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Abstract
Voice Control Systems (VCSs) offer a convenient interface

for issuing voice commands to smart devices. However, VCS
security has yet to be adequately understood and addressed as
evidenced by the presence of two classes of attacks: (i) inaudi-
ble attacks, which can be waged when the attacker and the
victim are in proximity to each other; and (ii) audible attacks,
which can be waged remotely by embedding attack signals
into audios. In this paper, we introduce a new class of at-
tacks, dubbed near-ultrasound inaudible trojan (NUIT). NUIT
attacks achieve the best of the two classes of attacks men-
tioned above: they are inaudible and can be waged remotely.
Moreover, NUIT attacks can achieve end-to-end unnoticeabil-
ity, which is important but has not been paid due attention
in the literature. Another feature of NUIT attacks is that they
exploit victim speakers to attack victim microphones and their
associated VCSs, meaning the attacker does not need to use
any special speaker. We demonstrate the feasibility of NUIT
attacks and propose an effective defense against them.

1 Introduction

Voice Control Systems (VCSs) are widely used in smart de-
vices, especially those which do not have keyboards, includ-
ing smartphones and smart home devices such as iPhone and
Alexa. VCSs offer a great deal of convenience by allowing
users or owners to use voice commands to activate and op-
erate VCS devices, such as asking iPhone to make phone
calls or send text messages when driving, or asking Alexa to
play music or control other devices (e.g., smart home devices
including locks). This is made possible by advancements in
speech recognition, which uses artificial intelligence/machine
learning (AI/ML) techniques to recognize voice commands.

Like any new technology, the security of VCS devices has
yet to be thoroughly analyzed. A body of existing literature
proposed the two classes of attacks discussed below.

One class of attacks uses inaudible voice commands to
attack VCS devices (e.g., smart phones) [1–4]. These attacks

are stealthy because the attack signals are inaudible to hu-
mans but can be understood by VCS devices. For example,
the DolphinAttack [2] and its siblings [1, 3] modulate audi-
ble voice commands into inaudible ultrasound signals, which
are then used to attack VCS devices. These attacks exploit
a physical property of VCS devices, known as microphone
nonlinearity, which basically says that when the input sig-
nal’s sound pressure level is high, a microphone can generate
unexpected frequency components [1]. For technical reasons,
these attacks can only be waged from a short distance between
the attack device and the victim device, despite efforts at en-
larging the distance [4]. In addition to ultrasound, inaudible
attacks can also exploit laser technology [5].

Another class of attacks hides attack commands into some
audible carrier audio (e.g., music). Two examples are Com-
manderSong [6] and Metaphor [7]. Unlike the preceding class
of attacks, these attacks do not require the attacker-victim
proximity assumption because they can be waged remotely,
which will be referred to as remote capability hereafter. How-
ever, the requirement of audible base media (e.g. music) limits
the attack to only non-silent attack scenarios, rendering these
attacks noticeable by careful users especially when they are
in a quiet environment.

In this paper, we propose a new class of attacks, which
modulate voice commands into near-ultrasound inaudible
signals and embed these signals into an appropriate carrier
(e.g. app, website or video); this is similar to embedding a
Trojan Horse into an innocent program. We call the new fam-
ily of attacks near-ultrasound inaudible trojan (NUIT).1 When
audio with embedded NUIT signals is replayed, the NUIT sig-
nals will attack a victim VCS device, which is also similar to
how Trojan Horses are activated to wage attacks. From an at-
tacker’s point of view, NUIT attacks have three salient features.
(i) They achieve the best of the two known classes of attacks
mentioned above, by simultaneously entertaining inaudibility
(as NUIT signals are inaudible) and remote capability (as the
attacker can wage attacks remotely). (ii) They can achieve

1“Nuit” is a French word which means “night” in English.



end-to-end unnoticeability, which we define as inaudible at-
tack signals and silent responses. This is important because
the response of a smart device to an inaudible command may
be audible and thus may alert the victim about the presence of
attacks. (iii) They do not require the attacker to use any spe-
cial hardware; instead, the attacker exploits victim speakers
to attack victim microphones and their associated VCSs.

(a) Illustration of NUIT-1.

(b) Illustration of NUIT-2.
Figure 1: Illustration of two instances of the NUIT attack.

NUIT has two instances, which differ in whether the victim
speaker and the victim microphone are on the same device or
not. In the instance dubbed NUIT-1 and illustrated in Figure
1a, the victim device runs an app, which secretly replays
audio with embedded NUIT signals; as a consequence, the
NUIT signals attack the microphone and the associated VCS
on the same device to open a smart lock. In the instance
dubbed NUIT-2 and illustrated in Figure 1b, the victim uses
a computer to browse a website, which replays audio with
embedded NUIT signals to attack the microphone and Alexa
on a different device to open a smart lock.
Challenges in Realizing NUIT Attacks. To wage NUIT at-
tacks, we must tackle three challenges. The first challenge
is to make the NUIT attacks (i.e., both NUIT-1 and NUIT-2)
able to exploit the limited bandwidth of Commercial-Off-
The-Shelf (COTS) speakers to attack victim microphones and
their associated VCSs. This challenge has no counterpart in
previous inaudible attacks where the attacker uses special
speakers; by contrast, NUIT exploits victims’ COTS speakers.
This challenge also has no counterpart in previous remote
attacks because their attack signals are audible; by contrast,
NUIT signals are inaudible. We address this challenge by us-
ing the Single-sideband Amplitude Modulation (SSB-AM)
scheme [8, pp. 30], while adapting its demodulation method
to leverage the microphone nonlinearity. It is worth mention-

ing that a windowed NUIT signal contains burst noise caused
by spectral leakage; this can be addressed by leveraging the
Tukey window [9] (cf. Appendix C).

The second challenge, which is relevant to the NUIT-1 at-
tack (but not the NUIT-2 attack), is to embed NUIT signals into
the limited time window imposed by the fact that VCS devices
immediately mute, or lower the volume of, their speakers after
processing the activation keyword (e.g., “Hey Siri” for Apple
devices); this design is intended to make devices able to hear
the subsequent action commands from the user clearly (e.g.,
“Open the door”) without interference from the device’s own
speaker. This matter is relevant because when the speaker is
muted or turned down, it cannot be exploited to wage NUIT-1
attacks. We address this challenge by identifying and exploit-
ing the reaction time window.

The third challenge is to make the NUIT attacks (i.e.,
both NUIT-1 and NUIT-2) achieve end-to-end unnoticeabil-
ity, which we define as inaudible attack signals and silent
responses. This is important because VCSs’ responses to
voice commands can be audible (e.g., Siri would respond
to the inaudible command “open the door” with an audible
response like “ok, the door is open”), thus alerting the vic-
tim about the presence of attacks. This issue is inherent to
the system design of VCS devices, and does not appear to
have been mentioned in the literature until very recently [10],
where the authors suggest that the attacker may send an in-
audible command (e.g. “turn the volume to 3”) to turn down
the victim device’s speaker to an inaudible level to make the
VCS’ response unnoticeable. This method can be applied
to make NUIT-2 achieve end-to-end unnoticeability. How-
ever, this method fails to make NUIT-1 achieve end-to-end
unnoticeability because NUIT-1 exploits a victim’s speaker
to attack the same victim’s microphone and VCS on the same
device; for many VCS devices, turning down their speaker
also makes NUIT-1 fail. We address this challenge by testing
VCSs’ response mechanism to find that NUIT-1 can attack
Siri devices while achieving end-to-end unnoticeability.
Our Contributions. We make four contributions. First, we
introduce a new class of attacks against VCS devices, dubbed
NUIT, which can simultaneously achieve the inaudibility of
attack signals, the remote capability for waging attacks, and
the silent response as devices permit. NUIT has two instances:
NUIT-1 exploits a victim’s speaker to attack the same victim’s
microphone and VCS on the same device; NUIT-2 exploits
a victim’s speaker to attack the same victim’s microphone
and VCS on a different device. Second, we demonstrate the
feasibility of NUIT, by addressing the three challenges men-
tioned above. The ideas we use to address these challenges
may be of independent value, such as the adaptation of the
SSB-AM modulation to achieve inaudibility. Mathematical
reasoning of SSB-AM demodulation to leverage the micro-
phone nonlinearity. To help understand NUIT, we make our
attack demo videos available at [11]. Third, we find that the
NUIT attacks fail to attack iPhone 6 Plus, which reminds us



that the DolphinAttack also fails to attack iPhone 6 Plus [2].
Since there is no explanation for why iPhone 6 Plus can resist
these attacks, we conduct a study and find the reason is that its
microphone has weak nonlinearity, which is caused by its low
gain audio amplifier. This does not means that using micro-
phones with weak nonlinearity is a good strategy to harden the
security of devices, because it also hurts the legit use of VCSs.
Fourth, since known defenses have limitations in defending
against NUIT, we propose a single-factor software-based de-
fense, which leverages the attack’s success to counter it, as
follows: When the attack succeeds, the victim microphone
must have detected and recognized the embedded NUIT sig-
nals at a near-ultrasound frequency; this capability can be
leveraged to detect NUIT. We use simulation to evaluate our
defense because the VCS devices available to us do not have
open-source code or interfaces we can use. Simulation results
show that it has zero false-positives and zero false-negatives,
which is attributed to the leverage of physical properties of
VCS devices.
Other Scenarios of NUIT Attacks. There are many ways to
wage NUIT attacks than what is illustrated in Figure 1, such as
the following. (i) NUIT can be waged in a standalone fashion—
the attacker uses its own COTS speaker to attack a victim’s
microphone and VCS, as in the case of the DolphinAttack [2]
and its siblings. (ii) Figure 1b illustrates that the NUIT-2
attacker can exploit victim A’s speaker on one device to attack
A’s microphone on another device. This attacker could exploit
A’s speaker to attack B’s microphone, for example when A
and B sit next to each other.
Ethical Issues. Since NUIT exploits physical properties of
COTS speakers and microphones, rather than software vul-
nerabilities, spreading awareness is a sensitive matter. This is
similar to what was encountered by the DolphinAttack [2] and
its siblings [5, 10, 12]. Nevertheless, our attack experiments
are conducted in controlled environments against our own
devices and pose no threats to others.
Paper Outline. Section 2 reviews related prior studies. Sec-
tion 3 describes preliminary knowledge. Section 4 discusses
the threat model. Section 5 addresses the challenges to real-
izing the attacks. Section 6 demonstrates the feasibility of
NUIT. Section 7 analyzes the factors affecting the success of
NUIT. Section 8 investigates defense against NUIT. Section 9
discusses the limitations of the study. Section 10 concludes
the paper. Some details are deferred to Appendices.

