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Abstract. We study finite groups whose rational-valued irreducible characters are
all of odd degrees. We conjecture that in such groups all rational elements must be
2-elements.

1. Introduction

Let G be a finite group and let K be a field with Q ⊆ K ⊆ C. We denote by IrrK(G)
the set of complex irreducible characters χ ∈ Irr(G) with values in K, and refer to any
character in IrrR(G) as a real character, respectively to any character in IrrQ(G) as a
rational character.

The Itô-Michler theorem for the prime p = 2 states that the degrees of all complex
irreducible characters of a finite group G are even if and only if G has a normal abelian
Sylow 2-subgroup. A version of this theorem for real characters was obtained in [5] and
another refinement to strongly real characters was proved in [15]. In both versions, it
was shown that if all real (or strongly real) irreducible characters of a finite group G
have odd degrees, then G has a normal Sylow 2-subgroup. Clearly, these groups have
no nontrivial real elements of odd order. Unfortunately, when restricted to rational
characters, a similar conclusion fails. The simple groups L2(32f+1), where f ≥ 1 is an
integer, have exactly two rational irreducible characters which are the trivial character
and the Steinberg character of degree 3f .

However, Navarro and Sanus [16] managed to show that if all rational irreducible
characters of G are linear, then G has a normal Sylow 2-subgroup. In this case, clearly,
G has no nontrivial rational element of odd order. Note that all rational elements
are real elements and since any power of rational elements remains rational, the two
conditions G has no nontrivial rational element of odd order and all rational elements
of G are 2-elements coincide. Navarro and Tiep show in [17] that if G has exactly two
rational irreducible characters, then G has exactly two rational classes and since |G| is
even, all nontrivial rational elements of G are involutions. These results seem to suggest
the following.
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Conjecture. Let G be a finite group. If every rational irreducible character of G has
odd degree, then all rational elements of G are 2-elements.

In our first result, we will prove the following.

Theorem A. Let G be a finite group. Suppose that the simple group L2(32f+1) is not
involved in G for any integer f ≥ 1 and that all rational irreducible characters of G
have odd degree. Then all rational elements of G are 2-elements.

In order to prove Theorem A, we need the following solvability result.

Theorem B. Let G be a finite group. Suppose that no simple group L2(32f+1) with
f ≥ 1 is involved in G and that all rational irreducible characters of G have odd degree.
Then G is solvable.

The proof of Theorem B will depend on the following result on simple groups.

Theorem C. Let S be a normal non-abelian simple subgroup of a finite group G and
CG(S) = 1. If S is not isomorphic to L2(32f+1) then there exists χ ∈ IrrQ(G) of even
degree not containing S in its kernel.

Apparently, the non-existence of rational elements of certain orders might have
stronger impact on the group structures, see e.g. [4, Theorem C] and Theorem 3.1.

As mentioned earlier, Theorem A in [17] states that a finite group G has exactly two
rational irreducible characters if and only if it has two rational classes. The nontrivial
rational class of such groups consists of involutions and hence our conjecture clearly
holds in this case. Extending this one step further, it turns out that there is no finite
group having exactly three rational irreducible characters whose degrees are all odd.

Theorem D. Let G be a finite group. Suppose that G has exactly three rational irre-
ducible characters. Then G has a rational irreducible character of even degree.

In fact, it was conjectured by Navarro and Tiep that a finite group G has exactly three
rational irreducible characters if and only if it has three rational conjugacy classes. One
direction of this conjecture was proved by Rossi in [19]. For finite solvable groups G of
even order, we can show that the number of odd degree rational irreducible characters
of G is even (see Corollary 5.2). However, this is not true in general. The simple Janko
group J4 has exactly 13 rational, irreducible characters of odd degree.

Finally, we mention that the converse of our conjecture does not hold. As a coun-
terexample, all rational elements of the dihedral group D8 are of order 1 and 2 but
D8 has a rational irreducible character of degree 2. It would be an interesting prob-
lem to obtain a group-theoretical characterization of finite groups whose all rational
irreducible characters have odd degree. Motivated by Theorem A in [16], where it is
shown that if all rational irreducible characters of G are linear, then all rational irre-
ducible characters of some Sylow 2-subgroup of G are linear, one might ask whether
a similar conclusion holds under the hypothesis of our conjecture. Unfortunately, as
pointed out to us by the reviewer, this is also not true. For example, one can take
G := SmallGroup(160, 234) ∼= C4

2 o (C5 o C2). Then all rational irreducible characters
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of G have odd degree but a Sylow 2-subgroup of G has rational irreducible characters
of degree 2.

