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Abstract
We prove that any element in a sufficiently large transitive finite simple permutation group is a product of two
derangements.
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1. Introduction

The study of derangements – that is, fixed-point-free permutations – goes back three centuries to 1708,
when Montmort observed that the proportion 𝛿(S𝑛) of derangements in the symmetric group S𝑛 (in its
natural action on n symbols) satisfies 𝛿(S𝑛) → 1/𝑒 as 𝑛 → ∞. In the 1870s, Jordan proved that every
finite transitive permutation group of degree 𝑛 > 1 contains a derangement (this result is an immediate
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consequence of the orbit counting lemma). Since then, derangements have been studied extensively and
have proved useful in various areas of mathematics, including group theory, graph theory, probability,
number theory and topology. See the book [BG] for background and new results.

The classification of finite simple groups has revolutionised the study of derangements, and various
powerful results have been obtained. These include the well-known result of Fein, Kantor and Schacher
[FKS], strengthening Jordan’s theorem, that every finite transitive permutation group of degree 𝑛 > 1
has a derangement of prime power order. Note, however, that there are finite transitive groups with no
derangements of prime order. The question of the existence of derangements of prime order is discussed
extensively in [BG].

In recent years, there has been considerable interest in invariable generation of groups, which has
sparked renewed interest in derangements. Recall that a group G (finite or infinite) is said to be invariably
generated by a subset 𝑆 ⊆ 𝐺 if, whenever we replace each 𝑠 ∈ 𝑆 by any conjugate 𝑠𝑔 of s (where 𝑔 ∈ 𝐺
depends on s), we obtain a generating set for G. It is easy to see that G is invariably generated by G if
and only if whenever G acts transitively on some set X with |𝑋 | > 1, the set D(𝐺, 𝑋) of elements of G
that act as derangements on X is nonempty. This in turn is equivalent to ∪𝑔∈𝐺𝐻

𝑔 � 𝐺 for every proper
subgroup 𝐻 < 𝐺. Thus finite groups are invariably generated by themselves, but some infinite groups
– for instance, any infinite group with exactly two conjugacy classes – are not.

For a finite group G and a positive integer k, let 𝑃𝐼 (𝐺, 𝑘) denote the probability that k randomly
chosen elements of G invariably generate G. For a subgroup H of G, let 𝛿(𝐺, 𝐻) denote the proportion
of elements of G that act as derangements in the transitive action of G on H-cosets. The study of
these probabilities is motivated by computational Galois theory; see, for example, [D], [LP], [KLSh],
[Mc], [PPR], and [EFG]. The latter two papers show that 𝑃𝐼 (S𝑛, 4) is bounded away from zero, while
𝑃𝐼 (S𝑛, 3) is not.

It is easy to see (see for instance [KLSh, 2.3]) that

1 − 𝑃𝐼 (𝐺, 𝑘) ≤
∑
𝐻

(1 − 𝛿(𝐺, 𝐻))𝑘 ,

where H ranges over a set of representatives of the conjugacy classes of the maximal subgroups of G.
Thus the study of derangements and their proportions has applications to invariable generation and
related topics.

A lower bound of the form 1/𝑛 on the proportion 𝛿(𝐺) of derangements in arbitrary transitive
permutation groups G of degree n was provided in [CC]. This bound is sharp. It is attained if and only
if G is a Frobenius group of degree 𝑛(𝑛 − 1). If 𝑛 ≥ 7 and G is not a Frobenius group of size 𝑛(𝑛 − 1)
or 𝑛(𝑛 − 1)/2, then a better lower bound of the form 𝛿(𝐺) > 2/𝑛 was subsequently provided in [GW],
with a number-theoretic application. In contrast to the proof of the bound 1/𝑛 in [CC], the proof of the
2/𝑛 bound in [GW] already uses the Classification of Finite Simple Groups.

The case where the transitive permutation group G is simple has been studied thoroughly in the past
two decades by Fulman and Guralnick [FG1, FG2, FG3], proving a conjecture of Boston and Shalev that
𝛿(𝐺) ≥ 𝜖 for some fixed 𝜖 > 0. Thus the set of derangements in such a group is a large normal subset.

Our main result is the following.
Theorem A. Let G be a finite simple transitive permutation group of sufficiently large order. Then every
element of G is a product of two derangements.

Our computations have not revealed any counterexample to the conclusion of Theorem A among
simple groups of small order, which seems to suggest it should hold for arbitrary finite simple groups. To
prove this for simple groups of Lie type, however, seems to be a daunting task. The character-theoretic
approach that we are exploiting would require substantial improvements on results of Sections 2–5
(below), which at the moment we know only for groups of large enough rank, after which it would still
leave a large number of possible exceptions, to be excluded by ad hoc arguments far beyond the current
reach of computational group theory. For alternating groups, we are able to prove that the conclusion of
Theorem A holds universally:
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Theorem B. Let 𝐺 ≤ Sym(Ω) be a finite transitive permutation group. Suppose that 𝐺 � A𝑛 for some
𝑛 ≥ 5. Then every element in G is a product of two derangements.

A key input for this paper is Theorem 6.2, proved in the companion paper [LST2], which asserts that
given r and 𝜖 > 0, for every normal subset S of a sufficiently large finite simple group G of Lie type and
rank r, |𝑆 | > 𝜖 |𝐺 | implies 𝑆2 ⊇ 𝐺 \ {𝑒}. The same is true if G is an alternating group of sufficiently large
degree instead of a group of bounded rank. It is not true, however, for finite simple groups in general. We
use the Frobenius formula for the number of solutions 𝑥1𝑥2 = 𝑥3, where 𝑥𝑖 belongs to a fixed conjugacy
class 𝐶𝑖 , 𝑖 = 1, 2, 3, to prove that certain products of two conjugacy classes cover all nontrivial elements
of G. To do this in the cases of interest, we need detailed information about the characters of classical
groups of unbounded rank to complete the proof of Theorem A in the most difficult case: when G is a
classical group of high rank over a small finite field with a subspace action. This in turn necessitates
proving various results on products of conjugacy classes in finite classical groups, which extend and
refine previous results obtained in [MSW], [LST1], [GM2], [GT3], [GLBST] and which will be useful
in other applications as well.

Our paper is organised as follows. In Section 2, we prove several results concerning character values
and products of conjugacy classes for PSL𝑛 (𝑞) and PSU𝑛 (𝑞). In Section 3, we review Lusztig’s theory
of symbols, which we use in Sections 4 and 5 to prove results like those of Section 2 in the case of
orthogonal groups. Theorem A is then proved in Section 6. Finally, in Section 7, we prove Theorem B.

2. Character estimates in groups of type 𝐴𝑛 and 2𝐴𝑛

Proposition 2.1. For all integers L, there exists a constant 𝐴 = 𝐴(𝐿) > 0 such that for all integers
𝑛 > 𝐿 and all prime powers q, the degree of the unipotent character of GL𝑛 (𝑞) associated to a partition
whose largest piece is 𝑛 − 𝐿 is at least 𝑞 𝑛2−𝑛

2 −𝐴.

Proof. Choosing A large enough, without loss of generality, we may assume 𝑛 > 2𝐿. The partition
𝜆 = 𝜆1 ≥ 𝜆2 ≥ · · · of n associated to the character has 𝜆1 = 𝑛 − 𝐿. It is well known (see, for instance,
[Ol, (21)] or [Ma1]) that this character has degree

𝜒𝜆 (1) = 𝑞
∑

𝑖 (𝜆𝑖2 )
∏𝑛

𝑗=1 (𝑞 𝑗 − 1)∏𝑛
𝑘=1 (𝑞ℎ𝑘 − 1)

,

where ℎ𝑘 denotes the length of the hook of the 𝑘 th box in the Ferrers diagram of 𝜆. Now, the last 𝑛 − 2𝐿
boxes in the first row of the Ferrers diagram belong to one-box columns. Therefore, their hooks have
lengths 𝑛 − 2𝐿, . . . , 3, 2, 1. All hooks of boxes not in the first row have lengths ≤ 𝐿, and the hooks of
the first L boxes in the first row have length ≤ 𝑛. We conclude that∏𝑛

𝑗=1 (𝑞 𝑗 − 1)∏𝑛
𝑘=1(𝑞ℎ𝑘 − 1)

≥
∏𝑛

𝑗=𝑛−2𝐿+1 (𝑞 𝑗 − 1)
𝑞𝐿

2+𝐿𝑛
.

As
∞∏
𝑖=1

(1 − 𝑞−𝑖) > 1/4 ≥ 𝑞−2,

we have

dim 𝜒𝜆 (1) > 𝑞(
𝜆1
2 )𝑞−2+𝐿 (𝑛+(𝑛−2𝐿+1))−𝐿2−𝐿𝑛 = 𝑞

𝑛2−𝑛−5𝐿2+3𝐿−4
2 . �

Up to conjugacy, F𝑞-rational maximal tori in the algebraic groups SL𝑛 and SU𝑛 over a finite field F𝑞
are both indexed by partitions of n. We do not distinguish between the maximal torus as an algebraic
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group and the finite subgroup of G obtained by taking F𝑞-points. If G is either SL𝑛 (𝑞) or SU𝑛 (𝑞) and
𝑎1, . . . , 𝑎𝑘 are positive integers summing to n (not necessarily arranged in order), then we denote by
𝑇𝑎1 ,...,𝑎𝑘 < 𝐺 a maximal torus in the class belonging to the partition with parts 𝑎1, . . . , 𝑎𝑘 .

Theorem 2.2. Let 𝑎 ≥ 3 be a fixed positive integer. Then there exists an integer 𝑁 = 𝑁 (𝑎) ≥ 2𝑎2+6 such
that the following statements hold whenever 𝑛 > 𝑁 , q any prime power and 𝐺 = SL𝑛 (𝑞) or SU𝑛 (𝑞):

(i) If 𝑡1 and 𝑡 ′1 are regular semisimple elements of G belonging to tori T and𝑇 ′ of type𝑇𝑛 and𝑇1,𝑎,𝑛−𝑎−1,
respectively, then 𝑡𝐺1 · (𝑡 ′1)

𝐺 ⊇ 𝐺 \ Z(𝐺).
(ii) If 𝑡2 and 𝑡 ′2 are regular semisimple elements of G belonging to tori T and 𝑇 ′ of type 𝑇1,𝑛−1 and

𝑇𝑎,𝑛−𝑎, respectively, then 𝑡𝐺2 · (𝑡 ′2)
𝐺 ⊇ 𝐺 \ Z(𝐺).

Proof. (i) Consider any 𝑔 ∈ 𝐺 \ Z(𝐺) and any 𝜒 ∈ Irr(𝐺) such that 𝜒(𝑡1)𝜒(𝑡 ′1) ≠ 0. By [LST1,
Proposition 3.1.5] and its proof, then 𝜒 must be a unipotent character of the form 𝜒 (𝑛−𝑘,1𝑘 ) . Moreover,
either 𝑘 = 0 (in which case 𝜒 is the principal character 1𝐺), 𝑘 = 𝑎, 𝑘 = 𝑛 − 𝑎 − 1 or 𝑘 = 𝑛 − 1 (in
which case 𝜒 is the Steinberg character St); moreover, |𝜒(𝑡1)𝜒(𝑡 ′1) | = 1, and the last two characters both
have degree ≥ 𝐶 |𝐺 |/𝑞𝑛 for a universal constant 𝐶 > 0. In the terminology of [GLT, p. 3], the character
𝜒2 := 𝜒 (𝑛−𝑎,1𝑎) has level

𝑎 ≤ min{
√
𝑛 − 3/4 − 1/2,

√
(8𝑛 − 17)/12 − 1/2}

by [GLT, Theorem 3.9], so 𝜒2 (1) > 𝑞𝑎 (𝑛−𝑎)−3 by [GLT, Theorem 1.3] and

|𝜒2 (𝑔) | ≤ (2.43)𝜒2(1)1−1/𝑛

by [GLT, Theorem 1.6]. In particular,

|𝜒2 (𝑔) |/𝜒2(1) ≤ 2.43/𝜒2 (1)1/𝑛 ≤ 2.43/𝑞𝑎−1/2 ≤ 2.43/22.5 < 0.43.

On the other hand, for the latter two (large degree) characters, by [LST1, Proposition 6.2.1], we have
|𝜒(𝑔) |/𝜒(1) < 0.25 if we take 𝑁 (𝑎) large enough. It follows that���� ∑

𝜒∈Irr(𝐺)

𝜒(𝑡1)𝜒(𝑡 ′1)𝜒(𝑔)
𝜒(1)

���� ≥ 1 − 0.43 − 2(0.25) = 0.07 > 0,

so 𝑔 ∈ 𝑡𝐺1 · (𝑡 ′1)𝐺 .
(ii) Suppose 𝜒 ∈ Irr(𝐺) is such that 𝜒(𝑡2)𝜒(𝑡 ′2) ≠ 0. By [LST1, Proposition 3.1.5] and its proof,

we have

𝜒 ∈ {1𝐺 , 𝜒2 := 𝜒 (𝑛−𝑎,2,1𝑎−2) , 𝜒 (𝑎,2,1𝑛−𝑎−2) ,St};

moreover, |𝜒(𝑡2)𝜒(𝑡 ′2) | = 1, and the last two characters both have degree ≥ 𝐶 |𝐺 |/𝑞𝑛 for a universal
constant 𝐶 > 0. Now we can repeat the arguments in (i) verbatim. �

We will need a similar result, using [GLBST, Proposition 8.4] and its notation. But first we prove an
auxiliary lemma.

Lemma 2.3. Let 𝑘, 𝑛 ∈ Z≥1 with 𝑛 ≥ max(5, 2𝑘), and let q be any prime power. Let

𝑁 :=
(𝑞𝑛 − 1) (𝑞𝑛−1 − 1) . . . (𝑞𝑛−𝑘+1 − 1)

(𝑞 − 1) (𝑞2 − 1) . . . (𝑞𝑘 − 1)
,

and let G be a primitive subgroup of S𝑁 with a unique minimal normal subgroup 𝑆 � PSL𝑛 (𝑞), which
acts on {1, 2, . . . , 𝑁} via the action of SL𝑛 (𝑞) on the set of k-dimensional subspaces of the natural
module F𝑛𝑞 . Then the following statements hold for any nontrivial element 𝑔 ∈ 𝐺:
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(i) g has at most 𝛼𝑁 fixed points on {1, 2, . . . , 𝑁}, where

𝛼 := 𝑞−𝑘 + 9𝑞−(𝑛−1)/2.

(ii) The permutation character 𝜌 associated to the action of G on {1, 2, . . . , 𝑁} has a unique irreducible
constituent 𝜒 that extends the unipotent character 𝜒 (𝑛−𝑘,𝑘) of PSL𝑛 (𝑞). Furthermore,

|𝜒(𝑔) |
𝜒(1) ≤ 𝛼 + (𝛼 + 1) 𝑞𝑘 − 1

𝑞𝑛−𝑘+1 − 𝑞𝑘
.

Proof. (i) is a consequence of [FM, Theorem 1] (note that 9𝑞−(𝑛−1)/2 > 11𝑞−𝑛/2). For (ii), recall that the
restriction of 𝜌 to S is

∑𝑘
𝑖=0 𝜒

(𝑛−𝑖,𝑖) , where we view the unipotent character 𝜒 (𝑛−𝑖,𝑖) as an S-character.
The character 𝜒 (𝑛−𝑘,𝑘) has degree

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1) . . . (𝑞𝑛−𝑘+1 − 𝑞𝑘 )
(𝑞 − 1) (𝑞2 − 1) . . . (𝑞𝑘 − 1)

,

which is larger than 𝑁/2. Since 𝑆 �𝐺, this implies that there is a unique irreducible constituent 𝜒 of 𝜌
that extends 𝜒 (𝑛−𝑘,𝑘) . Now, 𝜌 − 𝜒 is a character of G of degree 𝑁 − 𝜒(1), so

|𝜌(𝑔) − 𝜒(𝑔) | ≤ 𝑁 − 𝜒(1) = 𝛽𝜒(1),

where 𝛽 := (𝑞𝑘 − 1)/(𝑞𝑛−𝑘+1 − 𝑞𝑘 ). Together with (i), this implies that

|𝜒(𝑔) |
𝜒(1) ≤ |𝜌(𝑔) | + |𝜌(𝑔) − 𝜒(𝑔) |

𝜒(1) ≤ 𝛼𝑁

𝜒(1) + 𝛽 = 𝛼 + (𝛼 + 1)𝛽,

as stated. �

Recall the notion of weakly orthogonal pairs of maximal tori in connected reductive groups,
introduced in [LST1, Definition 2.2.1].
Theorem 2.4. If t and 𝑡 ′ are regular semisimple elements of G belonging to tori T and 𝑇 ′ of type 𝑇𝑛−2,2
and 𝑇𝑛−3,3, respectively, then 𝑡𝐺 · (𝑡 ′)𝐺 ⊇ 𝐺 \ Z(𝐺) in each of the following cases:
(i) 𝐺 = SL𝑛 (𝑞), 𝑛 ≥ 33,
(ii) 𝐺 = SL𝑛 (𝑞), 𝑛 ≥ 7, 𝑞 > 7481,
(iii) 𝐺 = SU𝑛 (𝑞), 𝑛 ≥ 33, 𝑞 ≥ 3,
(iv) 𝐺 = SU𝑛 (𝑞), 𝑛 ≥ 7, 𝑞 > 7481.
Proof. Suppose 𝜒 ∈ Irr(𝐺) is such that

𝜒(𝑡)𝜒(𝑡 ′) ≠ 0. (2.1)

By [GLBST, Proposition 8.4], the two tori are weakly orthogonal, and hence 𝜒 = 𝜒𝜆 is a unipotent
character labelled by a partition 𝜆 � 𝑛. Now, as in the proof of [LST1, Proposition 3.1.5], the condition
in equation (2.1) implies that the irreducible character 𝜓𝜆 of S𝑛 labelled by 𝜆 takes nonzero values
at permutations 𝜎1 = (1, 2) (3, 4, . . . , 𝑛) and 𝜎2 = (1, 2, 3) (4, 5, . . . , 𝑛). By the Murnaghan-Nakayama
rule [LST1, Proposition 3.1.1] and by [LST1, Corollary 3.1.2], it follows that we can remove a rim
(𝑛 − 2)-hook from the Young diagram 𝑌 (𝜆) of 𝜆, and likewise we can remove a rim (𝑛 − 3)-hook
from 𝑌 (𝜆) (so that the remainder is a proper diagram). The list of 𝜆 that a rim (𝑛 − 2)-hook can be
removed from 𝑌 (𝜆) is given in [LST1, Corollary 3.1.4]. Checking through them for a removal of a rim
(𝑛 − 3)-hook, we see that 𝜆 is one of the following 8 partitions:

(𝑛), (1𝑛), 𝜆2 := (𝑛 − 1, 1), (2, 1𝑛−2),
𝜆3 := (𝑛 − 3, 3), (23, 1𝑛−6), 𝜆4 := (𝑛 − 4, 22), (32, 1𝑛−6).
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Moreover, [LST1, Proposition 3.1.1] implies that

𝜒𝜆 (𝑡)𝜒𝜆(𝑡 ′) = ±1 (2.2)

in all these cases. Let 𝜖 = 1 if 𝐺 = SL𝑛 (𝑞) and 𝜖 = −1 if 𝐺 = SU𝑛 (𝑞). Using [Ca, §13.8], we can write
down the degrees of these 8 characters:

𝜒 (𝑛) (1) = 1,

𝜒 (1𝑛) (1) = 𝑞𝑛(𝑛−1)/2,

𝜒 (𝑛−1,1) (1) = 𝑞 𝑞
𝑛−1+𝜖 𝑛

𝑞−𝜖 ,

𝜒 (2,1𝑛−2) (1) = 𝑞𝑛(𝑛−1)/2−(𝑛−1) 𝑞𝑛−1+𝜖 𝑛

𝑞−𝜖 ,

𝜒 (𝑛−3,3) (1) = 𝑞3 (𝑞𝑛−𝜖 𝑛) (𝑞𝑛−1−𝜖 𝑛−1) (𝑞𝑛−5−𝜖 𝑛−5)
(𝑞3−𝜖 3) (𝑞2−𝜖 2) (𝑞−𝜖 ) ,

𝜒 (23 ,1𝑛−6) (1) = 𝑞𝑛(𝑛−1)/2−(3𝑛−9) (𝑞𝑛−𝜖 𝑛) (𝑞𝑛−1−𝜖 𝑛−1) (𝑞𝑛−5−𝜖 𝑛−5)
(𝑞3−𝜖 3) (𝑞2−𝜖 2) (𝑞−𝜖 ) ,

𝜒 (𝑛−4,22) (1) = 𝑞6 (𝑞𝑛−𝜖 𝑛) (𝑞𝑛−1−𝜖 𝑛−1) (𝑞𝑛−4−𝜖 𝑛−4) (𝑞𝑛−5−𝜖 𝑛−5)
(𝑞3−𝜖 3) (𝑞2−𝜖 2)2 (𝑞−𝜖 ) ,

𝜒 (32 ,1𝑛−6) (1) = 𝑞𝑛(𝑛−1)/2−(4𝑛−12) (𝑞𝑛−𝜖 𝑛) (𝑞𝑛−1−𝜖 𝑛−1) (𝑞𝑛−4−𝜖 𝑛−4) (𝑞𝑛−5−𝜖 𝑛−5)
(𝑞3−𝜖 3) (𝑞2−𝜖 2)2 (𝑞−𝜖 ) .

