

Published in final edited form as:

Radiother Oncol. 2020 April; 145: 95–100. doi:10.1016/j.radonc.2019.12.023.

Lymphopenia During Radiotherapy In Patients With Oropharyngeal Cancer

Sweet Ping Ng, MBBS FRANZCR^{1,2}, Houda Bahig, MD PhD³, Amit Jethanandani, MPH¹, Courtney Pollard III, MD PhD¹, Joel Berends, MS¹, Erich M. Sturgis, MD MPH⁴, Faye M Johnson, MD PhD⁵, Baher Elgohari, MD MSc¹, Hesham Elhalawani, MD MSc¹, David I Rosenthal, MD¹, Heath D Skinner, MD PhD⁶, G Brandon Gunn, MD¹, Jack Phan, MD PhD¹, Steven J Frank, MD¹, Abdallah SR Mohamed, MD¹, Clifton D Fuller, MD PhD¹, Adam S Garden, MD¹

¹Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

²Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia

³Department of Radiation Oncology, Centre Hospitalier de l'Universite de Montreal, Montreal, Canada

⁴Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

⁵Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

⁶Department of Radiation Oncology, UPMC Hillman Cancer Centers, Pittsburgh, Pennsylvania, USA

Abstract

Purpose/Objective: Radiation-induced lymphopenia has been associated with poor survival outcomes in certain solid tumors such as esophageal, lung, cervical and pancreatic cancers. We aim to determine the effect of treatment-related lymphopenia during radiotherapy on outcomes of patients with oropharyngeal cancer.

Materials/Methods: A retrospective analysis of all patients who completed definitive radiotherapy for oropharyngeal cancer at The University of Texas MD Anderson Cancer Center and had blood counts taken during radiotherapy from 2002 to 2013 were included. Patient, tumor and treatment characteristics, clinical outcomes and lymphocyte counts during radiotherapy were recorded. Lymphopenia was graded according to the CTCAE v4.0. Survival rates were estimated using the Kaplan-Meier method and compared with log-rank tests.

Conflict of interest: None.

Results: 850 patients were evaluated. The median age was 57 years. The majority of the cohort had pl6/HPV-positive disease (71%), 8% had HPV-negative disease and 21% were unknown. The median radiation total dose was 70 Gy. 45% of patients had induction chemotherapy, and 87% had concurrent chemotherapy. 703 (83%) patients developed ≥grade 3 (G3) lymphopenia and 209 (25%) had grade 4 (G4) lymphopenia during radiotherapy. The median follow-up was 59 months; the 5-year overall survival rate was 81%. There were no significant differences in overall survival rates nor in disease control rates, in those who developed G3/G4 lymphopenia compared with those who did not. No significant effect of lymphopenia on survival was observed when analyzed according to pl6/HPV status.

Conclusion: In this large cohort of patients with oropharyngeal cancer, the development of lymphopenia during radiotherapy did not impact outcomes.

Keywords

oropharyngeal cancer; lymphopenia; radiotherapy

Introduction

Radiation-induced lymphopenia has been associated with poor survival outcomes in certain solid tumors such as lung [1–3], esophageal [4], cervical [5,6] and pancreatic cancers [7]. Lymphoid cells are highly radiosensitive; radiation doses (<1 Gy) have been demonstrated to deplete and induce cell death in lymphocytes [8–10]. The mechanism underlying this correlation remains unknown. It has been postulated that a reduction in lymphocytes may have resulted in a decrease in systemic tumor surveillance. Hence, tumor cells that entered the systemic circulation can successfully evade the immune system. Therefore, a reduction of lymphocyte count may portend a possible higher risk of regional and metastatic disease, and subsequently poorer survival outcomes.

Radiotherapy remains the mainstay treatment modality for the majority of patients with oropharyngeal cancer. As the human papillomavirus (HPV) has been established as the major cause of oropharyngeal cancer [11,12], there are hypotheses that the immune system plays a major role in the transformation of latent HPV infection to malignancy [13]. Therefore immune-modulation may be a factor in the curability and outcomes of patients with oropharyngeal cancer [14]. Here, we investigated the association of lymphocyte depletion during radiotherapy with outcomes in a large cohort of patients with oropharyngeal cancer.

