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Abstract
We prove that any element in a sufficiently large transitive finite simple permutation group is a product of two
derangements.
Dedicated to Bob Guralnick on the occasion of his seventieth birthday
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1. Introduction

The study of derangements — that is, fixed-point-free permutations — goes back three centuries to 1708,
when Montmort observed that the proportion 6(S,,) of derangements in the symmetric group S,, (in its
natural action on n symbols) satisfies 6(S,,) — 1/e as n — oo. In the 1870s, Jordan proved that every
finite transitive permutation group of degree n > 1 contains a derangement (this result is an immediate
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consequence of the orbit counting lemma). Since then, derangements have been studied extensively and
have proved useful in various areas of mathematics, including group theory, graph theory, probability,
number theory and topology. See the book [BG] for background and new results.

The classification of finite simple groups has revolutionised the study of derangements, and various
powerful results have been obtained. These include the well-known result of Fein, Kantor and Schacher
[FKS], strengthening Jordan’s theorem, that every finite transitive permutation group of degree n > 1
has a derangement of prime power order. Note, however, that there are finite transitive groups with no
derangements of prime order. The question of the existence of derangements of prime order is discussed
extensively in [BG].

In recent years, there has been considerable interest in invariable generation of groups, which has
sparked renewed interest in derangements. Recall that a group G (finite or infinite) is said to be invariably
generated by a subset S C G if, whenever we replace each s € S by any conjugate s& of s (where g € G
depends on s), we obtain a generating set for G. It is easy to see that G is invariably generated by G if
and only if whenever G acts transitively on some set X with |X| > 1, the set D(G, X) of elements of G
that act as derangements on X is nonempty. This in turn is equivalent to Ugcg H® < G for every proper
subgroup H < G. Thus finite groups are invariably generated by themselves, but some infinite groups
— for instance, any infinite group with exactly two conjugacy classes — are not.

For a finite group G and a positive integer k, let P;(G, k) denote the probability that £ randomly
chosen elements of G invariably generate G. For a subgroup H of G, let (G, H) denote the proportion
of elements of G that act as derangements in the transitive action of G on H-cosets. The study of
these probabilities is motivated by computational Galois theory; see, for example, [D], [LP], [KLSh],
[Mc], [PPR], and [EFG]. The latter two papers show that P;(S,,4) is bounded away from zero, while
P;(S,,3) is not.

It is easy to see (see for instance [KLSh, 2.3]) that

1-P((G.k) < Y (1-6(G. ),
H

where H ranges over a set of representatives of the conjugacy classes of the maximal subgroups of G.
Thus the study of derangements and their proportions has applications to invariable generation and
related topics.

A lower bound of the form 1/n on the proportion 6(G) of derangements in arbitrary transitive
permutation groups G of degree n was provided in [CC]. This bound is sharp. It is attained if and only
if G is a Frobenius group of degree n(n — 1). If n > 7 and G is not a Frobenius group of size n(n — 1)
or n(n — 1)/2, then a better lower bound of the form 6(G) > 2/n was subsequently provided in [GW],
with a number-theoretic application. In contrast to the proof of the bound 1/r in [CC], the proof of the
2/n bound in [GW] already uses the Classification of Finite Simple Groups.

The case where the transitive permutation group G is simple has been studied thoroughly in the past
two decades by Fulman and Guralnick [FG 1, FG2, FG3], proving a conjecture of Boston and Shalev that
6(G) > € for some fixed € > 0. Thus the set of derangements in such a group is a large normal subset.

Our main result is the following.

Theorem A. Let G be a finite simple transitive permutation group of sufficiently large order. Then every
element of G is a product of two derangements.

Our computations have not revealed any counterexample to the conclusion of Theorem A among
simple groups of small order, which seems to suggest it should hold for arbitrary finite simple groups. To
prove this for simple groups of Lie type, however, seems to be a daunting task. The character-theoretic
approach that we are exploiting would require substantial improvements on results of Sections 2—5
(below), which at the moment we know only for groups of large enough rank, after which it would still
leave a large number of possible exceptions, to be excluded by ad hoc arguments far beyond the current
reach of computational group theory. For alternating groups, we are able to prove that the conclusion of
Theorem A holds universally:
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Theorem B. Let G < Sym(Q) be a finite transitive permutation group. Suppose that G = A,, for some
n > 5. Then every element in G is a product of two derangements.

A key input for this paper is Theorem 6.2, proved in the companion paper [LST2], which asserts that
given r and € > 0, for every normal subset S of a sufficiently large finite simple group G of Lie type and
rank r, |S| > €|G|implies S?> D G\ {e}. The same is true if G is an alternating group of sufficiently large
degree instead of a group of bounded rank. It is not true, however, for finite simple groups in general. We
use the Frobenius formula for the number of solutions x;x, = x3, where x; belongs to a fixed conjugacy
class C;, i = 1,2, 3, to prove that certain products of two conjugacy classes cover all nontrivial elements
of G. To do this in the cases of interest, we need detailed information about the characters of classical
groups of unbounded rank to complete the proof of Theorem A in the most difficult case: when G is a
classical group of high rank over a small finite field with a subspace action. This in turn necessitates
proving various results on products of conjugacy classes in finite classical groups, which extend and
refine previous results obtained in [MSW], [LST1], [GM2], [GT3], [GLBST] and which will be useful
in other applications as well.

Our paper is organised as follows. In Section 2, we prove several results concerning character values
and products of conjugacy classes for PSL,,(¢) and PSU, (g). In Section 3, we review Lusztig’s theory
of symbols, which we use in Sections 4 and 5 to prove results like those of Section 2 in the case of
orthogonal groups. Theorem A is then proved in Section 6. Finally, in Section 7, we prove Theorem B.

2. Character estimates in groups of type A, and ’A,,

Proposition 2.1. For all integers L, there exists a constant A = A(L) > 0 such that for all integers
n > L and all prime powers g, the degree of the unipotent character of GL,,(q) associated to a partition

".2*"
whose largest piece is n — L is at least g~ 7 4.

Proof. Choosing A large enough, without loss of generality, we may assume n > 2L. The partition
A=A = Ay > --- of n associated to the character has 4| = n — L. It is well known (see, for instance,
[OL (21)] or [Mal]) that this character has degree

n J—
i (/lzi)—njzl(q b ,

Z:l (g hic — 1)
where ;. denotes the length of the hook of the k™ box in the Ferrers diagram of 1. Now, the last n — 2L
boxes in the first row of the Ferrers diagram belong to one-box columns. Therefore, their hooks have

lengths n — 2L, ..., 3,2, 1. All hooks of boxes not in the first row have lengths < L, and the hooks of
the first L boxes in the first row have length < n. We conclude that

HSP:] (qj -1) S n;'l:n_zu.] (qj -1)

xa(l) =q

l—l’lzzl(qhk -1) - qL2+Ln
As
[Ja-a>1/42q7
i=1
we have

dim y (1) > g(3) g 2L+ (n2Le))~L2Ln _ qi"zf"*ng*b“. -

Up to conjugacy, F,-rational maximal tori in the algebraic groups SL, and SU,, over a finite field F,,
are both indexed by partitions of n. We do not distinguish between the maximal torus as an algebraic
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group and the finite subgroup of G obtained by taking F,-points. If G is either SL,,(¢) or SU,(¢) and
ai,...,ay are positive integers summing to n (not necessarily arranged in order), then we denote by
a; < G amaximal torus in the class belonging to the partition with parts ay, . .., ax.

.....

Theorem 2.2. Let a > 3 be a fixed positive integer. Then there exists an integer N = N(a) > 2a’>+6 such
that the following statements hold whenever n > N, q any prime power and G = SL,(gq) or SU,(q):

() Ift1 andt] are regular semisimple elements of G belonging to tori T and T' of type T,y and T 4 n-a-1,
respectively, then th . (ti)c 2 G\Z(G).

(ii) If 1o and t} are regular semisimple elements of G belonging to tori T and T’ of type Ty -1 and
Ty.n—a, respectively, then tg . (té)G 2 G\ Z(G).

Proof. (i) Consider any g € G \ Z(G) and any y € Irr(G) such that y(#;)x(¢;) # 0. By [LSTI,

Proposition 3.1.5] and its proof, then y must be a unipotent character of the form /\(("‘k’lk). Moreover,
either k = 0 (in which case y is the principal character 1), k =a, k =n—-a—-1ork =n—-1 (in
which case y is the Steinberg character St); moreover, |y (¢1)x(¢])| = 1, and the last two characters both
have degree > C|G|/q" for a universal constant C > 0. In the terminology of [GLT, p. 3], the character
2 = x "1 has level

a < min{yn—3/4-1/2,4/(8n — 17)/12 - 1/2}
by [GLT, Theorem 3.9], 50 x2(1) > ¢g?"~®=3 by [GLT, Theorem 1.3] and
l2(8)] < (243)xa(1)!71/7
by [GLT, Theorem 1.6]. In particular,
2@/ x2(1) <243/ x2 ()" <2.43/¢%71% < 2.43/2%5 < 0.43.

On the other hand, for the latter two (large degree) characters, by [LST1, Proposition 6.2.1], we have
x(g)]/x(1) < 0.25 if we take N(a) large enough. It follows that

x()x()x(g)

> 1-0.43-2(0.25) = 0.07 > 0,
x (1)

x €lrr(G)

sog € t? - (t'1)C.
(ii) Suppose x € Irr(G) is such that x () x(z5) # 0. By [LST1, Proposition 3.1.5] and its proof,
we have

_ a-2 n-a-2
X € {lg, xa 1= ) ORI (@21 sty

moreover, |y (#2) x(#;)| = 1, and the last two characters both have degree > C|G|/q" for a universal
constant C > 0. Now we can repeat the arguments in (i) verbatim. O

We will need a similar result, using [GLBST, Proposition 8.4] and its notation. But first we prove an
auxiliary lemma.

Lemma 2.3. Let k,n € Z>| with n > max(5, 2k), and let g be any prime power. Let
_(@"=-D(@" ' -D.. (¢ )
(g-D(@@-D...(¢"-1)

and let G be a primitive subgroup of Sy with a unique minimal normal subgroup S = PSL,,(q), which
acts on {1,2,...,N} via the action of SL,,(q) on the set of k-dimensional subspaces of the natural
module Fy. Then the following statements hold for any nontrivial element g € G:
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(i) g has at most aN fixed points on {1,2, ..., N}, where
@ :=q K49~ n"D/2,

(ii) The permutation character p associated to the action of Gon {1,2, ..., N} has a unique irreducible
constituent y that extends the unipotent character y "% of PSL, (g). Furthermore,

lx(2)l q“ -1
<a+(a+l)—/——-.
Yy a+(a )qn—k+l T

Proof. (i) is a consequence of [FM, Theorem 1] (note that 9¢=("=D/2 5 1147"/2). For (ii), recall that the
restriction of p to S is Y&, x "=, where we view the unipotent character y "~") as an S-character.
The character y ("~%-¥) has degree

(¢"=D(g" ' = 1)...(¢" " - ¢")
(g-D(g>=1)...(gk=1)

which is larger than N /2. Since S < G, this implies that there is a unique irreducible constituent y of p
that extends y "~%-%) Now, p — y is a character of G of degree N — y(1), so

lo(8) —x(g)l < N - x(1) =Bx(1),
where 8 := (g% — 1)/(g"**! = ¢¥). Together with (i), this implies that

()l _ lp(e)|+1p(g) — x(8)l < aN
x(1) - x (1) ~ x(D)

as stated. O

+B8=a+(a+1)B,

Recall the notion of weakly orthogonal pairs of maximal tori in connected reductive groups,
introduced in [LST1, Definition 2.2.1].