Our notation is standard. We follow [11] for the character theory of finite group and
[2] for the notation of non-abelian simple groups.

2. Preliminaries

We collect some useful results on rational characters and rational elements in this
section.

Lemma 2.1. Let G be a finite group and let N be a normal subgroup of G. If χ is a
real irreducible character of G of odd degree and θ is an irreducible constituent of χN ,
the restriction of χ to N , then θ is real of odd degree.

Proof. Assume that χ ∈ Irr(G) is real with χ(1) odd. Let θ ∈ Irr(N) be a constituent
of χN . By Clifford’s theorem, χN = e(θ1 + θ2 + · · ·+ θt), where all θ′is are conjugate to
θ = θ1 and integers e, t ≥ 1. Since χ(1) = etθ(1) is odd, t is odd. As χ is real, we have

(χN) = (χ)N = χN , and so

e(θ1 + θ2 + · · ·+ θt) = e(θ1 + θ2 + · · ·+ θt).

It follows that the G-orbit of all irreducible constituents of χN is closed under taking
complex conjugate. Since t is odd, θj = θj for some j with 1 ≤ j ≤ t. As θj is
G-conjugate to θ, θ is real. �

Lemma 2.2. Let G be a finite group and let N �G. Let θ ∈ Irr(N) be rational. Then
there exists a rational character χ ∈ Irr(G|θ) if either |G/N | is odd or θ(1) is odd and
o(θ) = 1.

Proof. These follow from Corollaries 2.2 and 2.4 in [17]. �

Lemma 2.3. Let S be a finite non-abelian simple group. Then all rational irreducible
characters of S have odd degree if and only if S ∼= L2(32f+1) for some integer f ≥ 1.
Moreover, the only nontrivial rational irreducible character of L2(32f+1) with f ≥ 1 is
the Steinberg character of degree 32f+1.

Proof. The first statement is Theorem 2.7 in [5] and the second follows from Lemma
9.4 in [17]. �

Let G be a finite group. Recall that an element x ∈ G is rational (in G) if whenever
〈y〉 = 〈x〉, then y is G-conjugate to x. Also x ∈ G is real (in G) if xg = x−1 for some
g ∈ G. Clearly, every rational element is real. Moreover, if x ∈ G is an element of order
3, then x is real if and only if x is rational. We call a class xG is rational if x is rational.

Lemma 2.4. Let G be a finite group and let N �G.

(a) If x ∈ G is rational, then xN is rational in G/N .
(b) If g ∈ H ≤ G and g is rational in H, then g is rational in G.
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(c) Assume that x ∈ G has prime order p. Then x is rational in G if and only
if there exists a p′-element g ∈ G such that xg = xt, where t(mod p) is any
generator of Z×p .

(d) If x ∈ G is rational, then every power of x is also rational; moreover, xπ is
rational for every set of primes π.

(e) If x ∈ G, gcd(o(x), |N |) = 1 and xN is rational in G/N , then x is rational in
G.

(f) If G/N has a rational element of prime order p, then G also has a rational
element of order p.

Proof. These statements can be found in Lemmas 5.1 and 5.2 in [17]. �

Lemma 2.5. Let S be a finite non-abelian simple group. Then either S contains a
rational element of order 3, or S = 2B2(22f+1) and S contains a rational element of
order 5, or S ∼= L2(22f+1), where f ≥ 1 is an integer.

Proof. This is [17, Theorem 11.1]. �

3. Finite Groups with no even rational character degrees

Let G be a finite group. If U � V are subgroups of G, then we call V/U a section of
G. We say that a finite group T is involved in G if T is isomorphic to some section of
G and G is said to be T -free if none of the section of G is isomorphic to T .

We first prove Theorem B, assuming Theorem C.

Proof of Theorem B. Assume that every rational, irreducible character of G has
odd degree and that L2(32f+1) is not involved in G for any integer f ≥ 1. We prove
by induction on |G| that G is solvable. If 1 < N � G, then IrrQ(G/N) ⊆ IrrQ(G) and
L2(32f+1) is not involved in G/N , by induction, G/N is solvable. It follows that G has a
unique minimal normal subgroup, say M . If M is solvable, then since G/M is solvable
by the claim above, G is solvable. Thus we assume that M is non-solvable.