Methods

The records of patients who completed curative-intent radiotherapy (minimum dose of 50 Gy) for oropharyngeal cancer and had blood counts taken during radiotherapy from 2002 to 2013 were reviewed. All patients received curative-intent radiation dose. Patients with distant metastatic disease (Ml) at diagnosis were excluded.

Patient, tumor and treatment characteristics, clinical outcomes and serial absolute lymphocyte counts (ALCs) pre, during (weekly) and 6 to 12 weeks post-radiotherapy were

recorded. All patients had at least two intra-treatment ALCs recorded after week 1 of treatment. Patients with no ALC recorded pretreatment and/or during treatment, and those with chronic lymphocytic leukemia were excluded. The disease was staged according to the American Joint Committee on Cancer staging system (7th edition). Lymphopenia was graded according to the CTCAE v4.0. This study was approved by the Institutional Review Board of The University of Texas MD Anderson Cancer Center.

Statistical analysis

Pre-, during and post-treatment ALCs were compared using paired T-test. Overall survival (OS) was calculated with the Kaplan-Meier method from the date of completion of radiotherapy to date of death. Locoregional control was measured from the date of completion of radiotherapy to date of first locoregional failure. Freedom from distant metastasis was calculated from the date of completion of radiotherapy to date of first distant disease. For all survival calculations, patients were without events were censored at last follow up time.

Lymphopenia was characterized as either grade (G) 3 [ALC $0.2-0.5\times10^9$ /L) or G4 (ALC $<0.2\times10^9$ /L). The nadir value during radiotherapy was used. Survival and disease control rates were estimated using the Kaplan-Meier method and the relationship between lymphopenia and survival was evaluated with log-rank tests. The Cox regression model was used to analyse lymphopenia as a continuous variable. Multivariable regression analyses were performed to account for potential confounders. Variables that had p-value of <0.10 on univariate analysis are included in the multivariable model. Statistical analyses were performed using JMP v14.0 (SAS Institute Inc.). A p-value of <0.05 was deemed statistically significant.

Results

Patient characteristics

A total of 850 patients were eligible for analysis (Figure 1). Patient demographics, disease and treatment characteristics are described in Table 1. The median age was 57 years (range: 28 – 87 years) and 87% of patients were males. The most common primary sites were base of tongue (55%) and tonsil (43%). Most patients (71%) had HPV-associated oropharyngeal cancer and more than half of the cohort were never smokers or previous light smokers (<10 pack year). The majority (99%) had locally advanced oropharyngeal cancer (AJCC stage III - IV) and 87% received concurrent chemotherapy. The median prescribed dose was 70 Gy (range: 50 – 74 Gy). The median follow-up was 59 months.

Changes in ALC during radiotherapy

The median pretreatment ALC was 1.7 (range: 0.3-4.8]; only 5 patients had pretreatment G3 lymphopenia. Those who received induction chemotherapy had a lower baseline ALC than those who did not (1.58 vs 1.74, p < .001]. On regression analysis, there was no significant correlation between those who had induction chemotherapy with the subsequent development of G3 or higher (p=0.054], or G4 lymphopenia (p=0.959) during radiotherapy. However, there was an inverse association between those who had concurrent chemotherapy

with G3 or higher (p<0.0001) and G4 lymphopenia (p=0.0002). Table 2 shows the results of univariate and multivariate analyses between variables with lymphopenia.

There was a significant drop (p<0.0001) in ALC during radiotherapy when comparing ALC for each timepoint with baseline, and also between each consecutive treatment weeks. Figure 2 shows the overall kinetics of ALCs during the course of radiotherapy. Seven hundred three patients (83%) developed \geq grade 3 (G3) lymphopenia including 209 (25%) with grade 4 (G4) lymphopenia during radiotherapy. Significant recovery of ALC was observed at 6 to 12 weeks post-treatment (p<0.0001).