Theorem 2.4. Ift and t' are regular semisimple elements of G belonging to tori T and T’ of type Ty—2.2
and T,_3 3, respectively, then t - (t')¢ 2 G \ Z(G) in each of the following cases:

(i) G =SL,(q), n > 33,

(ii)) G =SL,(q), n>17, g > 7%,
(iii) G =SU,(q), n >33, ¢ > 3,
(iv) G =SU,(q), n>17, g > 7%

Proof. Suppose x € Irr(G) is such that
x@®Ox () #0. 2.1

By [GLBST, Proposition 8.4], the two tori are weakly orthogonal, and hence y = y* is a unipotent
character labelled by a partition A  n. Now, as in the proof of [LST1, Proposition 3.1.5], the condition
in equation (2.1) implies that the irreducible character ¥* of S, labelled by A takes nonzero values
at permutations o1 = (1,2)(3,4,...,n) and 0 = (1,2,3)(4,5,. .., n). By the Murnaghan-Nakayama
rule [LSTI, Proposition 3.1.1] and by [L.ST1, Corollary 3.1.2], it follows that we can remove a rim
(n — 2)-hook from the Young diagram Y (1) of A, and likewise we can remove a rim (n — 3)-hook
from Y (1) (so that the remainder is a proper diagram). The list of A that a rim (n — 2)-hook can be
removed from Y () is given in [LST1, Corollary 3.1.4]. Checking through them for a removal of a rim
(n — 3)-hook, we see that A is one of the following 8 partitions:

(I’l), (1n)’ /12 = (}’l - l’ 1)’ (2’ ln—Z)’
A3 = (n—3,3), (2°,1"79), 24 := (n—4,2%), (3%,1"°9).
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Moreover, [LST1, Proposition 3.1.1] implies that

X Ox () =+l (2.2)

in all these cases. Let e = 1 if G = SL,,(¢) and € = —1 if G = SU,,(g). Using [Ca, §13.8], we can write
down the degrees of these 8 characters:

x™M(1) =1,
X(l”)(l) — qn(nq)/z’
-1,1 _ qn71+6n

x0T =g,
X<2,1”*2)(1) :qn(n—l)/Q—(n—l)II"q_1+E"’

(33)(1) = PG e (g e 2.3)
X () @-@-Dg-e

(23’1n—6) _ n(n—l)/2—(3n—9) (q —E")(q" 1—6"71)((1"75—6"75)
X (1) =q @D
K42 (1) = g6 W=D e (g e (")

(g°-€*)(q?-€)?(g~€) ’
(170 (1) = gnn=1)/2-(n-12) (g"=e") (" =" (g"*=e") (g" 5 =€)
X (D=4 @=)g=e)(g=) '

The first two characters in this list are the principal character 15 and the Steinberg character St of G.
Next, consider any g € G \ Z(G). If n > 7 and g > 7*%!, then using equation (2.2) and [LST]I,
Theorem 1.2.1], we get

3 XOxx@| 7
x(1) gt

x €lrr(G)

soget9 . (1)C.
Now we will assume n > 33. Then y; := y¥ with i = 3,4 has level

i <min{yn—23/4—-1/2,/(8n = 17)/12 - 1/2}

by [GLT, Theorem 3.9], so

Lxi(8)l < 2.43 2.4)
xi(1) = xi(D)t/n
by [GLT, Theorem 1.6]; furthermore,
x3(1) > @2 (1) > g 2.5)

On the other hand, y» := y* is a unipotent Weil character, and using the character formula [TZ1,
Lemma 4.1], one can show that

n-1 2
Lx2(8)l L4 *a 2.6)
x2(1) 9" —q
Now, if ¢ > 3, then equations 2.4-2.6 imply
n 1 2
2.43 2.43
Z i@l g™ +q T <0934, 2.7)
Xz(l) q" —q q( n—-12)/n q( n—15)/n
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If g = 2, then |x2(g)|/x (1) < 0.1252 by Lemma 2.3 applied to (k, ¢) = (3,2), whence

2

1 2.43
Z W@l a" sy 24D eany
)a(l) 9" —q gt

Thus equation (2.7) holds for g = 2 as well.
Note that the second, fourth, sixth and eighth characters in equation (2.3) have degree > ¢
Applying [LST1, Proposition 6.2.1] as in the proof of Theorem 2.2, we obtain that

n(n—l)/2—9_

2_
Ly ()] < |Cq(g)|'V? < g —2m3)/2,

and so

I)((g)I (21—n)/2
O

for all four of them. Using equations (2.7) and (2.8), we now see that

< 0.0157 (2.8)

Z i (8)] <0.9324 +4-0.0157 = 0.9952.
xi(1)

It now follows from equation (2.2) that

X x()x(g)

> 1-0.9952 = 0.0048,
x (1)

xelr(G)
soget9 . (1)C. o

In fact, for SU, (2), we will need an analogue of Theorem 2.4 for tori of types 73 ,—3 and Ty ,—4. We
begin by classifying characters of S,;, which vanish on neither of the corresponding permutations.

Proposition 2.5. Let n > 10, and let
o1 =(1,2,3)4,...,n), 0o, =(1,2,3,4)(5,...,n) €S,.

There are exactly 12 characters & = y* of S,, such that ¢ (o) (0) # 0. For each of these characters,
the product is 1, and for each such A, either A or its transpose belongs to the following set:

{(n),(n=1,1),(n=2,1%),(n —4,4), (n—5,3,2), (n — 6,2%)}.

Proof. As A + n > 10, transposing if necessary, we may assume A7 > 4. As (o) # 0, by the
Murnaghan-Nakayama rule, removal of a rim n — 3-hook leaves a Young diagram y with 3 boxes, and
it follows that this rim hook must include the last box in the first row (which implies, in particular, that
there is no other rim n — 3-hook, so the character value at o is =1). There are three cases to consider:

(i) u = (3). In this case, A must be (n) or (n —k —4,4,1%) for0 < k < n - 8.
(ii) g = (2,1).Inthis case, A must be either (n—1, 1), or (n—3, 3) or (n—k—5,3,2, 1¥) for0 < k < n—8.
(ili) u = (13). In this case, A must be (n —2,1%), (n —3,2,1), (n —4,2%) or (n — 6 — k, 23, 1%), where
0<k<n-8

As ¢ (0n) # 0, A must have a rim n — 4-hook whose removal leaves a Young diagram, which is a
4-hook. In case (i), this is possible for (n) and possible for (n — k — 4, 4, 1¥) if and only if k = 0. In case
(ii), this is possible for (n—1, 1), impossible for (n— 3, 3) and possible for (n—5-k%, 3,2, 1%) if and only
if k = 0. In case (iii), this is possible only for (n—2, 1?) and (n—6, 2%). In every case where it is possible,
the rim hook contains the last box in the first row and is therefore unique, implying that y(07) is+1. O
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Recall [LSTI, Definition 4.1.1], which states that the support supp(g) of an element g in a finite
classical group CI(V) is the codimension of the largest eigenspace of g on V ®g, F;.

Theorem 2.6. The following statement holds for G = SU,(2) with n > 43. If t and t’ are regular

semisimple elements of G belonging to tori T and T’ of type T,—3 3 and Ty,_4 4, respectively, and g € G
has supp(g) > 2, then g € t9 - (+')°.

Proof. Suppose y € Irr(G) is such that
x@®x (') #0. (2.9)

By [GLBST, Proposition 8.4], the two tori are weakly orthogonal, and hence y = y* is a unipotent
character labelled by a partition A + n. Then by Proposition 2.5, A is one of the following 6 partitions:

(n), A= (n=1,1), 2:= (n=2,1%),
Ag = (I’L—4,4), A5 = (n—5,3,2), Ag = (n—6, 23)

or their dual partitions 4;, 7 < i < 12; moreover,
X (Ox (') = £1 (2.10)

in all these cases. Let y; := X/li fori > 2. Since n > 43, y; withi =4,5,6 haslevel i < \/n—3/4-1/2
by [GLT, Theorem 3.9], so

Lxi(g)l < 2483 2.11)
xi(1) = xi(DHi/n
by [GLT, Theorem 1.6]; furthermore, with g := 2, we have
xi(1) > g3 2.12)

by [GLT, Theorem 1.2]. On the other hand, y; is a unipotent Weil character, and using the character
formula [TZ1, Lemma 4.1] and the assumption supp(g) > 2, one can show that

4" +q* 5 @l ¢ +q?
x1(g)] < ——— < q¢"™, < ) (2.13)
q+1 x1(1) 9" —q

Next, as shown in [Ma2, Table 7.1], x2 = x1x; — lg With x2(1) > qzn_“. Together with equation (2.13),
this implies that
2n-6
1
(gl < % = —. (2.14)
x2(1) ¢t g

Since n > 43, it now follows from equations 2.11-2.14 that

n-2

,- 3 2.43
i@l _ 4" +q s+ Z — T <0.899. (2.15)

. — P72
i=1.2.4,5.6 xi(1) -4 9 43 qlin=i==3n

Consider any j with 7 < j < 12. Then y; extends to the unipotent characters ¢ ; of GU,,(¢q) labelled
by the same partition A, which is dual to (n) or one of the partitions A; with i € {1,2,4,5,6}. By
[GLT, Proposition 4.3], ¢ is the Alvis-Curtis dual of the unipotent character of GU,,(g) labelled by
the latter partition. By explicitly writing down the degrees of x; with 7 < j < 12 using [Ca, §13.8],
or by applying [Al, Corollary (3.6)], we can check that x;(1) = ¢;(1) > g"("=1/2=14 Using [LSTI,
Proposition 6.2.1] as in the proof of equation (2.8), we have

I (@1/x(1) < g~ 3Y/2 <0.016
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for all y; with 7 < j < 12. It now follows from equations (2.10) and (2.15) that

Z X(t))((t’))((g)

>1-0.899 - 6-0.016 = 0.005,
oy

xelr(G)

sog et9 . (1)C. O

3. Other classical types: symbols, hooks and cohooks

To treat the unipotent characters of finite simple groups of orthogonal and symplectic types,
we use Lusztig’s theory of symbols [Lu2]. For a subset X C Zsg, we define the shift

S(X) ={0}U{x+1 | x € X}.If X is finite, we define the inefficiency of X to be the nonnegative integer

i(X) =—(|}2(|) + Zx. (3.1)

xeX

Thus, i(S(X)) = i(X). Every finite X is uniquely of the form & (Xj) for some Xy (possibly empty)
that does not contain 0. For such an Xy, we have i(Xo) > [Xo| by equation (3.1). Hence, subject to
i(X) < j for any fixed j, we have ¥ ex, x < (f;'l) again by equation (3.1), so there are only finitely
many, indeed at most 2/*D/2 possibilities for Xy. More generally, for any given j, k, the number of
X with i(X) < j and | X| < k is at most

itk (k=1)/2 (3.2)

(since D) ex x < j + k(k —1)/2 by equation (3.1)).

A d-hook in X is an element x € X such that x — d € Z>( \ X; in what follows, we also label this
hook by (x — d, x). If x is a d-hook of X, then removing the d-hook x means replacing x by x — d in X.
The resulting set X’ satisfies {(X’) = i(X) — d. In particular, if X contains a d-hook, then i(X) > d. If
x—d e X and x ¢ X, then adding the d-hook x to X means replacing x — d with x.

We recall that a symbol is an ordered pair (X, Y) of finite subsets of Z-(. We define an equivalence
relation of symbols by imposing the relations (X,Y) ~ (¥, X) and (X,Y) ~ (S(X),S(Y)) and taking
transitive closure. If X =Y, the symbol is degenerate. We will say a symbol is minimal if 0 ¢ X NY; in
particular, every symbol is equivalent to at least one minimal symbol. The rank of a symbol is given by

VZ_[MJ+Zx+2y=i(X)+i(Y)+[MJ’ (3.3)

4 xeX yey 4

so equivalent symbols have the same rank.