2 Related Work

Prior Studies Related to Near-Ultrasound Signals. In the
literature, near-ultrasound signals have been used to synchro-
nize TV shows with smart device app services [13], facilitate
two-factor authentication [14], and enable wearable medical
devices communications [15], medium-range (25m) commu-
nications [16], and high-throughput communications between
COTS devices [17]. By contrast, NUIT is the first to exploit

near-ultrasound signals to wage attacks against VCS devices.
Table 1 compares these studies, highlighting their differences
in modulation scheme (details can be found in the respective
papers), communication distance, data rate, and whether to
exploit microphone nonlinearity (mic NL for short) or not.
Table 1: Comparing studies related to near-ultrasound signals.

Reference Modulation Maximum Data Rate mic
Scheme Distance (kbps) NL?

2ndScreen [13] QOK 2.7m >15 No
UWear [15] OFDM/GMSK N/A 2.76 No
Chirp-based [16] Chirp 25m 16 No
Batcomm [17] OFDM+DSB-AM 10cm 47 Yes
NUIT SSB-AM 4.6m N/A Yes

Prior Studies on Attacks Related to NUIT. As mentioned
above, we divide previous attacks related to NUIT into two
classes: inaudible vs. audible. Table 2 compares previous
attacks and NUIT. Previous inaudible attacks carry attack
signals via electromagnetic waves [18, 19], laser beams [5],
or ultrasound waves [1, 2, 4, 10, 12] (through air while as-
suming line-of-sight or LOS [1, 2, 4], or through solid mate-
rial [10]). Previous audible attacks are incomprehensible to
humans [6, 7, 20, 21]. But attacks in [20, 21] sound like ran-
dom noises to humans and may alert the presence of attacks.
CommanderSong [6] and Metaphoer [7] require audio (e.g.
music) to hide the command, thus cannot achieve inaudibility.
These attacks exploit either the difference in computer vs. hu-
man speech recognition systems [20], or adversarial examples
against computer speech recognition systems [6, 7, 21].

Among the attacks reviewed above, CommanderSong [6]
is closely related to NUIT because they both can be waged
remotely by embedding attack signals into some audible car-
rier media (e.g., video/audio). However, two differences make
NUIT more stealthy. (i) NUIT is not noticeable to the victim
user even in a quiet environment, owing to the use of inaudible
attack signals by design; whereas, CommanderSong attack
signals are audible noise-like signals by design. (ii) NUIT can
embed inaudible attack signals into a silent app or website, but
CommanderSong must use audible carrier media (e.g music).
Prior Studies on Defenses Related to NUIT. Known de-
fenses against inaudible attacks can be divided into two
categories: Single-factor defenses [2, 4, 10, 22] and Multi-
factor defenses [22–25]. Single-factor defenses can further
be divided into two sub-categories: hardware-based [22] vs.
software-based [2, 4, 10]. Hardware-based Single-factor de-
fenses (e.g. [22]) have the limitation that they require modi-
fication of device hardware, therefore fail to protect existing
devices on the market that don’t allow hardware modifica-
tion. Software-based Single-factor defenses [2, 4, 10] detect
“abnormal” behaviors in the frequency domain of commands
received from the mono microphone to detect attack signals,
which can be easily implemented on all existing devices via
a software update; our defense belongs to this type. How-



ever, as elaborated in Appendix D, existing defenses can be
evaded by a specially crafted attack signal (e.g. our SSB-AM
based NUIT signal). Instead of just using the mono micro-
phone, multi-factor defenses exploit additional sensors on
certain VCS devices, (e.g. motion sensors [23], microphone
array [24, 25], extra speakers [26]) to extract features in other
dimensions to detect whether the received command is legit or
not. These multi-factor defenses can defeat inaudible attacks
including NUIT, but have the limitation that the victim VCS
device must contain such additional sensors, and thus fail to
protect most existing devices without such sensors.
Table 2: Comparison between previous attacks and NUIT
where ‘R’ means Range, ‘AF’ means Attack Frequency, ‘LOS’
denotes whether the attack requires line-of-sight (LOS) or not,
‘ST’ means Special Transducer.

Reference R (m) AF (Hz) LOS ST

Attacker exploits inaudible attack signals (e.g., ultrasound, laser)
Dolphin [2] <1.75 ≥ 20k Yes Yes
Long Range [4] <11.89 ≥ 20k Yes Yes
Backdoor [1] <11.89 ≥ 20k Yes Yes
Surfing [10] N/A ≥ 20k No Yes
Laser [5] >100 < 6k Yes Yes
CapSpeaker [12] 0.105 ≥ 20k No Yes
IEMI [18] 1.2 < 6k No Yes

Whisper [19]
Cable
length < 6k No Yes

NUIT (This work) Remote 16k-22k No No

Attacker embeds audible but human-incomprehensible attack signals
into audible base audios (e.g. music)
CommanderSong [6] Remote <16k No No
Metaphor [7] Remote <6k No No

Attacker exploits audible but human-incomprehensible attack signals
without using any carrier audios
CocainNoodle [20] Remote <6k No No
Hidden Voice [21] Remote <6k No No

3 Preliminaries

VCS User-to-Device Authentication. A VCS has two main
components. The voice-capturing component is responsible
for capturing sound waves and digitizing them for further
processing. This component consists of a microphone, an
amplifier, a Low-Pass Filter (LPF), and an analog-to-digital
converter (ADC), where LPF often operates at the frequency
of 20kHz. The speech recognition component uses AI/ML to
detect a device-specific activation keyword (e.g., “Hey Siri"
for Apple, “Alexa” for Amazon, “Hey Google” for Google As-
sistants, and “Cortana” for Microsoft) and subsequent action
commands (e.g., “Call phone #123-4567"). A VCS constantly
listens for its activation keyword. We use the term voice com-
mands to accommodate both activation keywords and action
commands. A VCS uses voiceprint to authenticate the activa-
tion keyword, but we are not aware of any VCS device that
uses voiceprint to authenticate action commands.
VCS Response Mechanism and Its Implications. VCSs of-

ten respond to action commands with confirmations, which ap-
pear to depend on their comprehension of an action command.
For example, Siri would respond to the command "Open the
door" with a response "Your door is open". Since the response
to an inaudible action command may alert the presence of at-
tacks, the attacker would want to silence the response. We find
that Siri’s responses are controlled by a separate mechanism
rather than using the media volume, which makes it possible
to achieve silent responses and end-to-end unnoticeability.
However, Google Assistant, Cortana, and Alexa’s responses
use the same volume as their media volume, meaning that
the attacker cannot silence responses without jeopardizing the
success of NUIT attacks.

Audible Frequency Range. Human ears are most sensitive
to sound with a frequency between 2kHz and 5kHz and insen-
sitive to sound with a frequency higher than 16kHz [27, 28].
Sound with a frequency ≥ 16kHz is deemed high frequency
to humans [17]. In this paper, the attacker modulates human
voice commands in the frequency range 50Hz-6kHz [29]
to sound waves at the inaudible near-ultrasound frequency
between 16kHz and 22kHz.

Double Sideband and Amplitude Modulation (DSB-
AM) Is Not Sufficient for NUIT. COTS speakers have a
Digital-to-Analog Converter (DAC) with at least a sample
rate of 44.1kSa/s (Samples per second). According to the
Nyquist–Shannon Sampling Theorem [30], this means that the
audio output frequency of COTS speakers is upper bounded
at 22kHz. Since the minimum inaudible frequency is 16kHz,
the frequency range of COTS speakers that can be used to
wage inaudible attacks is 6kHz (i.e., 16kHz-22kHz), which is
the range that can be exploited in theory. This is confirmed
by our experiments as shown in Appendix A.

However, this 6kHz (i.e., 16kHz-22kHz) inaudible band-
width is too narrow for the DSB-AM modulation scheme,
which is used by previous inaudible attacks. This is because
DSB-AM signals require at least 12kHz bandwidth (see Ap-
pendix B for details), which cannot fit into the 6kHz inaudible
bandwidth of COTS speakers without causing audio leak-
age at the left sideband (i.e., frequency range 10kHz-16kHz),
making the attack audible as shown in Figure 2. This means
NUIT needs a different modulation scheme to accommodate
the 6kHz inaudible bandwidth of COTS speakers.