(2.3)

The first two characters in this list are the principal character 1𝐺 and the Steinberg character St of G.
Next, consider any 𝑔 ∈ 𝐺 \ Z(𝐺). If 𝑛 ≥ 7 and 𝑞 > 7481, then using equation (2.2) and [LST1,

Theorem 1.2.1], we get ���� ∑
𝜒∈Irr(𝐺)

𝜒(𝑡)𝜒(𝑡 ′)𝜒(𝑔)
𝜒(1)

���� ≥ 1 − 7
𝑞1/481 > 0,

so 𝑔 ∈ 𝑡𝐺 · (𝑡 ′)𝐺 .
Now we will assume 𝑛 ≥ 33. Then 𝜒𝑖 := 𝜒𝜆𝑖 with 𝑖 = 3, 4 has level

𝑖 ≤ min{
√
𝑛 − 3/4 − 1/2,

√
(8𝑛 − 17)/12 − 1/2}

by [GLT, Theorem 3.9], so

|𝜒𝑖 (𝑔) |
𝜒𝑖 (1)

≤ 2.43
𝜒𝑖 (1)1/𝑛 (2.4)

by [GLT, Theorem 1.6]; furthermore,

𝜒3(1) > 𝑞3𝑛−12, 𝜒4 (1) > 𝑞4𝑛−15. (2.5)

On the other hand, 𝜒2 := 𝜒𝜆2 is a unipotent Weil character, and using the character formula [TZ1,
Lemma 4.1], one can show that

|𝜒2 (𝑔) |
𝜒2 (1)

≤ 𝑞𝑛−1 + 𝑞2

𝑞𝑛 − 𝑞 . (2.6)

Now, if 𝑞 ≥ 3, then equations 2.4–2.6 imply

4∑
𝑖=2

|𝜒𝑖 (𝑔) |
𝜒𝑖 (1)

≤ 𝑞𝑛−1 + 𝑞2

𝑞𝑛 − 𝑞 + 2.43
𝑞 (3𝑛−12)/𝑛 + 2.43

𝑞 (4𝑛−15)/𝑛 < 0.9324. (2.7)
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If 𝑞 = 2, then |𝜒2 (𝑔) |/𝜒(1) < 0.1252 by Lemma 2.3 applied to (𝑘, 𝑞) = (3, 2), whence

4∑
𝑖=2

|𝜒𝑖 (𝑔) |
𝜒𝑖 (1)

≤ 𝑞𝑛−1 + 𝑞2

𝑞𝑛 − 𝑞 + 0.1252 + 2.43
𝑞 (4𝑛−15)/𝑛 < 0.8334.

Thus equation (2.7) holds for 𝑞 = 2 as well.
Note that the second, fourth, sixth and eighth characters in equation (2.3) have degree > 𝑞𝑛(𝑛−1)/2−9.

Applying [LST1, Proposition 6.2.1] as in the proof of Theorem 2.2, we obtain that

|𝜒(𝑔) | ≤ |C𝐺 (𝑔) |1/2 < 𝑞 (𝑛
2−2𝑛+3)/2,

and so
|𝜒(𝑔) |
𝜒(1) < 𝑞 (21−𝑛)/2 < 0.0157 (2.8)

for all four of them. Using equations (2.7) and (2.8), we now see that
8∑
𝑖=2

|𝜒𝑖 (𝑔) |
𝜒𝑖 (1)

< 0.9324 + 4 · 0.0157 = 0.9952.

It now follows from equation (2.2) that���� ∑
𝜒∈Irr(𝐺)

𝜒(𝑡)𝜒(𝑡 ′)𝜒(𝑔)
𝜒(1)

���� ≥ 1 − 0.9952 = 0.0048,

so 𝑔 ∈ 𝑡𝐺 · (𝑡 ′)𝐺 . �

In fact, for SU𝑛 (2), we will need an analogue of Theorem 2.4 for tori of types 𝑇3,𝑛−3 and 𝑇4,𝑛−4. We
begin by classifying characters of S𝑛, which vanish on neither of the corresponding permutations.

Proposition 2.5. Let 𝑛 ≥ 10, and let

𝜎1 = (1, 2, 3) (4, . . . , 𝑛), 𝜎2 = (1, 2, 3, 4) (5, . . . , 𝑛) ∈ S𝑛.

There are exactly 12 characters 𝜓 = 𝜓𝜆 of S𝑛 such that 𝜓(𝜎1)𝜓(𝜎2) ≠ 0. For each of these characters,
the product is ±1, and for each such 𝜆, either 𝜆 or its transpose belongs to the following set:

{(𝑛), (𝑛 − 1, 1), (𝑛 − 2, 12), (𝑛 − 4, 4), (𝑛 − 5, 3, 2), (𝑛 − 6, 23)}.

Proof. As 𝜆 � 𝑛 ≥ 10, transposing if necessary, we may assume 𝜆1 ≥ 4. As 𝜓(𝜎1) ≠ 0, by the
Murnaghan-Nakayama rule, removal of a rim 𝑛 − 3-hook leaves a Young diagram 𝜇 with 3 boxes, and
it follows that this rim hook must include the last box in the first row (which implies, in particular, that
there is no other rim 𝑛 − 3-hook, so the character value at 𝜎1 is ±1). There are three cases to consider:

(i) 𝜇 = (3). In this case, 𝜆 must be (𝑛) or (𝑛 − 𝑘 − 4, 4, 1𝑘 ) for 0 ≤ 𝑘 ≤ 𝑛 − 8.
(ii) 𝜇 = (2, 1). In this case,𝜆must be either (𝑛−1, 1), or (𝑛−3, 3) or (𝑛−𝑘−5, 3, 2, 1𝑘 ) for 0 ≤ 𝑘 ≤ 𝑛−8.
(iii) 𝜇 = (13). In this case, 𝜆 must be (𝑛 − 2, 12), (𝑛 − 3, 2, 1), (𝑛 − 4, 22) or (𝑛 − 6 − 𝑘, 23, 1𝑘 ), where

0 ≤ 𝑘 ≤ 𝑛 − 8.

As 𝜓(𝜎2) ≠ 0, 𝜆 must have a rim 𝑛 − 4-hook whose removal leaves a Young diagram, which is a
4-hook. In case (i), this is possible for (𝑛) and possible for (𝑛− 𝑘 − 4, 4, 1𝑘 ) if and only if 𝑘 = 0. In case
(ii), this is possible for (𝑛−1, 1), impossible for (𝑛−3, 3) and possible for (𝑛−5− 𝑘, 3, 2, 1𝑘 ) if and only
if 𝑘 = 0. In case (iii), this is possible only for (𝑛−2, 12) and (𝑛−6, 23). In every case where it is possible,
the rim hook contains the last box in the first row and is therefore unique, implying that 𝜓(𝜎2) is ±1. �
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Recall [LST1, Definition 4.1.1], which states that the support supp(𝑔) of an element g in a finite
classical group Cl(𝑉) is the codimension of the largest eigenspace of g on 𝑉 ⊗F𝑞 F𝑞 .
Theorem 2.6. The following statement holds for 𝐺 = SU𝑛 (2) with 𝑛 ≥ 43. If t and 𝑡 ′ are regular
semisimple elements of G belonging to tori T and 𝑇 ′ of type 𝑇𝑛−3,3 and 𝑇𝑛−4,4, respectively, and 𝑔 ∈ 𝐺
has supp(𝑔) ≥ 2, then 𝑔 ∈ 𝑡𝐺 · (𝑡 ′)𝐺 .
Proof. Suppose 𝜒 ∈ Irr(𝐺) is such that

𝜒(𝑡)𝜒(𝑡 ′) ≠ 0. (2.9)

By [GLBST, Proposition 8.4], the two tori are weakly orthogonal, and hence 𝜒 = 𝜒𝜆 is a unipotent
character labelled by a partition 𝜆 � 𝑛. Then by Proposition 2.5, 𝜆 is one of the following 6 partitions:

(𝑛), 𝜆1 := (𝑛 − 1, 1), 𝜆2 := (𝑛 − 2, 12),
𝜆4 := (𝑛 − 4, 4), 𝜆5 := (𝑛 − 5, 3, 2), 𝜆6 := (𝑛 − 6, 23)

or their dual partitions 𝜆𝑖 , 7 ≤ 𝑖 ≤ 12; moreover,

𝜒𝜆 (𝑡)𝜒𝜆(𝑡 ′) = ±1 (2.10)

in all these cases. Let 𝜒𝑖 := 𝜒𝜆𝑖 for 𝑖 ≥ 2. Since 𝑛 ≥ 43, 𝜒𝑖 with 𝑖 = 4, 5, 6 has level 𝑖 ≤
√
𝑛 − 3/4− 1/2

by [GLT, Theorem 3.9], so

|𝜒𝑖 (𝑔) |
𝜒𝑖 (1)

≤ 2.43
𝜒𝑖 (1)1/𝑛 (2.11)

by [GLT, Theorem 1.6]; furthermore, with 𝑞 := 2, we have

𝜒𝑖 (1) > 𝑞𝑖𝑛−𝑖
2−3 (2.12)

by [GLT, Theorem 1.2]. On the other hand, 𝜒1 is a unipotent Weil character, and using the character
formula [TZ1, Lemma 4.1] and the assumption supp(𝑔) ≥ 2, one can show that

|𝜒1 (𝑔) | ≤
𝑞𝑛−2 + 𝑞2

𝑞 + 1
< 𝑞𝑛−3,

|𝜒1 (𝑔) |
𝜒1(1)

≤ 𝑞𝑛−2 + 𝑞3

𝑞𝑛 − 𝑞 . (2.13)

Next, as shown in [Ma2, Table 7.1], 𝜒2 = 𝜒1𝜒1−1𝐺 with 𝜒2 (1) > 𝑞2𝑛−4. Together with equation (2.13),
this implies that

|𝜒2 (𝑔) |
𝜒2(1)

<
𝑞2𝑛−6

𝑞2𝑛−4 =
1
𝑞2 . (2.14)

Since 𝑛 ≥ 43, it now follows from equations 2.11–2.14 that∑
𝑖=1,2,4,5,6

|𝜒𝑖 (𝑔) |
𝜒𝑖 (1)

<
𝑞𝑛−2 + 𝑞3

𝑞𝑛 − 𝑞 + 1
𝑞2 +

∑
𝑖=4,5,6

2.43
𝑞 (𝑖𝑛−𝑖2−3)/𝑛

< 0.899. (2.15)

Consider any j with 7 ≤ 𝑗 ≤ 12. Then 𝜒 𝑗 extends to the unipotent characters 𝜓 𝑗 of GU𝑛 (𝑞) labelled
by the same partition 𝜆 𝑗 , which is dual to (𝑛) or one of the partitions 𝜆𝑖 with 𝑖 ∈ {1, 2, 4, 5, 6}. By
[GLT, Proposition 4.3], 𝜓 𝑗 is the Alvis-Curtis dual of the unipotent character of GU𝑛 (𝑞) labelled by
the latter partition. By explicitly writing down the degrees of 𝜒 𝑗 with 7 ≤ 𝑗 ≤ 12 using [Ca, §13.8],
or by applying [Al, Corollary (3.6)], we can check that 𝜒 𝑗 (1) = 𝜓 𝑗 (1) > 𝑞𝑛(𝑛−1)/2−14. Using [LST1,
Proposition 6.2.1] as in the proof of equation (2.8), we have

|𝜒(𝑔) |/𝜒(1) < 𝑞−(𝑛−31)/2 < 0.016
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for all 𝜒 𝑗 with 7 ≤ 𝑗 ≤ 12. It now follows from equations (2.10) and (2.15) that���� ∑
𝜒∈Irr(𝐺)

𝜒(𝑡)𝜒(𝑡 ′)𝜒(𝑔)
𝜒(1)

���� ≥ 1 − 0.899 − 6 · 0.016 = 0.005,

so 𝑔 ∈ 𝑡𝐺 · (𝑡 ′)𝐺 . �

3. Other classical types: symbols, hooks and cohooks

To treat the unipotent characters of finite simple groups of orthogonal and symplectic types,
we use Lusztig’s theory of symbols [Lu2]. For a subset 𝑋 ⊆ Z≥0, we define the shift
S (𝑋) = {0} ∪ {𝑥 +1 | 𝑥 ∈ 𝑋}. If X is finite, we define the inefficiency of X to be the nonnegative integer

𝑖(𝑋) = −
(
|𝑋 |
2

)
+
∑
𝑥∈𝑋

𝑥. (3.1)

Thus, 𝑖(S (𝑋)) = 𝑖(𝑋). Every finite X is uniquely of the form S𝑚(𝑋0) for some 𝑋0 (possibly empty)
that does not contain 0. For such an 𝑋0, we have 𝑖(𝑋0) ≥ |𝑋0 | by equation (3.1). Hence, subject to
𝑖(𝑋) ≤ 𝑗 for any fixed j, we have

∑
𝑥∈𝑋0 𝑥 ≤

( 𝑗+1
2
)

again by equation (3.1), so there are only finitely
many, indeed at most 2 𝑗 ( 𝑗+1)/2, possibilities for 𝑋0. More generally, for any given 𝑗 , 𝑘 , the number of
X with 𝑖(𝑋) ≤ 𝑗 and |𝑋 | ≤ 𝑘 is at most

2 𝑗+𝑘 (𝑘−1)/2 (3.2)

(since
∑

𝑥∈𝑋 𝑥 ≤ 𝑗 + 𝑘 (𝑘 − 1)/2 by equation (3.1)).
A d-hook in X is an element 𝑥 ∈ 𝑋 such that 𝑥 − 𝑑 ∈ Z≥0 \ 𝑋; in what follows, we also label this

hook by (𝑥 − 𝑑, 𝑥). If x is a d-hook of X, then removing the d-hook x means replacing x by 𝑥 − 𝑑 in X.
The resulting set 𝑋 ′ satisfies 𝑖(𝑋 ′) = 𝑖(𝑋) − 𝑑. In particular, if X contains a d-hook, then 𝑖(𝑋) ≥ 𝑑. If
𝑥 − 𝑑 ∈ 𝑋 and 𝑥 ∉ 𝑋 , then adding the d-hook x to X means replacing 𝑥 − 𝑑 with x.

We recall that a symbol is an ordered pair (𝑋,𝑌 ) of finite subsets of Z≥0. We define an equivalence
relation of symbols by imposing the relations (𝑋,𝑌 ) ∼ (𝑌, 𝑋) and (𝑋,𝑌 ) ∼ (S (𝑋),S (𝑌 )) and taking
transitive closure. If 𝑋 = 𝑌 , the symbol is degenerate. We will say a symbol is minimal if 0 ∉ 𝑋 ∩𝑌 ; in
particular, every symbol is equivalent to at least one minimal symbol. The rank of a symbol is given by

𝑟 = −
⌊ (|𝑋 | + |𝑌 | − 1)2

4

⌋
+
∑
𝑥∈𝑋

𝑥 +
∑
𝑦∈𝑌

𝑦 = 𝑖(𝑋) + 𝑖(𝑌 ) +
⌊ (|𝑋 | − |𝑌 |)2

4

⌋
, (3.3)

so equivalent symbols have the same rank.
For any q, the unipotent representations of orthogonal and symplectic groups of Lie type of rank r

for specified q are given by equivalence classes of symbols of rank r; classes of symbols with |𝑋 | − |𝑌 |
odd correspond to representations of groups of type 𝐵𝑟 and 𝐶𝑟 , and those with |𝑋 | − |𝑌 | divisible by
2 but not 4, correspond to representations of groups of type 2𝐷𝑟 . Those with |𝑋 | − |𝑌 | divisible by 4
correspond to representations of type 𝐷𝑟 , with the additional proviso that each degenerate symbol class
– that is, where 𝑋 = 𝑌 – corresponds to a pair of unipotent representations for groups of type 𝐷𝑟 . We
note that the total number of minimal symbols (𝑋,𝑌 ) of rank ≤ 𝑠 (regardless of congruences modulo 4
of the defect | |𝑋 | − |𝑌 | |) is at most

𝐴(𝑠) := 25𝑠 (𝑠+1)/2+1. (3.4)

Indeed, since the symbol is minimal, we have that either 0 ∉ 𝑋 or 0 ∉ 𝑌 . Suppose for instance that
0 ∉ 𝑋 . Then |𝑋 | ≤ 𝑖(𝑋) ≤ 𝑠, and there are at most 2𝑠 (𝑠+1)/2 possibilities for X by equation (3.2). Next,
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equation (3.3) shows that 𝑖(𝑌 ) ≤ 𝑠 and 𝑠 ≥ �(|𝑋 | − |𝑌 |)2/4� ≥ (|𝑌 | − |𝑋 |)2/4 − 1/4, so

|𝑌 | ≤ |𝑋 | + �
√

4𝑠 + 1� ≤ 2𝑠 + 1.