Write M = S1 × S2 × · · · × Sn, where each Si is non-abelian simple. Let S = S1,
H = NG(S) and C = CG(S). Since L2(32f+1) is not involved in G, S 6∼= L2(32f+1) for
all integers f ≥ 1. Let H = H/C. Then S �H and CH(S) = 1. By Theorem C, there
exists a rational, irreducible character δ ∈ IrrQ(H) of even degree such that [δS, 1S] = 0.
Inflate δ to H, we still have that [δS, 1S] = 0. Hence δS has an irreducible constituent
1 6= θ ∈ Irr(S). Let φ = θ × 1S × · · · × 1S ∈ Irr(M). Let I be the inertia group of
φ in G. Observe that δ lies over φ and I ≤ H. Let ψ be the Clifford correspondence
of δ over φ. Then ψH = δ and ψG ∈ Irr(G). Thus δG = ψG ∈ Irr(G) and since δ is
rational, ψG ∈ IrrQ(G). Furthermore, δ(1) is even and hence δG is a rational irreducible
character of even degree of G, which is a contradiction. �

Using Theorem B, we can now prove Theorem A. Recall that for a prime p and a
finite p-solvable group G, Bp(G) is a canonical subset of Irr(G) with values in Q|G|p .
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Proof of Theorem A. We proceed by induction on |G|. By Theorem B, we know
that G is solvable. If 1 < N �G, then IrrQ(G/N) ⊆ IrrQ(G), by induction G/N has no
rational element of odd order > 1.

Assume first that O2(G) > 1. Then G/O2(G) has no nontrivial rational element
of odd order. Assume by contradiction that G has a nontrivial rational element x of
odd order. By Lemma 2.4(a), xO2(G) is a nontrivial rational element of G/O2(G) of
odd order, which is a contradiction. Thus we assume that O2(G) = 1. It follows that
O2′(G) > 1 since G is solvable.

Let N be a minimal normal subgroup of G. Then N is an elementary abelian p-
group for some odd prime p. Note that G/N has no rational element of odd prime
order. Again, assume that G has a rational element x of odd prime order. Since G/N
has no rational element of odd order > 1, we deduce that x ∈ N and thus o(x) = p > 2.

We now use the argument as in the proof of Theorem 7.2 in [17] to produce an
irreducible rational character of G which does not contain N in its kernel. By Lemma
2.4(c), there exists a p′-element g ∈ G such that xg = xt, where t(mod p) is a generator
for the multiplicative group Z×p . Let σ ∈ Gal(Q|G|/Q) be an element of order p − 1
fixing p′-roots of unity and ξσ = ξt, where ξ is a primitive p-root of unity. By [17,
Corollary 6.4], there exists 1N 6= ψ ∈ Bp(N) such that ψσ = ψg and Q(ψ) ⊆ Qp. By
[17, Corollary 6.3], there exists a rational irreducible character χ of G lying over ψ.

From the hypothesis of the theorem, we know that χ(1) is odd. By Lemma 2.1,
the constituent ψ of χN is real as χ is real. However, as |N | is odd, the only real
irreducible character of N is the trivial character 1N which implies that ψ = 1N , which
is a contradiction. �

Observe that if G is a finite group and x ∈ G is an element of order 3, then x is a
real element of G if and only if x is a rational element of G as the only generators of
the cyclic group 〈x〉 are x and x2 = x−1.

Theorem 3.1. Let G be a finite group. Assume that L2(32f+1) is not involved in G for
any integers f ≥ 1. If G has no rational element of order 3 and 5, then G is solvable.

Proof. We proceed by induction on the order of G. From the definition, we observe
that every subgroup and quotient of G are L2(32f+1)-free for all integers f ≥ 1. Let
π = {3, 5}.

Assume first that G has a nontrivial proper normal subgroup N. By Lemma 2.4(b),
N has no rational element of order p with p ∈ π. If G/N has a rational element of
order p for some p ∈ π, then by Lemma 2.4(f), G has a rational element of order p,
which is impossible. Thus G/N has no rational element of order p for any p ∈ π. Since
|G/N | < |G| and |N | < |G|, by induction, both N and G/N are solvable and hence G
is solvable. Therefore, we can assume that G is a finite simple group.

If G is abelian, then G is solvable. Thus we can assume that G is a non-abelian
simple group. Since G is not isomorphic to L2(32f+1) for any integer f ≥ 1, by Lemma
2.5, G always contains a rational element of order 3 or 5. This contradiction proves
that G is solvable. �
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We recall the following result which describes the structure of finite groups having
no rational element of order 3 (and which also implies Theorem 3.1).

