand
alone single family home to gather the SNR data for each
sector sweep beam. This home is a 3500 sq ft area with a
master bedroom, a great room, and a backyard.

T-LNCC Configuration. We trained our adversarial learn-
ing model (t-LNCC) using both the simulated and empirical
data. We used simulated data as the source domain while the
empirical data (combined across client devices or separated)
as the target domain. We conducted two main experiments:
unsupervised adversarial domain adaptation learning and semi-
supervised adversarial domain adaptation learning. We also
conducted a third experiment in which we disabled the
discriminator part, so no domain adaptation processes were
involved (referred to as “source only”). To avoid confusion,
there are two types of labels associated with each sample of
the training dataset. First, the class label tells that the sample
belongs to which channel condition class (LoS/nLoS). Second,
the domain label tells that the sample is from which domain

(e.g., source or target). The class labels are provided to label
predictor, while the domain labels are provided to the discrimi-
nator during the training process. There are two exceptions for
this: (i) During the source-only training, no domain labels are
provided because we disable the discriminator part. (ii) During
the unsupervised training, samples from the source domain are
associated with both types of labels, while the target domain
samples are only associated with domain labels. All the three
experiments are run for 100 epochs using 32-batch. The three
experiments are detailed as follows.

Source-Only. During this experiment, we disabled the dis-
criminator part. So, the domain adaptation is not involved.
The experiment is conducted using the whole source domain
data for training (36 and 62 beams data) separately. Note that
source domain data only includes the simulated data. The
trained model is then evaluated on four empirical datasets:
the combined (Travelmate and AD7200 data) dataset, only
TravelMate dataset, only AD7200 dataset, and only ASUS-
RoG. Since ASUS-RoG uses 62 beams, it is evaluated using
the model trained on simulated data with 62 beams.

Unsupervised Adversarial Learning. For this experiment,
we provide labeled samples (class label) of the source domain
(i.e., simulated data) and unlabeled samples (no class label) of
the target domain (i.e., empirical data) during the training. We
also provide domain labels for both source and target domains’
samples. The primary challenge with unsupervised adversarial
learning is that the class labels of target domain data are
unknown during training. The label predictor is trained on
labeled samples from the source domain, and it must be able to
predict the class labels of the samples from the target domain
correctly. On the other hand, the domain discriminator is
provided with domain labels for samples from both source and
target domains. For the evaluation, we used unseen samples
from the target domain. This experiment is conducted using
the whole source domain data and 700 unlabeled samples of
the Travelmate data for training. For evaluation, we used the
rest (300 samples) of unseen Travelmate data. We repeated
the same process for Ad7200 and ASUS-RoG. For the com-
bined data, we used the whole source domain data and 1400
unlabeled samples of the combined (Travelmate and AD7200)
data for training, while for evaluation, the rest (600 samples)



of unseen combined data were used.

Semi-supervised Adversarial Learning. To conduct this
experiment, we used the whole labeled samples (class label)
of the source domain data and a few labeled samples of the
target domain data during the training. The domain labels
of both source and target domains data are provided. For
the evaluation, we use unseen labeled target domain data.
Particularly, we followed the same process that we used in
the unsupervised adversarial learning. However, instead of
using unlabeled samples (class label) data from the target
domain, we provided few labeled data from the target domain
during training. First, we used the whole source domain
data and 600 labeled samples of the Travelmate data for
training, while for evaluation, the rest (400 samples) of unseen
Travelmate data were used. We repeated the same process for
Ad7200 and ASUS-RoG. For the combined data, we used the
whole source domain data and 1500 labeled samples of the
combined (Travelmate and AD7200) data for training, while
for evaluation, the rest (500 samples) of unseen combined data
were used.

T-LNCC results. Table 1 presents a summary of results.
With source only learning (i.e., when the discriminator net-
work is not used), we achieve a 82%-84% classification
accuracy when we used AD7200, combined, and Travelmate
data for evaluation. The unsupervised approach improves
the accuracy for all the different target domain data. This
demonstrates the effectiveness of t-LNCC in extracting the
similar features of the source and target domains data and
efficiently classifies the target domain data even when no
labeled target data is available. Travelmate data shows the best
accuracy result among other devices’ datasets. In both source-
only and unsupervised approaches, the RoG phone shows poor
performance with only 67% accuracy.

Using the semi-supervised approach, we reached the upper
bound accuracy of the domain adaptation learning. Travelmate,
AD7200, and the combined data show a noticeable increase
in the accuracy. Further, ASUS-RoG achieves the highest
accuracy compared to the other datasets with 97% accuracy.

TABLE 1. Accuracy of source only, unsupervised,
and semi-supervised experiments using simulated
data as the source domain and Travelmate, AD7200,

combined, and ASUS-RoG as the target domains.
Method Source Simulated Data
Target | Travelmate | AD7200 | Combined | ASUS-RoG
Source-Only 84.9% 82.53% 82.1% 61.9%
Unsupervised 93% 88.3% 90.23% 67%
Semi-supervised 96% 95.89% | 95.35% 97%

T-LNCC Against Other Transfer Learning Models. In
Section III, we discussed four different transfer learning mod-
els, and proposed to adopt the adversarial learning technique.
Other works have proposed alternative solutions for domain
adaptation. TrAdaBoost [19] explores instance-based transfer
learning by proposing a boosting-based learning algorithm.