Hence the number of possibilities for Y is at most 2𝑠+𝑠 (2𝑠+1) by equation (3.2).
By a d-hook of a symbol (𝑋,𝑌 ), we mean either a d-hook of X or a d-hook of Y. By a d-cohook of

(𝑋,𝑌 ), we mean either an element 𝑥 ∈ 𝑋 such that 𝑥 − 𝑑 ∈ Z≥0 \𝑌 or 𝑦 ∈ 𝑌 such that 𝑦 − 𝑑 ∈ Z≥0 \ 𝑋;
again, we will sometimes label this cohook by (𝑥 − 𝑑, 𝑥). Removing a d-cohook 𝑥 ∈ 𝑋 from the symbol
(𝑋,𝑌 ) means removing x from X and adding 𝑥 − 𝑑 to Y and likewise for removing a d-cohook 𝑦 ∈ 𝑌 ;
from the middle term of equation (3.3), it is clear that either way, the effect is to reduce the rank of the
symbol by d. Likewise, if 𝑥 − 𝑑 ∈ 𝑌 and 𝑥 ∉ 𝑋 (respectively, 𝑦 − 𝑑 ∈ 𝑋 and 𝑦 ∉ 𝑌 ), we can reverse this
operation and add the cohook x (respectively, y) to the symbol (𝑋,𝑌 ).

We also note that, for a fixed 𝑘 ∈ Z≥1 and a fixed minimal symbol Λ = (𝑋,𝑌 ) of rank 𝑟 ≥ 𝑘 , both
the number of (𝑟 − 𝑘)-hooks in Λ and the number of (𝑟 − 𝑘)-cohooks in Λ are at most

𝐴′(𝑘) := (4𝑘 + 2)𝐴(𝑘) + 2. (3.5)

Indeed, let’s consider the case of hooks, the other case being essentially the same. It suffices to show
that the number of (𝑟 − 𝑘)-hook (𝑥, 𝑦) with 𝑦 = 𝑥 + (𝑟 − 𝑘) ∈ 𝑋 is at most (2𝑘 + 1)𝐴(𝑘) + 1. Indeed, if
𝑥 > 0, then removing the hook yields a new symbol Λ′ = (𝑋 ′, 𝑌 ) of rank k, which is also minimal. Now
Λ is obtained from Λ′ by adding the hook (𝑥, 𝑦) in 𝑋 ′, and, given Λ′, there are at most |𝑋 ′ | ≤ (2𝑘 + 1)
possibilities for x; thus the total number of such possibilities is ≤ (2𝑘 + 1)𝐴(𝑘) by equation (3.4). Now
we add 1 to the bound to account for the possible (𝑟 − 𝑘)-hook (0, 𝑟 − 𝑘) in X.

Next we recall that for G, an orthogonal or symplectic group (of simply connected type) defined
over F𝑞 , the degree of the unipotent representation of G labelled by the symbol 𝑆 = (𝑋,𝑌 ) is given by

𝑞𝑎 (𝑆)
|𝐺 |𝑞′

2𝑏 (𝑆)
∏

(𝑏,𝑐) hook(𝑞𝑐−𝑏 − 1)
∏

(𝑏,𝑐) cohook(𝑞𝑐−𝑏 + 1)
(3.6)

for some integers 𝑎(𝑆), 𝑏(𝑆) ≥ 0 (see [Ma1, Remarks 3.12 and 6.8]).

Proposition 3.1. For 𝑘, 𝑘 ′ ∈ Z≥1, let

𝐵(𝑘, 𝑘 ′) := 𝐴(𝑘 + 𝑘 ′) + (4𝑘 + 2𝑘 ′ + 3)𝐴(𝑘) + (4𝑘 ′ + 2𝑘 + 3)𝐴(𝑘 ′),

with 𝐴(𝑘) as defined in equation (3.4). Then the following statements hold:

(i) If 𝑘 ≠ 𝑘 ′ are fixed, there exists a bound 𝐵1 ≤ 𝐵(𝑘, 𝑘 ′) such that for each r, there are at most 𝐵1
minimal symbols of rank r that contain both an (𝑟 − 𝑘)-hook and an (𝑟 − 𝑘 ′)-hook.

(ii) If 𝑘 ≠ 𝑘 ′ are fixed, there exists a bound 𝐵2 ≤ 𝐵(𝑘, 𝑘 ′) such that for each r, there are at most 𝐵2
minimal symbols of rank r that contain both an (𝑟 − 𝑘)-cohook and an (𝑟 − 𝑘 ′)-cohook.

(iii) If 𝑘, 𝑘 ′ are fixed (and possibly equal), there exists a bound 𝐵3 ≤ 𝐵(𝑘, 𝑘 ′) such that for each r, there
are at most 𝐵3 minimal symbols of rank r that contain both an (𝑟− 𝑘)-hook and an (𝑟− 𝑘 ′)-cohook.

Proof. We treat only the case of two hooks, the other two cases being essentially the same.
If at least one of the hooks is of the form (𝑥1, 𝑥2), where 𝑥1 > 0, then removing that hook from (𝑋,𝑌 )

leaves a minimal symbol (𝑋 ′, 𝑌 ′) of rank 𝑘 ′ or k, of which there are at most 𝐴(𝑘 ′), respectively 𝐴(𝑘),
possibilities. In the first case, the proof of equation (3.4) shows that |𝑋 ′ | + |𝑌 ′ | ≤ 3𝑘 ′ + 1; moreover,
(𝑋,𝑌 ) is obtained from (𝑋 ′, 𝑌 ′) by adding an (𝑟 − 𝑘)-hook, the number of which is at most |𝑋 ′ | + |𝑌 ′ |.
Hence the number of (𝑋,𝑌 ) arising this way is at most (3𝑘 ′ +1)𝐴(𝑘 ′) + (3𝑘 +1)𝐴(𝑘). We may therefore
assume without loss of generality that the two hooks are (0, 𝑟 − 𝑘) and (0, 𝑟 − 𝑘 ′).

By equation (3.4), there are at most 𝐴(𝑘 + 𝑘 ′) minimal symbols of rank ≤ 𝑘 + 𝑘 ′. We may now assume
that 𝑟 > 𝑘 + 𝑘 ′, so it is impossible to remove both an (𝑟 − 𝑘)-hook and an (𝑟 − 𝑘 ′)-hook (removing
these two hooks would yield a symbol of rank 𝑟 − (𝑟 − 𝑘) − (𝑟 − 𝑘 ′) = 𝑘 + 𝑘 ′ − 𝑟 < 0, which is absurd).
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This means the two hooks (0, 𝑟 − 𝑘) and (0, 𝑟 − 𝑘 ′) must be both in X or both in Y. Without loss of
generality, we may assume both hooks are in X. Now, all integers in [1, 𝑟 − 𝑘 − 𝑘 ′ − 1] must belong to X
since it is impossible to remove the two hooks (0, 𝑟 − 𝑘 ′) and (𝑖, 𝑟 − 𝑘) from the rank r symbol (𝑋,𝑌 )
for 1 ≤ 𝑖 < 𝑟 − 𝑘 − 𝑘 ′ (removing these two hooks would yield a symbol of rank 𝑘 + 𝑘 ′ − 𝑟 + 𝑖 < 0).
Likewise, [0, 𝑟 − 𝑘 − 𝑘 ′ − 1] ⊆ 𝑌 since it is impossible to remove both the hook (0, 𝑟 − 𝑘 ′) and the
cohook (𝑖, 𝑟 − 𝑘) from (𝑋,𝑌 ).

Removing (0, 𝑟 − 𝑘) from (𝑋,𝑌 ) leads to a symbol (𝑋1, 𝑌1) of rank k, where both 𝑋1 and 𝑌1 contain
[0, 𝑟 − 𝑘 − 𝑘 ′ −1] but 𝑟 − 𝑘 ∉ 𝑋1. It must therefore be of the form (S 𝑗 (𝑋2),S 𝑗 (𝑌2)) for some integer j in
the interval [𝑟 − 𝑘 − 𝑘 ′ − 1, 𝑟 − 𝑘 − 1] and some minimal symbol (𝑋2, 𝑌2) of rank k. Equivalently, (𝑋,𝑌 )
is obtained from (𝑋2, 𝑌2) by shifting by j and then adding the (𝑟 − 𝑘)-hook (0, 𝑟 − 𝑘). The number of
possibilities for (𝑋2, 𝑌2) is at most 𝐴(𝑘), and the number of possibilities for j is at most 𝑘 ′ + 1. Counting
the symmetry of X and Y and using 𝑘 < 𝑘 ′, we see that the total number of possibilities for (𝑋,𝑌 ) is at
most 𝐵(𝑘, 𝑘 ′). (Note that in the case of (iii), we have 4 possible locations, in X or in Y, for the hook and
the cohook, and this leads to an increase in 𝐵(𝑘, 𝑘 ′) to account for this.) �

Every conjugacy class of maximal tori of a group of type 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟 or 2𝐷𝑟 can be identified with a
conjugacy class in 𝑊𝑟 = 𝐶2 � S𝑟 . Any 𝛼 ∈ 𝑊𝑟 is determined up to conjugacy by the cycle lengths of its
image in S𝑟 and the sign ±1 attached to each cycle. Therefore, up to conjugacy, such a maximal torus
is determined by a partition of r and a sign for each part.

Proposition 3.2. Let k and 𝑘 ′ be fixed integers. Let

𝑇 = 𝑇
𝜖1 ,..., 𝜖𝑝
𝑑1 ,...,𝑑𝑝

, 𝑇 ′ = 𝑇
𝜖 ′1 ,..., 𝜖

′
𝑝′

𝑑′1 ,...,𝑑
′
𝑝′
,

with 𝜖𝑖 , 𝜖 ′𝑖 = ±1, be a pair of weakly orthogonal maximal tori of an orthogonal or symplectic group G
of rank r defined over F𝑞 , and let 𝑡, 𝑡 ′ ∈ 𝐺 denote regular elements of 𝑇,𝑇 ′, respectively. Suppose that

𝑟 − 𝑑1 = 𝑘, 𝑟 − 𝑑 ′1 = 𝑘 ′, (𝜖1, 𝑘) ≠ (𝜖 ′1, 𝑘
′).

Then the following statements hold:

(i) The number of irreducible characters 𝜒 of G for which 𝜒(𝑡)𝜒(𝑡 ′) ≠ 0 is bounded by 2𝐵(𝑘, 𝑘 ′), with
𝐵(𝑘, 𝑘 ′) as defined in Proposition 3.1.

(ii) Assume in addition that
(a) either at least one of {𝜖1, . . . , 𝜖𝑝} is −1 or at least one of {𝑑1, . . . , 𝑑𝑝} is odd, and
(b) either at least one of {𝜖 ′1, . . . , 𝜖

′
𝑝′ } is −1 or at least one of {𝑑 ′1, . . . , 𝑑

′
𝑝′ } is odd,

if G is of type 𝐷𝑟 . Then the values |𝜒(𝑡)𝜒(𝑡 ′) | are also bounded effectively and independently of
anything but k and 𝑘 ′; see equation (3.7).

Proof. As T and 𝑇 ′ are weakly orthogonal, by [LST1, Proposition 2.2.2], we need only consider
unipotent characters 𝜒. Any such character is associated with an equivalence class of symbols of rank r.
Let (𝑋,𝑌 ) represent such a class. By [LM, Theorem 3.3], the values 𝜒(𝑡) and 𝜒(𝑡 ′) are independent of
the choices of t and 𝑡 ′; moreover 𝜒(𝑡) = 0 unless (𝑋,𝑌 ) has a 𝑑1-hook assuming 𝜖1 = 1, respectively
a 𝑑1-cohook assuming 𝜖1 = −1. Similarly, 𝜒(𝑡 ′) = 0 unless (𝑋,𝑌 ) has a 𝑑 ′1-hook assuming 𝜖 ′1 = 1,
respectively a 𝑑 ′1-cohook assuming 𝜖 ′1 = −1. By Proposition 3.1, the number of possibilities for (𝑋,𝑌 )
is bounded by 𝐵(𝑘, 𝑘 ′); in particular, the number of possibilities for 𝜒 is bounded by 2𝐵(𝑘, 𝑘 ′). By
equation (3.5), (𝑋,𝑌 ) has at most 𝐴′(𝑘) 𝑑1-hooks and at most 𝐴′(𝑘 ′) 𝑑 ′1-cohooks. Removal of such a
hook or cohook leads to a unipotent (or sum of two unipotent characters in the degenerate case) character
of a Levi subgroup of G of semisimple rank k or 𝑘 ′, evaluated at the same regular elements t and 𝑡 ′,
and these values can be bounded purely in terms of k and 𝑘 ′, say by 2𝑊 (𝑘), respectively 2𝑊 (𝑘 ′), for
the largest order 𝑊 (𝑘) and 𝑊 (𝑘 ′) of Weyl groups of such ranks; see [GM1, Theorem 5.4] and [LTT,
Proposition 5.2]. Note that the factor 2 is added to account for the degenerate symbols obtained after
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a removal. Hence, [LM, Theorem 3.3] implies that the character values 𝜒(𝑡) and 𝜒(𝑡 ′) also belong to
finite sets independent of r, and

|𝜒(𝑡)𝜒(𝑡 ′) | ≤ 4𝑊 (𝑘)𝑊 (𝑘 ′)𝐴′(𝑘)𝐴′(𝑘 ′) (3.7)

if none of (𝑋,𝑌 ) is degenerate. In the case some (𝑋,𝑌 ) is degenerate, which can happen only when G
is of type 𝐷𝑟 , then our extra assumption ensures that both t and 𝑡 ′ are nondegenerate. As mentioned in
[LM, §3.4], the two unipotent characters corresponding to a degenerate symbol take the same values
at nondegenerate regular semisimple elements, and their sum is still governed by [LM, Theorem 3.3],
whence our statement follows in this case as well. �

4. Character estimates in groups of type 𝐷𝑛 and 2𝐷𝑛

Lemma 4.1. Let q be an odd prime power, and let 𝐺 = Ω𝜖
2𝑛 (𝑞) with 𝑛 ≥ 4 and 𝜖 = ±. Let

𝑇 < SO𝛼
2𝑎 (𝑞) × SO𝛽

2𝑏 (𝑞)

be a maximal torus of type 𝑇 𝛼,𝛽
𝑎,𝑏 in G with 1 ≤ 𝑎 < 𝑏 and 𝑛 = 𝑎 + 𝑏. Then we can find a regular

semisimple element 𝑔 = diag(𝑢, 𝑣) ∈ 𝑇 with 𝑢 ∈ SO𝛼
2𝑎 (𝑞) having order 𝑞𝑎 −𝛼 and 𝑣 ∈ SO𝛽

2𝑏 (𝑞) having
order 𝑞𝑏 − 𝛽.

Proof. First we consider the maximal torus 𝑇 𝛼
𝑎 = 〈𝑥〉 � 𝐶𝑞𝑎−𝛼 in SO𝛼

2𝑎 (𝑞). If 𝛼 = + or if 𝛼 = − but
2 � 𝑎, then, as shown in [TZ2, Lemma 8.14], 𝑇 𝛼

𝑎 ∩Ω𝛼
2𝑎 (𝑞) = 〈𝑥2〉. On the other hand, if 𝛼 = − and 2|𝑎,

then as 1 = (−1)𝑎 (𝑞−1)/2, by [KL, Proposition 2.5.13], we have SO𝛼
2𝑎 (𝑞) = 〈𝑧〉 × Ω𝛼

2𝑎 (𝑞) for a central
involution z, which is contained in 𝑇 𝛼

𝑎 . Since 𝐶𝑞𝑎−𝛼 � 𝐶(𝑞𝑎−𝛼)/2 × 𝐶2 with 2 � (𝑞𝑎 − 𝛼)/2, we again
see that 𝑇 𝛼

𝑎 ∩Ω𝛼
2𝑎 (𝑞) = 〈𝑥2〉.

Let 𝑇𝛽
𝑏 = 〈𝑦〉 � 𝐶𝑞𝑏−𝛽 . By the above, 𝑥2, 𝑦2 ∈ 𝐺, but 𝑥 ∈ SO𝛼

2𝑎 (𝑞) \ Ω𝛼
2𝑎 (𝑞) and 𝑦 ∈ SO𝛽

2𝑏 (𝑞) \
Ω𝛽

2𝑏 (𝑞). We can now choose 𝑔 = 𝑥𝑦. As 𝑞 ≥ 3 and 𝑎 < 𝑏, g has a simple spectrum acting on the natural
module 𝑉 = F2𝑛

𝑞 of G and so is regular unless (𝑞, 𝛼, 𝑎) = (3, +, 1). But even in this exceptional case,
CSO(𝑉 ⊗F𝑞) (𝑔)

◦ is still a torus of type 𝑇1,𝑛−1, so g is again regular. �

Proposition 4.2. Let 𝐺 = Spin𝜖2𝑛 (𝑞) with 𝑛 ≥ 4 and 𝜖 = ±. Then the following statements hold:

(i) If 2|𝑛 and 𝜖 = −, then the pair of maximal tori 𝑇−
𝑛 and 𝑇+,−

𝑛−1,1 is weakly orthogonal.
(ii) If 𝑎 ∈ N and 𝑛 ≥ 2𝑎 + 2, then the pair of maximal tori 𝑇−,−𝜖

𝑛−𝑎,𝑎 and 𝑇−,−𝜖
𝑛−𝑎−1,𝑎+1 is weakly orthogonal.

Proof. We follow the proof of [LST1, Proposition 2.6.1]. In this case, the dual group 𝐺∗ is the adjoint
group PCO(𝑉)◦, where 𝑉 = F2𝑛

𝑞 is endowed with a quadratic form Q of type 𝜖 , 𝐺∗ = 𝐻/Z(𝐻), and
𝐻 = CO(𝑉)◦ := CO2𝑛 (𝑞)◦ (as defined on [Ca, pp. 39, 40]). Consider the complete inverse images in H
of the tori dual to the given two tori, and assume g is an element belonging to both of them. We need to
show that 𝑔 ∈ Z(𝐻). We will consider the spectrum S of the semisimple element g on V as a multiset.
Let 𝛾 ∈ F×𝑞 be the conformal coefficient of g – that is, 𝑄(𝑔(𝑣)) = 𝛾𝑄(𝑣) for all 𝑣 ∈ 𝑉 .