Figure 2: Illustrating why DSB-AM cannot be used in NUIT.



4 Threat Model

The attacker’s goal is to remotely exploit the speaker on a
victim device to inject voice commands as NUIT into the mi-
crophone and associated VCS on the same device (NUIT-1)
or on a different device (NUIT-2), without the victim user’s
notice during the delivery, invocation and execution of the
attack. To achieve end-to-end unnoticeability, we assume no
user interaction with the microphone device when NUIT is
waged, otherwise victims may be alerted by the presence of
attacks. For example, NUIT-1 can be waged by a malicious
app running in the background when the victim is sleeping.
Similarly, the microphone device is assumed not in use (re-
gardless of the speaker device) when waging NUIT-2. The
following requirements must be achieved for waging NUIT.
Phase 1. Stealthy Preparation. The attacker can embed
NUIT signals into some appropriate carrier without being
noticed. For example, the attacker can write a malicious app or
compromise an innocent app that can replay a NUIT audio, or
upload NUIT audio to social media platforms (e.g., YouTube).
Moreover, the attacker has a sample (or adversarial example)
of a victim user’s activation keyword when voiceprint-based
authentication is enforced. This is not difficult to achieve, as
assumed in previous attacks.
Phase 2. Remote Delivery. We assume that the attacker can
remotely deliver NUIT audio to a victim. For example, exploit-
ing social engineering means luring a victim to download and
install a malicious app that can replay malicious audio, or
victims visit a malicious website as mentioned above.
Phase 3. Inaudible Invocation. NUIT attacks can be invoked
inaudibly when (i) the downloaded maliciously app is au-
tomatically replaying a silent audio in the background (or
opened by the victim) and/or the maliciously website contain-
ing NUIT signals replaying a silent audio is visited by victims.
This silent setting contains no carrier audio noise, which has
never been achieved in previous studies. NUIT can also be au-
tomatically waged when victims are (ii) watching malicious
videos that contain carrier audio noise, which is similar to the
threat model of CommanderSong [6].
Phase 4. Unnoticeable Execution. The execution of the NUIT
attack achieves end-to-end unnoticeability, meaning that the
NUIT signals are inaudible and VCS responses are silent.

5 Addressing the Challenges

5.1 Addressing Challenge 1

One approach to addressing this challenge, namely making
NUIT able to exploit the 6kHz bandwidth of COTS speakers, is
to proceed in two steps. (i) Identify the minimum bandwidth
that can be used to activate victim VCSs. (ii) Modulate voice
commands into the inaudible frequency range of victim COTS
speakers while assuring successful demodulation.

5.1.1 Identifying the Minimum Activation Bandwidth

To make NUIT widely applicable, we consider four popular
VCS devices [31]: Amazon Alexa, Apple Siri, Google Assis-
tant, and Microsoft Cortana. To accommodate them simulta-
neously, we identify the minimum bandwidth that is needed
to activate them. For this purpose, we analyze their spectrum
by repeatedly replaying their activation keywords and increas-
ing the sample rate until they are activated. For example, we
replay “Hey Siri” starting at a sample rate of 8kSa/s (i.e., 8k
samples per second); if Siri is not activated, we try 12kSa/s,
16kSa/s, and so on, until Siri is activated. Experimental re-
sults show: Amazon Alexa, Google Assistant, and Cortana all
require a sample rate of 8kSa/s for activation, but Siri requires
a sample rate of 12kSa/s. Thus, making NUIT applicable to
all these devices requires a minimum of 12kSa/s baseband
sample rate (i.e., 6kHz baseband bandwidth [30]).

5.1.2 SSB-AM: Leveraging Microphone Nonlinearity to
Cope with COTS Speaker Bandwidth Constraint

The attacker can use Single-Sideband Modulation-Amplitude
Modulation (SSB-AM) [8, pp. 124–132] to modulate voice
commands into the 6kHz bandwidth identified above.
SSB-AM Modulation. We briefly review the basic ideas
while please refer to [8, pp. 125–129] for derivation details.
The two forms of SSB-AM, namely the Upper Sideband Am-
plitude Modulation (USB-AM) signal, denoted by SUSBAM ,
and the Lower Sideband Amplitude Modulation (LSB-AM)
signal, denoted by SLSBAM , can be expressed as:

SUSBAM(t) = (1+ v(t))cos(2π f u
c t)− v̂(t)sin(2π f u

c t), (1)

SLSBAM(t) = (1+ v(t))cos(2π f l
ct)+ v̂(t)sin(2π f l

ct), (2)

where v(t) is the baseband voice command signal and v̂(t) is
its Hilbert transform [8, pp. 82–83], and f u

c and f l
c respectively

denote the carrier frequency for SUSBAM and SLSBAM .
Now the question is: Should the attacker choose USB-AM

or LSB-AM to modulate voice commands? To make NUIT
inaudible, the attacker must assure that the spectrum mag-
nitude is always below the threshold of the human hearing
curve, which is illustrated in Figure 3. In theory, LSB-AM al-
lows the attacker to set the carrier in the ultrasound frequency
range (> 19kHz) to generate high-power NUIT signals (up to
80db SPL), while making NUIT inaudible. In practice, how-
ever, many COTS speakers have increasingly deteriorated
frequency responses going beyond 19kHz (see Appendix A).
This means that using LSB-AM would lead to a low attack
success rate for mobile devices. Although this can be com-
pensated by using a high-volume speaker, it does not apply to
most mobile devices. Thus, the attacker would use USB-AM
with carrier wave at frequency f u

c = 16kHz for most devices.
SSB-AM Demodulation. Now we discuss how SSB-AM
modulated NUIT signals can be demodulated by COTS micro-
phones. We focus on the demodulation of USB-AM signals,
while noting that the idea equally applies to LSB-AM.



Figure 3: Illustrating the hearing curve and how to make NUIT
signals inaudible for USB-AM and LSB-AM modulation.

Figure 4: Illustration of SSB-AM demodulation.

Figure 4 illustrates the basic idea. When a microphone
receives the USB-AM signal SUSBAM(t) given by Eq. (1), it
generates the following output signal:

Sout = SUSBAM(t)+S2
USBAM(t), (3)

where SUSBAM(t) does not contribute to the attack because
its frequency is above 16kHz (i.e., it is out of the speech fre-
quency range and thus ignored by the VCS). [But, this linear
term can be leveraged for defense as we will show later!]
Note that the quadratic term S2

USBAM(t) has three components:
a high-frequency 2 f u

c component

(v(t)+1)v̂(t)sin(2π2 f u
c t)+

v2(t)+2v(t)+1− v̂2(t)
2

cos(2π2 f u
c t),

a Direct Current (DC) component 1/2, and an audible com-
ponent sb(t) = 1

2 (v
2(t)+2v(t)+ v̂2(t)). The high-frequency

component is filtered by the Low-Pass Filter (LPF) of the mi-
crophone with a cut-off frequency of 20kHz because 2 f u

c =
32kHz > 20kHz. The DC component is filtered by the mi-
crophone’s capacitor. Thus, only the audible component sb(t)
and the linear component SUSBAM(t) can pass the microphone
filtering system. Moreover, only sb(t) contributes to the attack
because sb(t) contains the voice command signal v(t).

Insight 1 COTS microphones are not designed to demodulate
SSB-AM signals, but their nonlinearity happens to enable it.

5.2 Addressing Challenge 2
Understanding and Measuring the Reaction Time. The
concept of reaction time is inherent to all VCS devices. Upon
receiving the activation keyword, VCSs either mute their
speakers or lower their speakers’ volume to its minimum. The
reaction time is the interval between (i) when the activation
keyword is received and (ii) when the speaker is muted or its
volume is lowered. The reaction time is inevitable as it takes

time for VCSs to process the activation keyword. The design—
muting, or lowering the volume of, speakers after hearing the
activation keyword—is for making the microphone listen to
action commands without interference from the audio that is
replayed by the speaker. Because (i) VCS can only mute, or
lower the volume of, the speaker on the same device, and (ii)
NUIT exploits victim speakers to wage attacks, the reaction
time has one subtle yet important implication for NUIT-1,
which exploits the speaker to attack the microphone on the
same device, but not for NUIT-2 that exploits the speaker to
attack the microphone on a different device.

Figure 5: Illustration of the injection of malicious action com-
mands within the reaction time window in the NUIT-1 attack.

For the VCSs that mute the speaker after the reaction time,
the attack cannot continue to exploit the muted speaker. Thus,
the attacker’s malicious voice commands must fit into the
reaction time window; otherwise, the attack will fail. For the
VCSs that lower the volume of the speaker after the reac-
tion time, the attack can continue to exploit the speaker but
may still fail (depending on the volume). To make NUIT-1
widely applicable, we propose always embedding action com-
mands into the reactive time window, regardless of whether
the speaker will be muted by the VCS, as illustrated in Fig-
ure 5. This explains why the reaction time imposes a hard
constraint on NUIT-1, but not NUIT-2.

Table 3: Empirical reaction time of VCS devices.

VCS Reaction Time (sec) Mute Speaker?
Siri 0.82 - 1.53 Yes

Google 0.77 - 0.96 Yes
Alexa 0.79 - 0.94 No

Cortana 0.87 - 0.99 No

Table 3 summarizes the minimum and maximum reaction
time observed among the 100 experiments we conducted with
each device. The minimum reaction time is 0.77 seconds.