The framework drops out the source domain instances that
are dissimilar to the target and re-weights the instances in the
source domain so that the two domain distributions become
similar. Unlike unsupervised t-LNCC, TrAdaBoost requires
a few labeled target data and a large amount of source
domain data. TCA [20] investigate mapping-based transfer
learning by bringing the two domains distributions as close
to each other as possible by learning transfer components
across the two domains using Maximum Mean Discrepancy
(MMD). By taking each domain distribution to a new space
where the new representations of the two domains are similar,
training machine learning models using the source domain will
best fit the target domain. This approach is called transfer
components analysis (TCA). Note that both TrAdaBoost and
TCA require labeled samples from target domain. They cannot
be conducted using unsupervised learning whereas t-LNCC
can be done without labeled samples from target domain. We
compare t-LNCC against those two approaches to measure
and validate our selection of adversarial learning. We use the
same datasets and techniques that we used for evaluating t-
LNCC. The results are shown in Table 2. T-LNCC outper-
forms both approaches with its unsupervised method. TCA
accuracy is similar to unsupervised t-LNCC and outperforms
unsupervised t-LNCC on the ASUS-RoG data. However, our
semi-supervised technique outperforms both TrAdaBoost and
TCA for all the four different datasets.

TABLE 2. Accuracy of TrAdaBoost, TCA, and t-
LNCC approaches experiments using simulated
data as source domain and Travelmate, AD7200,
combined, and ASUS-RoG as target domain
Method Source Simulated Data

Target | Travelmate | AD7200 | Combined | ASUS-RoG

TrAdaBoost 85.1% 81.3% 82.1% 60.8%

TCA 90.24% | 82.6% | 86.76% 78%

T-LNCC (unsupervised) 93% 88.3% 90.23% 67%

T-LNCC (semi-supervised) 96% 95.89% | 95.35% 97%

C. Proximity Evaluation

We next evaluate the effectiveness of our curve fitting solu-
tion, which uses the LoS/nLoS channel classification outcome
along with a and b variables that were used in Section III-C
to create a linear approximation of the path loss formula.

We setup a Talon-AD7200 as BS and a Travelmate laptop as
the client. To find the ¢ and b variables, we recorded the SNR
of the client at the BS in an indoor environment by moving
the client in the steps of 10 cm up to 16 m in both LoS and
nLoS channel conditions. In LoS, the client had a direct line
of sight whereas in nLoS we had used a human body to block
the mmWave signal [21]. A typical SNR received at the BS
is shown in Fig. 3. We take an average of the signal strength
of the best five received beams at the BS. Once we gathered
the SNR at the BS for both LoS and nLoS, we estimated the
distance using path loss equation and curve fitting to generate
a linear curve as shown in Fig. 5.



Note that once a client (BS) identifies its channel condition,
it can use the appropriate linear coefficients (a and b values)
along with the best received beam signal strength to approxi-
mate the distance to BS (client).

Finally, we evaluate the combined accuracy of using a
linear approximation and our semi-supervised t-LNCC in
determining proximity (distance). Fig. 6 shows the average
estimated distance error for LoS and nLoS channel conditions
for clients that are within 16 meters from the BS. Estimating
the distance of clients that are in LoS condition and five meters
or less from the BS is accurate with average distance error
close to zero. The average distance error increases gradually
as the client gets further away from the BS. Clients that are
thirteen meters from the BS have an average distance error
of three meters. For the nLoS condition, error increases as a
function of distance (similar to the LoS) and the approximated
distance is less accurate than LoS. Average distance error for
clients that are three meters from the BS is less than one meter.
The clients that are eleven meters from the BS have an average
distance error of three meters. The big jump in error happens
for clients that are thirteen meters or more from the BS with
an average error of 10 meters.

4 5C’urve fitting parameters: LOS=[-1.6326 -4.6322] & NLOS=[-1.617 -5.4338]

—©—LOS Measurements
—#&— NLOS Measurements
~ == == LOS Curve Fitting

~ —==—=NLOS Curve Fitting

log10(RX power)

8 I I I I I I I
-0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2

log10(distance)

Fig. 5. Curve fitting for LoS and nLoS condition based on SNR values
with respect to the distance. We use curve fitting to create a linear
approximation of the path loss formula. Note that the distance (x-axis)
uses a logarithmic unit.

V. CONCLUSION

We addressed the problem of channel classification in
mmWave systems. We investigated the accuracy of DL in
solving the problem and showed that the solution provides
high accuracy by using only beam SNR values that are readily
available at COTS devices as part of the periodic beam search
process. We also proposed a transfer learning model that
uses simulated data with/without empirical data to solve the
classification problem in real COTS devices. We showed that
the semi-supervised transfer learning model has more than

==@=LoS Avg. Dist. Error NLoS Avg. Dist. Error

Avg. Dist. Error (m)
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Distance (m)

Fig. 6. Average distance error of the LoS and NLoS channel conditions.

95% accuracy in any device. Finally, we showed an application
of LoS/nLoS channel classification in solving the proximity
problem for mmWave networks.

As part of our future work, we plan to propose methods to
increase the accuracy of our proximity estimation algorithm.
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