For any ¢, the unipotent representations of orthogonal and symplectic groups of Lie type of rank r
for specified g are given by equivalence classes of symbols of rank r; classes of symbols with |X| — |V
odd correspond to representations of groups of type B, and C,, and those with |X| — |Y| divisible by
2 but not 4, correspond to representations of groups of type 2D,. Those with |X| — |Y| divisible by 4
correspond to representations of type D,., with the additional proviso that each degenerate symbol class
— that is, where X =Y — corresponds to a pair of unipotent representations for groups of type D,.. We
note that the total number of minimal symbols (X,Y) of rank < s (regardless of congruences modulo 4
of the defect || X| — |Y]|) is at most

A(S) = 25s(s+1)/2+1. (3.4)

Indeed, since the symbol is minimal, we have that either 0 ¢ X or O ¢ Y. Suppose for instance that
0 ¢ X. Then |X| < i(X) < s, and there are at most 2°5*1)/2 possibilities for X by equation (3.2). Next,

https://doi.org/10.1017/fms.2022.69 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.69

10 Michael Larsen, Aner Shalev and Pham Huu Tiep

equation (3.3) shows that i(Y) < sand s > | (|1X| - |Y|)?/4] = (|Y| - |X])?/4 - 1/4, so
Y| < |X]|+ | Vds+1] <2s+1.

Hence the number of possibilities for Y is at most 25+5(25*1) by equation (3.2).

By a d-hook of a symbol (X,Y), we mean either a d-hook of X or a d-hook of Y. By a d-cohook of
(X,Y), we mean either an element x € X suchthatx —d € Zsg\Yory € Y suchthaty —d € Z-¢ \ X;
again, we will sometimes label this cohook by (x — d, x). Removing a d-cohook x € X from the symbol
(X,Y) means removing x from X and adding x — d to Y and likewise for removing a d-cohook y € Y;
from the middle term of equation (3.3), it is clear that either way, the effect is to reduce the rank of the
symbol by d. Likewise, if x —d € Y and x ¢ X (respectively, y —d € X and y ¢ Y), we can reverse this
operation and add the cohook x (respectively, y) to the symbol (X,Y).

We also note that, for a fixed k € Z>; and a fixed minimal symbol A = (X,Y) of rank r > k, both
the number of (r — k)-hooks in A and the number of (r — k)-cohooks in A are at most

A'(k) = (4k + 2)A(k) +2. (3.5)

Indeed, let’s consider the case of hooks, the other case being essentially the same. It suffices to show
that the number of (r — k)-hook (x, y) with y = x + (r — k) € X is at most (2k + 1)A(k) + 1. Indeed, if
x > 0, then removing the hook yields a new symbol A’ = (X’,Y) of rank k, which is also minimal. Now
A is obtained from A’ by adding the hook (x, y) in X’, and, given A’, there are at most | X’| < (2k + 1)
possibilities for x; thus the total number of such possibilities is < (2k + 1) A(k) by equation (3.4). Now
we add 1 to the bound to account for the possible (r — k)-hook (0,7 — k) in X.

Next we recall that for G, an orthogonal or symplectic group (of simply connected type) defined
over Fy, the degree of the unipotent representation of G labelled by the symbol S = (X,Y) is given by

a(s) Gly (3.6)
26(9) H(b,c) hook(q67b - 1) H(b,c) cahook(q67b + 1)

for some integers a(S), b(S) > 0 (see [Mal, Remarks 3.12 and 6.8]).

q

Proposition 3.1. For k, k' € Z5,, let
B(k, k') := A(k + k") + (4k + 2k’ + 3)A(k) + (4k’ + 2k + 3)A(k'),

with A(k) as defined in equation (3.4). Then the following statements hold:

(1) If k # k’ are fixed, there exists a bound By < B(k, k') such that for each r, there are at most B}
minimal symbols of rank r that contain both an (r — k)-hook and an (r — k’)-hook.
(ii) If k # k’ are fixed, there exists a bound B, < B(k, k’) such that for each r, there are at most By
minimal symbols of rank r that contain both an (r — k)-cohook and an (r — k’)-cohook.
(iii) Ifk, k’ are fixed (and possibly equal), there exists a bound B3 < B(k, k’) such that for each r, there
are at most Bz minimal symbols of rank r that contain both an (r — k)-hook and an (r — k’)-cohook.

Proof. We treat only the case of two hooks, the other two cases being essentially the same.

If at least one of the hooks is of the form (x1,x;), where x; > 0, then removing that hook from (X, Y)
leaves a minimal symbol (X’,Y’) of rank k” or k, of which there are at most A(k’), respectively A(k),
possibilities. In the first case, the proof of equation (3.4) shows that |X’| + |Y’| < 3k’ + 1; moreover,
(X,Y) is obtained from (X’,Y’) by adding an (r — k)-hook, the number of which is at most |X’| + |Y’|.
Hence the number of (X, Y) arising this way is at most (3k"+1)A (k") + (3k+ 1) A(k). We may therefore
assume without loss of generality that the two hooks are (0,7 — k) and (0,7 — k’).

By equation (3.4), there are at most A (k +&”) minimal symbols of rank < k +k’. We may now assume
that r > k + k’, so it is impossible to remove both an (r — k)-hook and an (r — k’)-hook (removing
these two hooks would yield a symbol of rank r — (r — k) — (r —k’) = k + k' — r < 0, which is absurd).
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This means the two hooks (0,7 — k) and (0,r — k”) must be both in X or both in Y. Without loss of
generality, we may assume both hooks are in X. Now, all integers in [1,r — k — k” — 1] must belong to X
since it is impossible to remove the two hooks (0, r — k”) and (i, — k) from the rank r symbol (X,Y)
for 1 <i <r -k -k’ (removing these two hooks would yield a symbol of rank k + k" — r +i < 0).
Likewise, [0,r — k — k’ — 1] C Y since it is impossible to remove both the hook (0,r — k’) and the
cohook (i, — k) from (X,Y).

Removing (0, r — k) from (X, Y) leads to a symbol (X}, Y}) of rank k, where both X; and Y} contain
[0,7r —k -k’ —1] but r — k ¢ X;. It must therefore be of the form (S/(X,), S/ (Y>)) for some integer j in
the interval [r —k — k' — 1,7 — k — 1] and some minimal symbol (X3, Y2) of rank k. Equivalently, (X, Y)
is obtained from (X>, Y>) by shifting by j and then adding the (r — k)-hook (0, r — k). The number of
possibilities for (X5, Y>) is at most A(k), and the number of possibilities for j is at most £’ + 1. Counting
the symmetry of X and Y and using k < k’, we see that the total number of possibilities for (X, Y) is at
most B(k, k”). (Note that in the case of (iii), we have 4 possible locations, in X or in Y, for the hook and
the cohook, and this leads to an increase in B(k, k") to account for this.) O

Every conjugacy class of maximal tori of a group of type B, C,, D, or 2D, can be identified with a
conjugacy class in W, = C, ¢ S,. Any a € W, is determined up to conjugacy by the cycle lengths of its
image in S, and the sign +1 attached to each cycle. Therefore, up to conjugacy, such a maximal torus
is determined by a partition of  and a sign for each part.

Proposition 3.2. Let k and k' be fixed integers. Let

.....

with €;, €] = +1, be a pair of weakly orthogonal maximal tori of an orthogonal or symplectic group G
of rank r defined over F,, and let t,t' € G denote regular elements of T, T’, respectively. Suppose that

r—di=k, r=di=k', (e,k)# (e,k’).

Then the following statements hold:

(i) The number of irreducible characters y of G for which x (t) x (t') # O is bounded by 2B(k, k"), with
B(k, k') as defined in Proposition 3.1.
(ii) Assume in addition that
(a) either at least one of {€1, . ..,€p} is =1 or at least one of {d, . ..,d)} is odd, and
(b) either at least one of {e], .. ., 61’7'} is —1 or at least one of {d/, . .., d;,} is odd,
if G is of type D,. Then the values |y (t) x (t')| are also bounded effectively and independently of
anything but k and k’; see equation (3.7).

Proof. As T and T’ are weakly orthogonal, by [LST1, Proposition 2.2.2], we need only consider
unipotent characters y. Any such character is associated with an equivalence class of symbols of rank r.
Let (X,Y) represent such a class. By [LLM, Theorem 3.3], the values y(¢) and y(¢’) are independent of
the choices of ¢ and #’; moreover y(f) = 0 unless (X,Y) has a di-hook assuming €; = 1, respectively
a dy-cohook assuming €; = —1. Similarly, y (') = O unless (X,Y) has a d{-hook assuming €/ = 1,
respectively a d{-cohook assuming €; = —1. By Proposition 3.1, the number of possibilities for (X,Y)
is bounded by B(k, k’); in particular, the number of possibilities for y is bounded by 2B(k, k’). By
equation (3.5), (X, Y) has at most A’(k) d;-hooks and at most A’(k”) d}-cohooks. Removal of such a
hook or cohook leads to a unipotent (or sum of two unipotent characters in the degenerate case) character
of a Levi subgroup of G of semisimple rank k or k’, evaluated at the same regular elements ¢ and #’,
and these values can be bounded purely in terms of k and k’, say by 2W (k), respectively 2W (k”), for
the largest order W (k) and W (k’) of Weyl groups of such ranks; see [GM1, Theorem 5.4] and [LTT,
Proposition 5.2]. Note that the factor 2 is added to account for the degenerate symbols obtained after
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a removal. Hence, [LLM, Theorem 3.3] implies that the character values y(¢) and y(#’) also belong to
finite sets independent of r, and

@ x ()] < AW (k)W (k") A" (k) A’ (K”) (3.7

if none of (X,Y) is degenerate. In the case some (X, Y) is degenerate, which can happen only when G
is of type D, then our extra assumption ensures that both 7 and ¢” are nondegenerate. As mentioned in
[LM, §3.4], the two unipotent characters corresponding to a degenerate symbol take the same values
at nondegenerate regular semisimple elements, and their sum is still governed by [LM, Theorem 3.3],
whence our statement follows in this case as well. O

4. Character estimates in groups of type D, and °D,,

Lemma 4.1. Let g be an odd prime power, and let G = Q5 (q) withn > 4 and € = +. Let
T < SO%,(q) x SO4, (q)

be a maximal torus of type T;f in Gwithl < a < bandn = a+b. Then we can find a regular

semisimple element g = diag(u,v) € T withu € SOS, (q) having order q¢* —a and v € SOfb (q) having
order g — B.

Proof. First we consider the maximal torus T = (x) = Cya_o in SOF, (¢). If @ = + or if & = — but
2 { a, then, as shown in [TZ2, Lemma 8.14], T N QY (g) = (x?). On the other hand, if @ = — and 2|a,
then as 1 = (—=1)4@~D/2 by [KL, Proposition 2.5.13], we have SO5., (q) = (z) x QY (g) for a central
involution z, which is contained in T". Since Cga_q = Cga_q)j2 X C2 with 2 { (g% — @) /2, we again
see that T, N QS (q) = (x?).
B ~ 2 .2 a a Oﬁ

Let 7, = (y) = C,»_g. By the above, x*,y° € G, but x € SOj, (q) \ QF (¢) and y € SO;, () \
ng (q). We can now choose g = xy. As ¢ > 3 and a < b, g has a simple spectrum acting on the natural
module V = Fé” of G and so is regular unless (g, @,a) = (3,+, 1). But even in this exceptional case,
CSO(V®IT-?4) (g)° is still a torus of type T n—1, S0 g is again regular. m]

Proposition 4.2. Let G = Spinj, (q) with n > 4 and € = +. Then the following statements hold.:

(i) If2|n and € = —, then the pair of maximal tori T,; and T;fl,l is weakly orthogonal.

(i) Ifa € Nandn > 2a +?2, then the pair of maximal tori T,,”,, and Tn_—’z_zil,a +1 Is weakly orthogonal.

Proof. We follow the proof of [LST1, Proposition 2.6.1]. In this case, the dual group G* is the adjoint
group PCO(V)°, where V = ]FEI" is endowed with a quadratic form Q of type €, G* = H/Z(H), and
H =CO(V)° :=COy,(q)° (as defined on [Ca, pp. 39, 40]). Consider the complete inverse images in H
of the tori dual to the given two tori, and assume g is an element belonging to both of them. We need to
show that g € Z(H). We will consider the spectrum S of the semisimple element g on V as a multiset.
Let y € F}, be the conformal coefficient of g — that is, Q(g(v)) = yQ(v) forallv € V.