Insight 2 To wage successful NUIT-1 attacks against Siri,
Google Assistant, Alexa and Cortana devices, malicious ac-
tion commands must not be longer than 0.77 seconds.

Exploiting the Reaction Time. In our experiment, we con-
sider the action commands listed in Table 4 within the reaction
time window of 0.77 seconds. These commands are useful to
the attacker. Experimental results show that NUIT-1 success-
fully injects all these commands within 0.77 seconds.

Insight 3 Many action commands can indeed fit into the re-
action time window to wage the NUIT-1 attack.



Table 4: Action commands successfully injected by NUIT-1.

Device (VCS) Action Command

iPhone (Siri)
Echo Dot (Alexa)
Android Phone (Google Assistant)
Windows PC (Cortana)

-Speak 6%/Turn down volume
-Open the door/YouTube
-What’s the time/day/weather
-Tell me a joke
-Read my message
-Call Sam
-Turn on light/airplane mode

5.3 Addressing Challenge 3
Surfing attack [10] proposes sending inaudible action com-
mands to reduce Google Assistant’s response volume to Level
3 to prevent the response from being heard by the user before
proceeding with further attack. NUIT-2 attack can directly
adopt this method by first sending an action command “Turn
volume to 6%” to the target microphone device to make the
VCSs’ response unnoticeable, and then proceed with subse-
quent attacks. Such method cannot be adopted by NUIT-1
because for many VCS devices (e.g. Google Assistant, Cor-
tana, Alexa), lowering system volume also lowers NUIT-1
signal’s volume, making further attacks impossible.

Nevertheless, we found that Siri is an exception. Our in-
vestigation shows that for iPhone Siri devices, the volume
of the response and the volume of the media are separately
controlled. Thus, the attacker can use an action command to
mute Siri’s response without muting the subsequent NUIT-1
commands. A running example of the NUIT-1 Attack muting
Siri’s response is detailedly described in Section 6.1.

Insight 4 For NUIT-1 attacks, only Siri’s response can be
silenced to achieve an unnoticeable attack but not the others.

6 The NUIT Attack

How to Embed NUIT into Carriers? We mentioned that
NUIT signals need to be embedded into appropriate carriers
(e.g. app, website, videos). Based on carrier audio’s audibility,
the embedding strategies are different: (i) The carrier audio
itself is silent (i.e., blank or void), in which case NUIT signals
can be embedded anywhere in the carrier audio. Examples
of such carriers are apps and websites. (ii) The carrier audio
is audible but contains some silent segments that are silent,
dubbed silent segments for short, such as pauses in a speech
and intervals between music soundtracks. In this case, NUIT
signals should be embedded in the silent segments (other-
wise, the attack might fail because the NUIT signals will be
overwhelmed by the carrier audio). There are many ways
to identify such silent segments in given audio, such as ap-
pending such segments to the end. Since it is popular to edit
and share self-made audios, which may be associated with
videos, on social network platforms, this would be one effec-
tive method for waging the NUIT attack. Examples of such
carriers are YouTube videos. Note that the preceding attack

scenario (i) does not have a counterpart in the Commander-
Song attack [6] which uses audible carrier media, but (ii) is
indeed similar to the CommanderSong attack because both
use audible carrier media.

6.1 The NUIT-1 Attack
How Does the NUIT-1 Attack Work? At a high level, the
attacker uses SSB-AM to modulate the activation keyword
and malicious action command(s) into near-ultrasound sig-
nals, and then embeds these signals into some appropriate
carrier audio to obtain malicious audio, which executes the
attack when replayed. Details follow.
Phase 1: Preparation. This phase has four steps. (i) The at-
tacker needs to understand the target VCS devices, including
their reaction time and their response mechanism. (ii) The
attacker needs to assure that the activation keyword can pass
the voiceprint authentication of the target VCS devices that
enforce it (e.g., Siri). This is readily doable [2], while noting
that this is not needed for action commands because VCS
devices do not authenticate them. (iii) The attacker needs to
accommodate the limited bandwidth of COTS speakers, as-
sure inaudibility when modulating voice commands, assure
the voice commands can fit into a single reaction time window
for all the VCS devices, and assure a silent response. This can
be achieved by addressing Challenges 1-3 as shown above.
This leads to NUIT signals. (v) The attacker embeds NUIT sig-
nals into some appropriate carrier audio as mentioned above,
leading to malicious audio with embedded NUIT signals.
Phase 2: Delivery. The attacker uses social engineering to
lure users to install the malicious app, visit the malicious
website, or listen to the malicious audio.
Phases 3 and 4: Invocation and Execution. When a user
runs a malicious app, visits a malicious website, or watches
malicious videos, NUIT signals can attack the microphone on
the same device in an end-to-end unnoticeable fashion.

A Running Example of NUIT-1 Attacking Siri.
Phase 1: Preparation. (i) The attacker needs to know that
iPhone has two different volume controls for the response and
the media. (ii) This is assured in our own attack experiment
because we attack our own devices. (iii) In our attack experi-
ment, we use two example action commands that can fit into
a single action time window: one is “speak 6%” for lowering
Siri’s response volume to 6% to achieve end-to-end unnotice-
ability, and the other is "open the door" as the attack payload.
(iv) In our attack experiment, we use Matlab code, which is
our implementation of the SSB-AM modulation scheme, to
generate the near-ultrasound signals of the activation keyword
and the two action commands. This leads to two separate wav
files, one for each action command (following the activation
keyword). (v) In our attack experiment, we embed the NUIT
signal, namely the wav file into two carriers: one is with silent
audio (e.g. mobile app), in which case we embed it at an ar-
bitrary place; the other is normal audio of music, in which



case we append the wav file to the end of the audio. This leads
to four wav files of malicious audio as there are two action
commands and two carrier audios.
Phases 2-4: Delivery, Invocation, and Execution. In our
attack experiment, we replay each of the four malicious au-
dios to attack our own iPhone XR for ethical reasons. We
observe that the iPhone XR device executes the “open the
door” command with end-to-end unnoticeability as shown in
the demo video we post on the website.

6.2 The NUIT-2 Attack
How Does the NUIT-2 Attack Work? In this case, the
attacker exploits the speaker on one device of the victim to
attack the microphone and associated VCS on another device
of the victim. The attack is similar to NUIT-1, except for the
following. The attacker does not need to deal with the reaction
time (Challenge 2) and the response mechanism because they
have no effect on NUIT-2 (Challenge 3). The reaction time
has no effect because the first device’s speaker will not be
muted by the second device, assuming that the victim speaker
device uses no VCS or a different VCS than the VCS used
by the victim microphone device (i.e., an attack targeting
Siri does not affect Alexa as their activation keywords are
different).
A Running Example of NUIT-2 Exploiting iMac to At-
tack Google Assistant. In our attack experiment, the victim’s
first (speaker) device is an iMac 2020 desktop and the sec-
ond (target) device is an Android LG ThinkQ smartphone
using Google Assistant, while noting that NUIT-2 targeting
Google Assistant cannot compromise iMac. Since the phases
of NUIT-2 are similar to that of NUIT-1, we only highlight the
differences between them. In NUIT-2, the attacker has more
freedom in choosing action commands because the reaction
time has no effect. We use two similar commands to attack
Google Assistant, namely “turn the volume to 1" and “open
the door." The carrier audio is silent. We embed the malicious
audio into a webpage on our own iMac computer, which can-
not be accessed from any other computer (for ethical reasons).
When using the Chrome browser to visit this webpage, the
Android LG ThinkQ indeed opens a smart lock.

6.3 Devices Vulnerable to NUIT Attacks
Table 5 summarizes the tested devices according to our ex-
periments. We make the following observations. First, Ap-
ple iPhone X, XR and 8 are vulnerable to both NUIT-1 and
NUIT-2 with end-to-end unnoticeability. Second, some de-
vices are not vulnerable to NUIT-1. This can be attributed to
(i) the distance between the victim speaker and the victim
microphone, even on the same device, being too long to make
the attack succeed, and/or (ii) the speaker quality on the vic-
tim device is not good enough. Third, some devices cannot be
attacked by NUIT-1 or NUIT-2 with end-to-end unnoticeabil-

ity because the attack cannot silence these devices’ audible
responses. Fourth, NUIT-1 and NUIT-2 fail to attack iPhone 6
plus. Note that the DolphinAttack also fails to attack iPhone
6 Plus [2], and the cause is not known. This prompts us to
investigate the cause of this phenomenon below.

Table 5: Devices vulnerable to NUIT, where ✓means an attack
succeeds with end-to-end unnoticeability, ✓* means an attack
succeeds with inaudible attack signals but not silent response,
and × means an attack fails.