Lymphopenia and clinical outcomes

At the time of analysis, 183 patients have died. Overall, 141 patients developed disease recurrence. The 5-year and 10-year OS rate for the cohort were 81.3% and 69.8%. The 5 and 10-year relapse free survival were 83.2% and 82%. There were no significant differences in overall survival rates nor in disease control rates, in those who developed G3 or G4 lymphopenia compared with those who did not (Figure 3 - 5). In addition, no significant effect of lymphopenia on survival was observed when analyzed according to pl6/HPV status, those who had received induction chemotherapy, and those who had concurrent chemotherapy. Table 3 shows the results of univariate and multivariate analyses for factors associated with overall survival and freedom from disease recurrence. Factors associated with overall survival included age at diagnosis (p=0.003), smoking status (p=0.004) and tumor (T] stage, whilst smoking status was the only independent factor associated with freedom from recurrence. Lowest ALC during treatment did not emerge as a significant factor in the analyses.

Discussion

Our study shows that the development of lymphopenia during radiotherapy is common in patients with oropharyngeal cancer and it does not impact subsequent patient outcomes. Despite the development of lymphopenia during treatment, our data suggests that this is likely temporary as some lymphocyte recovery is seen at 6 to 12 weeks post-treatment.

There is an increasing body of literature illustrating the development of treatment-related lymphopenia during radiotherapy in the treatment of several malignancies [3,5–7,15,16]. Our study showed that this is a common event as more than 80% of our cohort developed grade 3 or higher lymphopenia during treatment. Although the mechanism of radiation-induced lymphopenia in irradiation of non-marrow containing organs remains poorly understood, it has been proposed: [1) at each fraction of treatment the circulating lymphocytes receive a radiation dose capable of inducing cell death in lymphocytes; and/or (2) the circulating lymphocytes accumulate DNA damage during each fraction, and over the course of multiple fractions of radiation the lymphocytes accumulate a lethal dose [17]. The gradual drop in ALC over the course of treatment suggests the latter mechanism is more likely. In patients with oropharyngeal cancer, it may possible that low dose to the circulating lymphocytes particularly with a large field of treatment and also dose to large vessels such as the carotid arteries may contribute to the development of intra-treatment lymphopenia.

Several investigations have reported that patients who developed lymphopenia (typically \geq Grade 3) during radiotherapy had poorer clinical outcomes. This has been studied in patients with cervical cancer [5,6], high-grade glioma [16,18,19], small cell [3] and non-small cell lung cancer [1,2,18] and pancreatic adenocarcinoma [7,18]. Campian et al [15] reported in a cohort of 56 patients with head and neck cancer (70% had oropharyngeal cancer), those with HPV-negative disease (n=22) who developed Grade 3 or higher treatment-related lymphopenia 2 months after commencing radiotherapy had significantly poorer disease-free survival. The study may have had a different outcome than ours because it included non-oropharyngeal head and neck cancer which has a different disease biology than oropharyngeal cancer. Jensen et al [20] demonstrated in 114 patients with oropharyngeal cancer, Grade 4 lymphopenia during treatment was associated with poorer overall survival. Contrary to these studies, our data with 850 patients with oropharyngeal cancer demonstrated that the development and degree of lymphopenia during treatment did not affect patients' subsequent clinical outcomes, regardless of HPV status.

The reason behind why treatment-related lymphopenia had minimal or no effect on outcomes in oropharyngeal cancer may be difficult to elucidate. One reason may be that the effect of quality radiotherapy treatment is highly paramount for improved outcomes [21–23] and other factors unrelated to the quality of radiotherapy have minimal effect. It is unarguably true that the immune system plays a crucial role in the development and recurrence of cancer. However the ALC is a crude measure of immune function - lymphocytes have both immune suppressing and immune effector functions. Additionally, a threshold level of lymphocytes may be adequate for anti-tumor immunity. Finally, we only measured circulating lymphocytes and do not know the status of the immune microenvironment in the patients' tumors before, during, and after therapy.

Our study has its inherent limitations secondary to the design of a retrospective study. Blood counts were historically obtained to monitor for chemotherapy toxicity, therefore the majority of our patients had locally advanced disease and therefore likely to have had bilateral neck irradiation and chemotherapy (induction and/or concurrent). It would be interesting to investigate the degree and impact of lymphopenia in those who had unilateral radiotherapy (with or without chemotherapy). Furthermore, about one-fifth of our cohort did not have available HPV status data as routine HPV testing only came into effect in 2010, limiting the analysis according to HPV status.