In the case of (i), S can be represented as the multiset X but also as the join of multisets Z LI T, where

n-1 n-1
X ={x,x?,...,x9 ,yx_l,yx_",...,yx_" 1,
-2 _ _ _gn2 _
Z:={z,z9,...,29 ,yz L yz 9, .y 9Y, T={t,yt""}
— . n n—-1_ .
for some x, z,7 € Fys with x?"*! =y = 19*! and 24" ! = 1. Since |X| = 2n > |Z|, we may assume that

x € X NT, whence x4"*! = x2*! = . As 2|n, it follows that

x4 = (ya @ =D/ @)
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whence y = x%. In turn, this implies that x?*! = x? — that is, x € F;. Since we now have § = X =
{x,x,...,x},g € Z(H).
~———

2n
In the case of (ii), S can be represented as the joins X LY and Z LI T, where

n-a-1

X = {x"xq"‘"aniail”yx_17,}/x_q,...,’)/x_q }’
a-1 _ _ e

V= {nyy® Ly Thoyy oy Y

Z = {Za Zq, e ,Zq" a ,yZ_l,yZ_q’ o ,’)/Z_qn a }’

To={t,19,. . 19yt~ oy, .. yt79"}

1 qn—a—l+1 a+l+E

for some x,y,z,1 € Ff with x¢"“* = y = ¢
yiite = 1= 19" +€ if € = . Since |X| =2(n—a) > |T| = 2(a +1), we may assume thatx € X N Z,
whence x4+ = x4"“7'+1 = 5 Tt follows that

,and y9°*€ = y = 14 if € = + and

x4 Z )

whence x € ]FZ;, v = x?,and X = {x,x,...,x}, Z = {x,x,...,x}. This also implies that x € T, whence
N e’ ——
2(n-a) 2(n—a-1)
T={x,x,...,x}and g € Z(H). O
[ —
2a+2

Proposition 4.3. Let G = Spinj, (q) with n > 4 and € = +. Then the following statements hold.:

(i) Suppose 2|n and € = —. Then there exist regular semisimple elements x € T,, and y € T | such
that x% - y© 2 G \ Z(G).

(ii) Suppose a € N, a > 3 and n > 2a + 2. Then there exist regular semisimple elements x € T,”%,,

yeT * Las1 and an explicit constant C = C(a) such that if g € G has supp(g) > C, then

G G

gex” - y“.

Proof. (i) As2|n 2 4, by [Zs], we can find a primitive prime divisor £», of > — 1 and a primitive prime
divisor £, of g"7" — 1. Itis straightforward to check that 7, contains a regular semisimple element x
of order divisible by ¢»,, and likewise T 71, contains a regular semisimple element y of order divisible
by ¢,-1 (with the projection onto 7 SO (¢) having order g + 1, which is possible by Lemma 4.1).

Suppose y € Irr(G) is such that y(x) X(y) # 0. By Proposition 4.2(ii), the pair of tori in question is
weakly orthogonal, and hence y is unipotent, labelled by a minimal symbol

S=(X,Y), X=(x1<x2<...<xx), Y=(1<y2 <...<y).

Now, if the denominator of the degree formula in equation (3.6) is not divisible by £»,,, then y has £5,-

defect 0, so y(x) = 0. Similarly, if the denominator of equation (3.6) is not divisible by ¢,,_, then y has

{n—1-defect 0, and y (y) = 0. Thus the denominator in equation (3.6) is divisible by both £,,, and ¢,,—;.
Observe that if x; = 0, then by equation (3.3) and the minimality of S, we have

_ _7_72
n>xk+Z(z—1)+Z (k+l)(k+l 2 xk+(k ;2),

so xx < n, with equality precisely when

X=(0,1,....k=2,n), Y=(1,2,...,0), k=1+2. 4.1)
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On the other hand, if x; > 1, then

k-1 l 2
ank+Zi+Z(j—l)—w =Xr + (k 41) > xp+1,

so xx < n — 1. Thus we always have x; < n and, similarly, y; < n. Hence, the condition that the
denominator of equation (3.6) is divisible by ¢, implies that there is an n-cohook n, where we may
assume that n € X and O ¢ Y; in particular, equation (4.1) holds. Now, if / = 0, then k =2 and y = 1.
Assume [ > 1. Since 2|n, we must also have an (n — 1)-hook ¢ with0 < c—-(n—-1) < 1. Ask > 3,
we have 0,1 € X by equation (4.1), so ¢ ¢ X —thatis,c e Yandc—-(n—-1) ¢ Y.Butl € Y, so
c=n-—1¢€Y.Furthermore, k —2 < n—1,and hence k < n+ 1 and ! < n — 1 by equation (4.1). It
follows that [ = n — 1, so y = St, the Steinberg character.

We have shown that 15 and St are the only two characters in Irr(G) that are nonzero at both x and y.
Now, if g € G is semisimple, then g € x© - y© by [GT2, Lemma 5.1]. If g is not semisimple, then
St(g) = 0, whence

Z XX Mx(e) _
x €lrr(G) X( 1)
so g € x¢ - y© as well.

(i) The assumption a > 3 ensures that regular semisimple elements x € 7,,°,%, and y € T 1 asl
exist. Suppose y € Irr(G) is such that y(x) y(y) # 0. By Proposition 4.2(ii), the pair of tori in question
is weakly orthogonal. Hence, by Proposition 3.2, the number of such characters y is at most C; = Ci(a),
and for any such character, |y (x) y (y)| < C = C,(a) for some explicit functions C;(a) and C;(a) of a.
Now, choosing C = (481log, (C) Cz))z, for any g € G with supp(g) > C, we have by [LST1, Theorem
1.2.1] that

Z x)x(»x(g) S 1- Ci1C,
x(1) q«/6/481 -

xelr(G)
sog ex%.y0. O

5. Character estimates in groups of type B,

In this section, we handle the odd-dimensional orthogonal groups over F,, for which we also allow g to
be even; hence it gives the desired result for symplectic groups in even characteristic. We will need a
slight generalisation of the notion of weakly orthogonal tori [MSW], [LST1, Definition 2.2.1]:

Definition 5.1. We say that two F-rational maximal tori 7 and 7’ in a connected reductive group G /F
are centrally orthogonal if

T*(F) N T"*(F) = Z(G* (F))

for every choice of dual tori 7* and 7’* in the dual group G*. This depends only on the types of T and 7".
The following is an analogue of [LST1, Proposition 2.2.2]:

Proposition 5.2. Let T and T’ be centrally orthogonal maximal tori in a connected reductive group
G(F), andlett € T andt’ € T’ be regular semisimple elements of G (F). If x is an irreducible character
of G(F) such that x(t)x(t’) # O, then there is a (degree 1) character @ € Irr(G(F)) such that y« is
unipotent.

Proof. By [MM, 5.1}, if s € G(F) is semisimple and y (s) # 0, then there exist a maximal torus T and a
character 6 € Irr(7 (F)) such that Ry ¢(s) # 0, and " belongs to the conjugacy class C,. By [DL, 7.2],

https://doi.org/10.1017/fms.2022.69 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.69

Forum of Mathematics, Sigma 15

this implies that s lies in the G (FF)-conjugacy class of some element of T'(F). If y (¢) ¥ (¢') # 0, then there
exist G*(IF)-conjugate elements 6} and 63 belonging to tori 7* and 7", which are dual to tori T and 7’
containing ¢ and ¢’, respectively. As T* and 7" intersect in Z(G*(F)), this means 67,63 € Z(G*(F)),
and the statement follows from [DM, Proposition 13.30]. O

Proposition 5.3. The following statements hold for G = SO,,+1(q) withn > 3:

(1) Define k := (=1)". Then the pair of maximal tori T,;* and T:j,l is weakly orthogonal when 2|q
and centrally orthogonal if2 { q.
(ii) If2 ¥ n > 5, then the pair of maximal tori T,, and T;i;,z is weakly orthogonal when 2|q and
centrally orthogonal if 2 1 q.
1 n = 8, then the pair of maximal tort 1 ", ., an ’ 4 2 LS weakly orthogonal when 2|q an
(i) If 2 8, then th j imal tori T, , dT:;3' ki h | when 2 d
centrally orthogonal if2 1 q.

Proof. In this case, the dual group G* is Sp(V), where V = IF?I" is endowed with a symplectic form.
Consider any g in the intersection of dual tori, and let S denote the spectrum of g on V as a multiset.
In the case of (i), S can be represented as the multiset X and also as the join of multisets Z LI T, where

_n-1

n-1 -1 _
X ={x,x?,..., x4 x ' ,x9,...,x1

}7
2 -1

n- n-2
Z:={z,z9,...,29 779, 79}, T={t1"},

for some elements x, z,t € PZ with x4"+% = an_l_K =19+ = 1. Since |X| =2n > |Z|, we may assume
that x € X N T, whence x"* = x9*! = 1. As (g + 1)|(¢" — «), it follows that x> = 1 = x4~ — that is,

X € IF‘;. Since we now have S = X = {x, x,...,x}, we conclude that g € Z(G").
[ Y

2n
In the case of (ii), S can be represented as the multisets X and Z U T, where

n-1 —1 n—1

X={x,x?,...,x1 x ' ,x9,...,x17 },

Z:={z,29,..., 20" oy 24,y Y, T o= {609, 7 9)

S 2 2 .
for some elements x, z, 7 € Fy; with x?"* = 74" = 147+ = 1 Since |X| = 2n > |Z|, we may assume

that x € X N T, whence x4 *! = X = 1. As 2 t n, it follows that x2*! = 1 = x2, whence x € IF;‘
X ={x,x,...,x}and g € Z(G").
~———
2n
In the case of (iii), S can be represented as the joins X LY and Z U T, where

X = {x,x9, .., x0"7 x7x, x Ty Y =y, y, vy,

n-4 n—4 2 2
Z:={z,29,...,z9" 77z, ...,z T o= A{t,19,07 1,179, 179},
— . n-2 2 n-3_ 3_ .
for some x,y,z,7 € F with x4" *1 = y¢+! = 24" "1 = 44°~1 = 1. Since |X| = 2n -4 > |T| = 6,
n-2 n-3 .
we may assume that x € X N Z, whence x9" +! = x4" "~ = 1. As 2|n, it follows that x?*! = 1 = x?,
whence x € ]FZ; and X = {x,x,...,x}, Z = {x,x,...,x}. This also implies that x € T, whence
[ — —_————
24 216
T ={x,x,x,x,x,x} and g € Z(G"). m]

In what follows, for any n > 3, we note that if 2|g, then SOy,41(g) = Sp,,(¢) is simple, whereas if
2 ¢ g, then [G,G] = Qy,,1+1(q) is simple and has index 2 in G = SOy,41(g); let sgn denote the linear
character of order 2 of G in the latter case.

Proposition 5.4. There is an explicit constant C € N such that the following statements hold for
G =SO0y,+1(q) with2|n > C:
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(i) There exist regular semisimple elements x € T, N [G,G] and y € T;fl , N [G,G] such that
x9-y9 =[G,G] \ {e}.
({i) Ifin addmon 2 t q, then there exists a regular semisimple element y’ € T 1 \ [G, G] such that
x9-(y)9=G\[G,G].

Proof. (a) As2|n > 4, by [Zs], we can find a primitive prime divisor ¢5,, of ¢*" — 1 and a primitive prime
divisor £,_; of g"~! — 1. It is straightforward to check that 7, contains a regular semisimple element
x € [G, G] of order ¢5,,, and likewise T "'} contains a regular semisimple element y € [G, G]|NQ3 (q)
of order divisible by £,,_; (with the prOJectlon onto 7] = SO; (¢) having order g + 1, which is possible
by Lemma 4.1). If 2 { g, then by changmg yto have the ﬁrst projection onto SO3, ,(g) of order £,_1,
we obtain a regular semisimple element y’ € T [G,G].