Target VCS Device NUIT-1 NUIT-2
iPhone: X, XR, 8 ✓ ✓

MacBook: Pro-2021, Air-2017 ✓* ✓
Galaxy: S8, S9, A10e ✓* ✓

Echo Dot Gen1 ✓* ✓
Dell Inspiron 15 ✓* ✓*
Apple Watch 3 × ✓
Google Pixel 3 × ✓
Galaxy Tab S4 × ✓

LG Think Q V35 × ✓
Google Home 1 × ✓
Google Home 2 × ✓
iPhone 6 plus × ×

Why Does NUIT Fail to Attack iPhone 6 Plus? It is known
that the nonlinear component in a microphone system is the
amplifier [4]. This hints that NUIT (and DolphinAttack when
waging common attack signals [2]) fail to attack iPhone 6
Plus because it has a low-gain amplifier, which has a weak
nonlinearity that cannot be exploited to wage these inaudible
attacks. To see this, let’s recall that generally speaking, when
the input voltage increases, the output voltage of an ampli-
fier does not increase beyond a cutoff voltage, known as the
saturation voltage denoted by Vsat . Moreover, the output is
linear to the input signal when the output voltage is small, but
does behave nonlinearly when the output voltage gets close to
Vsat . This nonlinear region is exploited by DolphinAttack and
NUIT to wage inaudible attacks. We suspect that these attacks
are successful against devices including iPhone X, XR, and 8
because these devices use a high-gain amplifier, and that these
attacks fail to attack iPhone 6 Plus because it uses a low-gain
amplifier, which makes it hard to exploit the nonlinear region
to make the attacks succeed. This is plausible because when
the input is at a common level, a low-gain amplifier usually
generates a small output voltage, which is far below Vsat and
thus makes the output linear to the input.

To validate the preceding discussion, we conduct experi-
ments to compare the amplifier transfer curve of iPhone 6
Plus and iPhone X. The experiments are conducted by using
a Vifa speaker [32] to send 18kHz sinusoidal acoustic sig-
nals at different decibel levels to the front microphone of both
phones and analyzing their output voltage in the recorded files.
For each phone, we send input sound pressure level (SPL)
from 60 dB to 130 dB with an interval of 5dB, and record
the output maximum voltage for each input. Figure 6 depicts
the results, where the x-axis is the input 18kHz signal sound
in a specific decibel, and the y-axis is the output voltage in



Figure 6: Microphone amplifier transfer curves of iPhone 6
Plus and iPhone X.

decibels with Vsat normalized to 0dB. We observe that iPhone
X has a high-gain amplifier with a nonlinear region starting
at 73dB, whereas the output of iPhone 6 Plus is linear until
reaching 115dB. This explains why a common decibel range
ultrasonic signal (75dB-80dB) can successfully attack iPhone
X but not iPhone 6 Plus. Moreover, the nonlinear region of
the low-gain iPhone 6 Plus amplifier cannot be exploited un-
less the input reaches or goes above 115dB. This justifies the
experiments in DolphinAttack [2] that iPhone 6 Plus can still
be successfully attacked after placing the attacker speaker at
a 2cm distance from the victim device when raising the attack
signals to 125dB.

Table 6: Comparison of microphone sensitivity between three
devices: iPhone 6 Plus, iPhone XR, and iPhone X, at various
distances: from 5 cm to 50 cm. ‘Act.’ stands for activation
rate and ‘Rec.’ stands for recognition rate.

Distance iPhone 6 Plus iPhone XR iPhone X
Act.
(%)

Rec.
(%)

Act.
(%)

Rec.
(%)

Act.
(%)

Rec.
(%)

50 cm 10 0 100 100 100 100
30 cm 45 0 100 100 100 100
20 cm 90 0 100 100 100 100
10 cm 100 50 100 100 100 100
5 cm 100 100 100 100 100 100

Can We Use Microphones with a Low-gain Amplifier as
an Effective Defense? The preceding discussion may prompt
one to propose using microphones with a low-gain amplifier
as an effective defense. Unfortunately, this is not true because
such microphones require legit users to raise their voices to
command the VCS. For example, our experiments show that a
user cannot activate Siri from a reasonable distance (2 m) with
a soft tone (40 dB) on iPhone 6 Plus. Specifically, we measure
the activation rate (i.e., the success rate of activation) and the
recognition rate (i.e., the success rate of action commands) of
iPhone 6 Plus, iPhone X, and iPhone XR in normal operation
environments (i.e., no attacks). We use a Google Pixel phone
to replay a normal command “Hey Siri, turn down the volume”
to each device at varying distances on the same desk, at a
sound pressure level of 40 dB to mimic a human soft tone.
Table 6 compares their activation rate and recognition rate,
showing that iPhone 6 Plus fails to be controlled by a legit
user at a distance of 2 m; whereas, iPhone X and XR can be

controlled from a distance of over 5 m. iPhone 6 Plus’ poor
Siri usability may be the reason why Apple switches to a
high-gain amplifier in the later version of iPhones (e.g. 8, X,
XR, 13 mini). The experiment video is available on our Demo
website [11].

Insight 5 Siri, Google Assistant, Alexa and Cortana are vul-
nerable to NUIT attacks, but at different degrees. NUIT (and
DolphinAttack with common input) fail to attack iPhone 6
Plus because their microphones use a low-gain amplifier.

7 Analyzing the Effectiveness of NUIT

We analyze the impact of the following four factors on the
effectiveness of NUIT-1: (i) the action command language,
because one action command’s lengths are various in different
languages (e.g., English vs. French) that may fit into the reac-
tive time window in one case but not another; (ii) the audio
file format, because formats impacts sound qualities; (iii) the
background noise, because it is often present in practice and
should be tolerated (i.e., an attack assuming no background
noise is not practical); and (iv) the carrier media audio vol-
ume, which may affect the location where the NUIT signals
should be embedded. Since the notion of reaction time win-
dow doesn’t apply to NUIT-2, there is no need to analyze (i)
for NUIT-2. This means we only need to analyze the impact

Table 7: Default experimental settings.

Setting NUIT-1 NUIT-2
Victim Speaker iPhone XR iPhone XR
Victim Microphone LG ThinkQ
Background Noise 30dB
Activation Keyword "Hey Siri" "Hey Google"
Action Command "Turn down the volume"
Distance N/A 25cm
File format 16-bit WAV
Carrier Audio Totally silent
Volume 80%

Physical Layout All devices lay on a desk,
with screen facing the ceiling

of (ii)-(iv) on the effectiveness of NUIT-2. In addition, we
consider the following two factors that are unique to NUIT-2:
(v) the directionality of the victim microphone to the victim
speaker, because it can affect the successful rate when the
victim has a different arrangement of device direction; and
(vi) the distance between the victim microphone and the vic-
tim speaker, which clearly can affect the attack success rate.
Table 7 summarizes the experimental settings.

7.1 Effectiveness of NUIT-1

7.1.1 Impact of Natural Language

We consider the four most spoken languages [33]: English,
Chinese, Spanish, and French. First, we make an audio file
of our own activation keyword in each of these languages



Table 8: The voice commands in our experiments, including activation keyword and action commands AC1, AC2, and AC3.

Natural Language Act. Keyword AC1 AC2 AC3
English "Hey Siri" "Call 1..5..x" "Turn down the volume" "Text Sam, I need money"
Spanish "Oye Siri" "llama al 1..5..x" "Baja el volumen" "Envíale un mensaje de texto a Sam, necesito dinero"
Chinese "嘿Siri" "呼叫1..5..x" "调低音量" "给Sam发短信，我需要钱"
French "Dis Siri" "Appeler 1..5..x" "Baisse le volume" "SMS Sam, j’ai besoin d’argent"

Table 9: Experimental results show that NUIT-1 succeeds
with action commands AC1, AC2, and AC3 in most, but not
all, cases of the four languages.

Natural Languages AC 1 AC 2 AC 3
English "Call 1..5" ✓ ✓
Spanish "Call 1..3" ✓ X
Chinese "Call 1..9" ✓ ✓
French "Call 1..3" ✓ ✓

because we are attacking our own device. Second, we pre-
pare Text-To-Speed generated audios of action commands in
these languages at 330 words per minute. We consider three
examples of action command (AC), which are summarized in
Table 8 as AC1, AC2 and AC3, respectively. for AC1, which is
“Call + phone number” in English and its equivalent in other
languages, we vary the length of the phone number, from 3
to 9 digits because the same command may succeed in some
languages but not others.

Table 9 summarizes the experimental results. We observe
that for AC1, NUIT-1 successfully calls 9-digit phone num-
bers in Chinese, 5-digit phone numbers in English, and 3-digit
phone numbers in Spanish and French. For AC2, NUIT-1 suc-
ceeds in all four languages because the AC2 audios have a
similar length (i.e. 0.6 seconds). For AC3, NUIT-1 fails with
Spanish commands but succeeds with the other languages.
This is because the audio of AC3 in Spanish is 2 seconds,
which is longer than reaction time of Siri (0.82 seconds) even
at 330 words per minute, but the audio of AC3 in the other
languages is at most 0.9 seconds.

Insight 6 The success of NUIT-1 depends on the language
because the same action command in different languages can
result in audios of different lengths, some of which can fit into
the reaction time window but others cannot.