Theorem 3.2. [4, Theorem C] Let G be a finite non-solvable group. Assume that
G has no rational element of order 3. Let L = O2′(G) and M = O3′(L). Then
L/M = S1×S2× · · · ×Sn, where n ≥ 1 is an integer and Si ∼= L2(32fi+1), fi ≥ 1 for all
1 ≤ i ≤ n.

4. Proof of Theorem C

This section is devoted to proving Theorem C.

4.1. Alternating groups and sporadic groups. Suppose S = An, where n ≥ 7.
Then S ≤ G ≤ Aut(S) ∼= Sn. Consider the irreducible characters α = χ(n−2,2) and

β = χ(n−2,12) of Sn, labeled by partitions (n − 2, 2) and (n − 2, 12), and of degree
n(n−3)/2 and n(n−3)/2+1. Since both partitions are non-associate, α and β restrict
to rational, irreducible characters of G, and one of them has even degree, yielding the
desired character χ.

If S = A5, A6, 2F4(2)′, or one of the 26 sporadic simple groups, then one can check
directly using [2] that G always contains a rational irreducible character of even degree.

4.2. Lie-type groups in characteristic 2. Suppose S is a Lie-type group in char-
acteristic 2. By [8], the Steinberg character St of S extends to a rational irreducible
character of even degree of G.

From now on, we will assume that S is a simple group of Lie type, defined over a
field Fq of odd characteristic p, q = pf . Our proof is largely based on [18, Lemma 5.1],
which we reformulate for the case of rational characters.

Lemma 4.1. Suppose that G � A. Let ρ be a rational character of A, not necessarily
irreducible. Assume that ρ|G contains an A-invariant rational irreducible constituent α
such that [α, ρ|G] = 1. Then there is a rational χ ∈ Irr(A) such that χ|G = α.

4.3. The case S = Ln(q), n ≥ 2. In the subsequent treatment of Ln(q), it is convenient
to adopt the labeling of irreducible CGLn(q)-modules as given in [12], which uses
Harish-Chandra induction ◦. Each such a module is labeled as S(s1, λ1)◦. . .◦S(sm, λm),

where si ∈ F×q has degree di (over Fq), λi is a partition of ki, and
∑m

i=1 kidi = n, cf.
[12], [13].

Lemma 4.2. [18, Lemma 5.4] Let B = GL2(q) and α ∈ Irr(B) be of form S(s, (1)) ◦
S(s−1, (1)) for some s of order 4 and degree 1, or S(t, (1)) for some t of degree 2 and
order 4. Then α is rational and invariant under any field automorphism of B.

We view S as L/Z(L), where L = SLn(q) � H = GLn(q). Consider the natural
module 〈e1, . . . en〉Fq for H, the subgroup

T = StabH(〈e1〉Fq , 〈e2, . . . , en〉Fq)
∼= GL1(q)×GLn−1(q),



RATIONAL CHARACTERS 7

and the induced character ρn = (1T )H . Then ρn is a rational character of degree
qn−1(qn−1)/(q−1). Since T > Z(H), ρn can be viewed as a character of H̄ = PGLn(q).
Recall that A = Aut(Ln(q)) is a semidirect product H̄ o F , where F is generated by
a field automorphism σ, and also the transpose-inverse τ if n > 2. We can define σ
and τ such that they stabilize T . It follows that ρn extends to the rational A-character
(1T̄oF )A, where T̄ = Z(G)T/Z(G).

If λ ` n, then let χλ denote the unipotent character of G labeled by λ, cf. [1].
As shown in the proof of [18, Proposition 5.5], if n ≥ 2 then ρn has the following
decomposition into distinct irreducible constituents:

(4.1)

ρn = χ(n) + 2χ(n−1,1) + χ(n−2,12) + S(−1, (12)) ◦ S(1, (n− 2))
+
∑

a∈F×q , a6=±1 S(a, (1)) ◦ S(a−1, (1)) ◦ S(1, (n− 2))

+
∑

b∈F×
q2
, bq+1=1, b6=±1 S(b, (1)) ◦ S(1, (n− 2)),

where in
∑

a, there is one summands for the pair {a, a−1}, and similarly for
∑

b; also,

the summand χ(n−2,12) occurs only for n ≥ 3.