(b) Suppose y € Irr(G) is such that/\/(x))((y) ¢ 0or y(x)x(y") # 0if 2 4 q. By Proposition 5.3(i),
the pair of tori in question is centrally orthogonal, and hence either y or y - sgn is unipotent by
Proposition 5.2. Without loss, we may assume that y is unipotent, labelled by a minimal symbol

S=(X,Y), X=(x1<x2<...<x), Y= <y2<...<y),

where k,l € Zso and 2 ¢ (k — ). Now, if the denominator of the degree formula in equation (3.6) is not
divisible by £»,,, then y has £5,,-defect 0, so y(x) = 0. Similarly, if the denominator of equation (3.6) is
not divisible by ¢,,_1, then y has ¢,,_|-defect 0 and y(y) = 0, as well as y(y") = 0 when 2 { g. Thus the
denominator in equation (3.6) is divisible by both ¢,, and £,,_;.

Observe that if x; = 0, then by equation (3.3) and the minimality of S, we have

_1)2 g L
n>xk+Z(l_1)+Z (k+1 D7 4 ! 1)4(k 1-3)

so x; < n, with equality precisely when
X=(0,1,....k-2,n),Y=(1,2,...,1), k—I=1or3. 5.1

On the other hand, if x; > 1, then

k+l k-D%-1
n>xk+Zl+Z(] ( i :xk+( 4) > Xk,

so xx < n, with equality precisely when
X=(L2,....k=-1,n),Y=(0,1,...,01-1), k=1 ==1. (5.2)

Thus we always have x; < n and similarly y; < n. Hence, the condition that the denominator of
equation (3.6) is divisible by ¢, implies that there is an n-cohook n, whence we may assume that
n=x, € X and 0 ¢ Y. This rules out the case x; > 1, whence equation (5.1) holds. Now, if k = 1, then
I=0and y = 1g.If k =2,thenl{=1,5 = (0’1"), and x(1) = (¢" — 1)(¢" + q)/2(g - 1); denote this
unipotent character by y.

Assume k > 3. Since 2|n, we must also have an (n — 1)-hook c with0 < c—(n—1) < 1. Ask > 3,
we have 0, 1 € X by equation (5.1),s0 ¢ ¢ X —thatis,c € Y andc — (n—1) ¢ Y. In particular, / > 1,
andhence 1 e Y andc =n—1 €Y. Furthermore, k —2 <n—1,andhence k <n+1but/ <n-1.By
equation (5.1), we have

o either (k,[) = (n+1,n),S = ( """ " l") x = St, the Steinberg character, or
o (k,)=(n,n-1),and § = ( """ =2, " ~"); denote this unipotent character by y».

.....
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(c) We have shown that, up to tensoring with sgn when 2 ¢ ¢, yo = 1, St, x1 and x» are the only four
characters in Irr(G) that are nonzero at both x and y, respectively at x and y’ when 2 ¢ g. It is clear that

Xo(®)xo0(y) = xo(¥)xo(y") =1, [St(x)St(y)] = [St(x)St(y")] = 1. (5.3)

To bound |y (x)x1(y)| and |y1(x)x1(y")|, we follow the proof of [LST1, Proposition 3.4.1], which
relies on the main result of [Lul]. Recall that y is labelled by § = (})f ) = (O’I"). Let Z; = {0, 1, n} be the
set of ‘singles’ and Z, = X NY = (. Then the family F (1) consists of all irreducible characters s
of the Weyl group W,, labelled by symbols S" = (’;) of defect 1, which contain the same entries (with
the same multiplicities) as S does (compare [Lul, Cor. (5.9)]. For the given S = (0’1") (or in fact for all
symbols of odd defect with the same set Z; = {0, 1, n} of ‘singles’), we have the following possibilities
for S” and the corresponding pair (A’, ") of (possibly empty) partitions:

S’ = (l(,)n)’ (/ll,/.l,) — ((1,}’1 _ 1>, (0))’
s = (7). () = ((n=1), (1)),
s = (%)), (. u) = ((0), (n)).

Let w,w’ € W, correspond to x, respectively to y and y’. Recalling the construction of g [LSTI,
(3.2.1)], we find that

d/S'(W) =-1,0, -1, WS’(W/) =0, -1, -1,
respectively. It follows from [Lul, Cor. (5.9)] that

@<L b=l < 1. (5.4)

To bound the character values for y», we use the Alvis-Curtis duality functor D g, which sends any
irreducible character of G to an irreducible character of G up to a sign (compare [DM, Corollary 8.15]).
Using Theorems 1.1 and 1.2 of [Ng], we see that y; is the unique unipotent character of its degree,
so, by inspecting [ST, Table 1], y; is a constituent of the rank 3 permutation action of G on singular
1-spaces of its natural module; also, y is irreducible over [G, G]. Hence y| is also a constituent of the
permutation character 1¢, where B is a Borel subgroup of G, and the same is true for 1 and St. For
each irreducible constituent ¢ of 1¢, there is a polynomial d »(X) € Q[¢] in the variable ¢ (the so-called
generic degree; compare [Ca, §13.5], which depends only on the Weyl group of G but not on g) such that
@(1) = dy(q). According to Theorem (1.7) and Proposition (1.6) of [Cu], D permutes the irreducible
constituents of I(B;. Moreover, there is an integer N such that

dpe (o) (1) =tNdy(t7h). (5.5)

It is well known (see, for example, Corollary 8.14 and Definition 9.1 of [DM]) that D¢ interchanges
1 and St. Since St(1) = q”z, (5.5) applied to ¢ = 1 yields that N = n?. Applying (5.5) to ¢ = x1, we
now obtain that

D)) = ¢ 2y (1). (5.6)

Furthermore, in the case of a rational torus 7, D7 (A1) = A for all A € Irr(T); see [DM, Definition
8.8]. Applying this and [DM, Corollary 8.16] to T = C¢(x), we now see that

D (x)(x) = £(Dr o Resf) (x) (x) = £x(x).

Similarly, Dg(x)(y) = xx1(y) and Dg(x)(y’) = £x(y’). It follows that if y, is nonzero at both
x,y (respectively at x, y’), then so is Dg(y2). It follows that either y,(x)x2(y) # 0, in which case
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X2 = DG (x1) and equation (5.4) yields

2 2] = () x2(y) < 1, (5.7

or y2(x)x2(y) =0, in which case equation (5.7) is automatic.

(d) Now, if g € [G, G] is semisimple, then g € x© - y© by [GT2, Lemma 5.1]. Suppose g € [G, G]
is not semisimple. Then St(g) = 0. If 2 { g, then sgn(g) = sgn(x) = sgn(y) = 1. This shows that y and
X - sgn take the same values at x, y and g for any y € Irr(G). Since the index of any proper subgroup in
[G,G] is > ¢*"! (see [TZ1, §9]), it follows that |y (g)| < |G|'/2¢'/?>7", so, choosing n large enough,
we obtain from equation (5.6) and equation (5.7) that

Lx2 () x2 () x2(8)l <001
x2(1)
. , ly(g)l . .
Using Gluck’s bound o) < 0.95 [GI] for any nontrivial ¥ € Irr([G, G]), we obtain
ﬁ M >1-0.95-0.01 = 0.04,
ged(2,g-Df & x(D)
sogex%.y0.

Finally, consider the case 2 t ¢ and g € G \ [G, G]. Then sgn(x) = 1 and sgn(g) = sgn(y’) = —1.
Again, by choosing n large enough, we obtain from equation (5.6) and equation (5.7) that

Y () x(y)x (gl
x(1)

for y = x2, x2 - sgn, St, St - sgn. Next, [GT1, Lemma 2.19] together with Gluck’s bound imply that

< 0.001

W (g)l/y(l) < (3+0.95)/4=0.9875
for any ¢ € Irr(G) that is irreducible over [G, G| and of degree > 1. Hence,

1 X@Ox(y)x(g)

> 1-0.9875 - 0.002 > 0.01,
x (1)

x €lrr(G)
sog € x9 - (y")9, as stated. m]

Proposition 5.5. There is an explicit constant C > 5 such that the following statements hold for
G =SO0s,41(q) with2 fn > C:

(i) There exist regular semisimple elements x € T, N [G,G] and y € T,”| | N [G,G] such that
x9-y9 = [G,G] \ {e}.

(ii) If in addition 2 1 q, then there exists a regular semisimple element y' € Tn__’i . \ [G, G] such that
x9-(y)9=G\[G,G].

Proof. (a)As2 t n > 5,by [Zs], we can find a primitive prime divisor £5,_» of ¢**~% -1 and a primitive

prime divisor £, of g" — 1. It is straightforward to check that 7" contains a regular semisimple element
x € [G, G] of order ¢£,,, and likewise T, contains a regular semisimple element y € [G,G]NQJ (q)
of order divisible by £,,_» (with the projection onto T = SO; (¢) having order ¢ + 1, which is possible
by Lemma 4.1). If 2 1 g, then by changing y to have the first projection onto SO,, ,(q) of order £,
we obtain a regular semisimple element y’ € Tn__’il \ [G,G].
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(b) Suppose y € Irr(G) is such that y (x) ¥ (y) # 0 or y(x)x(y’) # 0if 2 ¥ g. By Proposition 5.3(i),
the pair of tori in question is centrally orthogonal, and hence either y or y - sgn is unipotent by
Proposition 5.2. Without loss, we may assume that y is unipotent, labelled by a minimal symbol

S=(X,Y), X=(x1<x2<...<xx), Y=(y1 <y2<...<y),

where k,l € Zsg and 2 1 (k —[). Now, if the denominator of the degree formula in equation (3.6) is not
divisible by ¢,, then y has £,-defect 0, so y(x) = 0. Similarly, if the denominator of equation (3.6) is
not divisible by 5,7, then y has ¢, _»-defect 0 and y(y) = 0, as well as y(y’) = 0 when 2 t g. Thus
the denominator in equation (3.6) is divisible by both ¢, and £,,_».

As mentioned in the proof of Proposition 5.4, we always have that x; < n and y; < n. Hence, the
condition that the denominator of equation (3.6) is divisible by ¢, implies that there is an n-hook n,
whence we may assume that n = x; € X and 0 ¢ X. This implies x; > 1, whence equation (5.2)
holds and k > 1. Now, if / = 0, then k = 1 and y = 1g. If I = 1,then k = 2, S = (1(’)") and
x(1) =(g"+1)(¢" — q)/2(q — 1); denote this unipotent character by y.

Assume [ > 2. Since 2 1 n, we must also have an (n — 1)-cohook ¢ with 0 < ¢ — (n — 1) < 1. Here,
0,1 € Y by equation (5.2),s0o ¢ ¢ X —thatis,c € Y and ¢ — (n — 1) ¢ X. Also by equation (5.2),
[-1>c,sol>nHencek >1-1>2,whence 1 € X, implyingc—(n—1)=0andc=n-1¢€Y.
Furthermore, k — 1 < n — 1, and hence k < n, and thus / < n + 1. By equation (5.1), we have
o either (k,[) = (n,n+1),S = (]201"_,1") x = St, the Steinberg character, or

o (k,)=(n-1,n),and § = (1621 ______ " ;_2’1”); denote this unipotent character by y».

(c) We have shown that, up to tensoring with sgn when 2 { ¢, yo = 1g, St, x1 and y» are the only four
characters of Irr(G) that are nonzero at both x and y, respectively at x and y’, when 2 1 ¢g. It is clear that
equation (5.3) holds. To bound |y (x)xi(y)], let w,w’ € W,, correspond to x, respectively to y and y’.
Repeating the arguments in the proof of Proposition 5.4, we come up with three possibilities for S” and

WS’(W) = _1, 07 1’ WS'(W,) = 0’ - 17 1,

respectively. It follows from [Lul, Cor. (5.9)] that equation (5.4) holds in this case.