7.1.2 Impact of Audio Format

Popular audio formats can be divided into two categories:
lossless vs. lossy. A lossless format stores raw audio with-
out any compression, offering the highest audio quality; two
examples are Waveform Audio File (wav) and Audio Inter-
change File Format (AIFF). A lossy format uses compression.
Three examples are: MPEG-1 Audio Layer III (mp3), which
loses certain components of sound beyond the human hearing
frequency range (>16kHz) [34]; Advanced Audio Coding
(aac), which has a higher audio quality than mp3 by using a
better compression algorithm; and Windows Media Audio
(wma), which is similar to mp3. We use the widely-used bitrate

of 128 kbps [34] to evaluate mp3, aac, and wma files.
Table 10 summarizes the experimental results. For Siri

devices, we observe that attacks leveraging lossless audio
files (wav and AIFF) succeed against all listed devices except
iPhone 6 Plus. Attacks leveraging lossy audio files (mp3 and
wma) always fail Siri devices because these lossy formats
cause the elimination of the near-ultrasound attack signals
(>16kHz). However, attacks leveraging the lossy aac audio
format always succeed against all devices except iPhone 6
Plus. For Google, Alexa, and Cortana devices, we observe
that the NUIT-1 attack always succeeds, even if the base audio
uses a lossy audio file format. The reason is that Google and
Alexa’s activation keywords require less bandwidth, which
can survive the high frequency loss by mp3 and wma.

Insight 7 For devices vulnerable to NUIT-1 attacks,
NUIT-1 attacks succeed when using lossless audio formats,
but may fail when using some lossy audio formats.

7.1.3 Impact of Background Noise

To evaluate the impact of background noise on the success of
NUIT-1, we use noise to mimic the environment of a bedroom,
office and cafe. The malicious audio is a 16-bit WAV file.
The background noise is some Gaussian White Noise from a
Samsung TV speaker in an anechoic chamber at 30dB, 60dB
and 70dB, respectively. The noise is generated by a Samsung
TV when the victim device replays the malicious audio with
embedded NUIT signals. We repeat the attack 100 times to
derive the successful rate of the attack (i.e., the percentage of
successful attacks over the total number of attacks).

Table 11 summarizes the experimental results. For the
NUIT-1 attack, we observe that the background noise mimick-
ing the bedroom (30-45dB) environment or office (55-65dB)
environment does not have an impact on the attack success
rate. However, the noise mimicking cafe environment (65-
75dB) causes it to lose effectiveness: 10% of the times the
activation keyword fails and 30% of the times the action com-
mand fails. The failure can be attributed to the low Signal-to-
Noise Rate (SNR), which disrupts the signal even though the
speaker and the microphone are on the same device.

Insight 8 The NUIT-1 attack can tolerate certain degrees
of background noises because of the short distance between
the victim speaker and the victim microphone, but starts to
fail when the background noise gets stronger.



Table 10: Effectiveness of NUIT-1, where ✓ means NUIT-1 succeeds,× means NUIT-1 fails, N/A means NUIT-1 is not applicable,
‘AK’ means Activation Keyword, ‘AC’ means Action Command, ‘Volume’ is the speaker volume for NUIT-1 to be successful
(i.e., the minimum volume at which attacks can succeed).

Brand Model Mobile OS VCS AK AC Audio Format (kbps) Volume
wav mp3 acc wma AIFF

Apple

iPhone XR iOS 14.8.1 Siri ✓ ✓ ✓ × ✓ × ✓ ≥70%
iPhone X iOS 15.1.1 Siri ✓ ✓ ✓ × ✓ × ✓ ≥70%
iPhone 8 iOS 14.4.2 Siri ✓ ✓ ✓ × ✓ × ✓ ≥70%

iPhone 6plus iOS 13.1.2 Siri × × × × × × × ≥70%
MacBook Pro 2021 macOS; Monterey Siri ✓ ✓ ✓ × ✓ × ✓ ≥75%
MacBook Air 2017 macOS; Monterey Siri N/A ✓ ✓ × ✓ × ✓ ≥75%

Samsung
Galaxy S8 Android 11 Google ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≥75%
Galaxy S9 Android 11 Google ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≥80%

Galaxy A10e Android 11 Google ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≥75%
Amazon Echo Dot Gen1 Fire OS 7 Alexa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≥70%

Dell Inspiron 15 Windows 10 Cortana ✓ ✓ ✓ ✓ ✓ ✓ ✓ ≥80%

Table 11: Impact of background noise on the success rate
of NUIT-1 and NUIT-2 with the default activation keywords
(AK) and action command (AC) described in Table 7.

Scenario Noise Attack Type AK AC

Bedroom 30dB NUIT-1 100% 100%
NUIT-2 100% 100%

Office 60dB NUIT-1 100% 100%
NUIT-2 100% 90%

Cafe 70dB NUIT-1 90% 70%
NUIT-2 80% 40%

Table 12: Impact of carrier audio volume on the success of
NUIT-1 and NUIT-2 with the default AK and AC.

Base Volume (dB) Attack Type AK AC

-30 NUIT-1 100% 100%
NUIT-2 100% 100%

0 NUIT-1 80% 60%
NUIT-2 100% 100%

30 NUIT-1 20% 10%
NUIT-2 80% 80%

50 NUIT-1 0% 0%
NUIT-2 40% 30%

7.1.4 Impact of Carrier Audio Volume

To evaluate this, we embed NUIT signals into the Gaussian
White Noise with sound pressure level −30dB, 0dB, 30dB
and 50dB, respectively. This leads to 5 malicious audio files.
We repeat each attack 100 times to derive the successful rate.
As shown in Table 12 for the NUIT-1 attack when the carrier
audio volume is above 0dB, its success rates of the activation
keyword and the action command drop from 100% to 80%
and 100% to 60%, respectively. This is because the high
volume combined with the close proximity between the victim
speaker and the victim microphone produces a strong Sound
Pressure Level (SPL) at the microphone. This triggers the
microphone’s Automatic Gain Control (AGC), suppressing
the NUIT-1 signal so that Siri cannot understand the command.
Moreover, the discrepancy between the 80% and the 60%
suggests that even when the activation keyword succeeds, the
following action command may fail.
Insight 9 The NUIT-1 attack fails when the attack signals

are mixed with carrier audio’s sound track.

7.2 Effectiveness of the NUIT-2 Attack
7.2.1 Impact of Audio Format

The experimental result is the same as NUIT-1 and thus
omitted. This is expected as there is little background noise
(<40dB). Thus, we can draw the same insight as Insight 6:
audio format significantly impacts NUIT-2’s success rate.

7.2.2 Impact of Background Noise

To evaluate the impact of background noise, we conduct the
same experiments as in the case of NUIT-1, with the differ-
ence that we use the NUIT-2 default settings. Experimental
results are also summarized in Table 11 for easier comparison.
We observe NUIT-2 is more significantly affected by the back-
ground noise, especially when the noise is loud, because the
speaker-microphone distance in the NUIT-1 attack (< 1cm)
is much smaller than that of NUIT-2 (25cm).

Insight 10 Background noise has a higher impact on the suc-
cess of the NUIT-2 attack than the NUIT-1 attack because
of the longer speaker-microphone distance in NUIT-2.

7.2.3 Impact of Directionality

Figure 7 shows how we hold the victim speaker device with
a phone holder, at coordinate (x,y,z) = (0,0,0). In each ex-
periment, we change the position of the victim microphone
device, which is held by hand. Directionality is described by
two parameters: θ, which is the azimuthal angle [35]; and ϕ,
which is the polar angle [35]. We vary the (θ,ϕ) values to
observe how they affect the success of NUIT-2.

Table 13 summarizes the experimental results. We observe
that directionality does not have a significant impact on the
success rate of NUIT-2: for activation keyword, the attack
success rate is always 100%; for action command, the attack
success rate is at least 95%. This can be attributed to the
omni-directional nature of the near-ultrasound signals.



Figure 7: Illustration of the directionality.

Table 13: Attack success rate of NUIT-2 with varying direc-
tionality parameters (θ,ϕ) as described in the text. “Cmd"
means activation keyword (AK) or action command (AC).

φ

θ
0 45 90 135 180 Cmd

0 100% 100% 100% 100% 100% AK
95% 95% 95% 95% 95% AC

45 100% 100% 100% 100% 100% AK
100% 100% 95% 95% 95% AC

90 100% 100% 100% 100% 100% AK
100% 100% 100% 100% 95% AC

135 100% 100% 100% 100% 100% AK
100% 100% 95% 95% 95% AC

180 100% 100% 100% 100% 100% AK
95% 95% 95% 95% 95% AC

Insight 11 Directionality does not have a significant impact
on the success of the NUIT-2 attack because of the omnidi-
rectional transmission ability of sound.

7.2.4 Impact of Distance

To evaluate the impact of the distance between the victim
speaker device and the victim microphone device on the attack
success rate of NUIT-2, we vary the distance between them.
The experiment setting is the same as the directionality one,
except that we vary the distance between the speaker device
and the microphone device. We want to determine the effective
distance between the speaker device and the microphone
device below which the attack success rate is ≥80%.

Table 14 summarizes the experimental results, which show
that the effective distance depends on the power of the speaker.
For small mobile devices, the effective distance is small (<
10cm); for devices like laptops, desktops, TVs or car radio,
the effective distance can be longer. Moreover, the effective
distance of Alexa Echo, Google Home, and Cortana, which do
not authenticate activation keywords, is longer than that of Siri
and Google Phone Assistant, which authenticate activation
keywords. This is because the authentication mechanism does
not allow any significant distortion of activation keywords;
otherwise, it could be exploited to wage other attacks.

Insight 12 The effective distance between the victim speaker
and the victim microphone in the NUIT-2 attack depends on
the power of the victim speaker.