In the case of (i), S can be represented as the multiset X but also as the join of multisets 𝑍 �𝑇 , where

𝑋 := {𝑥, 𝑥𝑞 , . . . , 𝑥𝑞𝑛−1
, 𝛾𝑥−1, 𝛾𝑥−𝑞 , . . . , 𝛾𝑥−𝑞

𝑛−1 },
𝑍 := {𝑧, 𝑧𝑞 , . . . , 𝑧𝑞𝑛−2

, 𝛾𝑧−1, 𝛾𝑧−𝑞 , . . . , 𝛾𝑧−𝑞
𝑛−2 }, 𝑇 := {𝑡, 𝛾𝑡−1}

for some 𝑥, 𝑧, 𝑡 ∈ F̄×𝑞 with 𝑥𝑞𝑛+1 = 𝛾 = 𝑡𝑞+1 and 𝑧𝑞𝑛−1−1 = 1. Since |𝑋 | = 2𝑛 > |𝑍 |, we may assume that
𝑥 ∈ 𝑋 ∩ 𝑇 , whence 𝑥𝑞𝑛+1 = 𝑥𝑞+1 = 𝛾. As 2|𝑛, it follows that

𝑥𝑞
𝑛−1 = (𝛾𝑞−1) (𝑞𝑛−1)/(𝑞2−1) = 1,
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whence 𝛾 = 𝑥2. In turn, this implies that 𝑥𝑞+1 = 𝑥2 – that is, 𝑥 ∈ F×𝑞 . Since we now have 𝑆 = 𝑋 =
{𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸

2𝑛

}, 𝑔 ∈ Z(𝐻).

In the case of (ii), S can be represented as the joins 𝑋 � 𝑌 and 𝑍 � 𝑇 , where

𝑋 := {𝑥, 𝑥𝑞 , . . . , 𝑥𝑞𝑛−𝑎−1
, 𝛾𝑥−1, 𝛾𝑥−𝑞 , . . . , 𝛾𝑥−𝑞

𝑛−𝑎−1 },
𝑌 := {𝑦, 𝑦𝑞 , . . . , 𝑦𝑞𝑎−1

, 𝛾𝑦−1, 𝛾𝑦−𝑞 , . . . , 𝛾𝑦−𝑞
𝑎−1 },

𝑍 := {𝑧, 𝑧𝑞 , . . . , 𝑧𝑞𝑛−𝑎−2
, 𝛾𝑧−1, 𝛾𝑧−𝑞 , . . . , 𝛾𝑧−𝑞

𝑛−𝑎−2 },
𝑇 := {𝑡, 𝑡𝑞 , . . . , 𝑡𝑞𝑎

, 𝛾𝑡−1, 𝛾𝑡−𝑞 , . . . , 𝛾𝑡−𝑞
𝑎 }

for some 𝑥, 𝑦, 𝑧, 𝑡 ∈ F̄×𝑞 with 𝑥𝑞
𝑛−𝑎+1 = 𝛾 = 𝑧𝑞

𝑛−𝑎−1+1, and 𝑦𝑞
𝑎+𝜖 = 𝛾 = 𝑡𝑞

𝑎+1+𝜖 if 𝜖 = + and
𝑦𝑞

𝑎+𝜖 = 1 = 𝑡𝑞
𝑎+1+𝜖 if 𝜖 = −. Since |𝑋 | = 2(𝑛 − 𝑎) > |𝑇 | = 2(𝑎 + 1), we may assume that 𝑥 ∈ 𝑋 ∩ 𝑍 ,

whence 𝑥𝑞𝑛−𝑎+1 = 𝑥𝑞
𝑛−𝑎−1+1 = 𝛾. It follows that

𝑥𝑞
𝑛−𝑎−1 (𝑞−1) = 1,

whence 𝑥 ∈ F×𝑞 , 𝛾 = 𝑥2, and 𝑋 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸
2(𝑛−𝑎)

}, 𝑍 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸
2(𝑛−𝑎−1)

}. This also implies that 𝑥 ∈ 𝑇 , whence

𝑇 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸
2𝑎+2

} and 𝑔 ∈ Z(𝐻). �

Proposition 4.3. Let 𝐺 = Spin𝜖2𝑛 (𝑞) with 𝑛 ≥ 4 and 𝜖 = ±. Then the following statements hold:

(i) Suppose 2|𝑛 and 𝜖 = −. Then there exist regular semisimple elements 𝑥 ∈ 𝑇−
𝑛 and 𝑦 ∈ 𝑇+,−

𝑛−1,1 such
that 𝑥𝐺 · 𝑦𝐺 ⊇ 𝐺 \ Z(𝐺).

(ii) Suppose 𝑎 ∈ N, 𝑎 ≥ 3 and 𝑛 ≥ 2𝑎 + 2. Then there exist regular semisimple elements 𝑥 ∈ 𝑇−,−𝜖
𝑛−𝑎,𝑎,

𝑦 ∈ 𝑇−,−𝜖
𝑛−𝑎−1,𝑎+1 and an explicit constant 𝐶 = 𝐶 (𝑎) such that if 𝑔 ∈ 𝐺 has supp(𝑔) ≥ 𝐶, then

𝑔 ∈ 𝑥𝐺 · 𝑦𝐺 .

Proof. (i) As 2|𝑛 ≥ 4, by [Zs], we can find a primitive prime divisor ℓ2𝑛 of 𝑞2𝑛−1 and a primitive prime
divisor ℓ𝑛−1 of 𝑞𝑛−1 − 1. It is straightforward to check that 𝑇−

𝑛 contains a regular semisimple element x
of order divisible by ℓ2𝑛, and likewise 𝑇+,−

𝑛−1,1 contains a regular semisimple element y of order divisible
by ℓ𝑛−1 (with the projection onto 𝑇−

1 � SO−
2 (𝑞) having order 𝑞 + 1, which is possible by Lemma 4.1).

Suppose 𝜒 ∈ Irr(𝐺) is such that 𝜒(𝑥)𝜒(𝑦) ≠ 0. By Proposition 4.2(ii), the pair of tori in question is
weakly orthogonal, and hence 𝜒 is unipotent, labelled by a minimal symbol

𝑆 = (𝑋,𝑌 ), 𝑋 = (𝑥1 < 𝑥2 < . . . < 𝑥𝑘 ), 𝑌 = (𝑦1 < 𝑦2 < . . . < 𝑦𝑙).

Now, if the denominator of the degree formula in equation (3.6) is not divisible by ℓ2𝑛, then 𝜒 has ℓ2𝑛-
defect 0, so 𝜒(𝑥) = 0. Similarly, if the denominator of equation (3.6) is not divisible by ℓ𝑛−1, then 𝜒 has
ℓ𝑛−1-defect 0, and 𝜒(𝑦) = 0. Thus the denominator in equation (3.6) is divisible by both ℓ2𝑛 and ℓ𝑛−1.

Observe that if 𝑥1 = 0, then by equation (3.3) and the minimality of S, we have

𝑛 ≥ 𝑥𝑘 +
𝑘−1∑
𝑖=1

(𝑖 − 1) +
𝑙∑
𝑗=1

𝑗 − (𝑘 + 𝑙) (𝑘 + 𝑙 − 2)
4

= 𝑥𝑘 +
(𝑘 − 𝑙 − 2)2

4
,

so 𝑥𝑘 ≤ 𝑛, with equality precisely when

𝑋 = (0, 1, . . . , 𝑘 − 2, 𝑛), 𝑌 = (1, 2, . . . , 𝑙), 𝑘 = 𝑙 + 2. (4.1)
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On the other hand, if 𝑥1 ≥ 1, then

𝑛 ≥ 𝑥𝑘 +
𝑘−1∑
𝑖=1

𝑖 +
𝑙∑
𝑗=1

( 𝑗 − 1) − (𝑘 + 𝑙) (𝑘 + 𝑙 − 2)
4

= 𝑥𝑘 +
(𝑘 − 𝑙)2

4
≥ 𝑥𝑘 + 1,

so 𝑥𝑘 ≤ 𝑛 − 1. Thus we always have 𝑥𝑖 ≤ 𝑛 and, similarly, 𝑦 𝑗 ≤ 𝑛. Hence, the condition that the
denominator of equation (3.6) is divisible by ℓ2𝑛 implies that there is an n-cohook n, where we may
assume that 𝑛 ∈ 𝑋 and 0 ∉ 𝑌 ; in particular, equation (4.1) holds. Now, if 𝑙 = 0, then 𝑘 = 2 and 𝜒 = 1𝐺 .
Assume 𝑙 ≥ 1. Since 2|𝑛, we must also have an (𝑛 − 1)-hook c with 0 ≤ 𝑐 − (𝑛 − 1) ≤ 1. As 𝑘 ≥ 3,
we have 0, 1 ∈ 𝑋 by equation (4.1), so 𝑐 ∉ 𝑋 – that is, 𝑐 ∈ 𝑌 and 𝑐 − (𝑛 − 1) ∉ 𝑌 . But 1 ∈ 𝑌 , so
𝑐 = 𝑛 − 1 ∈ 𝑌 . Furthermore, 𝑘 − 2 ≤ 𝑛 − 1, and hence 𝑘 ≤ 𝑛 + 1 and 𝑙 ≤ 𝑛 − 1 by equation (4.1). It
follows that 𝑙 = 𝑛 − 1, so 𝜒 = St, the Steinberg character.

We have shown that 1𝐺 and St are the only two characters in Irr(𝐺) that are nonzero at both x and y.
Now, if 𝑔 ∈ 𝐺 is semisimple, then 𝑔 ∈ 𝑥𝐺 · 𝑦𝐺 by [GT2, Lemma 5.1]. If g is not semisimple, then
St(𝑔) = 0, whence ∑

𝜒∈Irr(𝐺)

𝜒(𝑥)𝜒(𝑦)𝜒(𝑔)
𝜒(1) = 1,

so 𝑔 ∈ 𝑥𝐺 · 𝑦𝐺 as well.
(ii) The assumption 𝑎 ≥ 3 ensures that regular semisimple elements 𝑥 ∈ 𝑇−,−𝜖

𝑛−𝑎,𝑎 and 𝑦 ∈ 𝑇−,−𝜖
𝑛−𝑎−1,𝑎+1

exist. Suppose 𝜒 ∈ Irr(𝐺) is such that 𝜒(𝑥)𝜒(𝑦) ≠ 0. By Proposition 4.2(ii), the pair of tori in question
is weakly orthogonal. Hence, by Proposition 3.2, the number of such characters 𝜒 is at most𝐶1 = 𝐶1 (𝑎),
and for any such character, |𝜒(𝑥)𝜒(𝑦) | ≤ 𝐶2 = 𝐶2 (𝑎) for some explicit functions 𝐶1 (𝑎) and 𝐶2 (𝑎) of a.
Now, choosing 𝐶 =

(
481 log2 (𝐶1𝐶2)

)2, for any 𝑔 ∈ 𝐺 with supp(𝑔) ≥ 𝐶, we have by [LST1, Theorem
1.2.1] that ���� ∑

𝜒∈Irr(𝐺)

𝜒(𝑥)𝜒(𝑦)𝜒(𝑔)
𝜒(1)

���� > 1 − 𝐶1𝐶2

𝑞
√
𝐶/481

≥ 0,

so 𝑔 ∈ 𝑥𝐺 · 𝑦𝐺 . �

5. Character estimates in groups of type 𝐵𝑛
In this section, we handle the odd-dimensional orthogonal groups over F𝑞 , for which we also allow q to
be even; hence it gives the desired result for symplectic groups in even characteristic. We will need a
slight generalisation of the notion of weakly orthogonal tori [MSW], [LST1, Definition 2.2.1]:
Definition 5.1. We say that two F-rational maximal tori T and 𝑇 ′ in a connected reductive group 𝐺/F
are centrally orthogonal if

𝑇∗(F) ∩ 𝑇 ′∗ (F) = Z(𝐺∗(F))

for every choice of dual tori𝑇∗ and 𝑇 ′∗ in the dual group𝐺∗. This depends only on the types of T and𝑇 ′.
The following is an analogue of [LST1, Proposition 2.2.2]:

Proposition 5.2. Let T and 𝑇 ′ be centrally orthogonal maximal tori in a connected reductive group
𝐺 (F), and let 𝑡 ∈ 𝑇 and 𝑡 ′ ∈ 𝑇 ′ be regular semisimple elements of𝐺 (F). If 𝜒 is an irreducible character
of 𝐺 (F) such that 𝜒(𝑡)𝜒(𝑡 ′) ≠ 0, then there is a (degree 1) character 𝛼 ∈ Irr(𝐺 (F)) such that 𝜒𝛼 is
unipotent.
Proof. By [MM, 5.1], if 𝑠 ∈ 𝐺 (F) is semisimple and 𝜒(𝑠) ≠ 0, then there exist a maximal torus T and a
character 𝜃 ∈ Irr(𝑇 (F)) such that 𝑅𝑇 ,𝜃 (𝑠) ≠ 0, and 𝜃∗ belongs to the conjugacy class 𝐶𝜒. By [DL, 7.2],
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this implies that s lies in the𝐺 (F)-conjugacy class of some element of𝑇 (F). If 𝜒(𝑡)𝜒(𝑡 ′) ≠ 0, then there
exist 𝐺∗(F)-conjugate elements 𝜃∗1 and 𝜃∗2 belonging to tori 𝑇∗ and 𝑇 ′∗, which are dual to tori T and 𝑇 ′

containing t and 𝑡 ′, respectively. As 𝑇∗ and 𝑇 ′∗ intersect in Z(𝐺∗(F)), this means 𝜃∗1, 𝜃
∗
2 ∈ Z(𝐺∗(F)),

and the statement follows from [DM, Proposition 13.30]. �

Proposition 5.3. The following statements hold for 𝐺 = SO2𝑛+1(𝑞) with 𝑛 ≥ 3:

(i) Define 𝜅 := (−1)𝑛. Then the pair of maximal tori 𝑇−𝜅
𝑛 and 𝑇 𝜅,−

𝑛−1,1 is weakly orthogonal when 2|𝑞
and centrally orthogonal if 2 � 𝑞.

(ii) If 2 � 𝑛 ≥ 5, then the pair of maximal tori 𝑇−
𝑛 and 𝑇+,−

𝑛−2,2 is weakly orthogonal when 2|𝑞 and
centrally orthogonal if 2 � 𝑞.

(iii) If 2|𝑛 ≥ 8, then the pair of maximal tori 𝑇−,−
𝑛−2,2 and 𝑇+,+

𝑛−3,3 is weakly orthogonal when 2|𝑞 and
centrally orthogonal if 2 � 𝑞.

Proof. In this case, the dual group 𝐺∗ is Sp(𝑉), where 𝑉 = F2𝑛
𝑞 is endowed with a symplectic form.

Consider any g in the intersection of dual tori, and let S denote the spectrum of g on V as a multiset.
In the case of (i), S can be represented as the multiset X and also as the join of multisets 𝑍 �𝑇 , where

𝑋 := {𝑥, 𝑥𝑞 , . . . , 𝑥𝑞𝑛−1
, 𝑥−1, 𝑥−𝑞 , . . . , 𝑥−𝑞

𝑛−1 },
𝑍 := {𝑧, 𝑧𝑞 , . . . , 𝑧𝑞𝑛−2

, 𝑧−1, 𝑧−𝑞 , . . . , 𝑧−𝑞
𝑛−2 }, 𝑇 := {𝑡, 𝑡−1},

for some elements 𝑥, 𝑧, 𝑡 ∈ F̄×𝑞 with 𝑥𝑞𝑛+𝜅 = 𝑧𝑞
𝑛−1−𝜅 = 𝑡𝑞+1 = 1. Since |𝑋 | = 2𝑛 > |𝑍 |, we may assume

that 𝑥 ∈ 𝑋 ∩ 𝑇 , whence 𝑥𝑞𝑛+𝜅 = 𝑥𝑞+1 = 1. As (𝑞 + 1) |(𝑞𝑛 − 𝜅), it follows that 𝑥2 = 1 = 𝑥𝑞−1 – that is,
𝑥 ∈ F×𝑞 . Since we now have 𝑆 = 𝑋 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸

2𝑛

}, we conclude that 𝑔 ∈ Z(𝐺∗).

In the case of (ii), S can be represented as the multisets X and 𝑍 � 𝑇 , where

𝑋 := {𝑥, 𝑥𝑞 , . . . , 𝑥𝑞𝑛−1
, 𝑥−1, 𝑥−𝑞 , . . . , 𝑥−𝑞

𝑛−1 },
𝑍 := {𝑧, 𝑧𝑞 , . . . , 𝑧𝑞𝑛−3

, 𝛾𝑧−1, 𝑧−𝑞 , . . . , 𝛾𝑧−𝑞
𝑛−3 }, 𝑇 := {𝑡, 𝑡𝑞 , 𝑡−1, 𝑡−𝑞}

for some elements 𝑥, 𝑧, 𝑡 ∈ F̄×𝑞 with 𝑥𝑞𝑛+1 = 𝑧𝑞
𝑛−2−1 = 𝑡𝑞

2+1 = 1. Since |𝑋 | = 2𝑛 > |𝑍 |, we may assume
that 𝑥 ∈ 𝑋 ∩ 𝑇 , whence 𝑥𝑞𝑛+1 = 𝑥𝑞

2+1 = 1. As 2 � 𝑛, it follows that 𝑥𝑞+1 = 1 = 𝑥2, whence 𝑥 ∈ F×𝑞 ,
𝑋 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸

2𝑛

} and 𝑔 ∈ Z(𝐺∗).

In the case of (iii), S can be represented as the joins 𝑋 � 𝑌 and 𝑍 � 𝑇 , where

𝑋 := {𝑥, 𝑥𝑞 , . . . , 𝑥𝑞𝑛−3
, 𝑥−1, 𝑥−𝑞 , . . . , 𝑥−𝑞

𝑛−3 }, 𝑌 := {𝑦, 𝑦𝑞 , 𝑦−1, 𝑦−𝑞},
𝑍 := {𝑧, 𝑧𝑞 , . . . , 𝑧𝑞𝑛−4

, 𝑧−1, 𝑧−𝑞 , . . . , 𝑧−𝑞
𝑛−4 }, 𝑇 := {𝑡, 𝑡𝑞 , 𝑡𝑞2

, 𝑡−1, 𝑡−𝑞 , 𝑡−𝑞
2 },

for some 𝑥, 𝑦, 𝑧, 𝑡 ∈ F̄×𝑞 with 𝑥𝑞𝑛−2+1 = 𝑦𝑞
2+1 = 𝑧𝑞

𝑛−3−1 = 𝑡𝑞
3−1 = 1. Since |𝑋 | = 2𝑛 − 4 > |𝑇 | = 6,

we may assume that 𝑥 ∈ 𝑋 ∩ 𝑍 , whence 𝑥𝑞𝑛−2+1 = 𝑥𝑞
𝑛−3−1 = 1. As 2|𝑛, it follows that 𝑥𝑞+1 = 1 = 𝑥2,

whence 𝑥 ∈ F×𝑞 and 𝑋 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸
2𝑛−4

}, 𝑍 = {𝑥, 𝑥, . . . , 𝑥︸������︷︷������︸
2𝑛−6

}. This also implies that 𝑥 ∈ 𝑇 , whence

𝑇 = {𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥} and 𝑔 ∈ Z(𝐺∗). �

In what follows, for any 𝑛 ≥ 3, we note that if 2|𝑞, then SO2𝑛+1(𝑞) � Sp2𝑛 (𝑞) is simple, whereas if
2 � 𝑞, then [𝐺,𝐺] = Ω2𝑛+1(𝑞) is simple and has index 2 in 𝐺 = SO2𝑛+1 (𝑞); let sgn denote the linear
character of order 2 of G in the latter case.