First consider the case n = 2 and 2 - f , whence Aut(S) = K oC2 with K = S oCf .
By assumption, p 6= 3. Hence, by Lemma 2.3, S admits a rational irreducible character
θ of even degree, and θ extends to a rational character of H by Lemma 2.2. In particular,
we are done if G ≤ K. Suppose G 6≤ K. Note that K̃ := SL2(q) o Cf ≤ Sp2nf (p),
and Sp2nf (p) admits irreducible Weil characters ξ1, ξ2 of degree (qn + 1)/2 and η1, η2 of

degree (qn−1)/2, all remaining irreducible upon restriction to H̃ and SL2(q). Moreover,
ξ1 +ξ2 and η1 +η2 are rational-valued. Furthermore, the outer diagonal automorphisms
of S, and so any element of G r K, fuse (ξ1)|S with (ξ2)|S, and (η1)|S with (η2)|S.
Choosing the one, say η1, that is trivial at Z(K̃), we obtain an irreducible character ψ
of G ∩K. Setting χ := ψG, we see that χ = 0 on G rK, and χ(g) = (η1 + η2)(g) for
g ∈ G ∩K. Thus χ is an even-degree rational irreducible character of G.

Assume now that n = 2 and 2|f . Then 8|(q − 1), and we can find a ∈ F×q of order 4.

By Lemma 4.2, α := S(a, (1)) ◦ S(a−1, (1)) is rational and σ-invariant, of even degree
q + 1. It is easy to check α, viewed as PGL2-character, is irreducible upon restriction
to S. By Lemma 4.1, α extends to a rational character ϕ of A, and now we can take
χ := ϕ|G.

Next we consider the case n ≥ 3. If q ≡ 1(mod 4), choose a ∈ F×q of order 4 and

take α := S(a, (1)) ◦ S(a−1, (1)) ◦ S(1, (n− 2)), of even degree

(q + 1)
(qn − 1)(qn−1 − 1)

(q2 − 1)(q − 1)
.

If q ≡ 3(mod 4), choose b ∈ F×q2 of order 4 and take α := S(b, (1)) ◦ S(1, (n − 2)), , of
even degree

(q − 1)
(qn − 1)(qn−1 − 1)

(q2 − 1)(q − 1)
.

Arguing as in the proof of [18, Proposition 5.5], using [12, (7.33)] and [13, Lemmas
3.2, 4.1], we see that α is A-invariant, rational-valued, and irreducible upon restriction
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to S. By Lemma 4.1, α extends to a rational character ϕ of A, and now we can take
χ := ϕ|G.

4.4. The case S = U3(q), q ≥ 3. We will view S = L/Z(L) with L = SU3(q),
and use the notation for irreducible characters of L as given in [9]. Also, recall that
Aut(S) = H o 〈σ〉, with H = PGU3(q), and σ is an outer automorphism of order 2f
induced by the field automorphism x 7→ xp. Note that S has a unique (unipotent)
character of even degree q(q − 1), so rational. Hence we are done by Lemma 2.2 if
2 - |G/S|. It remains to consider the case |G/S| is even.

First assume that q ≡ 3(mod 4); in particular, f is odd. Then L has a pair of Weil

characters χ
(u)

q2−q+1 of degree q2−q+1, with u = (q+1)/4 and 3(q+1)/4, which are dual

to each other, and fused by σ2f , and trivial at Z(L). In fact, it is straightforward to
check that the semisimple characters of GU3(q) labeled by the elements diag(b, b,−1)
with b ∈ F×q2 of order 4 are trivial at Z(GU3(q)), so can be viewed as H-characters θ and

θ, restrict to the previous two Weil characters of S, dual to each other, with Q(
√
−1)

as field of values, and fused by σ. It follows that ψ := θHo〈σf 〉 is a rational irreducible
character of H o 〈σf〉, which is of odd index f in Aut(S). By Lemma 2.2, ψ extends
to a rational character ϕ of Aut(S). The construction of ϕ shows that

ϕ|S = χ
((q+1)/4)

q2−q+1 + χ
(3(q+1)/4)

q2−q+1 ,

hence the inertia subgroup of χ
((q+1)/4)

q2−q+1 in Aut(S) is precisely H o 〈σf〉. As |G/S| is

even, χ
((q+1)/4)

q2−q+1 is not G-invariant. Hence we can take χ := ϕ|G.