Using Theorems 1.1 and 1.2 of [Ng], we see that y is the unique unipotent character of its degree,
so, by inspecting [ST, Table 1], y; is a constituent of the rank 3 permutation action of G on singular
1-spaces of its natural module; also, y is irreducible over [G, G]. Hence y is also a constituent of the
permutation character 1&, where B is a Borel subgroup of G. Now, to bound the character values for
X2, we again follow the proof of Proposition 5.4, using the Alvis-Curtis duality functor D . This shows
that equation (5.7) holds in this case as well. To finish the proof, we just repeat part (iv) of the proof of
Proposition 5.4 verbatim. O

Proposition 5.6. There exists an explicit constant C > 0 such that the following statements hold for

G = Qi1 (q) withn > 8. Let H := SO2,,41(q), and consider a pair of maximal tori T and T’ in H, where
. . —,— y _ .t

(1) if2|n, thenT = Tn—2,2 andT’' =T 33 and

n—

sen s — r _ -
(i) 24 n thenT =T, and T’ =T, ,.

Then there exist regular semisimple elements x € TNG and y € T' NG such that g € xH - yH for every
element g € G with supp(g) > C.

Proof. Using Lemma 4.1, we can find regular semisimple elements x € TN G and y € T’ N G. Suppose
x € Irr(H) is such that y (x) y(y) # 0. By Proposition 5.3(ii), (iii) the pair of tori in question is weakly
orthogonal when 2|q and centrally orthogonal when 2 { g. Hence, either y is unipotent or 2 { ¢ and
X - sgn is unipotent. In the case 2 { g, note that sgn(x) = sgn(y) = sgn(g) = 1 for all g € G. By
Proposition 3.2, the number of such characters y is at most some explicit Cy, and for any such character,
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lx(x)x(y)| < C, for some explicit C,. Now, choosing C = (481log,(C) Cz))z, for any g € G with
supp(g) = C, we have by [LST1, Theorem 1.2] that

;‘ T ACUORE)] G
ged(2,9 - 1) = x(1) 4 VC/as1

sogextl . yH, O

6. The main results on derangements
6.1. Some reductions

In [CC], it is shown that the proportion §(G) of derangements in a finite transitive permutation group
G of degree n is at least 1/n. It turns out that if G is simple, the proportion of derangements is bounded
away from zero. Indeed, we have the following theorem by Fulman and Guralnick (see [FG3, 1.1] and
the references therein).

Theorem 6.1. There exists an absolute constant € > 0 such that if G is a finite simple transitive
permutation group and D = D(G) C G is the set of derangements in G, then

|D| > €|G].

This confirms a conjecture of Boston and Shalev.

In fact, it is shown in [FG3] that € = 0.016 will do, provided |G| > 0.

Clearly, Theorem A holds in the case G is a cyclic group of odd prime order. Its proof for nonabelian
simple groups will occupy the rest of the section.

It is also clear that the set D is a normal subset whose size is bounded below by Theorem 6.1. More
generally, products of normal subsets in simple groups are the main subject of [LST2], which we now
briefly describe.

Let € > 0 be a constant. Let G be a nonabelian finite simple group and S and T normal subsets of G
such that |S|, |T| > €|G|. We are particularly interested in the following questions:

Question 1. Does every element in G \ {e} lie in ST if |G| is sufficiently large?

Question 2. Does the ratio between the number of representations of each g € G \ {e} and % tend
uniformly to 1 as |G| — o0?

The main results of [LST2] are summarised below. An affirmative answer to Question 2 implies an
affirmative answer to Question | (and, of course, the same holds in the special case S = T).

Theorem 6.2. [L.ST2, Theorem A]

(i) The answers to Questions | and 2 are negative if G is allowed to range over all finite simple groups
or even just over the alternating groups, or just over all projective special linear groups.
(ii) Inthe S =T case, the answer to Question 2 is still negative for alternating groups.
(iii) Inthe S =T case, the answer to Question | is positive for alternating groups.
(iv) If G is a group of Lie type of bounded rank, then the answers to Questions | and 2 are both positive.

As shown in Theorem 6.2(i), the answer to Question | is in the negative if one varies over all
(sufficiently large) finite simple groups. However, one can still prove the following result, where m(G)
denotes the smallest degree of a nontrivial complex character of a finite group G, Ug the uniform
distribution on G and, for any element g € G and subsets A, B, C € G, P4 g c(g) denotes the probability
that xyz = g, where x € A, y € B and z € C are randomly chosen, uniformly and independently.
Furthermore, the L (f) norm of a distribution f on G is |G| - maxyeg | f(x)].
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Corollary 6.3. [LST2, Corollary 7.2] For finite groups G and subsets A, B, C C G satisfying
m(G)|A||B||C|/|G® — oo
as |G| — oo, we have
IPas.c —UgllLe — 0as |G| - .

In particular, we have ABC = G for |G| > 0.
These two conclusions hold when G is a finite simple group and A, B,C C G are subsets of sizes
> €|G| > 0 for any fixed € > 0.

An extensive discussion of the motivation behind Question 1 and Question 2, in particular the
connections of them and Corollary 6.3 to results of Gowers and others [Go], [NP], [PS], is given in the
Introduction of [LST2].

Clearly, Theorem 6.1 and Corollary 6.3 give an immediate proof of the easier three-derangement
result:

Proposition 6.4. For all sufficiently large transitive simple permutation groups G, every permutation
in G is a product of three derangements.

‘We now prove some preliminary results that reduce the proof of Theorem A to the case G is a simple
group of Lie type of unbounded rank.

Let G be as above, and let H < G be a point stabiliser. Recall that D(G, H) denotes the set of
derangements of G in its action on the left cosets of H and that D(G,H) = G \ UgegH?®. Thus, if
M < G is amaximal subgroup containing H, then D(G, M) € D(G, H). Hence D(G, M)2 = G implies
D(G, H)? = G. This reduces Theorem A to the primitive case where H is a maximal subgroup of G.

Clearly, D(G, H) is a normal subset of G and D(G, H) = D(G, H)~!. Assuming |G| is sufficiently
large, by Theorem 6.1, we have |D(G, H)| > €|G| with € = 0.016. Combining with Theorem 6.2(iii),
(iv), this implies the following.

Corollary 6.5. Theorem A holds for sufficiently large alternating groups and for finite simple groups of
Lie type of bounded rank over fields of sufficiently large size.

In fact, the conclusion of Theorem A holds for all (simple) alternating groups; see Theorem B.

Since almost simple sporadic groups have bounded order, it remains to deal with classical groups of
unbounded rank. For any such group G, let J(G) denote the union of all irreducible subgroups of G (if ¢
is even and G = Sp,, (¢), we exclude the subgroups GO;3, (¢) from Y(G)). We use [FG3, Theorem 1.7]
(extending [Sh1]), which states the following:

Theorem 6.6. Let G be a classical group of rank r acting faithfully on its natural module V. Then

1V(G)]

G|

Corollary 6.7. Theorem A holds for all simple classical groups G over By of sufficiently large rank,
provided the point-stabiliser H is irreducible and not GO}, (q) when G = Sp,,(q) with 2|q.

— 0 asr — oo.

Proof. By the above theorem, we have
IY(G)|/IG] < 1/2

forn > 0. Since UgegH® C Y(G), it follows that |D(G, H)| > |G|/2 and therefore D(G,H)?=G. o

Theorem 6.8. There are absolute constants C1, Cy such that the following holds. Let G be a finite simple
classical group in dimension n over F, acting as a primitive permutation group with point-stabiliser H.
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If q is even, assume (G, H) # (Sp,(q), GO} (q)). Suppose n > C) and the action is not a subspace
action on subspaces of dimension k < C,. Then G satisfies Theorem A.

Proof. Relying on Corollary 6.7, we may assume that H is reducible: namely, G acts in a subspace
action, say on subspaces (nondegenerate or totally singular for G # PSL, (q)) of dimension k, with
1 < k < n/2. Theorems 6.4, 9.4,9.10, 9.17 and 9.30 of [FG2] show that, as k — oo, the proportion of
derangements in G tends to 1. The result follows as before. O

6.2. Completion of the proof of Theorem A

In view of Corollary 6.5, it remains to prove Theorem A for finite simple classical groups G = CI1(V) in
subspace actions where dim(V) is sufficiently large. Let G denote the central extension of G for which
V is a faithful linear representation, and let A denote the inverse image in G of a point stabiliser H of G.
Also let IT denote the transitive permutation representation with H a point stabiliser. We show that if
dim(V) is sufficiently large, there exist elements X, ¥ € G that are derangements on G /H and such that
every element in G \ {1} is the product of a conjugate of x and a conjugate of y, where x (respectively, y)
is the image of & (respectively, 7) in G. Since x~! is also a derangement, the identity element 1 is also a
product of two derangements. We proceed by cases.

6.2.1. The case G = SL,(g) with n > 98
Here H is the stabiliser of an m-dimensional subspace V' of V = Iy . First we consider the case where
1 <m < n - 1. Fixing an F,-basis of F,», we obtain an embedding of the norm-1 elements of F» in
SL,(g). Let X denote the image of a multiplicative generator of the group of norm-1 elements. Let
denote the image in SL, (¢) > GL,,_1(g) of a generator of an_l. Thus % and ¥ are regular elements of
the tori T =T, and T’ = T,,_1; of SL,(g) in [MSW, Table 2.1]. As the characteristic polynomial of ¥
is irreducible over F, and that of § has an irreducible factor of degree n — 1, it follows that neither X
nor y can fix an Fg-subspace of Fj; of dimension m, so x and y are indeed derangements. By [MSW,
Theorem 2.1], the product of the conjugacy classes of x and y covers all nontrivial elements of G.
Assume now that m = 1 or m = n — 1. Then we note that the elements ¢ and #’ constructed in
Theorem 2.4 are both derangements in I1, so the statement follows from Theorem 2.4.

6.2.2. The case G = SU,(¢) withn > 5

Since H is maximal, we have that H is the stabiliser of an m-dimensional subspace V' of V = F",,
1 <m < n—1, where V' is either totally singular, or nondegenerate. The existence of the Hermitian
form allows us to assume that 1 < m < n/2. Applying Theorem 6.8, we may further assume that m < ¢;
is bounded and that m < n/2 — 1. Let & and ¥ be elements of G of order w and ¢"! — (=1)""1,
respectively, so they are regular semisimple elements of tori 7 = 7,, and 7’ = T,,_; 1, respectively.
Assume that V' is not a nondegenerate 1-space. Then both ¥ and y are derangements in I1. By [MSW,
Theorem 2.2], the product of the conjugacy classes of x and y covers all nontrivial elements of G, and
the statement follows.

Suppose now that V’ is a nondegenerate 1-space. If g > 2, then we again note that the elements ¢ and ¢’
constructed in Theorem 2.4 are both derangements in II, so the statement follows from Theorem 2.4.
Assume now that ¢ = 2. Consider the case g € G = SU,,(2) is a transvection. Then we can put g in a
factor A = SU4(2) of a standard subgroup

AXB= SU4(2) X SUn_4(2)
of G. Direct calculation with [GAP] shows that g is a product g = xy of two elements of order 5 in A. If n

is large, we choose z € B aregular semisimple element of type 7;,_4, a maximal torus in B. Now we note
that g = (xz)(yz~!) and both xz, yz~! are derangements. We also note that any non-unipotent element
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of support 1 in SU, (2) is semisimple, and hence by [GT2, Lemma 5.1] it is a product of two regular
semisimple elements of type T},, which are derangements. It remains to consider the case supp(g) = 2,
in which case the statement follows from Theorem 2.6, since the elements ¢ and ¢’ constructed therein
are derangements in II.

6.2.3. The case G = Qy,,41(q) or Sp,,,(q) withn > 5

Let ¥ and ¥ be elements of order ¢g" + 1 and ¢" — 1 generating tori of type T = T,; and T’ = T}, respectively.
Thus the Frob, orbit of any eigenvalue of % (respectively, ¥) in the natural representation consists of a
2n-cycle (respectively, two n-cycles) together with an additional fixed point if G is of type B,. As in
Section 6.2.2, we may assume that H is the stabiliser of an m-dimensional subspace V', which is either
totally singular or nondegenerate and has bounded dimension by Theorem 6.8. For C,,, therefore, the
theorem follows from [MSW, Theorem 2.3], while for B,, it holds by [MSW, Theorem 2.4] unless V’
is a nondegenerate 1-space. Likewise, we must still consider the cases (G, H) = (Sp,,(q), GO3,(q))
when 2|q.