Proposition 5.4. There is an explicit constant 𝐶 ∈ N such that the following statements hold for
𝐺 = SO2𝑛+1 (𝑞) with 2|𝑛 ≥ 𝐶:

https://doi.org/10.1017/fms.2022.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.69


16 Michael Larsen, Aner Shalev and Pham Huu Tiep

(i) There exist regular semisimple elements 𝑥 ∈ 𝑇−
𝑛 ∩ [𝐺,𝐺] and 𝑦 ∈ 𝑇+,−

𝑛−1,1 ∩ [𝐺,𝐺] such that
𝑥𝐺 · 𝑦𝐺 = [𝐺,𝐺] \ {𝑒}.

(ii) If in addition 2 � 𝑞, then there exists a regular semisimple element 𝑦′ ∈ 𝑇+,−
𝑛−1,1 \ [𝐺,𝐺] such that

𝑥𝐺 · (𝑦′)𝐺 = 𝐺 \ [𝐺,𝐺].

Proof. (a) As 2|𝑛 ≥ 4, by [Zs], we can find a primitive prime divisor ℓ2𝑛 of 𝑞2𝑛−1 and a primitive prime
divisor ℓ𝑛−1 of 𝑞𝑛−1 − 1. It is straightforward to check that 𝑇−

𝑛 contains a regular semisimple element
𝑥 ∈ [𝐺,𝐺] of order ℓ2𝑛, and likewise𝑇+,−

𝑛−1,1 contains a regular semisimple element 𝑦 ∈ [𝐺,𝐺] ∩Ω−
2𝑛 (𝑞)

of order divisible by ℓ𝑛−1 (with the projection onto 𝑇−
1 � SO−

2 (𝑞) having order 𝑞 + 1, which is possible
by Lemma 4.1). If 2 � 𝑞, then by changing y to have the first projection onto SO+

2𝑛−2(𝑞) of order ℓ𝑛−1,
we obtain a regular semisimple element 𝑦′ ∈ 𝑇+,−

𝑛−1,1 \ [𝐺,𝐺].
(b) Suppose 𝜒 ∈ Irr(𝐺) is such that 𝜒(𝑥)𝜒(𝑦) ≠ 0 or 𝜒(𝑥)𝜒(𝑦′) ≠ 0 if 2 � 𝑞. By Proposition 5.3(i),

the pair of tori in question is centrally orthogonal, and hence either 𝜒 or 𝜒 · sgn is unipotent by
Proposition 5.2. Without loss, we may assume that 𝜒 is unipotent, labelled by a minimal symbol

𝑆 = (𝑋,𝑌 ), 𝑋 = (𝑥1 < 𝑥2 < . . . < 𝑥𝑘 ), 𝑌 = (𝑦1 < 𝑦2 < . . . < 𝑦𝑙),

where 𝑘, 𝑙 ∈ Z≥0 and 2 � (𝑘 − 𝑙). Now, if the denominator of the degree formula in equation (3.6) is not
divisible by ℓ2𝑛, then 𝜒 has ℓ2𝑛-defect 0, so 𝜒(𝑥) = 0. Similarly, if the denominator of equation (3.6) is
not divisible by ℓ𝑛−1, then 𝜒 has ℓ𝑛−1-defect 0 and 𝜒(𝑦) = 0, as well as 𝜒(𝑦′) = 0 when 2 � 𝑞. Thus the
denominator in equation (3.6) is divisible by both ℓ2𝑛 and ℓ𝑛−1.

Observe that if 𝑥1 = 0, then by equation (3.3) and the minimality of S, we have

𝑛 ≥ 𝑥𝑘 +
𝑘−1∑
𝑖=1

(𝑖 − 1) +
𝑙∑
𝑗=1

𝑗 − (𝑘 + 𝑙 − 1)2

4
= 𝑥𝑘 +

(𝑘 − 𝑙 − 1) (𝑘 − 𝑙 − 3)
4

,

so 𝑥𝑘 ≤ 𝑛, with equality precisely when

𝑋 = (0, 1, . . . , 𝑘 − 2, 𝑛), 𝑌 = (1, 2, . . . , 𝑙), 𝑘 − 𝑙 = 1 or 3. (5.1)

On the other hand, if 𝑥1 ≥ 1, then

𝑛 ≥ 𝑥𝑘 +
𝑘−1∑
𝑖=1

𝑖 +
𝑙∑
𝑗=1

( 𝑗 − 1) − (𝑘 + 𝑙 − 1)2

4
= 𝑥𝑘 +

(𝑘 − 𝑙)2 − 1
4

≥ 𝑥𝑘 ,

so 𝑥𝑘 ≤ 𝑛, with equality precisely when

𝑋 = (1, 2, . . . , 𝑘 − 1, 𝑛), 𝑌 = (0, 1, . . . , 𝑙 − 1), 𝑘 − 𝑙 = ±1. (5.2)

Thus we always have 𝑥𝑖 ≤ 𝑛 and similarly 𝑦 𝑗 ≤ 𝑛. Hence, the condition that the denominator of
equation (3.6) is divisible by ℓ2𝑛 implies that there is an n-cohook n, whence we may assume that
𝑛 = 𝑥𝑘 ∈ 𝑋 and 0 ∉ 𝑌 . This rules out the case 𝑥1 ≥ 1, whence equation (5.1) holds. Now, if 𝑘 = 1, then
𝑙 = 0 and 𝜒 = 1𝐺 . If 𝑘 = 2, then 𝑙 = 1, 𝑆 =

(0,𝑛
1
)
, and 𝜒(1) = (𝑞𝑛 − 1) (𝑞𝑛 + 𝑞)/2(𝑞 − 1); denote this

unipotent character by 𝜒1.
Assume 𝑘 ≥ 3. Since 2|𝑛, we must also have an (𝑛 − 1)-hook c with 0 ≤ 𝑐 − (𝑛 − 1) ≤ 1. As 𝑘 ≥ 3,

we have 0, 1 ∈ 𝑋 by equation (5.1), so 𝑐 ∉ 𝑋 – that is, 𝑐 ∈ 𝑌 and 𝑐 − (𝑛 − 1) ∉ 𝑌 . In particular, 𝑙 ≥ 1,
and hence 1 ∈ 𝑌 and 𝑐 = 𝑛 − 1 ∈ 𝑌 . Furthermore, 𝑘 − 2 ≤ 𝑛 − 1, and hence 𝑘 ≤ 𝑛 + 1 but 𝑙 ≤ 𝑛 − 1. By
equation (5.1), we have

◦ either (𝑘, 𝑙) = (𝑛 + 1, 𝑛), 𝑆 =
(0,1,...,𝑛−1,𝑛

1,2,...,𝑛
)
, 𝜒 = St, the Steinberg character, or

◦ (𝑘, 𝑙) = (𝑛, 𝑛 − 1), and 𝑆 =
(0,1,...,𝑛−2,𝑛

1,2,...,𝑛−1
)
; denote this unipotent character by 𝜒2.

https://doi.org/10.1017/fms.2022.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.69


Forum of Mathematics, Sigma 17

(c) We have shown that, up to tensoring with sgn when 2 � 𝑞, 𝜒0 = 1𝐺 , St, 𝜒1 and 𝜒2 are the only four
characters in Irr(𝐺) that are nonzero at both x and y, respectively at x and 𝑦′ when 2 � 𝑞. It is clear that

𝜒0(𝑥)𝜒0(𝑦) = 𝜒0(𝑥)𝜒0(𝑦′) = 1, |St(𝑥)St(𝑦) | = |St(𝑥)St(𝑦′) | = 1. (5.3)

To bound |𝜒1 (𝑥)𝜒1(𝑦) | and |𝜒1 (𝑥)𝜒1 (𝑦′) |, we follow the proof of [LST1, Proposition 3.4.1], which
relies on the main result of [Lu1]. Recall that 𝜒1 is labelled by 𝑆 =

(𝑋
𝑌

)
=
(0,𝑛

1
)
. Let 𝑍1 = {0, 1, 𝑛} be the

set of ‘singles’ and 𝑍2 = 𝑋 ∩ 𝑌 = ∅. Then the family F (𝜒1) consists of all irreducible characters 𝜓𝑆′
of the Weyl group W𝑛 labelled by symbols 𝑆′ =

(𝑋 ′

𝑌 ′
)

of defect 1, which contain the same entries (with
the same multiplicities) as S does (compare [Lu1, Cor. (5.9)]. For the given 𝑆 =

(0,𝑛
1
)

(or in fact for all
symbols of odd defect with the same set 𝑍1 = {0, 1, 𝑛} of ‘singles’), we have the following possibilities
for 𝑆′ and the corresponding pair (𝜆′, 𝜇′) of (possibly empty) partitions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑆′ =

(1,𝑛
0
)
, (𝜆′, 𝜇′) =

(
(1, 𝑛 − 1), (∅)

)
,

𝑆′ =
(0,𝑛

1
)
, (𝜆′, 𝜇′) =

(
(𝑛 − 1), (1)

)
,

𝑆′ =
(0,1
𝑛

)
, (𝜆′, 𝜇′) =

(
(∅), (𝑛)

)
.

Let 𝑤, 𝑤′ ∈ W𝑛 correspond to x, respectively to y and 𝑦′. Recalling the construction of 𝜓𝑆′ [LST1,
(3.2.1)], we find that

𝜓𝑆′ (𝑤) = −1, 0, − 1, 𝜓𝑆′ (𝑤′) = 0, − 1, − 1,

respectively. It follows from [Lu1, Cor. (5.9)] that

|𝜒1 (𝑥) | ≤ 1, |𝜒1 (𝑦) | = |𝜒1 (𝑦′) | ≤ 1. (5.4)

To bound the character values for 𝜒2, we use the Alvis-Curtis duality functor 𝐷𝐺 , which sends any
irreducible character of G to an irreducible character of G up to a sign (compare [DM, Corollary 8.15]).
Using Theorems 1.1 and 1.2 of [Ng], we see that 𝜒1 is the unique unipotent character of its degree,
so, by inspecting [ST, Table 1], 𝜒1 is a constituent of the rank 3 permutation action of G on singular
1-spaces of its natural module; also, 𝜒1 is irreducible over [𝐺,𝐺]. Hence 𝜒1 is also a constituent of the
permutation character 1𝐺𝐵 , where B is a Borel subgroup of G, and the same is true for 1𝐺 and St. For
each irreducible constituent 𝜑 of 1𝐺𝐵 , there is a polynomial 𝑑𝜑 (𝑋) ∈ Q[𝑡] in the variable t (the so-called
generic degree; compare [Ca, §13.5], which depends only on the Weyl group of G but not on q) such that
𝜑(1) = 𝑑𝜑 (𝑞). According to Theorem (1.7) and Proposition (1.6) of [Cu], 𝐷𝐺 permutes the irreducible
constituents of 1𝐺𝐵 . Moreover, there is an integer N such that

𝑑𝐷𝐺 (𝜑) (𝑡) = 𝑡𝑁 𝑑𝜑 (𝑡−1). (5.5)

It is well known (see, for example, Corollary 8.14 and Definition 9.1 of [DM]) that 𝐷𝐺 interchanges
1𝐺 and St. Since St(1) = 𝑞𝑛2 , (5.5) applied to 𝜑 = 1𝐺 yields that 𝑁 = 𝑛2. Applying (5.5) to 𝜑 = 𝜒1, we
now obtain that

𝐷𝐺 (𝜒1) (1) = 𝑞𝑛
2−2𝑛𝜒1(1). (5.6)

Furthermore, in the case of a rational torus T, 𝐷𝑇 (𝜆) = 𝜆 for all 𝜆 ∈ Irr(𝑇); see [DM, Definition
8.8]. Applying this and [DM, Corollary 8.16] to 𝑇 = C𝐺 (𝑥), we now see that

𝐷𝐺 (𝜒) (𝑥) = ±(𝐷𝑇 ◦ Res𝐺𝑇 ) (𝜒) (𝑥) = ±𝜒(𝑥).

Similarly, 𝐷𝐺 (𝜒) (𝑦) = ±𝜒1(𝑦) and 𝐷𝐺 (𝜒) (𝑦′) = ±𝜒(𝑦′). It follows that if 𝜒2 is nonzero at both
𝑥, 𝑦 (respectively at 𝑥, 𝑦′), then so is 𝐷𝐺 (𝜒2). It follows that either 𝜒2(𝑥)𝜒2 (𝑦) ≠ 0, in which case
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𝜒2 = 𝐷𝐺 (𝜒1) and equation (5.4) yields

|𝜒2 (𝑥)𝜒2 (𝑦) | = |𝜒2 (𝑥)𝜒2 (𝑦′) | ≤ 1, (5.7)

or 𝜒2(𝑥)𝜒2 (𝑦) = 0, in which case equation (5.7) is automatic.
(d) Now, if 𝑔 ∈ [𝐺,𝐺] is semisimple, then 𝑔 ∈ 𝑥𝐺 · 𝑦𝐺 by [GT2, Lemma 5.1]. Suppose 𝑔 ∈ [𝐺,𝐺]

is not semisimple. Then St(𝑔) = 0. If 2 � 𝑞, then sgn(𝑔) = sgn(𝑥) = sgn(𝑦) = 1. This shows that 𝜒 and
𝜒 · sgn take the same values at x, y and g for any 𝜒 ∈ Irr(𝐺). Since the index of any proper subgroup in
[𝐺,𝐺] is > 𝑞2𝑛−1 (see [TZ1, §9]), it follows that |𝜒(𝑔) | ≤ |𝐺 |1/2𝑞1/2−𝑛, so, choosing n large enough,
we obtain from equation (5.6) and equation (5.7) that

|𝜒2 (𝑥)𝜒2 (𝑦)𝜒2(𝑔) |
𝜒2(1)

< 0.01.

Using Gluck’s bound
|𝜓(𝑔) |
𝜓(1) ≤ 0.95 [Gl] for any nontrivial 𝜓 ∈ Irr([𝐺,𝐺]), we obtain

1
gcd(2, 𝑞 − 1)

���� ∑
𝜒∈Irr(𝐺)

𝜒(𝑥)𝜒(𝑦)𝜒(𝑔)
𝜒(1)

���� > 1 − 0.95 − 0.01 = 0.04,

so 𝑔 ∈ 𝑥𝐺 · 𝑦𝐺 .
Finally, consider the case 2 � 𝑞 and 𝑔 ∈ 𝐺 \ [𝐺,𝐺]. Then sgn(𝑥) = 1 and sgn(𝑔) = sgn(𝑦′) = −1.

Again, by choosing n large enough, we obtain from equation (5.6) and equation (5.7) that

|𝜒(𝑥)𝜒(𝑦′)𝜒(𝑔) |
𝜒(1) < 0.001

for 𝜒 = 𝜒2, 𝜒2 · sgn, St, St · sgn. Next, [GT1, Lemma 2.19] together with Gluck’s bound imply that

|𝜓(𝑔) |/𝜓(1) ≤ (3 + 0.95)/4 = 0.9875

for any 𝜓 ∈ Irr(𝐺) that is irreducible over [𝐺,𝐺] and of degree > 1. Hence,

1
2

���� ∑
𝜒∈Irr(𝐺)

𝜒(𝑥)𝜒(𝑦′)𝜒(𝑔)
𝜒(1)

���� > 1 − 0.9875 − 0.002 > 0.01,

so 𝑔 ∈ 𝑥𝐺 · (𝑦′)𝐺 , as stated. �

Proposition 5.5. There is an explicit constant 𝐶 ≥ 5 such that the following statements hold for
𝐺 = SO2𝑛+1 (𝑞) with 2 � 𝑛 ≥ 𝐶:

(i) There exist regular semisimple elements 𝑥 ∈ 𝑇+
𝑛 ∩ [𝐺,𝐺] and 𝑦 ∈ 𝑇−,−

𝑛−1,1 ∩ [𝐺,𝐺] such that
𝑥𝐺 · 𝑦𝐺 = [𝐺,𝐺] \ {𝑒}.

(ii) If in addition 2 � 𝑞, then there exists a regular semisimple element 𝑦′ ∈ 𝑇−,−
𝑛−1,1 \ [𝐺,𝐺] such that

𝑥𝐺 · (𝑦′)𝐺 = 𝐺 \ [𝐺,𝐺].

Proof. (a) As 2 � 𝑛 ≥ 5, by [Zs], we can find a primitive prime divisor ℓ2𝑛−2 of 𝑞2𝑛−2−1 and a primitive
prime divisor ℓ𝑛 of 𝑞𝑛 − 1. It is straightforward to check that 𝑇+

𝑛 contains a regular semisimple element
𝑥 ∈ [𝐺,𝐺] of order ℓ𝑛, and likewise 𝑇−,−

𝑛−1,1 contains a regular semisimple element 𝑦 ∈ [𝐺,𝐺] ∩Ω+
2𝑛 (𝑞)

of order divisible by ℓ2𝑛−2 (with the projection onto 𝑇−
1 � SO−

2 (𝑞) having order 𝑞 + 1, which is possible
by Lemma 4.1). If 2 � 𝑞, then by changing y to have the first projection onto SO−

2𝑛−2(𝑞) of order ℓ2𝑛−2,
we obtain a regular semisimple element 𝑦′ ∈ 𝑇−,−

𝑛−1,1 \ [𝐺,𝐺].
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(b) Suppose 𝜒 ∈ Irr(𝐺) is such that 𝜒(𝑥)𝜒(𝑦) ≠ 0 or 𝜒(𝑥)𝜒(𝑦′) ≠ 0 if 2 � 𝑞. By Proposition 5.3(i),
the pair of tori in question is centrally orthogonal, and hence either 𝜒 or 𝜒 · sgn is unipotent by
Proposition 5.2. Without loss, we may assume that 𝜒 is unipotent, labelled by a minimal symbol

𝑆 = (𝑋,𝑌 ), 𝑋 = (𝑥1 < 𝑥2 < . . . < 𝑥𝑘 ), 𝑌 = (𝑦1 < 𝑦2 < . . . < 𝑦𝑙),

where 𝑘, 𝑙 ∈ Z≥0 and 2 � (𝑘 − 𝑙). Now, if the denominator of the degree formula in equation (3.6) is not
divisible by ℓ𝑛, then 𝜒 has ℓ𝑛-defect 0, so 𝜒(𝑥) = 0. Similarly, if the denominator of equation (3.6) is
not divisible by ℓ2𝑛−2, then 𝜒 has ℓ2𝑛−2-defect 0 and 𝜒(𝑦) = 0, as well as 𝜒(𝑦′) = 0 when 2 � 𝑞. Thus
the denominator in equation (3.6) is divisible by both ℓ𝑛 and ℓ2𝑛−2.