Assume now that q ≡ 1( mod 4). Then L has a rational character χ
((q2−1)/4)

q3+1 of degree

q3 + 1, which is trivial at Z(L). This character extends to the rational character

α := χ
(0,(q2−1)/4

q3+1 of M := GU3(q), in the notation of [7]. Direct calculations using

the character table of GU2(q), also given in [7], show that [α|N , 1N ] = 1, where N :=
GU1(q) × GU2(q) embedded naturally in M . It follows that α is a multiplicity-one
constituent of (1N)M . Note that σ can be defined to fix both N and M , so (1N)M

extends to the permutation character (1No〈σ〉)
Mo〈σ〉, and moreover α is σ-invariant. By

Lemma 4.1, α extends to a rational irreducible character ψ of M o 〈σ〉. Note that
α is trivial at Z(M), so, after modding out by Z(M), ψ yields a rational irreducible
character ϕ of (M o 〈σ〉)/Z(M) ∼= Aut(S), which is irreducible over S. Now we can
take χ := ϕ|G.

4.5. Other classical groups. For the remaining simple classical groups S 6∼= PΩ+
8 (q),

we can follow the proof of [5, Theorem 2.1], which produces two irreducible constituents
α, β of a rank 3 permutation character of S (see e.g. [20]), one of even degree and another
of odd degree, which extend to rational-valued irreducible characters of Aut(S). One
of this extensions, say ϕ, has even degree, so we can take χ := ϕ|G.

Suppose S = PΩ+
8 (q). We consider the parabolic subgroups Si with i = 1, 2 in the

notation of [3, Lemma (6.4)], and let πi := (1Si
)S. By [3, Lemma (6.4)], π1 and π2 are

both multiplicity-free, [π1, π1] = 3, [π2, π2] = 6, and π2 contains π1. It is well-known,
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see e.g [20, Table 1], that the rank 3 permutation character π1 = 1G + α + β, with
α(1) = q(q2 + 1)2 and β(1) = q2(q4 + q2 + 1). It follows that α is a multiplicity-one
constituent of π2, and it is well-known that α is Aut(S)-invariant and rational (as the
unique unipotent character of this degree). Since S2 corresponds to the branching node
of the Dynkin diagram D4 of S, π2 extends to a permutation character of Aut(S).
Hence α extends to a rational character of G ≤ Aut(S) by Lemma 4.1.

4.6. Exceptional groups. Suppose that S = 2G2(q) with q = 3f ≥ 27. Here
|Aut(S)/S| = f is odd. By Lemma 2.3, S has an even-degree rational character θ,
which then extends to a rational character of G by Lemma 2.2.

Suppose that S = G2(q) with q ≥ 3, or 3D4(q). Let B denote the Borel subgroup of
G. By [3, Proposition (7.22)(iv)], (1B)G is the sum of 5 distinct irreducible characters,
among which one constituent, say α, is the unique character φ2,1 (in the notation of [1,
§13.9]) of S of even degree (1/6)q(q+1)2(q2 +q+1), respectively (1/2)q3(q3 +1)2, hence
rational and Aut(S) rational. As B can be chosen to be invariant under (suitable) outer
automorphisms of S, α extends to a rational character of G ≤ Aut(S) by Lemma 4.1.

Suppose that S = E6(q) or 2E6(q). The proof of [5, Theorem 2.1] shows that S has
a rank 5 permutation character, which is the sum of 5 distinct irreducible characters,
among which three are of even degree, and all extendible to rational characters of
Aut(S).

Suppose that S = F4(q), respectively E8(q). As shown in [3, Proposition (4.2)], S
has a parabolic subgroup Si, with i = 1, respectively 8, such that the permutation
character (1Si

)S is the the sum of 5 distinct irreducible characters, among which one
constituent, say α, is the so-called reflection character, of even degree

1

2
q(q3 + 1)2(q4 + 1), respectively q(q10 + 1)

q24 − 1

q6 − 1
.

Now α is Aut(S)-invariant (as it is the unique unipotent character of this degree), and
Si can be chosen to be invariant under (suitable) outer automorphisms of S. Hence α
extends to a rational character of G ≤ Aut(S) by Lemma 4.1.