In both of the remaining actions, we can view G = [I',T'], where I' = SO(V) and V = IF%I”” when
2t qgand ' = Sp(V) = SOz,4+1(q) and V = Fg” when 2|g. Then IT is the restriction to G of the
transitive permutation action of I with point stabiliser GOS, (¢) for a fixed € = +. First we consider
the case el = (—1)". By Propositions 5.4 and 5.5, if n is large enough, we can find in G regular
semisimple elements x; of type 7,, € and y; of type Tnf_’il such that xlr . ylF = G \ {e}. Since both x;
and y; are derangements in I1, the statement follows in this case.

Assume now that €1 # (—1)". By Proposition 5.6, we can find in G regular semisimple elements
x; of type T,>,, and y; of type T;L;J when 2|n, x, of type T,, and y, of type T;;;J when 2 1 n,
such that xg . yg contains any element g € G of large enough support, say supp(g) > B. Since both
Xy and y, are derangements in I, the statement again follows in this case. Now we consider the case
supp(g) < B < n—3, and let A be the primary eigenvalue of g on V (compare [LST1, Proposition 4.1.2]);
note that A = +1. By [LST1, Lemma 6.3.4], we can decompose V = U L W as an orthogonal sum of
g-invariant nondegenerate subspaces, with dim(U) = 6; U has type + if 2 { g and g|y = 1 - 1y. Define

I(W) = J(W) = Sp(W) = Sp,, ¢(q), when 2|q,
(W) =SO(W) = S802,-5(q), J(W) = QW) =, 5(q), when2{gq.

Likewise, we define

J(U) = Sp(U) = Sps(q), ~ when 2|g,
QW) =Qi(g), when24q.

Since €l = (=1)"73, we can consider regular semisimple elements x3 € T < NnJ(W) and y; €
T rf_’;’l NJ (W) constructed in Propositions 5.4 and 5.5 for J(W).If 2 t g, we will also consider the regular
semisimple element y?, € Tnf_’;] \ J(W) constructed in Propositions 5.4 and 5.5 for I(W) = SO,,_5(g).
Also fix a regular semisimple element z € T3 of J(U).

If 2|g or A = 1, then we can write g = diag(ly, k) with & € J(W). By Propositions 5.4 and 5.5,
when n is large enough, h = x5y for some u,v € I(W), whence g = (zx3)"(z7'y3)" is a product of
two derangements.

Finally, assume that 2 ¥ ¢ and A = —1; write g = diag(—1y, k) with h € I(W). If ¢ = 1(mod 4),
then 1 = (—1)3@™D/2 50 —1y € J(U) = Q}(q) by [KL, Proposition 2.5.13], whence h € J(W)
and, as in the previous case, g = ((—1y)zx3)*(z"'y3)” is a product of two derangements. If ¢ = 3
(mod 4), then —1 = (=1)3@D/2 and -1y € I(U) \ J(U). In this case, h € I(W) \ J(W), so by
Propositions 5.4 and 5.5, when n is large enough, we can write h = xg‘/(yg)"/ for some u’, v’ € I(W).

Now g = ((-1y)zx3)% (z‘lyé)v' is again a product of two derangements in II.
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6.2.4. The case G = Q; (q) withn > 4
Here we choose, in accordance with Lemma 4.1, regular semisimple elements X of type T and § of

type 7', where T = T, is a maximal torus of order ¢" + 1 and T’ = Tn 1isa maximal torus whose

full preimage in Spin;, (¢) has order (¢"" +1)(g — 1). (Similarly, in what follows, while specifying
the order of tori in question, we will instead list the order of their full preimages in the corresponding
group of simply connected type.) Then the characteristic polynomial of ¥ is irreducible, while that of §
factors into two linear factors and an irreducible factor of degree 2n — 2. Again, H is the stabiliser of an
m-dimensional subspace V', totally singular (with m < n—1bounded by Theorem 6.8), or nondegenerate.
Now [MSW, Theorem 2.5] implies the theorem, unless dim(V’) = 1 or V’ is a nondegenerate 2-space
of type +.

Consider the remaining three actions. Assume first that 2|n. Then note that the elements x;, y; of
types 7,; and T T constructed in the proof of Proposition 4.3(i) are both derangements in IT, whence
the statement follows from Proposition 4. 3(1) Hence we may assume that 2 f n > 13. In this case,
note that the elements x», y, of types 7 "5 s and T ° 6 constructed in the proof of Proposition 4.3(ii)
with (a, €) = (5,-) are both derangements in II. Hence there exists some absolute constant B such
that if supp(g) > B, then the statement follows from Proposition 4.3(ii). Now we consider the case
supp(g) < B < n—3, and let A be the primary eigenvalue of g on V (compare [LST 1, Proposition 4.1.2]).
By [LST1, Lemma6.3.4], we candecompose V = U L W as an orthogonal sum of g-invariant subspaces,
with dim(U) = 6, U of type + and g|y = 1 - 1y. As 2|(n — 3) > 10, we can find regular semisimple
elementsx; € T,y and y3 € Tn_jt, , constructed in the proof of Proposition 4.3(i) for Q(W) = QF _(q).
Also fix a regular semisimple element z € T3 of Q(U) = Qf(q). If 2|g or A = 1, then we can write
g = diag(ly, h) with h € Q5 _(g). By Proposition 4.3(i), h = x§y} for some u,v € Q(W), whence
g = (zx3)*(z"'y3)" is a product of two derangements. Finally, assume that 2 { g and 1 = —1. If g = 3
(mod 4), then -1 = (=1)"(@"V/2 50 -1y € Q3 (¢q) = G by [KL, Proposition 2.5.13], whence we
can replace g by (—1y)g and appeal to the previous case. If ¢ = 1(mod 4), then 1 = (=1)3(@=1/2 and
—ly € QU) = Q{(q). In this case, we can write g = diag(—1y, k) with h € Q3 (). Again, by
Proposition 4.3(i), h = x5y} for some u,v € Q(W), whence g = ((=1p)zx3)“(z"'y3)" is a product of
two derangements in II.

6.2.5. The case G = Q3 (q) with2 fn > 5

We again choose regular semisimple elements X and y of type T and T’, where the maximal tori 7 = T,,
and 7" =T, | | have order ¢" — 1 and (¢"' +1)(g + 1), using Lemma 4.1. Here, the characteristic
polynomial of ¥ factors into two irreducibles of degree n while the characteristic polynomial of § factors
into irreducibles of degree 2n —2 and 2. Now, Theorem 6.8 and [MSW, Theorem 2.6] imply the theorem
unless A is the stabiliser of a nondegenerate 2-space V' of type —. (Note that the case V"’ is nondegenerate
1-dimensional does not occur since we choose ¥ to have the second irreducible factor of degree 2 in its
characteristic polynomial; compare Lemma 4.1.)

Consider the remaining action on nondegenerate 2-spaces of type —, assuming n > 9. Note that
the elements xj,y; of types T, 753 and T, 44 constructed in the proof of Proposition 4.3(ii) with
(a,€) = (3,+) are both derangements in I1. Hence, there exists some absolute constant B such that if
supp(g) > B, then the statement follows from Proposition 4.3(ii). Now we consider the case supp(g) <
B < n -3, and let A be the primary eigenvalue of g on V. Applying [LST1, Lemma 6.3.4], we can
decompose V = U L W as an orthogonal sum of g-invariant subspaces, with dim(U) = 6, U of type -
and gly =1+ lU As 2|(n—3) > 6, we can find regular semisimple elements x; € T,y and y, € T~
in Q(W) = Q) (q). Also fix a regular semisimple element z € T; of Q(U) = Q (g). If 2|q or 1f
A=1, then we can write g = diag(ly, h) with h € Q) (q). By [MSW Theorem 251, h = xjyy
for some u,v € Q(W), whence g = (zx2)*(z"'y2)" is a product of two derangements. Finally, assume
that 2 f g and 2 = —1.If ¢ = 1(mod 4), then 1 = (-1)"@"D/2 50 -1y € Q} (¢q) = G, whence we
can replace g by (—1y)g and return to the previous case. If ¢ = 3(mod 4), then —1 = (=1)3(@=1/2 and
—1y € QU) = Q;(q). In this case, we can write g = diag(—1y, h) with h € an_é)(q). Again, by
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[MSW, Theorem 2.5], h = x5y} for some u,v € Q(W), whence g = ((=1p)zx3)“(z~'y3)" is a product
of two derangements.

6.2.6. The case G = Q () with2|n > 6

Now we choose regular semisimple elements ¥ and j of type T and T’, where the maximal tori 7’ = T;fl’l
and T’ = Tn_j’l have order (¢"~' = 1)(g — 1) and (¢! + 1)(g + 1), again using Lemma 4.1. By [GT3,
Theorem 2.7], X - yG contains all noncentral elements of G. Hence the theorem follows, unless A is
the stabiliser of an m-dimensional subspace V’, where either V' is nondegenerate and m = 1,2 (with
m = 1 only when g < 3) or V' is totally singular and m = 1.

If V' is a nondegenerate 2-space of type —, we then choose §” regular semisimple of type 7, = T,
a maximal torus of order (¢" >+ 1)(g*>+1) asin [LST1, §7.1]. As ¥ and ' are both derangements in IT,
the theorem now follows from [LST1, §7.2] and [GM2, Theorem 7.6].

In the remaining cases, note that, as shown in the proof of [MSW, Theorem 2.7], there exists a
regular semisimple element % of type 77, a maximal torus of order (¢"/%> + (=1)"/?)2, such that there
are exactly three irreducible characters of G that are nonzero at both ¥ and 7: namely, 1, St and one
more character p: [St(X’)St(7)| = 1 and |p(X")p(¥)| = 2. The imposed condition on V' ensures that X’
and ¥ are both derangements in IT. Consider any g € G \ Z(G). If g is semisimple, then g € (#')¢ - (7)¢
by [GT2, Lemma 5.1]. The same conclusion holds if g is nonsemisimple but has large enough support

supp(g) > B with ¢VB > 248! _indeed, in this case |p(g)/p(1)] < g~ VSUPP(®)/481 < 1/2 5o

XE)x(P)x(8)
xelir(G) X( 1)

pP(E)p(M)p(g)

>1-1=0.
p(1)

>1—‘

It therefore remains to consider the case ¢ is bounded and supp(g) < B, in which case we may assume
n > B+6, so g acting on the natural module ]FEI" has a primary eigenvalue 4 = =1 by [LST1, Proposition
4.1.2]. In the case 2 {1 g, the condition 2|n implies by [KL, Proposition 2.5.13] that =1 € Q] (q) = G.
Hence we can multiply g by a suitable central element of G to ensure that 1 = 1. Now, using [L.ST1,
Lemma 6.3.4] and the assumption n > B + 6, we can find a g-invariant decomposition V. =U L W,
where dim U = 10, g acts trivially on U and U is nondegenerate of type +, whence W is nondegenerate
of type + of dimension 2n — 10. By [MSW, Theorem 2.6], we can find regular semisimple elements
ii and ¥ of type a maximal torus of order ¢" > — 1 and a maximal torus of order (¢"~° + 1)(g + 1) in
H :=Q} . (q) such that the W-component & of g is i -5 for some hy, hy € H. We also fix a regular
semisimple element Z € Q7 (g) of type a maximal torus of order (¢® +1)(¢*> + 1). Now it is clear that
g = (Zii) (z7'%)" and both Zii and 7~'¥ are derangements in IT.
Thus we have completed the proof of Theorem A.

6.3. A probabilistic result on derangements

Recall that, for a permutation group G and an element g € G, Pp(g),p(G)(g) denotes the probability
that two independently chosen random derangements s, € D(G) satisfy st = g.

Proposition 6.9. Let G be a finite simple transitive permutation group.