As mentioned in the proof of Proposition 5.4, we always have that 𝑥𝑖 ≤ 𝑛 and 𝑦 𝑗 ≤ 𝑛. Hence, the
condition that the denominator of equation (3.6) is divisible by ℓ𝑛 implies that there is an n-hook n,
whence we may assume that 𝑛 = 𝑥𝑘 ∈ 𝑋 and 0 ∉ 𝑋 . This implies 𝑥1 ≥ 1, whence equation (5.2)
holds and 𝑘 ≥ 1. Now, if 𝑙 = 0, then 𝑘 = 1 and 𝜒 = 1𝐺 . If 𝑙 = 1, then 𝑘 = 2, 𝑆 =

(1,𝑛
0
)

and
𝜒(1) = (𝑞𝑛 + 1) (𝑞𝑛 − 𝑞)/2(𝑞 − 1); denote this unipotent character by 𝜒1.

Assume 𝑙 ≥ 2. Since 2 � 𝑛, we must also have an (𝑛 − 1)-cohook c with 0 ≤ 𝑐 − (𝑛 − 1) ≤ 1. Here,
0, 1 ∈ 𝑌 by equation (5.2), so 𝑐 ∉ 𝑋 – that is, 𝑐 ∈ 𝑌 and 𝑐 − (𝑛 − 1) ∉ 𝑋 . Also by equation (5.2),
𝑙 − 1 ≥ 𝑐, so 𝑙 ≥ 𝑛. Hence 𝑘 ≥ 𝑙 − 1 > 2, whence 1 ∈ 𝑋 , implying 𝑐 − (𝑛 − 1) = 0 and 𝑐 = 𝑛 − 1 ∈ 𝑌 .
Furthermore, 𝑘 − 1 ≤ 𝑛 − 1, and hence 𝑘 ≤ 𝑛, and thus 𝑙 ≤ 𝑛 + 1. By equation (5.1), we have

◦ either (𝑘, 𝑙) = (𝑛, 𝑛 + 1), 𝑆 =
(1,2,...,𝑛−1,𝑛

0,1,...,𝑛
)
, 𝜒 = St, the Steinberg character, or

◦ (𝑘, 𝑙) = (𝑛 − 1, 𝑛), and 𝑆 =
(1,2,...,𝑛−2,𝑛

0,1,...,𝑛−1
)
; denote this unipotent character by 𝜒2.

(c) We have shown that, up to tensoring with sgn when 2 � 𝑞, 𝜒0 = 1𝐺 , St, 𝜒1 and 𝜒2 are the only four
characters of Irr(𝐺) that are nonzero at both x and y, respectively at x and 𝑦′, when 2 � 𝑞. It is clear that
equation (5.3) holds. To bound |𝜒1 (𝑥)𝜒1(𝑦) |, let 𝑤, 𝑤′ ∈ W𝑛 correspond to x, respectively to y and 𝑦′.
Repeating the arguments in the proof of Proposition 5.4, we come up with three possibilities for 𝑆′ and

𝜓𝑆′ (𝑤) = −1, 0, 1, 𝜓𝑆′ (𝑤′) = 0, − 1, 1,

respectively. It follows from [Lu1, Cor. (5.9)] that equation (5.4) holds in this case.
Using Theorems 1.1 and 1.2 of [Ng], we see that 𝜒1 is the unique unipotent character of its degree,

so, by inspecting [ST, Table 1], 𝜒1 is a constituent of the rank 3 permutation action of G on singular
1-spaces of its natural module; also, 𝜒1 is irreducible over [𝐺,𝐺]. Hence 𝜒1 is also a constituent of the
permutation character 1𝐺𝐵 , where B is a Borel subgroup of G. Now, to bound the character values for
𝜒2, we again follow the proof of Proposition 5.4, using the Alvis-Curtis duality functor 𝐷𝐺 . This shows
that equation (5.7) holds in this case as well. To finish the proof, we just repeat part (iv) of the proof of
Proposition 5.4 verbatim. �

Proposition 5.6. There exists an explicit constant 𝐶 > 0 such that the following statements hold for
𝐺 = Ω2𝑛+1(𝑞) with 𝑛 ≥ 8. Let𝐻 := SO2𝑛+1 (𝑞), and consider a pair of maximal tori T and𝑇 ′ in H, where

(i) if 2|𝑛, then 𝑇 = 𝑇−,−
𝑛−2,2 and 𝑇 ′ = 𝑇+,+

𝑛−3,3, and
(ii) if 2 � 𝑛, then 𝑇 = 𝑇−

𝑛 and 𝑇 ′ = 𝑇+,−
𝑛−2,2.

Then there exist regular semisimple elements 𝑥 ∈ 𝑇 ∩𝐺 and 𝑦 ∈ 𝑇 ′ ∩𝐺 such that 𝑔 ∈ 𝑥𝐻 · 𝑦𝐻 for every
element 𝑔 ∈ 𝐺 with supp(𝑔) ≥ 𝐶.

Proof. Using Lemma 4.1, we can find regular semisimple elements 𝑥 ∈ 𝑇 ∩𝐺 and 𝑦 ∈ 𝑇 ′ ∩𝐺. Suppose
𝜒 ∈ Irr(𝐻) is such that 𝜒(𝑥)𝜒(𝑦) ≠ 0. By Proposition 5.3(ii), (iii) the pair of tori in question is weakly
orthogonal when 2|𝑞 and centrally orthogonal when 2 � 𝑞. Hence, either 𝜒 is unipotent or 2 � 𝑞 and
𝜒 · sgn is unipotent. In the case 2 � 𝑞, note that sgn(𝑥) = sgn(𝑦) = sgn(𝑔) = 1 for all 𝑔 ∈ 𝐺. By
Proposition 3.2, the number of such characters 𝜒 is at most some explicit𝐶1, and for any such character,
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|𝜒(𝑥)𝜒(𝑦) | ≤ 𝐶2 for some explicit 𝐶2. Now, choosing 𝐶 =
(
481 log2(𝐶1𝐶2)

)2, for any 𝑔 ∈ 𝐺 with
supp(𝑔) ≥ 𝐶, we have by [LST1, Theorem 1.2] that

1
gcd(2, 𝑞 − 1)

���� ∑
𝜒∈Irr(𝐻 )

𝜒(𝑥)𝜒(𝑦)𝜒(𝑔)
𝜒(1)

���� > 1 − 𝐶1𝐶2

𝑞
√
𝐶/481

≥ 0,

so 𝑔 ∈ 𝑥𝐻 · 𝑦𝐻 . �

6. The main results on derangements

6.1. Some reductions

In [CC], it is shown that the proportion 𝛿(𝐺) of derangements in a finite transitive permutation group
G of degree n is at least 1/𝑛. It turns out that if G is simple, the proportion of derangements is bounded
away from zero. Indeed, we have the following theorem by Fulman and Guralnick (see [FG3, 1.1] and
the references therein).

Theorem 6.1. There exists an absolute constant 𝜖 > 0 such that if G is a finite simple transitive
permutation group and D = D(𝐺) ⊂ 𝐺 is the set of derangements in G, then

|D | ≥ 𝜖 |𝐺 |.

This confirms a conjecture of Boston and Shalev.
In fact, it is shown in [FG3] that 𝜖 = 0.016 will do, provided |𝐺 | � 0.
Clearly, Theorem A holds in the case G is a cyclic group of odd prime order. Its proof for nonabelian

simple groups will occupy the rest of the section.
It is also clear that the set D is a normal subset whose size is bounded below by Theorem 6.1. More

generally, products of normal subsets in simple groups are the main subject of [LST2], which we now
briefly describe.

Let 𝜖 > 0 be a constant. Let G be a nonabelian finite simple group and S and T normal subsets of G
such that |𝑆 |, |𝑇 | > 𝜖 |𝐺 |. We are particularly interested in the following questions:

Question 1. Does every element in 𝐺 \ {𝑒} lie in 𝑆𝑇 if |𝐺 | is sufficiently large?

Question 2. Does the ratio between the number of representations of each 𝑔 ∈ 𝐺 \ {𝑒} and |𝑆 | |𝑇 |
|𝐺 | tend

uniformly to 1 as |𝐺 | → ∞?

The main results of [LST2] are summarised below. An affirmative answer to Question 2 implies an
affirmative answer to Question 1 (and, of course, the same holds in the special case 𝑆 = 𝑇).

Theorem 6.2. [LST2, Theorem A]

(i) The answers to Questions 1 and 2 are negative if G is allowed to range over all finite simple groups
or even just over the alternating groups, or just over all projective special linear groups.

(ii) In the 𝑆 = 𝑇 case, the answer to Question 2 is still negative for alternating groups.
(iii) In the 𝑆 = 𝑇 case, the answer to Question 1 is positive for alternating groups.
(iv) If G is a group of Lie type of bounded rank, then the answers to Questions 1 and 2 are both positive.

As shown in Theorem 6.2(i), the answer to Question 1 is in the negative if one varies over all
(sufficiently large) finite simple groups. However, one can still prove the following result, where 𝑚(𝐺)
denotes the smallest degree of a nontrivial complex character of a finite group G, U𝐺 the uniform
distribution on G and, for any element 𝑔 ∈ 𝐺 and subsets 𝐴, 𝐵, 𝐶 ⊆ 𝐺,P𝐴,𝐵,𝐶 (𝑔) denotes the probability
that 𝑥𝑦𝑧 = 𝑔, where 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 and 𝑧 ∈ 𝐶 are randomly chosen, uniformly and independently.
Furthermore, the 𝐿∞( 𝑓 ) norm of a distribution f on G is |𝐺 | · max𝑥∈𝐺 | 𝑓 (𝑥) |.
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Corollary 6.3. [LST2, Corollary 7.2] For finite groups G and subsets 𝐴, 𝐵, 𝐶 ⊆ 𝐺 satisfying

𝑚(𝐺) |𝐴| |𝐵| |𝐶 |/|𝐺 |3 → ∞

as |𝐺 | → ∞, we have

‖P𝐴,𝐵,𝐶 − U𝐺 ‖𝐿∞ → 0 as |𝐺 | → ∞.

In particular, we have 𝐴𝐵𝐶 = 𝐺 for |𝐺 | � 0.
These two conclusions hold when G is a finite simple group and 𝐴, 𝐵, 𝐶 ⊆ 𝐺 are subsets of sizes

≥ 𝜖 |𝐺 | > 0 for any fixed 𝜖 > 0.

An extensive discussion of the motivation behind Question 1 and Question 2, in particular the
connections of them and Corollary 6.3 to results of Gowers and others [Go], [NP], [PS], is given in the
Introduction of [LST2].

Clearly, Theorem 6.1 and Corollary 6.3 give an immediate proof of the easier three-derangement
result:

Proposition 6.4. For all sufficiently large transitive simple permutation groups G, every permutation
in G is a product of three derangements.

We now prove some preliminary results that reduce the proof of Theorem A to the case G is a simple
group of Lie type of unbounded rank.

Let G be as above, and let 𝐻 < 𝐺 be a point stabiliser. Recall that D(𝐺, 𝐻) denotes the set of
derangements of G in its action on the left cosets of H and that D(𝐺, 𝐻) = 𝐺 \ ∪𝑔∈𝐺𝐻

𝑔. Thus, if
𝑀 < 𝐺 is a maximal subgroup containing H, then D(𝐺, 𝑀) ⊆ D(𝐺, 𝐻). Hence D(𝐺, 𝑀)2 = 𝐺 implies
D(𝐺, 𝐻)2 = 𝐺. This reduces Theorem A to the primitive case where H is a maximal subgroup of G.

Clearly, D(𝐺, 𝐻) is a normal subset of G and D(𝐺, 𝐻) = D(𝐺, 𝐻)−1. Assuming |𝐺 | is sufficiently
large, by Theorem 6.1, we have |D(𝐺, 𝐻) | > 𝜖 |𝐺 | with 𝜖 = 0.016. Combining with Theorem 6.2(iii),
(iv), this implies the following.

Corollary 6.5. Theorem A holds for sufficiently large alternating groups and for finite simple groups of
Lie type of bounded rank over fields of sufficiently large size.

In fact, the conclusion of Theorem A holds for all (simple) alternating groups; see Theorem B.
Since almost simple sporadic groups have bounded order, it remains to deal with classical groups of

unbounded rank. For any such group 𝐺̃, letY (𝐺̃) denote the union of all irreducible subgroups of 𝐺̃ (if q
is even and 𝐺̃ = Sp2𝑟 (𝑞), we exclude the subgroups GO±

2𝑟 (𝑞) from Y (𝐺̃)). We use [FG3, Theorem 1.7]
(extending [Sh1]), which states the following:

Theorem 6.6. Let 𝐺̃ be a classical group of rank r acting faithfully on its natural module V. Then

|Y (𝐺̃) |
|𝐺̃ |

→ 0 as 𝑟 → ∞.

Corollary 6.7. Theorem A holds for all simple classical groups G over F𝑞 of sufficiently large rank,
provided the point-stabiliser H is irreducible and not GO±

𝑛 (𝑞) when 𝐺 = Sp𝑛 (𝑞) with 2|𝑞.

Proof. By the above theorem, we have

|Y (𝐺) |/|𝐺 | < 1/2

for 𝑛 � 0. Since∪𝑔∈𝐺𝐻
𝑔 ⊆ Y (𝐺), it follows that |D(𝐺, 𝐻) | > |𝐺 |/2 and thereforeD(𝐺, 𝐻)2 = 𝐺. �

Theorem 6.8. There are absolute constants𝐶1, 𝐶2 such that the following holds. Let G be a finite simple
classical group in dimension n over F𝑞 , acting as a primitive permutation group with point-stabiliser H.
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If q is even, assume (𝐺, 𝐻) ≠ (Sp𝑛 (𝑞),GO±
𝑛 (𝑞)). Suppose 𝑛 ≥ 𝐶1 and the action is not a subspace

action on subspaces of dimension 𝑘 ≤ 𝐶2. Then G satisfies Theorem A.

Proof. Relying on Corollary 6.7, we may assume that H is reducible: namely, G acts in a subspace
action, say on subspaces (nondegenerate or totally singular for 𝐺 ≠ PSL𝑛 (𝑞)) of dimension k, with
1 ≤ 𝑘 ≤ 𝑛/2. Theorems 6.4, 9.4, 9.10, 9.17 and 9.30 of [FG2] show that, as 𝑘 → ∞, the proportion of
derangements in G tends to 1. The result follows as before. �

6.2. Completion of the proof of Theorem A

In view of Corollary 6.5, it remains to prove Theorem A for finite simple classical groups 𝐺 = Cl(𝑉) in
subspace actions where dim(𝑉) is sufficiently large. Let 𝐺̃ denote the central extension of G for which
V is a faithful linear representation, and let 𝐻̃ denote the inverse image in 𝐺̃ of a point stabiliser H of G.
Also let Π denote the transitive permutation representation with H a point stabiliser. We show that if
dim(𝑉) is sufficiently large, there exist elements 𝑥, 𝑦̃ ∈ 𝐺̃ that are derangements on 𝐺̃/𝐻̃ and such that
every element in𝐺 \ {1} is the product of a conjugate of x and a conjugate of y, where x (respectively, y)
is the image of 𝑥 (respectively, 𝑦̃) in G. Since 𝑥−1 is also a derangement, the identity element 1 is also a
product of two derangements. We proceed by cases.

6.2.1. The case 𝐺̃ = SL𝑛 (𝑞) with 𝑛 ≥ 98
Here 𝐻̃ is the stabiliser of an m-dimensional subspace 𝑉 ′ of 𝑉 = F𝑛𝑞 . First we consider the case where
1 < 𝑚 < 𝑛 − 1. Fixing an F𝑞-basis of F𝑞𝑛 , we obtain an embedding of the norm-1 elements of F𝑞𝑛 in
SL𝑛 (𝑞). Let 𝑥 denote the image of a multiplicative generator of the group of norm-1 elements. Let 𝑦̃
denote the image in SL𝑛 (𝑞) > GL𝑛−1 (𝑞) of a generator of F×

𝑞𝑛−1 . Thus 𝑥 and 𝑦̃ are regular elements of
the tori 𝑇 = 𝑇𝑛 and 𝑇 ′ = 𝑇𝑛−1,1 of SL𝑛 (𝑞) in [MSW, Table 2.1]. As the characteristic polynomial of 𝑥
is irreducible over F𝑞 and that of 𝑦̃ has an irreducible factor of degree 𝑛 − 1, it follows that neither 𝑥
nor 𝑦̃ can fix an F𝑞-subspace of F𝑛𝑞 of dimension m, so x and y are indeed derangements. By [MSW,
Theorem 2.1], the product of the conjugacy classes of x and y covers all nontrivial elements of G.

Assume now that 𝑚 = 1 or 𝑚 = 𝑛 − 1. Then we note that the elements t and 𝑡 ′ constructed in
Theorem 2.4 are both derangements in Π, so the statement follows from Theorem 2.4.

6.2.2. The case 𝐺̃ = SU𝑛 (𝑞) with 𝑛 ≥ 5
Since H is maximal, we have that 𝐻̃ is the stabiliser of an m-dimensional subspace 𝑉 ′ of 𝑉 = F𝑛

𝑞2 ,
1 ≤ 𝑚 ≤ 𝑛 − 1, where 𝑉 ′ is either totally singular, or nondegenerate. The existence of the Hermitian
form allows us to assume that 1 ≤ 𝑚 ≤ 𝑛/2. Applying Theorem 6.8, we may further assume that𝑚 ≤ 𝑐2
is bounded and that 𝑚 ≤ 𝑛/2 − 1. Let 𝑥 and 𝑦̃ be elements of 𝐺̃ of order 𝑞𝑛−(−1)𝑛

𝑞+1 and 𝑞𝑛−1 − (−1)𝑛−1,
respectively, so they are regular semisimple elements of tori 𝑇 = 𝑇𝑛 and 𝑇 ′ = 𝑇𝑛−1,1, respectively.
Assume that 𝑉 ′ is not a nondegenerate 1-space. Then both 𝑥 and 𝑦̃ are derangements in Π. By [MSW,
Theorem 2.2], the product of the conjugacy classes of x and y covers all nontrivial elements of G, and
the statement follows.

Suppose now that𝑉 ′ is a nondegenerate 1-space. If 𝑞 > 2, then we again note that the elements t and 𝑡 ′
constructed in Theorem 2.4 are both derangements in Π, so the statement follows from Theorem 2.4.
Assume now that 𝑞 = 2. Consider the case 𝑔 ∈ 𝐺̃ = SU𝑛 (2) is a transvection. Then we can put g in a
factor 𝐴 = SU4(2) of a standard subgroup

𝐴 × 𝐵 = SU4 (2) × SU𝑛−4 (2)

of 𝐺̃. Direct calculation with [GAP] shows that g is a product 𝑔 = 𝑥𝑦 of two elements of order 5 in A. If n
is large, we choose 𝑧 ∈ 𝐵 a regular semisimple element of type 𝑇𝑛−4, a maximal torus in B. Now we note
that 𝑔 = (𝑥𝑧) (𝑦𝑧−1) and both 𝑥𝑧, 𝑦𝑧−1 are derangements. We also note that any non-unipotent element
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of support 1 in SU𝑛 (2) is semisimple, and hence by [GT2, Lemma 5.1] it is a product of two regular
semisimple elements of type 𝑇𝑛, which are derangements. It remains to consider the case supp(𝑔) ≥ 2,
in which case the statement follows from Theorem 2.6, since the elements t and 𝑡 ′ constructed therein
are derangements in Π.