8 Defense

Security Requirements. We propose the following four se-
curity requirements for an ideal defense: (i) it detects attacks
with few false-positives and few false-negatives; (ii) it is
device-independent, meaning the defense can be implemented
on any type of modern VCS devices (i.e. mobile, wearable and
stationary devices) without modifying/adding existing hard-
ware (iii) it is robust against evasion; (iv) it is light-weight
and incurs minimal processing delay. As elaborated in Ap-
pendix D, known defenses against previous inaudible attacks
cannot be adapted to defeat NUIT. Note that requirement (ii)
mandates software solutions.
Our Defense. The basic idea is to leverage the success of
NUIT attacks to cope with themselves as follows: Whenever
the attack succeeds, the victim microphone VCS must have
already detected and recognized the embedded NUIT signal at
a near-ultrasound frequency; this capability can be leveraged
to detect the presence of NUIT because a legitimate activation
keyword or action command should not come from the high
frequency range (> 16kHz).

Figure 8: Basic idea for detecting NUIT.
Figure 8 highlights the techniques behind the defense. It

is based on the following similarity analysis, which is made
possible by the nonlinear demodulation, namely that the mi-
crophone system produces an inaudible near-ultrasound signal
consisting of two parts: the demodulated baseband (<8kHZ)
signal sb(t) and the high-frequency passband (>16kHz) sig-
nal sp(t). If sb(t) comes from sp(t), then there is a NUIT at-
tack; otherwise, there is no NUIT attack. In greater detail, the
defense first divides signal sb(t) into segments of fixed-length
Twin. The windowed commands are filtered by a Low-Pass
Filter (LPF) with a cut-off frequency 16kHz and a High-Pass
Filter (HPF) also with a cut-off frequency 16kHz. The sig-
nal passing the HPF has a high frequency (>16kHz) which
will be squared and compared with the baseband signal using
cross-correlation with coefficient R with

R =
1
T

∫ t0+Twin

t0
sb(t)s2

p(t)dt.

A similarity threshold τ can be used such that |R|> τ means
that a NUIT attack is detected. This is because a high similarity
between the envelope of the high frequency component (>



Table 14: Effectiveness of NUIT-2, where each cell describes the maximum distance (in centimeters) between the victim speaker
device and the victim microphone device at which NUIT-2 succeeds with effectiveness ≥ 80%, and × means NUIT-2 fails.

Victim
Speaker

Victim
Microphone

Siri Google Phone Assistant Alexa
Google

Assistant Cortana

iPhone
XR

MacBook
Pro-2021

Apple
Watch 2

Google
Pixel 3

Galaxy
S9

LG Think
Q V35

Galaxy
Tab S4

Echo Dot
Gen 1

Google
Home 2

Dell
Inspiron 15

MS
Surface

Apple
Devices

iPhone XR 3 3 3 4 6 50 5 6 7 6 8
MacBook Pro 9 8 10 20 25 130 20 30 25 310 320
iPhone13 mini 3 3 3 4 6 50 5 5 7 6 8
iMac 27’ 2021 13 12 15 13 30 390 20 50 60 370 350

Android
Devices

LG Think Q
V35 × × × × × × × × × × ×

Samsung
Galaxy S9 4 4 4 6 4 60 6 7 5 7 7

Samsung
Galaxy Tab S4 9 9 10 27 20 150 20 40 50 25 30

Vehicle
Audio Sys.

Ford
Fusion 2017 30 28 35 102 82 320 70 210 230 160 140

Nissan
Versa S × × × 110 70 300 65 190 220 150 150

Smart
Home
Devices

Samsung TV 35 32 46 120 80 460 90 350 320 150 100
Google Home2 3 2 2 15 25 380 27 38 39 58 60
Echo Dot Gen1 2 1 1 17 29 320 26 42 33 62 69

Windows
Laptop Dell Inspiron15 × × × 25 20 300 25 90 100 50 45

16kHz) and the waveform of the baseband component (<
16kHz) will make the command shadowed from the high
frequency range, indicating the presence of attacks.
Defense Effectiveness Analysis. Since the defense is
software-based, it can be implemented on any existing device
without modifying or adding any hardware, satisfying require-
ment (ii). Since the attacker cannot decrease the similarity, the
defense is robust against evasion or satisfies requirement (iii).
The other security requirements are satisfied as evidenced by
the following experiment-based evaluation.

We record 300 instances of activation keywords for iPhone
XR, including 100 from a human at a distance of 5cm, 100
NUIT-1 signals from its speaker, and 100 NUIT-2 signals
from a Samsung S9 at a distance of 5cm. (These devices are
arbitrarily chosen because all microphones follow the same
nonlinearity principle.) For speech processing, Twin is 20ms-
40ms [36]; we choose 40ms to better capture low-frequency
characteristics [36]. We set τ = 0.55. The 200 malicious au-
dios and the 100 legit command audios are waged against
our defense in the setting mentioned in Section7. Figure 9
summarizes the experimental results, showing the defense
achieves zero false-positives and zero false-negatives, satisfy-
ing requirement (i). The defense is a light-weight, satisfying
requirement (iv). In summary, the defense satisfies all of the
four requirements mentioned above.

9 Limitation

The study has several limitations. (i) The inaudibility of NUIT
attacks is rooted in the inaudibility of near-ultrasound sig-
nals. However, some young people may be able to hear near-
ultrasound sound, meaning that NUIT may be audible to them.
Nevertheless, NUIT can attack most users. (ii) The success
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Figure 9: The defense achieves zero false-positives and zero
false-negatives in 300 experiments, where τ = 0.55.

rate of NUIT would be affected by the quality of the victim
speakers as evidenced by our experiment that the LG Think
Q V35 speaker has a poor response above 16kHz and thus
cannot be exploited to wage the NUIT attack. (iii) For NUIT to
succeed, the victim speaker must be above a certain volume
level; otherwise, the attack will fail. (iv) The NUIT-1 end-to-
end unnoticeability (i.e., inaudible attack and silent device
response) is not universally true but depends on how the de-
vice response mechanism is implemented. (v) The NUIT-1
attack is inherently limited by the reaction time (< 1s), mak-
ing it impossible to inject long action commands that cannot
be split into multiple short commands. (vi) The NUIT-1 at-
tack fails to attack devices with a low-gain microphone (i.e.,
iPhone 6 Plus). (vii) The NUIT-2 attack requires a short dis-
tance between the victim speaker and the victim microphone,
especially for low-power speaker devices (e.g., smartphones.)
(viii) The NUIT-2 attack may fail when the victim’s speaker
device has the same VCS as the targeted microphone device,
because it may trigger NUIT-1 attack on the speaker device.



10 Conclusion

We have introduced NUIT, which is a new class of inaudible
attacks against VCSs and can be waged remotely. Unlike
previous inaudible attacks, NUIT exploits victim speakers to
attack victim microphones and associated VCSs. To realize
NUIT, we address three challenges and our ideas may be of
independent value. We demonstrate the feasibility of NUIT
and propose a novel and effective defense against NUIT. We
hope this study will inspire more research on VCS security,
for which the limitations of this study can be a starting point.
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3 speakers, in terms of normalized sound pressure (with the
maximum amplitude set to 0dB). We observe that different
speakers have different high frequency responses. In partic-
ular, speakers can send near-ultrasound high frequency sig-
nals (16kHz-22kHz) with some deterioration when compared
with the audible frequency range (20Hz-16kHz), meaning
that NUIT can exploit the 6kHz (i.e., 16kHz-22kHz) to wage
inaudible attacks.
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Figure 10: Empirical frequency response of COTS speakers.

Appendix B Why Isn’t DSB-AM Applicable to
NUIT?

In order to explain why the inaudible airborne ultrasound
attacks [1, 2, 4] are not applicable to the setting of NUIT, we
first review how these attacks operate. They proceed in three
steps. (i) The attacker uses the DSB-AM scheme to modulate
audible voice commands (at a frequency <16kHz) to an in-
audible ultrasound frequency (i.e., ≥20kHz). The modulated
signals contain two sidebands with a total passband band-
width of 16kHz (i.e., one sideband needs 8kHz to attack VCS
devices). (ii) The attacker emits inaudible ultrasound signals
by using one or multiple (possibly an array of) ultrasonic
transducers, which are owned and operated by the attacker, to
the victim device’s microphone. (iii) After the victim device’s
microphone receives the ultrasound signal, the microphone
automatically demodulates the ultrasound signal back to voice
command signals to activate the VCS. This is made possible
by a physical property of microphones, known as nonlinearity,
which is an inherent physical property that has been exploited
by previous inaudible attacks and is also exploited by NUIT.
Details follow.

Modern VCS uses Micro-ElectroMechanical System
(MEMS) microphones to convert acoustic vibrations or sound
waves to electrical signals. When an incoming acoustic signal,
denoted by sin, is received by the membrane and capacitor, it is
transformed into a weak electrical signal, which is then ampli-
fied by a pre-amplifier module and fed into a Low-Pass Filter
(LPF). The LPF removes inaudible noises with frequency
> 20kHz and then sends the audible signal to an Analog-
to-Digital Converter (ADC). The ADC outputs a quantized
output signal, denoted by sout , which is to be processed by
VCS. Let A1 and A2 respectively denote the coefficients of

the linear term and the nonlinear terms. When the input signal
is amplified, the nonlinearity of the microphone cannot be
ignored [37, 38]. By omitting the higher-order terms whose
coefficients are close to 0 [37, 38], the output signal becomes

sout(t)≈ A1sin(t)+A2s2
in(t),

where the term s2
in(t) contributes to the nonlinear demodula-

tion of the input signals that were modulated by DSB-AM.
Let v(t) denote the baseband signal (i.e., voice commands).
The DSB-AM modulated signal corresponding to an inaudi-
ble command sent by the ultrasonic transducer is expressed
as

sin(t) = (1+ v(t))cos(2π fct),

where fc denotes the ultrasonic carrier frequency (i.e., fc >
20kHz). After the microphone’s processing, the signal con-
tained in fc is filtered as mentioned above, meaning that the
demodulated signal received by the VCS is

sout(t) = A2(1+2v(t)+ v(t)2)/2, (4)

where the v(t) component contributes to VCS’ recognition of
sout as a legitimate voice command.