Finally, suppose that S = E7(q). We consider the parabolic subgroups S1 and S7,
in the notation of Propositions (4.3) and (5.2) of [3]. By these Propositions of [3],
[π7, π7] = 4 and [π1, π7] = 3, for πi := (1Si

)S, and

π1 = 1S + φ7,1 + χ1 + χ2 + χ3,

a sum of 5 distinct irreducible characters, with φ7,1 (in the notation of [1, §13.9]) being
the reflection character, but now of odd degree. Next,

π7(1) = (q5 + 1)(q9 + 1)(q14 − 1)/(q − 1),

and π7 is the sum of 4 unipotent characters of the principal series. Checking the degrees
of the latter as given in [1, §13.9], we see that π7 = 1S +φ7,1 +φ27,2 +φ21,3. Again using
the unipotent degrees listed in [1, §13.9] and [π1, π7] = 3, we obtain

π1 = 1S + φ7,1 + φ27,2 + φ35,4 + φ56,3,
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with α := φ56,3 rational, Aut(S)-invariant, and of even degree. Since S1 can be chosen
to be invariant under (suitable) outer automorphisms of S, α extends to a rational
character of G ≤ Aut(S) by Lemma 4.1, completing the proof of Theorem C.

We will need the following result for the proof of Theorem D.

Lemma 4.3. Let G be a finite group and let S � G with CG(S) = 1. Assume that
S ∼= L2(32f+1) for some integer f ≥ 1. If | IrrQ(G)| ≥ 3, then G has a rational irreducible
character of even degree.

Proof. Assume that | IrrQ(G)| ≥ 3. Suppose by contradiction that all rational irre-
ducible characters of G have odd degree. We have that S � G ≤ Aut(S). Note that
Out(S) is cyclic of order 2(2f + 1). Assume that |G/S| is even. Then G has a normal
subgroup G1 such that G1

∼= PGL2(32f+1). In this case, G1 has a rational, irreducible
character α of degree q−1 (lying over the characters labeled by η1, η2 as in [6, Theorem
38.1]). As |G/G1| is odd, there exists χ ∈ IrrQ(G) lying over α and has even degree.

Assume that G/S is odd. Let χ ∈ IrrQ(G) be such that χ is nontrivial and is not
the extension of the Steinberg character StS of S to G. Clearly [χ, 1S] = 0 as G/S is
of odd order. Let 1S 6= θ ∈ Irr(S) be an irreducible constituent of χS. By Lemma 2.1,
θ ∈ IrrR(S). Since θ 6∈ {1S, StS}, by [6, Theorem 38.1] θ(1) ∈ {32f+1 ± 1} and so θ(1)
is even and hence χ(1) is even. This completes the proof. �

5. The number of rational irreducible characters of odd degrees

We first record the following result which should be well-known.

Lemma 5.1. Let G be a finite group of even order. Then the number of irreducible
real characters of G of odd degree must be even.

Proof. Let G be a finite group of even order. Clearly, if χ is not real, then χ 6= χ. Since
|G| =

∑
χ∈Irr(G) χ(1)2 is even, we deduce easily that the number of real characters in

Irr(G) of odd degree must be even. �

The next result will be needed in the proof of Theorem D.

Corollary 5.2. Let G be a finite solvable group of even order. Then the number of
rational irreducible characters of G of odd degree must be even.

Proof. By the main result in [10], every real irreducible character of odd degree of G
is rational. Hence, the number of rational irreducible characters of G of odd degree
coincides with the number of irreducible real characters of G of odd degree. Now the
corollary follows from the previous lemma. �

Proof of Theorem D. Let G be a counterexample to the theorem with minimal or-
der. Then | IrrQ(G)| = 3 and all rational irreducible characters of G have odd degree.
Clearly |G| is even and so by Corollary 5.2, G is non-solvable. It follows from Lemma
2.1 that O2′(G) lies in the kernel of all rational irreducible characters of odd degrees
of G. Thus | IrrQ(G/O2′(G))| = 3. By the minimality of |G|, we can assume that
O2′(G) = 1.
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Let N be a minimal normal subgroup of G. Since IrrQ(G/N) ⊆ IrrQ(G) and |G/N | <
|G|, by the minimality of G, | IrrQ(G/N)| ≤ 2. We consider the following cases.

(a) N is non-solvable. Write N = S1 × S2 × · · · × Sn, where each Si is conjugate in
G to S = S1, where S is a non-abelian simple group. By Theorem B and its proof, we
deduce that S ∼= L2(32f+1) for some integer f ≥ 1. Let θ be the Steinberg character of
S. We know that θ is rational and o(θ) = 1 since N is perfect.

Assume that n ≥ 3. Let ψ1 = θ×1×· · ·×1, ψ2 = θ×θ×· · ·×1, and ψ3 = θ×θ×· · ·×θ.
Then ψi ∈ Irr(N) are all rational irreducible characters of odd degree and o(ψi) = 1
for all i. By Lemma 2.2, for each i, there exists χi ∈ IrrQ(G) lying above ψi. Since
ψi, 1 ≤ i ≤ 3, lie in different G-orbits of irreducible characters of N , all χ′is are pairwise
distinct and thus | IrrQ(G)| ≥ 4, a contradiction.