6.2.3. The case 𝐺̃ = Ω2𝑛+1 (𝑞) or Sp2𝑛 (𝑞) with 𝑛 ≥ 5
Let 𝑥 and 𝑦̃ be elements of order 𝑞𝑛+1 and 𝑞𝑛−1 generating tori of type𝑇 = 𝑇−

𝑛 and𝑇 ′ = 𝑇+
𝑛 , respectively.

Thus the Frob𝑞 orbit of any eigenvalue of 𝑥 (respectively, 𝑦̃) in the natural representation consists of a
2𝑛-cycle (respectively, two n-cycles) together with an additional fixed point if G is of type 𝐵𝑛. As in
Section 6.2.2, we may assume that 𝐻̃ is the stabiliser of an m-dimensional subspace 𝑉 ′, which is either
totally singular or nondegenerate and has bounded dimension by Theorem 6.8. For 𝐶𝑛, therefore, the
theorem follows from [MSW, Theorem 2.3], while for 𝐵𝑛 it holds by [MSW, Theorem 2.4] unless 𝑉 ′

is a nondegenerate 1-space. Likewise, we must still consider the cases (𝐺̃, 𝐻̃) = (Sp2𝑛 (𝑞),GO±
2𝑛 (𝑞))

when 2|𝑞.
In both of the remaining actions, we can view 𝐺̃ = [Γ, Γ], where Γ = SO(𝑉) and 𝑉 = F2𝑛+1

𝑞 when
2 � 𝑞 and Γ = Sp(𝑉) � SO2𝑛+1(𝑞) and 𝑉 = F2𝑛

𝑞 when 2|𝑞. Then Π is the restriction to 𝐺̃ of the
transitive permutation action of Γ with point stabiliser GO𝜖

2𝑛 (𝑞) for a fixed 𝜖 = ±. First we consider
the case 𝜖1 = (−1)𝑛. By Propositions 5.4 and 5.5, if n is large enough, we can find in 𝐺̃ regular
semisimple elements 𝑥1 of type 𝑇−𝜖

𝑛 and 𝑦1 of type 𝑇 𝜖 ,−
𝑛−1,1 such that 𝑥Γ1 · 𝑦Γ1 = 𝐺̃ \ {𝑒}. Since both 𝑥1

and 𝑦1 are derangements in Π, the statement follows in this case.
Assume now that 𝜖1 ≠ (−1)𝑛. By Proposition 5.6, we can find in 𝐺̃ regular semisimple elements

𝑥2 of type 𝑇−,−
𝑛−2,2 and 𝑦2 of type 𝑇+,+

𝑛−3,3 when 2|𝑛, 𝑥2 of type 𝑇−
𝑛 and 𝑦2 of type 𝑇+,−

𝑛−2,2 when 2 � 𝑛,
such that 𝑥Γ2 · 𝑦Γ2 contains any element 𝑔 ∈ 𝐺̃ of large enough support, say supp(𝑔) ≥ 𝐵. Since both
𝑥2 and 𝑦2 are derangements in Π, the statement again follows in this case. Now we consider the case
supp(𝑔) < 𝐵 < 𝑛−3, and let 𝜆 be the primary eigenvalue of g on V (compare [LST1, Proposition 4.1.2]);
note that 𝜆 = ±1. By [LST1, Lemma 6.3.4], we can decompose 𝑉 = 𝑈 ⊥ 𝑊 as an orthogonal sum of
g-invariant nondegenerate subspaces, with dim(𝑈) = 6; U has type + if 2 � 𝑞 and 𝑔 |𝑈 = 𝜆 · 1𝑈 . Define{

𝐼 (𝑊) = 𝐽 (𝑊) = Sp(𝑊) � Sp2𝑛−6(𝑞), when 2|𝑞,
𝐼 (𝑊) = SO(𝑊) � SO2𝑛−5(𝑞), 𝐽 (𝑊) = Ω(𝑊) � Ω2𝑛−5(𝑞), when 2 � 𝑞.

Likewise, we define

𝐽 (𝑈) =
{

Sp(𝑈) � Sp6 (𝑞), when 2|𝑞,
Ω(𝑈) � Ω+

6 (𝑞), when 2 � 𝑞.

Since 𝜖1 = (−1)𝑛−3, we can consider regular semisimple elements 𝑥3 ∈ 𝑇−𝜖
𝑛−3 ∩ 𝐽 (𝑊) and 𝑦3 ∈

𝑇 𝜖 ,−
𝑛−4,1∩𝐽 (𝑊) constructed in Propositions 5.4 and 5.5 for 𝐽 (𝑊). If 2 � 𝑞, we will also consider the regular

semisimple element 𝑦′3 ∈ 𝑇 𝜖 ,−
𝑛−4,1 \ 𝐽 (𝑊) constructed in Propositions 5.4 and 5.5 for 𝐼 (𝑊) � SO2𝑛−5(𝑞).

Also fix a regular semisimple element 𝑧 ∈ 𝑇+
3 of 𝐽 (𝑈).

If 2|𝑞 or 𝜆 = 1, then we can write 𝑔 = diag(1𝑈 , ℎ) with ℎ ∈ 𝐽 (𝑊). By Propositions 5.4 and 5.5,
when n is large enough, ℎ = 𝑥𝑢3 𝑦

𝑣
3 for some 𝑢, 𝑣 ∈ 𝐼 (𝑊), whence 𝑔 = (𝑧𝑥3)𝑢 (𝑧−1𝑦3)𝑣 is a product of

two derangements.
Finally, assume that 2 � 𝑞 and 𝜆 = −1; write 𝑔 = diag(−1𝑈 , ℎ) with ℎ ∈ 𝐼 (𝑊). If 𝑞 ≡ 1(mod 4),

then 1 = (−1)3(𝑞−1)/2, so −1𝑈 ∈ 𝐽 (𝑈) � Ω+
6 (𝑞) by [KL, Proposition 2.5.13], whence ℎ ∈ 𝐽 (𝑊)

and, as in the previous case, 𝑔 = ((−1𝑈 )𝑧𝑥3)𝑢 (𝑧−1𝑦3)𝑣 is a product of two derangements. If 𝑞 ≡ 3
(mod 4), then −1 = (−1)3(𝑞−1)/2 and −1𝑈 ∈ 𝐼 (𝑈) \ 𝐽 (𝑈). In this case, ℎ ∈ 𝐼 (𝑊) \ 𝐽 (𝑊), so by
Propositions 5.4 and 5.5, when n is large enough, we can write ℎ = 𝑥𝑢

′

3 (𝑦′3)
𝑣′ for some 𝑢′, 𝑣′ ∈ 𝐼 (𝑊).

Now 𝑔 = ((−1𝑈 )𝑧𝑥3)𝑢
′ (𝑧−1𝑦′3)

𝑣′ is again a product of two derangements in Π.
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6.2.4. The case 𝐺̃ = Ω−
2𝑛 (𝑞) with 𝑛 ≥ 4

Here we choose, in accordance with Lemma 4.1, regular semisimple elements 𝑥 of type T and 𝑦̃ of
type 𝑇 ′, where 𝑇 = 𝑇−

𝑛 is a maximal torus of order 𝑞𝑛 + 1 and 𝑇 ′ = 𝑇−,+
𝑛−1,1 is a maximal torus whose

full preimage in Spin−2𝑛 (𝑞) has order (𝑞𝑛−1 + 1) (𝑞 − 1). (Similarly, in what follows, while specifying
the order of tori in question, we will instead list the order of their full preimages in the corresponding
group of simply connected type.) Then the characteristic polynomial of 𝑥 is irreducible, while that of 𝑦̃
factors into two linear factors and an irreducible factor of degree 2𝑛 − 2. Again, 𝐻̃ is the stabiliser of an
m-dimensional subspace𝑉 ′, totally singular (with𝑚 ≤ 𝑛−1 bounded by Theorem 6.8), or nondegenerate.
Now [MSW, Theorem 2.5] implies the theorem, unless dim(𝑉 ′) = 1 or 𝑉 ′ is a nondegenerate 2-space
of type +.

Consider the remaining three actions. Assume first that 2|𝑛. Then note that the elements 𝑥1, 𝑦1 of
types 𝑇−

𝑛 and 𝑇+,−
𝑛−1,1 constructed in the proof of Proposition 4.3(i) are both derangements in Π, whence

the statement follows from Proposition 4.3(i). Hence we may assume that 2 � 𝑛 ≥ 13. In this case,
note that the elements 𝑥2, 𝑦2 of types 𝑇−,+

𝑛−5,5 and 𝑇−,+
𝑛−6,6 constructed in the proof of Proposition 4.3(ii)

with (𝑎, 𝜖) = (5,−) are both derangements in Π. Hence, there exists some absolute constant B such
that if supp(𝑔) ≥ 𝐵, then the statement follows from Proposition 4.3(ii). Now we consider the case
supp(𝑔) < 𝐵 < 𝑛−3, and let 𝜆 be the primary eigenvalue of g on V (compare [LST1, Proposition 4.1.2]).
By [LST1, Lemma 6.3.4], we can decompose𝑉 = 𝑈 ⊥ 𝑊 as an orthogonal sum of g-invariant subspaces,
with dim(𝑈) = 6, U of type + and 𝑔 |𝑈 = 𝜆 · 1𝑈 . As 2| (𝑛 − 3) ≥ 10, we can find regular semisimple
elements 𝑥3 ∈ 𝑇−

𝑛−3 and 𝑦3 ∈ 𝑇−,+
𝑛−4,1 constructed in the proof of Proposition 4.3(i) for Ω(𝑊) � Ω−

2𝑛−6(𝑞).
Also fix a regular semisimple element 𝑧 ∈ 𝑇+

3 of Ω(𝑈) � Ω+
6 (𝑞). If 2|𝑞 or 𝜆 = 1, then we can write

𝑔 = diag(1𝑈 , ℎ) with ℎ ∈ Ω−
2𝑛−6(𝑞). By Proposition 4.3(i), ℎ = 𝑥𝑢3 𝑦

𝑣
3 for some 𝑢, 𝑣 ∈ Ω(𝑊), whence

𝑔 = (𝑧𝑥3)𝑢 (𝑧−1𝑦3)𝑣 is a product of two derangements. Finally, assume that 2 � 𝑞 and 𝜆 = −1. If 𝑞 ≡ 3
(mod 4), then −1 = (−1)𝑛(𝑞−1)/2, so −1𝑉 ∈ Ω−

2𝑛 (𝑞) = 𝐺̃ by [KL, Proposition 2.5.13], whence we
can replace g by (−1𝑉 )𝑔 and appeal to the previous case. If 𝑞 ≡ 1(mod 4), then 1 = (−1)3(𝑞−1)/2 and
−1𝑈 ∈ Ω(𝑈) � Ω+

6 (𝑞). In this case, we can write 𝑔 = diag(−1𝑈 , ℎ) with ℎ ∈ Ω−
2𝑛−6(𝑞). Again, by

Proposition 4.3(i), ℎ = 𝑥𝑢3 𝑦
𝑣
3 for some 𝑢, 𝑣 ∈ Ω(𝑊), whence 𝑔 = ((−1𝑈 )𝑧𝑥3)𝑢 (𝑧−1𝑦3)𝑣 is a product of

two derangements in Π.

6.2.5. The case 𝐺̃ = Ω+
2𝑛 (𝑞) with 2 � 𝑛 ≥ 5

We again choose regular semisimple elements 𝑥 and 𝑦̃ of type T and 𝑇 ′, where the maximal tori 𝑇 = 𝑇+
𝑛

and 𝑇 ′ = 𝑇−,−
𝑛−1,1 have order 𝑞𝑛 − 1 and (𝑞𝑛−1 + 1) (𝑞 + 1), using Lemma 4.1. Here, the characteristic

polynomial of 𝑥 factors into two irreducibles of degree n while the characteristic polynomial of 𝑦̃ factors
into irreducibles of degree 2𝑛−2 and 2. Now, Theorem 6.8 and [MSW, Theorem 2.6] imply the theorem
unless 𝐻̃ is the stabiliser of a nondegenerate 2-space𝑉 ′ of type−. (Note that the case𝑉 ′ is nondegenerate
1-dimensional does not occur since we choose 𝑦̃ to have the second irreducible factor of degree 2 in its
characteristic polynomial; compare Lemma 4.1.)

Consider the remaining action on nondegenerate 2-spaces of type −, assuming 𝑛 ≥ 9. Note that
the elements 𝑥1, 𝑦1 of types 𝑇−,−

𝑛−3,3 and 𝑇−,−
𝑛−4,4 constructed in the proof of Proposition 4.3(ii) with

(𝑎, 𝜖) = (3, +) are both derangements in Π. Hence, there exists some absolute constant B such that if
supp(𝑔) ≥ 𝐵, then the statement follows from Proposition 4.3(ii). Now we consider the case supp(𝑔) <
𝐵 < 𝑛 − 3, and let 𝜆 be the primary eigenvalue of g on V. Applying [LST1, Lemma 6.3.4], we can
decompose 𝑉 = 𝑈 ⊥ 𝑊 as an orthogonal sum of g-invariant subspaces, with dim(𝑈) = 6, U of type −
and 𝑔 |𝑈 = 𝜆 · 1𝑈 . As 2| (𝑛 − 3) ≥ 6, we can find regular semisimple elements 𝑥2 ∈ 𝑇−

𝑛−3 and 𝑦2 ∈ 𝑇−,+
𝑛−4,1

in Ω(𝑊) � Ω−
2𝑛−6(𝑞). Also fix a regular semisimple element 𝑧 ∈ 𝑇−

3 of Ω(𝑈) � Ω−
6 (𝑞). If 2|𝑞 or if

𝜆 = 1, then we can write 𝑔 = diag(1𝑈 , ℎ) with ℎ ∈ Ω−
2𝑛−6(𝑞). By [MSW, Theorem 2.5], ℎ = 𝑥𝑢2 𝑦

𝑣
2

for some 𝑢, 𝑣 ∈ Ω(𝑊), whence 𝑔 = (𝑧𝑥2)𝑢 (𝑧−1𝑦2)𝑣 is a product of two derangements. Finally, assume
that 2 � 𝑞 and 𝜆 = −1. If 𝑞 ≡ 1(mod 4), then 1 = (−1)𝑛(𝑞−1)/2, so −1𝑉 ∈ Ω+

2𝑛 (𝑞) = 𝐺̃, whence we
can replace g by (−1𝑉 )𝑔 and return to the previous case. If 𝑞 ≡ 3(mod 4), then −1 = (−1)3(𝑞−1)/2 and
−1𝑈 ∈ Ω(𝑈) � Ω−

6 (𝑞). In this case, we can write 𝑔 = diag(−1𝑈 , ℎ) with ℎ ∈ Ω−
2𝑛−6) (𝑞). Again, by
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[MSW, Theorem 2.5], ℎ = 𝑥𝑢3 𝑦
𝑣
3 for some 𝑢, 𝑣 ∈ Ω(𝑊), whence 𝑔 = ((−1𝑈 )𝑧𝑥3)𝑢 (𝑧−1𝑦3)𝑣 is a product

of two derangements.

6.2.6. The case 𝐺̃ = Ω+
2𝑛 (𝑞) with 2|𝑛 ≥ 6

Now we choose regular semisimple elements 𝑥 and 𝑦̃ of type T and𝑇 ′, where the maximal tori𝑇 = 𝑇+,+
𝑛−1,1

and 𝑇 ′ = 𝑇−,−
𝑛−1,1 have order (𝑞𝑛−1 − 1) (𝑞 − 1) and (𝑞𝑛−1 + 1) (𝑞 + 1), again using Lemma 4.1. By [GT3,

Theorem 2.7], 𝑥𝐺̃ · 𝑦̃𝐺̃ contains all noncentral elements of 𝐺̃. Hence the theorem follows, unless 𝐻̃ is
the stabiliser of an m-dimensional subspace 𝑉 ′, where either 𝑉 ′ is nondegenerate and 𝑚 = 1, 2 (with
𝑚 = 1 only when 𝑞 ≤ 3) or 𝑉 ′ is totally singular and 𝑚 = 1.

If𝑉 ′ is a nondegenerate 2-space of type −, we then choose 𝑦̃′ regular semisimple of type 𝑇 ′
2 = 𝑇−,−

𝑛−2,2,
a maximal torus of order (𝑞𝑛−2 +1) (𝑞2 +1) as in [LST1, §7.1]. As 𝑥 and 𝑦̃′ are both derangements in Π,
the theorem now follows from [LST1, §7.2] and [GM2, Theorem 7.6].

In the remaining cases, note that, as shown in the proof of [MSW, Theorem 2.7], there exists a
regular semisimple element 𝑥′ of type 𝑇 ′

1, a maximal torus of order (𝑞𝑛/2 + (−1)𝑛/2)2, such that there
are exactly three irreducible characters of 𝐺̃ that are nonzero at both 𝑥 ′ and 𝑦̃: namely, 1𝐺̃ , St and one
more character 𝜌: |St(𝑥 ′)St( 𝑦̃) | = 1 and |𝜌(𝑥 ′)𝜌( 𝑦̃) | = 2. The imposed condition on 𝑉 ′ ensures that 𝑥 ′

and 𝑦̃ are both derangements in Π. Consider any 𝑔 ∈ 𝐺̃ \Z(𝐺̃). If g is semisimple, then 𝑔 ∈ (𝑥 ′)𝐺̃ · ( 𝑦̃)𝐺̃
by [GT2, Lemma 5.1]. The same conclusion holds if g is nonsemisimple but has large enough support
supp(𝑔) > 𝐵 with 𝑞

√
𝐵 ≥ 2481 – indeed, in this case |𝜌(𝑔)/𝜌(1) | ≤ 𝑞−

√
supp(𝑔)/481 < 1/2, so���� ∑

𝜒∈Irr(𝐺)

𝜒(𝑥 ′)𝜒( 𝑦̃)𝜒(𝑔)
𝜒(1)

���� > 1 −
���� 𝜌(𝑥 ′)𝜌( 𝑦̃)𝜌(𝑔)𝜌(1)

���� > 1 − 1 = 0.

It therefore remains to consider the case q is bounded and supp(𝑔) ≤ 𝐵, in which case we may assume
𝑛 > 𝐵+6, so g acting on the natural module F2𝑛

𝑞 has a primary eigenvalue 𝜆 = ±1 by [LST1, Proposition
4.1.2]. In the case 2 � 𝑞, the condition 2|𝑛 implies by [KL, Proposition 2.5.13] that −1 ∈ Ω+

2𝑛 (𝑞) = 𝐺̃.
Hence we can multiply g by a suitable central element of 𝐺̃ to ensure that 𝜆 = 1. Now, using [LST1,
Lemma 6.3.4] and the assumption 𝑛 > 𝐵 + 6, we can find a g-invariant decomposition 𝑉 = 𝑈 ⊥ 𝑊 ,
where dim𝑈 = 10, g acts trivially on U and U is nondegenerate of type +, whence W is nondegenerate
of type + of dimension 2𝑛 − 10. By [MSW, Theorem 2.6], we can find regular semisimple elements
𝑢̃ and 𝑣̃ of type a maximal torus of order 𝑞𝑛−5 − 1 and a maximal torus of order (𝑞𝑛−6 + 1) (𝑞 + 1) in
𝐻 := Ω+

2𝑛−10(𝑞) such that the W-component h of g is 𝑢̃ℎ1 · 𝑣̃ℎ2 for some ℎ1, ℎ2 ∈ 𝐻. We also fix a regular
semisimple element 𝑧 ∈ Ω+

10(𝑞) of type a maximal torus of order (𝑞3 + 1) (𝑞2 + 1). Now it is clear that
𝑔 = (𝑧𝑢̃)ℎ1 (𝑧−1𝑣̃)ℎ2 and both 𝑧𝑢̃ and 𝑧−1𝑣̃ are derangements in Π.