In summary, by taking advantage of a victim microphone’s
nonlinearity property, DSB-AM can be used to attack VCS
devices with a passband bandwidth of 16kHz.

Appendix C Eliminate Burst Noise

Figure 11: The cause and elimination of burst noises: (a) Raw
SUSBAM(t)winbase(t) in time domain; (b) Frequency spectrum
of SUSBAM(t)winbase(t); (c) SUSBAM(t)TK(t) in time domain;
(d) Frequency spectrum of SUSBAM(t)TK(t).

Root Cause of Burst Noises. Raw NUIT signals may incur
burst noises if replayed on COTS speakers without smoothing
steps. This phenomenon is known as spectral leakage [39,
pp. 285]. A raw SSB-AM signal has two sharp steps at its
two ends, as illustrated in Figure 11. These steps form a time-
domain rectangle window winbase. A USB-AM signal with



these steps can be expressed as:

SUSBAM(t)winbase(t) (5)
= [(1+ v(t))cos(2π f u

c t)− v̂(t)sin(2π f u
c t)]winbase(t),

where winbase is a rectangle window of length L and

winbase =

{
1 0 ≤ t ≤ L
0 otherwise.

Since the frequency spectrum of winbase is a sample func-
tion sinc( f ) [8, pp. 30], the component winbasecos(2π f u

c t)
in Eq.(5) has a spectrum of a sampling function with the
center frequency raised to f u

c , namely sinc( f − f u
c ). Since

f u
c = 16kHz in this paper, the left-side lobe of sinc( f − f u

c )
goes into the audible frequency range (< 16kHz), causing
audible burst noises.
Eliminating Burst Noises Caused by Spectral Leakage.
Having pinned down the root cause of burst noises, we pro-
pose eliminating them by suppressing the side lobe without
deforming the NUIT signal. For this purpose, we multiply the
modulated signal by a Tukey window TK, which is also known
as the cosine-tapered window [40], before embedding a NUIT
signal into a carrier audio SUSBAM(t)TK(t). Recall that

TK =


1
2 (1+ cos( 2π

α
(t − α

2 ))) 0 ≤ t < α/2
1 α/2 ≤ t ≤ 1−α/2
1
2 (1+ cos( 2π

α
(t −1+ α

2 ))) t > 1−α/2

for some 0 < α < 1 [40]. A larger α reduces more spectral
leakage, but requires a slower rolling-down (i.e., a longer
unmodulated part of the signal at each end). This means that
the attacker needs to make a trade-off between the length of
the unmodulated part of the signal and the spectral leakage:
an SSB-AM signal with long unmodulated parts at either end
may waste valuable time for injecting NUIT signals, but long
unmodulated parts make the Tukey window roll down more
slowly, reducing spectrum leakage. Our experiments show:

Insight 13 Multiplying the raw NUIT signal with Tukey Win-
dow and setting its α > 0.5 can eliminate burst noises.

Appendix D Why Are Known Defenses Inef-
fective against NUIT?

This section elaborates on why known defenses cannot defeat
NUIT. We divide known defenses into two categories: Multi-
factor defenses vs. Single-factor defenses.

D.1 Why Are Known Multi-factor Defenses In-
effective against NUIT?

At a high level, these defenses rely on the victim device’s other
hardware than the microphone (e.g. motion sensors [23], mi-
crophone array [24, 25], extra speakers [22]) to pick up the

voice commands’ features in the relevant domain (e.g. vibra-
tion spectrum [23], directionality [25], acoustic field distri-
bution [24], or user’s physical location [26]). These defenses
have the limitation that the victim VCS device must contain
such additional hardware, and are not applicable to devices
without such hardware, violating Security Requirement (ii)
specified in Section 8. That is, these defenses are ineffective
against NUIT attacks.

Specifically, Surface Vibration [23] extracts audio-induced
surface vibration features as an additional factor to defend
against audible/inaudible attacks. However, this defense re-
lies on motion sensors (e.g. accelerators, gyroscopes) to pick
up the surface vibration features, making this defense only
applicable to mobile devices and wearable devices, but not
stationary VCS devices without motion sensors (e.g. Google
Home, Alexa Echo). [24, 25] both use a microphone array to
capture the sound field and the acoustic attenuation rate to
detect attacks. However, these defenses rely on a microphone
array, which is not applicable to most mobile/wearable de-
vices that contain only one microphone (e.g., smart phone,
smart watch). [26] leverages network-connected speakers to
build a sonar-like system to detect the user’s AoA (angle of
arrival) for liveness detection. However, this sonar-like system
requires extra speakers.

D.2 Why Are Known Single-factor Defenses
Ineffective against NUIT?

We further divide single-factor defenses into two sub-
categories: hardware-based vs. software based.

Limitations of Hardware-based Single-factor Defenses.
[22] uses extra ultrasonic transducers to generate a guard
signal to actively cancel out the inaudible ultrasonic attack
signal. However, the guard signal generator is extra hardware
that is not equipped with most modern VCS devices. This
violates Security Requirements (ii) specified in Section 8.
That is, these defenses are ineffective against NUIT attacks.

Limitations of Software-based Single-factor Defenses. Ex-
isting software-based single-factor defenses detect “abnormal”
behavior in the frequency domain of audio received by a mi-
crophone to detect attack signals. These defenses satisfy the
following three Security Requirements specified in Section
8: (i), meaning few false-positives and few false-negative;
(ii); meaning achieving device-independence, and (iv); mean-
ing lightweight. However, these defenses can be evaded by
a crafty attacker, violating Security Requirement (iii). That
is, these defenses are ineffective against NUIT attacks. Details
follow.

The first approach to software-based single-factor defense
leverages speaker characteristics via the spectrum of single-
channel audio to detect the liveness of a command and thus
attack signals [41]. However, this approach fails to detect
attacks waged from good quality speakers with flat frequency



Figure 12: Experimental results explaining why the defense leveraging spectrum analysis cannot detect NUIT attacks, where
signals are modulated by SSB-AM. The experiments are conducted by using the activation keyword “Hey Siri" as an example.
(a) The spectrogram of the activation keyword from a human’s voice. (b) The spectrogram of the activation keyword from the
DSB-AM modulated ultrasonic attack signal. (c) The spectrogram of the SSB-AM modulated NUIT attack signal, which does not
contain the two features used by [2, 4, 10] (i.e., the sub-50Hz noise and the high frequency harmonics).

responses.
The second approach is to leverage microphone nonlinear-

ity. The basic idea is to find some unique properties that are
only possessed by demodulated DSB-AM signals through
microphone nonlinearity [2, 4, 10]. For example, one can dis-
tinguish legitimate commands from malicious ultrasound or
near-ultrasound commands by analyzing the distortion of
the demodulated signals from 500Hz to 1000Hz (High Fre-
quency component of speech signal) [2, 10], or by analyzing
the High Frequency (HF) component and the sub-50Hz com-
ponent of a speech signal at the same time [4]. However, a
crafty attacker can evade these defenses by removing such
distinct characteristics in the frequency domain, as mentioned
in [23]. Specifically, these defenses are only effective against
DSB-AM modulated attack signals, but not effective against
SSB-AM modulated attack signals. In what follows we exper-
imentally and mathematically show that this defense can be
evaded by NUIT.

Figure 12 compares the spectrum of the human voice with
that of DSB-AM modulated DolphinAttack signals and that
of NUIT-2 attack signals. In Figure 12, we also highlight the
two features that are exploited by the aforementioned defense:
the sub-50Hz noise occurring between 0.4-1.0 seconds and
the HF harmonics occurring between 0.8-1.2 seconds. We
observe that these two features are exhibited in the DolphinAt-
tack signal’s spectrogram (Figure 12b), but neither its coun-

terpart of the human voice nor its counterpart of NUIT signals.
This is because, as is given in section 5.1.2 NUIT signal has
nonlinear demodulation noise v2(t)+v̂2(t)

2 , which has smaller
spectrum energy than v2(t) , the noise of DolphineAttack
signal after nonlinear demodulation. This is further because
v̂2(t) is the square of the Hilbert Transform of v(t), which can
cancel out the spectrum energy of v2(t) [8, pp. 82–91].

D.3 Comparison
To summarize, we use Table 15 to compare the known de-
fenses discussed above and the one we propose, showing that
ours is advantageous since it does not require extra hardware
to implement the defense and it is also robust against evasion.

Table 15: Comparison between known defenses and ours.

Defenses
Require Extra

Hardware?
Robust Against

Evasion?

Multi-
factor

Surface Vibration [23] Y Y
MicArrayID [24] Y Y
EarArray [25] Y Y
SpeakerSonar [26] Y Y

Single-
factor

Void [41] N N
Dolphin [2] N N
Long-Range [4] N N
Surfing [10] N N
Cancelling [22] Y Y
Our Defense N Y
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