Conclusion

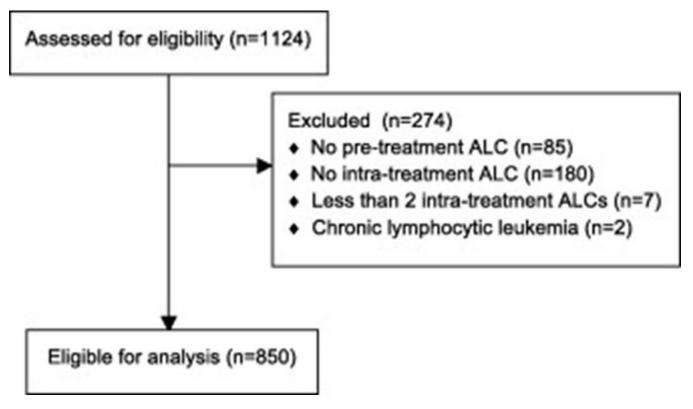
In this large cohort of patients with oropharyngeal cancer, the development of lymphopenia during radiotherapy did not impact subsequent patient outcomes.

Acknowledgments

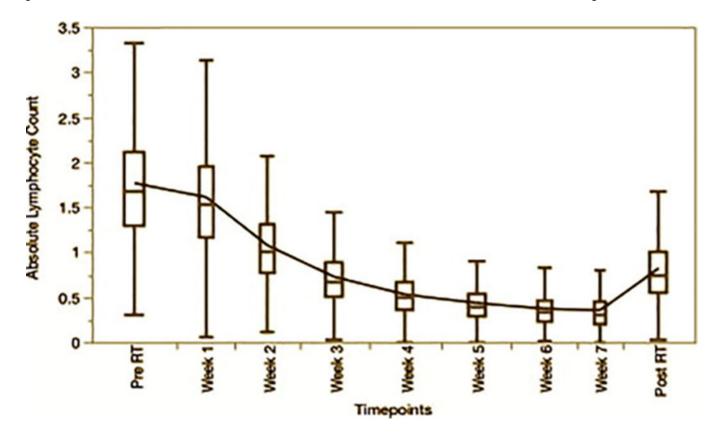
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Dr. Ng received funding from the Australian Postgraduate Award, the Royal Australian and New Zealand College of Radiologists (RANZCR) Research Grant and Radiological Society of North America (RSNA) Fellow Grant. Drs. Lai, Mohamed and Fuller receive funding support from the National Institutes of Health (NIH)/National Institute

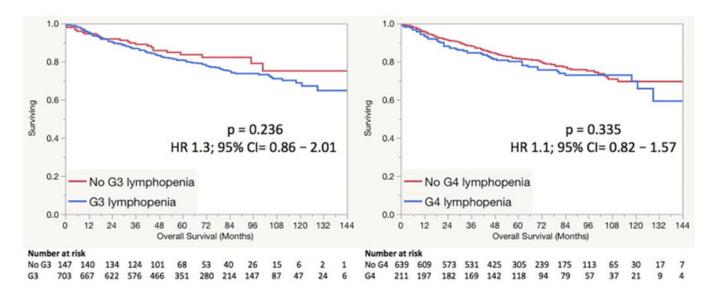
for Dental and Craniofacial Research (NIDCR) (1R01DE025248-01 /R56DE025248-01). Drs. Mohamed and Fuller were previously funded via the National Science Foundation (NSF), Division of Mathematical Sciences, Joint NIH/NSF Initiative on Quantitative Approaches to Biomedical Big Data (QuBBD) Grant (NSF DMS-1557679) and are currently supported by the NIH National Cancer Institute (NCI)/Big Data to Knowledge (BD2K) Program (1R01CA214825-01). Dr. Fuller received/(s) grant and/or salary support from the NIH/NCI Head and Neck Specialized Programs of Research Excellence (SPORE) Developmental Research Program Career Development Award (P50CA097007-10); the NCI Paul Calabresi Clinical Oncology Program Award (K12 CA088084-06); a General Electric Healthcare/MD Anderson Center for Advanced Biomedical Imaging In-Kind Award; an Elekta AB/MD Anderson Department of Radiation Oncology Seed Grant; the Center for Radiation Oncology Research (CROR) at MD Anderson Cancer Center Seed Grant; and the MD Anderson Institutional Research Grant (IRG) Program. Dr. Fuller has received speaker travel funding from Elekta AB. Supported in part by the NIH/NCI Cancer Center Support (Core) Grant CA016672 to The University of Texas MD Anderson Cancer Center (P30 CA016672).