Thus we have completed the proof of Theorem A.

6.3. A probabilistic result on derangements

Recall that, for a permutation group G and an element 𝑔 ∈ 𝐺, PD (𝐺) ,D (𝐺) (𝑔) denotes the probability
that two independently chosen random derangements 𝑠, 𝑡 ∈ D(𝐺) satisfy 𝑠𝑡 = 𝑔.

Proposition 6.9. Let G be a finite simple transitive permutation group.

(i) PD (𝐺) ,D (𝐺) converges to the uniform distribution on G in the 𝐿1 norm as |𝐺 | → ∞. Hence the
random walk on G with respect to its derangements as a generating set has mixing time two.

(ii) If G is a group of Lie type of bounded rank, then PD (𝐺) ,D (𝐺) converges to the uniform distribution
on G in the 𝐿∞ norm as |𝐺 | → ∞.

Proof. By [Sh2, Theorem 2.5], if G is a finite simple group and 𝑥, 𝑦 ∈ 𝐺 are randomly chosen, then
almost surely P𝑥𝐺 ,𝑦𝐺 converges to the uniform distribution U𝐺 in the 𝐿1 norm as |𝐺 | → ∞. Hence the
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same holds for randomly chosen 𝑥, 𝑦 ∈ 𝑇 , where T is any normal subset of G of proportion bounded
away from 0. By Theorem 6.1 of Fulman and Guralnick we may apply this to 𝑇 = D(𝐺). This implies
part (i).

Part (ii) follows from part (iv) of [LST2, Theorem A]. �

We note that, by Corollary 6.9 of [LS], if 𝑇 ⊆ A𝑛 is a normal subset of size at least 𝑒−(1/2−𝛿)𝑛 |A𝑛 |
for some fixed 𝛿 > 0, then, as 𝑛 → ∞, the mixing time of the random walk on A𝑛 with respect to the
generating set T is two. This provides an alternative proof of part (i) for alternating groups.

We also note that part (ii) above does not hold for alternating groups; indeed, this follows from
Theorem 6.2(ii) and its proof in [LST2].

7. Products of derangements in alternating groups

In this section, we prove Theorem B. First we need the following technical result:

Proposition 7.1. Let H be a proper subgroup of A𝑛 such that one of the following conditions holds:

(i) 𝑛 ∈ {5, 7, 11, 12, 13, 14, 15, 16} and H contains an ℓ-cycle for the two largest odd integers ℓ ≤ 𝑛.
(ii) 𝑛 ≥ 17 and H contains an ℓ-cycle for the three largest odd integers ℓ ≤ 𝑛.

Then 2|𝑛 and 𝐻 � A𝑛−1, a point stabiliser in the natural action of A𝑛 on Δ := {1, 2, . . . , 𝑛}.

Proof. We proceed by induction on n, with the induction base verifying the cases where 𝑛 ≤ 13. Set

L𝑛 := {ℓ ∈ Z | 2 � ℓ, �3𝑛/4� ≤ ℓ ≤ 𝑛}.

(a) If 𝑛 = 5, then 15 divides |𝐻 |, so 𝐻 = A5 by [CCNPW]. Similarly, if 𝑛 = 7, then 35 divides |𝐻 |, so
𝐻 = A7 by [CCNPW]. Suppose 𝑛 = 11. As 11 divides |𝐻 |, using [CCNPW], we see that H is contained
in a maximal subgroup 𝑋 � M11 of A11. But this is a contradiction since X contains no element of
order 9, whereas H contains a 9-cycle. Next assume that 𝑛 = 12. Then H contains an 11-cycle and
a 9-cycle. Using [CCNPW], we again see that H is contained in a maximal subgroup Y of A12, with
𝑌 � M12 or 𝑌 � A11, a point stabiliser. The former case is ruled out since M12 contains no element of
order 9. In the latter case, we must have 𝐻 = A11 by the 𝑛 = 11 result. If 𝑛 = 13, then 11 · 13 divides
|𝐻 |, so 𝐻 = A13 by [CCNPW].

(b) For the induction step, assume 𝑛 ≥ 14. First we consider the case H is intransitive on Δ . If 2 � 𝑛,
then H contains an n-cycle, so it is transitive on Δ: a contradiction. Hence 2|𝑛. Then we may assume that
H contains the (𝑛 − 1)-cycle 𝑔 = (1, 2, . . . , 𝑛 − 1). It follows that {1, 2, . . . , 𝑛 − 1} and {𝑛} are the two
H-orbits onΔ , so𝐻 ≤ StabA𝑛 (𝑛) � A𝑛−1. If in addition 𝑛 ≥ 18, then 𝑛−1, 𝑛−3, 𝑛−5 are the three largest
members of L𝑛, and at the same time they are also the three largest members of L𝑛−1. Applying the
induction hypothesis to 𝑛 − 1, we obtain that 𝐻 = StabA𝑛 (𝑛), as stated. Suppose 𝑛 = 16. Then 𝐻 ≤ A15,
and it contains a 15-cycle and a 13-cycle. It follows that H is transitive on Δ ′ := {1, 2, . . . , 15}, and in
fact it acts primitively on Δ ′. Now, using [GAP], we can check that A15 and S15 are the only primitive
subgroups of S15 that have order divisible by 13. It follows that 𝐻 = A15.

(c) We may now assume that H is transitive on Δ . Suppose that H is imprimitive: H preserves a
partition Δ = Δ1 � Δ2 � . . . � Δ𝑏 with 1 < |Δ 𝑖 | = 𝑎 = 𝑛/𝑏 < 𝑛. If 2|𝑛, then we may assume that H
contains the (𝑛 − 1)-cycle 𝑔 = (1, 2, . . . , 𝑛− 1) and that 𝑛 ∈ Δ𝑏 . Then g fixes Δ𝑏 and so must fix the set
Δ𝑏 \ {𝑛} of size 𝑎 − 1 < 𝑛 − 1, a contradiction. Next, consider the case 2 � 𝑛. Then we may assume that
H contains the (𝑛 − 2)-cycle ℎ = (1, 2, . . . , 𝑛 − 2) and that 𝑛 ∈ Δ𝑏 . Note that 𝑎 > 1 divides n, which
is odd, and hence 𝑛/3 ≥ 𝑎 ≥ 3. Now h fixes Δ𝑏 and so must fix the set Δ𝑏 \ {𝑛} of size 𝑎 − 1 with
2 ≤ 𝑎 − 1 < 𝑛 − 2, again a contradiction.

(d) Now we consider the remaining case, where H is primitive on Δ .
If 𝑛 = 14, then 11 ·13 divides |𝐻 |. Using [GAP], we can check that 𝐻 = A𝑛. Similarly, if 15 ≤ 𝑛 ≤ 17,

then A𝑛 is the only primitive subgroup of A𝑛 that has order divisible by 13, whence 𝐻 = A𝑛.
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From now on, we may assume 𝑛 ≥ 18 and let 𝐻1 := Stab𝐻 (1) ≤ A𝑛−1. First we consider the case 2|𝑛.
Then H contains an (𝑛 − 1)-cycle g, an (𝑛 − 3)-cycle h and an (𝑛 − 5)-cycle k. Since H is transitive
on Δ , we may replace g by an H-conjugate so that 𝑔(1) = 1, and similarly ℎ(1) = 1 and 𝑘 (1) = 1.
Thus 𝐻1 ≤ A𝑛−1 contains g, h and k, and 𝑛 − 1, 𝑛 − 3, 𝑛 − 5 are the first three members of L𝑛−1. By the
induction hypothesis applied to 𝐻1, we have 𝐻1 = A𝑛−1. As H is transitive on Δ , it follows that 𝐻 = A𝑛.

(e) Now we may assume that 2 � 𝑛 ≥ 19. Arguing as above, we may assume that 𝐻1 contains an
(𝑛 − 2)-cycle 𝑠 = (3, 4, . . . , 𝑛). Assume in addition that 𝐻1 is intransitive on {2, 3, . . . , 𝑛}. Since 𝐻1
contains s, it follows that {1}, {2} and {3, 4, . . . , 𝑛} are the 3 𝐻1-orbits on Δ . Note that 𝐻2 := Stab𝐻 (2)
now contains 𝐻1 and |𝐻2 | = |𝐻 |/𝑛 = |𝐻1 |, whence 𝐻2 = 𝐻1. We claim that for any 𝑖 ∈ Δ , there is a
unique 𝑖★ ∈ Δ \ {𝑖} such that

Stab𝐻 (𝑖) = Stab𝐻 (𝑖★). (7.1)

(Indeed, using transitivity of H, we can find 𝑥 ∈ 𝐻 such that 𝑖 = 𝑥(1), whence equation (7.1) holds
for 𝑖★ := 𝑥(2). Conversely, if Stab𝐻 (𝑖) = Stab𝐻 ( 𝑗) for some 𝑗 ≠ 𝑖, then conjugating the equality by
x, we see that 𝐻1 = Stab𝐻 (1) fixes 𝑥−1 ( 𝑗) ≠ 𝑥−1 (𝑖) = 1. The orbit structure of 𝐻1 on Δ then shows
that 𝑥−1 ( 𝑗) = 2, so 𝑗 = 𝑥(2) = 𝑖★, and the claim follows.) We also note that the uniqueness of 𝑖★ and
equation (7.1) imply that (𝑖★)★ = 𝑖. Hence, the set Δ is partitioned into pairs { 𝑗1, 𝑗★1 }, . . . , { 𝑗𝑚, 𝑗

★
𝑚},

which is impossible since 2 � 𝑛.
We have shown that 𝐻1 is transitive on {2, 3, . . . , 𝑛}, so H is doubly transitive on Δ . In particular,

H has a unique minimal normal subgroup S, which is either elementary abelian or a nonabelian simple
group; see [Cam, Proposition 5.2]. Suppose we are in the former case. Then one may identify Δ with
the vector space F𝑑𝑝 for some prime p with 𝑝𝑑 = 𝑛, S with the group of translations 𝑡𝑣 : 𝑢 ↦→ 𝑢 + 𝑣 on
F𝑑𝑝 , 1 ∈ Δ with the zero vector in F𝑑𝑝 and 𝐻1 with a subgroup of GL(F𝑑𝑝). Since 2 � 𝑛, 𝑝 > 2, so 𝐻1 is
imprimitive on F𝑑𝑝 \ {0} (indeed, it permutes the sets of nonzero vectors of (𝑝𝑑 − 1)/(𝑝 − 1) F𝑝-lines).
On the other hand, the presence of the (𝑛−2)-cycle 𝑠 ∈ 𝐻1 shows (as in (iii)) that the transitive subgroup
𝐻1 must be primitive on F𝑑𝑝 \ {0}, a contradiction.

We have shown that S is simple, nonabelian. Now we can use the list of (𝐻, 𝑆, 𝑛) as given in [Cam].
The possibility (𝐻, 𝑆, 𝑛) = (M23,M23, 23) is ruled out since H must contain the element s of order 21.
Next, if (𝑆, 𝑛) = (2𝐵2 (𝑞), 𝑞2 + 1) with 𝑞 = 22 𝑓 +1 ≥ 8, then 𝑆 � 𝐻 ≤ Aut(𝑆) = 𝑆 · 𝐶2 𝑓 +1. This is
impossible, since H contains the element s of order 𝑞2 − 1. Similarly, if (𝑆, 𝑛) = (PSU3 (𝑞), 𝑞3 + 1) with
𝑞 = 2𝑒 ≥ 4, then 𝑆�𝐻 ≤ Aut(𝑆) = PGU3(𝑞) ·𝐶2𝑒. This is again impossible, since H contains the element
s of order 𝑞3 −1. Next, if (𝑆, 𝑛) = (SL2 (𝑞), 𝑞 +1) with 𝑞 = 2𝑒 ≥ 8, then 𝑆�𝐻 ≤ Aut(𝑆) = SL2 (𝑞) ·𝐶𝑒.
This is again impossible since H contains the element of order 𝑛 − 4 = 𝑞 − 3.

As H is a proper subgroup of A𝑛, there remains only one possibility that

(𝑆, 𝑛) = (PSL𝑑 (𝑞), (𝑞𝑑 − 1)/(𝑞 − 1))

with 𝑑 ≥ 3, and we may assume that S and H act on the (𝑞𝑑 − 1)/(𝑞 − 1) lines of the vector space
F𝑑𝑞 = 〈𝑒1, 𝑒2, . . . , 𝑒𝑑〉F𝑞 . Since H is doubly transitive, we may assume that the two fixed points of the
(𝑛− 2)-cycle s are 〈𝑒1〉F𝑞 and 〈𝑒2〉F𝑞 . In this case, s acts on the set of 𝑞 + 1 F𝑞-lines of 〈𝑒1, 𝑒2〉F𝑞 , fixing
two of them. This is again impossible, since s permutes cyclically the other 𝑛 − 2 F𝑞-lines. �

Proof of Theorem B.
(a) Fix a symbol 𝛼 ∈ Ω, and consider the point stabiliser 𝐻 := Stab𝐺 (𝛼). We also consider the natural
permutation action of G on Δ := {1, 2, . . . , 𝑛}. The cases 5 ≤ 𝑛 ≤ 10 can be checked directly using
[GAP], so we will assume that 𝑛 ≥ 11.

In the notation of Proposition 7.1, suppose first that there is some ℓ ∈ L𝑛 such that H does not
contain any ℓ-cycle. In other words, any ℓ-cycle in 𝐺 = A𝑛 is a derangement on Ω. By the main result
of [B], the choice of ℓ ensures that every element in G is a product of two ℓ-cycles and hence a product
of two derangements (on Ω).
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It remains to consider the case where H contains an ℓ-cycle for any ℓ ∈ L𝑛. By Proposition 7.1, this
implies that 2|𝑛 and 𝐻 = Stab𝐺 (1), and thus Ω = Δ . We will now show that every element 𝑔 ∈ 𝐺
is a product of two derangements on Δ . (Presumably this also follows from [Xu], but for the reader’s
convenience, we give a short, direct proof.)

(b) We will again proceed by induction on n, with the induction base 5 ≤ 𝑛 ≤ 10 already checked.

(b1) For the induction step, suppose that g fixes at least 2 points in Δ , say 𝑔(𝑖) = 𝑖 for 𝑖 = 1, 2. Since
𝑛 ≥ 11, we have 𝑛−2 ≥ �3𝑛/4�. Viewing 𝑔 ∈ A𝑛−2, by the main result of [B], we have that 𝑔 = 𝑥1𝑥2 is a
product of two (𝑛−2)-cycles 𝑥1, 𝑥2 ∈ S𝑛−2. It follows that 𝑔 = 𝑥1𝑥2, with 𝑥1 = 𝑥1 (1, 2) and 𝑥2 = 𝑥2 (1, 2)
being derangements in A𝑛.

(b2) Suppose now that 𝑔 = 𝑔1𝑔2 ∈ A𝑚 × A𝑛−𝑚 with 5 ≤ 𝑚 ≤ 𝑛/2. By the induction hypothesis,
𝑔𝑖 = 𝑦𝑖𝑧𝑖 , with 𝑦1, 𝑧1 ∈ A𝑚 and 𝑦2, 𝑧2 ∈ A𝑛−𝑚 being derangements. It follows that 𝑔 = (𝑦1𝑦2) (𝑧1𝑧2),
with 𝑦1𝑦2 ∈ A𝑛 and 𝑧1𝑧2 ∈ A𝑛 being derangements. In particular, we are done if, in the decomposition
of g into disjoint cycles, g contains a cycle of odd length c, where 5 ≤ 𝑐 ≤ 𝑛 − 5. We are also done if
𝑐 = 3: indeed, if 𝑔 = (1, 2, 3)ℎ with ℎ ∈ A𝑛−3 disjoint from (1, 2, 3), then we can write ℎ = ℎ1ℎ2, with
ℎ𝑖 ∈ A𝑛−3 being derangements, so 𝑔 = ((1, 3, 2)ℎ1) · ((1, 3, 2)ℎ2) is a product of two derangements.
Together with (b1), we are also done in the case 𝑐 = 𝑛 − 3.

(b3) Suppose g contains at least two cycles 𝑡1, 𝑡2 of even length 𝑑1, 𝑑2 in its disjoint cycle decom-
position. If 6 ≤ 𝑑1 + 𝑑2 ≤ 𝑛 − 6, we are done by the previous step (b2), by taking 𝑔1 := 𝑡1𝑡2. We are
also done if 𝑑1 + 𝑑2 = 4: indeed, if 𝑔 = (1, 2) (3, 4)ℎ with ℎ ∈ A𝑛−4 disjoint from (1, 2) (3, 4), then we
can write ℎ = ℎ1ℎ2, with ℎ𝑖 ∈ A𝑛−4 being derangements, so 𝑔 = ((1, 3) (2, 4)ℎ1) · ((1, 4) (2, 3)ℎ2) is a
product of two derangements.

(b4) The above steps leave only the following two cases for the disjoint cycle decomposition of g
(up to conjugation):

◦ 𝑔 = 𝑔1𝑔2, where 𝑔1 is an a-cycle, 𝑔2 is an (𝑛 − 𝑎)-cycle and 2|𝑎. Here, if 4 ≤ 𝑎 ≤ 𝑛 − 4, then
𝑔 = 𝑔2 · 𝑔−1, with 𝑔2 and 𝑔−1 being derangements. In the remaining case, say
𝑔 = (1, 2, . . . , 𝑛 − 2) (𝑛 − 1, 𝑛), setting ℎ = (1, 2, . . . , 𝑛 − 3, 𝑛 − 1) (𝑛 − 2, 𝑛), we see that 𝑔ℎ consists
of two disjoint 𝑛/2-cycles and is therefore a derangement, while 𝑔 = (𝑔ℎ) (ℎ−1).

◦ 𝑔 = (1, 2, . . . , 𝑛 − 1). Setting ℎ = (1, 𝑛 − 3) (2, 3, . . . , 𝑛 − 4, 𝑛 − 2, 𝑛 − 1, 𝑛) ∈ A𝑛, we see that

𝑔ℎ = (1, 𝑛 − 2) (2, 4, 6, . . . , 𝑛 − 4, 𝑛 − 1, 𝑛, 3, 5, . . . , 𝑛 − 3)

is a derangement, while 𝑔 = (𝑔ℎ) (ℎ−1). �
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