Assume that n = 2. Then ψ = θ × 1 ∈ IrrR(N) is rational, irreducible character of
odd degree> 1. Let χ ∈ IrrQ(G) be lying over ψ. Observe that the inertia group of
ψ lies inside NG(S1) and since |G : NG(S1)| = 2, from Clifford’s theory, χ(1) is even,
which is a contradiction.

Assume that n = 1. Then N = S ∼= L2(32f+1). By a result in [8], θ extends to
χ ∈ IrrQ(G). If | IrrQ(G/S)| = 2, then by Gallagher’s theorem, G would have at least
4 distinct rational irreducible characters. Hence G/S is of odd order. Let C = CG(S).
Then |C| is odd and so C ⊆ O2′(G) = 1. Thus S �G and CG(S) = 1. By Lemma 4.3,
G has a rational irreducible character of even degree, which is a contradiction.

(b) Assume N is solvable. Since O2′(G) = 1, N is an elementary abelian subgroup of
order 2n for some integer n ≥ 1. Moreover G/N is non-solvable and | IrrQ(G/N)| = 2.
By [17, Theorem 10.2], there exist normal subgroups N ≤ K ≤ L such that K/N =
O2′(G/N), L/N = O2′(G/N) is perfect and L/K ∼= S = L2(32f+1) for some integer
f ≥ 1. Write IrrQ(G/N) = {1, χ}, where χ is an extension of the Steinberg character
of L/K which is rational of degree 32f+1. Let ψ be the remaining rational irreducible
character of G. Note that [ψN , 1N ] = 1. Since O2(G/N) = O2(L/N) = 1, N = O2(G)
is a unique minimal normal subgroup of G.

Since N ∩ L′ � G and N is a unique minimal normal subgroup of G, N ≤ L′ which
implies that L = L′ is perfect. Since G/L is of odd order, by Lemma 2.2, each rational
irreducible character of L lies under some rational irreducible character of G and thus
every rational irreducible character of L has odd degree.

Assume first that G has a component V , that is, V = V ′ is perfect and V/Z(V )
is a non-abelian simple group and V is subnormal in G. Then the layer E(G) of G,
which is the normal subgroup of G generated by all components of G, is nontrivial. We
know that E(G)/Z(E(G)) is a direct product of non-abelian simple groups. It follows
that E(G)/Z(E(G)) ∼= L2(32f+1). If Z(E(G)) > 1, then E(G) ∼= SL2(32f+1). In this
case, E(G) has a rational irreducible character µ of degree q − 1 (labelled by θj with
j = (q+ 1)/4 as in [6, Theorem 38.1]) and o(µ) = 1 (since E(G) is perfect). By Lemma
2.2 G has a rational irreducible character lying over µ and so this character has even
degree, a contradiction. Thus Z(E(G)) = 1 and so E(G) is a minimal normal subgroup
of G, contradicting the uniqueness of N . Hence F∗(G) = F(G)E(G) = O2(G) = N ,
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where F∗(G) is the generalized Fitting subgroup of G. By Bender’s theorem, we have
CG(N) = N.

Assume that K > N . Note that N is a normal Sylow 2-subgroup of K. It follows that
O2(K) = K since K is not a 2-group and N is the unique minimal normal subgroup
of G. Let 1 6= λ ∈ IrrQ(K). Then λ(1) is odd and o(λ) = 1. By Lemma 2.2,
ψ ∈ IrrQ(G) lies over λ. Thus all non-trivial rational irreducible characters of K are
G-conjugate. Let V = Irr(N) ∼= N. Then G/N acts transitively on V − {1N} (note
that CG(N) = CG(V ) = N). Thus the semidirect product V o G/N is a doubly
transitive permutation group. However, this cannot occur by Hering’s theorem. (See
[14, Appendix 1].)

Assume that K = N . As CG(N) = N , CL(N) = N . So V = Irr(N) is a nontrivial
GF(2)-module for S. By [17, Theorem 10.1], there exists 1 6= λ ∈ V such that T/N is
of odd order, where T is the inertia group of λ in L. Let ν ∈ Irr(T ) be the canonical
extension of λ. Then νL is a rational irreducible character of L of even degree as |L : T |
is even, which is a contradiction.

�
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