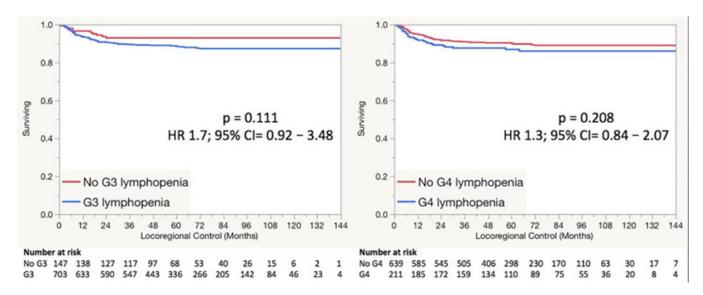

Disclosures: Dr. Ng is funded by the Australian Postgraduate Award, the Royal Australian and New Zealand College of Radiologists (RANZCR) Research Grants and the Radiological Society of North America (RSNA) Fellow Grant Dr. Fuller received funding support from the National Institutes of Health, the NCI Paul Calabresi Clinical Oncology Program Award, the MD Anderson Institutional Research Grant (IRG) Program and the Andrew Sabin Family Fellowship. Dr. Fuller has received speaker travel funding from Elekta AB. Dr. Johnson has received research funding from PIQUR Therapeutics and Trovagene.

References


- 1. Campian JL, Ye X, Brock M, Grossman SA. Treatment-related lymphopenia in patients with stage iii non-small-cell lung cancer. Cancer Invest 2013;31:183–188. [PubMed: 23432821]
- Tang C, Liao Z, Gomez D, Levy L, Zhuang Y, Gebremichael RA, Hong DS, Komaki R, Welsh JW. Lymphopenia association with gross tumor volume and lung v5 and its effects on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys 2014;89:1084–1091. [PubMed: 25035212]
- 3. Cho 0, Oh YT, Chun M, Noh OK, Lee HW. Radiation-related lymphopenia as a new prognostic factor in limited-stage small cell lung cancer. Tumour Biol 2016;37:971–978. [PubMed: 26264618]
- 4. Shiraishi Y, Fang P, Xu C, Song J, Krishnan S, Koay EJ, Mehran RJ, Hofstetter WL, Blum-Murphy M, Ajani JA, Komaki R, Minsky B, Mohan R, Hsu CC, Hobbs BP, Lin SH. Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: A propensity matched analysis of the relative risk of proton versus photon-based radiation therapy. Radiother Oncol 2018;128:154–160. [PubMed: 29248170]
- Wu ES, Oduyebo T, Cobb LP, Cholakian D, Kong X, Fader AN, Levinson KL, Tanner EJ 3rd, Stone RL, Piotrowski A, Grossman S, Long Roche K. Lymphopenia and its association with survival in patients with locally advanced cervical cancer. Gynecol Oncol 2016;140:76–82. [PubMed: 26571200]
- 6. Cho 0, Chun M, Chang SJ, Oh YT, Noh OK. Prognostic value of severe lymphopenia during pelvic concurrent chemoradiotherapy in cervical cancer. Anticancer Res 2016;36:3541–3547. [PubMed: 27354621]
- Wild AT, Ye X, Ellsworth SG, Smith JA, Narang AK, Garg T, Campian J, Laheru DA, Zheng L, Wolfgang CL, Tran PT, Grossman SA, Herman JM. The association between chemoradiationrelated lymphopenia and clinical outcomes in patients with locally advanced pancreatic adenocarcinoma. Am J Clin Oncol 2015;38:259–265. [PubMed: 23648440]
- 8. Sellins KS, Cohen JJ. Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 1987;139:3199–3206. [PubMed: 3680944]
- 9. Stratton JA, Byfield PE, Byfield JE, Small RC, Benfield J, Pilch Y. A comparison of the acute effects of radiation therapy, including or excluding the thymus, on the lymphocyte subpopulations of cancer patients. J Clin Invest 1975;56:88–97. [PubMed: 1095613]
- Nakamura N, Kusunoki Y, Akiyama M. Radiosensitivity of cd4 or cd8 positive human tlymphocytes by an in vitro colony formation assay. Radiat Res 1990;123:224–227. [PubMed: 2117766]
- 11. Gillison ML, D'Souza G, Westra W, Sugar E, Xiao W, Begum S, Viscidi R. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 2008;100:407–420. [PubMed: 18334711]

12. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol 2015;33:3235–3242. [PubMed: 26351338]


- Andersen AS, Koldjaer Soiling AS, Ovesen T, Rusan M. The interplay between hpv and host immunity in head and neck squamous cell carcinoma. Int J Cancer 2014;134:2755–2763.
 [PubMed: 23913554]
- 14. Wansom D, Light E, Thomas D, Worden F, Prince M, Urba S, Chepeha D, Kumar B, Cordell K, Eisbruch A, Taylor J, Moyer J, Bradford C, D'Silva N, Carey T, McHugh J, Wolf G, Program UMHNS. Infiltrating lymphocytes and human papillomavirus-16-associated oropharyngeal cancer. Laryngoscope 2012;122:121–127. [PubMed: 22183632]
- Campian JL, Sarai G, Ye X, Marur S, Grossman SA. Association between severe treatment-related lymphopenia and progression-free survival in patients with newly diagnosed squamous cell head and neck cancer. Head Neck 2014;36:1747–1753. [PubMed: 24174270]
- 16. Huang J, DeWees TA, Badiyan SN, Speirs CK, Mullen DF, Fergus S, Tran DD, Linette G, Campian JL, Chicoine MR, Kim AH, Dunn G, Simpson JR, Robinson CG. Clinical and dosimetric predictors of acute severe lymphopenia during radiation therapy and concurrent temozolomide for high-grade glioma. Int J Radiat Oncol Biol Phys 2015;92:1000–1007. [PubMed: 26025775]
- 17. Ekstrand KE, Plunkett S, Heise ER, Dixon RL, Raben M. Lymphocyte migration and radiation lymphopenia. Int J Radiat Oncol Biol Phys 1981;7:1451–1455. [PubMed: 6976339]
- 18. Grossman SA, Ellsworth S, Campian J, Wild AT, Herman JM, Laheru D, Brock M, Balmanoukian A, Ye X. Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors. J Natl Compr Cane Netw 2015;13:1225–1231.
- Mendez JS, Govindan A, Leong J, Gao F, Huang J, Campian JL. Association between treatmentrelated lymphopenia and overall survival in elderly patients with newly diagnosed glioblastoma. J Neurooncol 2016;127:329–335. [PubMed: 26725885]
- Jensen GL, Blanchard P, Gunn GB, Garden AS, David Fuller C, Sturgis EM, Gillison ML, Phan J, Morrison WH, Rosenthal DI, Frank SJ. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer. Clin Transi Radiat Oncol 2017;7:28–35.
- 21. Peters LJ, O'Sullivan B, Giralt J, Fitzgerald TJ, Trotti A, Bernier J, Bourhis J, Yuen K, Fisher R, Rischin D. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: Results from trog 02.02.J Clin Oncol 2010;28:2996–3001. [PubMed: 20479390]
- Lassig AA, Joseph AM, Lindgren BR, Fernandes P, Cooper S, Schotzko C, Khariwala S, Reynolds M, Yueh B. The effect of treating institution on outcomes in head and neck cancer. Otolaryngol Head Neck Surg 2012;147:1083–1092. [PubMed: 22875780]
- 23. Wuthrick EJ, Zhang Q, Machtay M, Rosenthal DI, Nguyen-Tan PF, Fortin A, Silverman CL, Raben A, Kim HE, Horwitz EM, Read NE, Harris J, Wu Q, Le QT, Gillison ML. Institutional clinical trial accrual volume and survival of patients with head and neck cancer. J Clin Oncol 2015;33:156–164. [PubMed: 25488965]


Figure 1. CONSORT diagram.