(i) Pp(c),p(G) converges to the uniform distribution on G in the L' norm as |G| — oo. Hence the
random walk on G with respect to its derangements as a generating set has mixing time two.

(ii) If G is a group of Lie type of bounded rank, then Pp (G p(G) converges to the uniform distribution
on G in the L™ norm as |G| — oo.

Proof. By [Sh2, Theorem 2.5], if G is a finite simple group and x,y € G are randomly chosen, then
almost surely P, , converges to the uniform distribution Ug in the L' norm as |G| — 0. Hence the
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same holds for randomly chosen x,y € T, where T is any normal subset of G of proportion bounded
away from 0. By Theorem 6.1 of Fulman and Guralnick we may apply this to 7 = D(G). This implies
part (i).

Part (ii) follows from part (iv) of [LST2, Theorem A]. O

We note that, by Corollary 6.9 of [LS], if T C A, is a normal subset of size at least e~/ 2“5)”|An|
for some fixed 6 > 0, then, as n — oo, the mixing time of the random walk on A, with respect to the
generating set T is two. This provides an alternative proof of part (i) for alternating groups.

We also note that part (ii) above does not hold for alternating groups; indeed, this follows from
Theorem 6.2(ii) and its proof in [LST2].

7. Products of derangements in alternating groups
In this section, we prove Theorem B. First we need the following technical result:
Proposition 7.1. Let H be a proper subgroup of A, such that one of the following conditions holds:

(1) ne{5,7,11,12,13,14, 15,16} and H contains an {-cycle for the two largest odd integers € < n.
(i) n = 17 and H contains an {-cycle for the three largest odd integers € < n.

Then 2|n and H = A, _\, a point stabiliser in the natural action of A,, on A :={1,2,...,n}.

Proof. We proceed by induction on n, with the induction base verifying the cases where n < 13. Set
L,:={C€Z|24¢|3n/4] << n}.

(a) If n = 5, then 15 divides |H|, so H = As by [CCNPW]. Similarly, if n = 7, then 35 divides |H|, so
H = A; by [CCNPW]. Suppose n = 11. As 11 divides |H|, using [CCNPW], we see that H is contained
in a maximal subgroup X = M;; of Aj;. But this is a contradiction since X contains no element of
order 9, whereas H contains a 9-cycle. Next assume that n = 12. Then H contains an 11-cycle and
a 9-cycle. Using [CCNPW], we again see that H is contained in a maximal subgroup Y of A, with
Y =2 MpporY = Ay, a point stabiliser. The former case is ruled out since Mj; contains no element of
order 9. In the latter case, we must have H = Ajj by the n = 11 result. If n = 13, then 11 - 13 divides
|H|, so H = Aj3 by [CCNPW].

(b) For the induction step, assume n > 14. First we consider the case H is intransitive on A. If 2 { n,
then H contains an n-cycle, so it is transitive on A: a contradiction. Hence 2|n. Then we may assume that
H contains the (n — 1)-cycle g = (1,2,...,n — 1). It follows that {1,2,...,n — 1} and {n} are the two
H-orbitson A, so H < Stabp, (n) = A,_;.Ifinadditionn > 18, thenn—1, n—3, n—5 are the three largest
members of £,, and at the same time they are also the three largest members of £,_;. Applying the
induction hypothesis to n — 1, we obtain that H = Staba, (n), as stated. Suppose n = 16. Then H < Ays,
and it contains a 15-cycle and a 13-cycle. It follows that H is transitive on A’ := {1,2,..., 15}, and in
fact it acts primitively on A’. Now, using [GAP], we can check that A;s and S5 are the only primitive
subgroups of Sis that have order divisible by 13. It follows that H = A;s.

(c) We may now assume that H is transitive on A. Suppose that H is imprimitive: H preserves a
partition A = A LU A, U ... UAp, with 1 < |A;] = a =n/b < n. If 2|n, then we may assume that H
contains the (n—1)-cycle g = (1,2,...,n—1) and that n € Aj. Then g fixes A}, and so must fix the set
Ap \ {n} of size a — 1 < n— 1, a contradiction. Next, consider the case 2 { n. Then we may assume that
H contains the (n — 2)-cycle h = (1,2,...,n—2) and that n € Aj. Note that a > 1 divides n, which
is odd, and hence n/3 > a > 3. Now h fixes A, and so must fix the set A, \ {n} of size a — 1 with
2 <a—1 < n-2,again a contradiction.

(d) Now we consider the remaining case, where H is primitive on A.

Ifn = 14, then 11-13 divides |H|. Using [GAP], we can check that H = A,,. Similarly, if 15 < n < 17,
then A,, is the only primitive subgroup of A,, that has order divisible by 13, whence H = A,,.
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From now on, we may assume n > 18 and let H := Staby (1) < A,,_;. First we consider the case 2|n.
Then H contains an (n — 1)-cycle g, an (n — 3)-cycle & and an (n — 5)-cycle k. Since H is transitive
on A, we may replace g by an H-conjugate so that g(1) = 1, and similarly 4(1) = 1 and k(1) = 1.
Thus H; < A,,—; contains g, h and k, and n — 1,n — 3, n — 5 are the first three members of £,,_;. By the
induction hypothesis applied to H;, we have H; = A,,_;. As H is transitive on A, it follows that H = A,,.

(e) Now we may assume that 2 4 n > 19. Arguing as above, we may assume that H; contains an
(n—2)-cycle s = (3,4, ...,n). Assume in addition that H; is intransitive on {2,3,...,n}. Since H,
contains s, it follows that {1}, {2} and {3,4, ..., n} are the 3 H;-orbits on A. Note that H, := Staby (2)
now contains H; and |H,| = |H|/n = |H;|, whence H, = H;. We claim that for any i € A, there is a
unique i* € A \ {i} such that

Staby (i) = Staby (i*). (7.1)

(Indeed, using transitivity of H, we can find x € H such that i = x(1), whence equation (7.1) holds
for i* := x(2). Conversely, if Staby (i) = Stabgy (j) for some j # i, then conjugating the equality by
x, we see that H; = Stabg (1) fixes x™'(j) # x~!(i) = 1. The orbit structure of H; on A then shows
that x~'(j) = 2, so j = x(2) = i*, and the claim follows.) We also note that the uniqueness of i* and
equation (7.1) imply that (i*)* = i. Hence, the set A is partitioned into pairs {j1, j;'}. ..., {jm. i}
which is impossible since 2 1 n.

We have shown that H| is transitive on {2, 3,...,n}, so H is doubly transitive on A. In particular,
H has a unique minimal normal subgroup S, which is either elementary abelian or a nonabelian simple
group; see [Cam, Proposition 5.2]. Suppose we are in the former case. Then one may identify A with
the vector space ]Ff, for some prime p with p? = n, S with the group of translations #,, : u + u + v on
Ff,, 1 € A with the zero vector in Il-“éfl7 and H; with a subgroup of GL(FZ). Since 2t n, p > 2, so Hy is
imprimitive on FZ \ {0} (indeed, it permutes the sets of nonzero vectors of (p¢ —1)/(p — 1) Fp-lines).
On the other hand, the presence of the (n—2)-cycle s € H| shows (as in (iii)) that the transitive subgroup
H| must be primitive on ]Fg \ {0}, a contradiction.

We have shown that S is simple, nonabelian. Now we can use the list of (H, S, n) as given in [Cam].
The possibility (H, S, n) = (Ma3, M3, 23) is ruled out since H must contain the element s of order 21.
Next, if (S,n) = (%B2(q),q> + 1) with ¢ = 22/+1 > 8, then S < H < Aut(S) = § - Cor4+1. This is
impossible, since H contains the element s of order ¢ — 1. Similarly, if (S, n) = (PSU3(gq), ¢> + 1) with
q =2° > 4,then S<H < Aut(S) = PGU3(q)-Cy.. This is again impossible, since H contains the element
s of order ¢> — 1. Next, if (S,n) = (SLa(g), g+ 1) with g = 2¢ > 8, then S <H < Aut(S) = SL1(gq) - C,.
This is again impossible since H contains the element of order n — 4 = g — 3.

As H is a proper subgroup of A,,, there remains only one possibility that

(S,n) = (PSLa(q), (¢* = 1)/(g = 1))

with d > 3, and we may assume that S and H act on the (¢ — 1)/(g — 1) lines of the vector space
]Fg = (e1,€2,...,eq)r,. Since H is doubly transitive, we may assume that the two fixed points of the
(n—=2)-cycle s are (e )Fq and (ez)]pq. In this case, s acts on the set of g + 1 F,-lines of (e, ez)]pq, fixing
two of them. This is again impossible, since s permutes cyclically the other n — 2 IF-lines. O

Proof of Theorem B.

(a) Fix a symbol @ € Q, and consider the point stabiliser H := Stabg (@). We also consider the natural
permutation action of G on A := {1,2,...,n}. The cases 5 < n < 10 can be checked directly using
[GAP], so we will assume thatn > 11.

In the notation of Proposition 7.1, suppose first that there is some ¢ € L£,, such that H does not
contain any ¢-cycle. In other words, any £-cycle in G = A, is a derangement on Q. By the main result
of [B], the choice of ¢ ensures that every element in G is a product of two £-cycles and hence a product
of two derangements (on ).
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It remains to consider the case where H contains an £-cycle for any ¢ € £,,. By Proposition 7.1, this
implies that 2|n and H = Stabg (1), and thus Q = A. We will now show that every element g € G
is a product of two derangements on A. (Presumably this also follows from [Xu], but for the reader’s
convenience, we give a short, direct proof.)

(b) We will again proceed by induction on n, with the induction base 5 < n < 10 already checked.

(b1) For the induction step, suppose that g fixes at least 2 points in A, say g(i) =i fori = 1, 2. Since
n > 11,wehave n—2 > |3n/4]. Viewing g € A,,_5, by the main result of [B], we have that g = xx; isa
product of two (n—2)-cycles x,x3 € S,_». It follows that g = ¥1%,, with ¥ = x1(1,2) and X, = x»(1,2)
being derangements in A,,.

(b2) Suppose now that g = g182 € Ay X Ay With 5 < m < n/2. By the induction hypothesis,
gi = yizi, with y1,z; € A, and yp, 70 € A, being derangements. It follows that g = (y1y2)(z122),
with y1y, € A, and z1z2 € A, being derangements. In particular, we are done if, in the decomposition
of g into disjoint cycles, g contains a cycle of odd length ¢, where 5 < ¢ < n — 5. We are also done if
¢ = 3:indeed, if g = (1,2, 3)h with h € A,_3 disjoint from (1,2, 3), then we can write & = hjhy, with
h; € A,_3 being derangements, so g = ((1,3,2)h1) - ((1,3,2)hy) is a product of two derangements.
Together with (b1), we are also done in the case ¢ = n — 3.

(b3) Suppose g contains at least two cycles 71, t, of even length d;, d; in its disjoint cycle decom-
position. If 6 < d; + d» < n — 6, we are done by the previous step (b2), by taking g; := t;t,. We are
also done if d; + d» = 4: indeed, if g = (1,2)(3,4)h with h € A,_4 disjoint from (1,2)(3,4), then we
can write h = hyhy, with h; € A,_4 being derangements, so g = ((1,3)(2,4)hy) - ((1,4)(2,3)hy) is a
product of two derangements.

(b4) The above steps leave only the following two cases for the disjoint cycle decomposition of g
(up to conjugation):

o g = g182, where g is an a-cycle, g is an (n — a)-cycle and 2|a. Here, if 4 < a < n — 4, then
g =g°-g !, with g2 and g~! being derangements. In the remaining case, say
g=(1,2,...,n=2)(n—-1,n),setting h = (1,2,...,n—3,n—1)(n —2,n), we see that gh consists
of two disjoint n/2-cycles and is therefore a derangement, while g = (gh)(h™").

o g=(1,2,...,n—1).Setting h = (1,n-3)(2,3,...,n—4,n—-2,n—1,n) € A,, we see that

gh=(1,n-2)2,4,6,....n—-4,n—1,n,3,5,...,n—3)

is a derangement, while g = (gh)(h™"). O
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