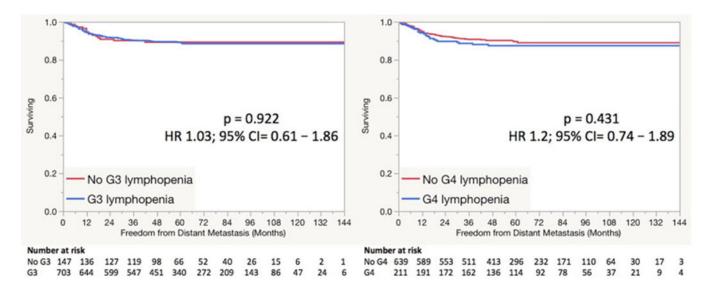

Figure 2. Kinetics of absolute lymphocyte count (ALC) during radiotherapy.

Figure 3.Overall survival stratified by degree of lymphopenia G3 - Grade 3; G4 - Grade 4.

Figure 4.Locoregional control stratified by degree of lymphopenia G3 - Grade 3; G4 - Grade 4.

Figure 5. Freedom from distant metastasis stratified by degree of lymphopenia G3 - Grade 3; G4 - Grade 4.

Ng et al. Page 13

Table 1.

Patient, tumor and treatment characteristics.

Parameters	N = 850	%	
Age (years)	Median = 5	Median = 57	
	Range = 28–87		
Sex			
Male	743	87	
Female	107	13	
Site			
Base of tongue	465	55	
Tonsil	368	43	
Soft palate	10	1	
Pharyngeal wall	7	1	
HPV status			
Positive	604	71	
Negative	71	8	
Unknown	175	21	
Smoking status			
Current	173	20	
Former ≥10 pack years	215	25	
Former <10 pack years	97	11	
Never	365	43	
Tumor (T) stage			
T1	156	18	
T2	305	36	
Т3	209	25	
T4	162	19	
Tx	18	2	
Nodal (N) stage			
N0	41	5	
N1	74	8	
N2a	51	6	
N2b	424	50	
N2c	212	25	
N3	45	5	
Nx	3	0.4	
Overall AJCC 7th Stage			
I–II	11	1	
III–IV	839	99	
Induction chemotherapy			
Yes	384	45	
No	466	55	

Parameters	N = 850	%		
Concurrent chemotherapy				
Yes	743	87		
No	107	13		
Radiation dose (Gy)	Median =	Median = 70		
	(Range = 50–74) Median = 33			
Number of fractions				
	(Range = 2	28–42)		

HPV – human papillomavirus; AJCC – American Joint Committee on Cancer staging system

Ng et al.

Table 2.

Page 15

Univariate and multivariate analyses for grade 3 and above lymphopenia and grade 4 lymphopenia.

Variables ≥G3 lymphopenia			G4 lymphopenia	
	Univariate (p value)	Multivariate (p value)	Univariate (p value)	Multivariate (p value)
Age	0.975		0.636	
Sex	0.349		0.893	
Smoking	0.512		0.335	
HPV status (positive)	0.166		0.0001	0.002 (HR 1.26; 95% CI: 1.17–1.64)
T stage (T3-T4)	0.0004	0.10	0.014	0.28
Nstage	0.458		0.215	
Induction chemotherapy	0.054	0.354	0.959	
Concurrent chemotherapy (Yes)	<0.0001	<0.0001 (HR 0.46; 95% CI: 0.36–0.58)	0.0002	0.007 (HR 0.64; 95% CI: 0.45–0.87)
Radiation dose	0.007	0.883	0.0067	0.442

Ng et al.

Page 16

Table 3.Univariate and multivariate analyses for predictors of overall survival and freedom from recurrence.

Variables	Overall Survival		Freedom from Recurrence	
	Univariate (p value)	Multivariate (p value)	Univariate (p value)	Multivariate (p value)
Age	<0.0001	0.0029 (HR 1.03; 95% CI: 1.01–1.04)	0.091	0.123
Sex	0.147		0.404	
Smoking (Current smoker and $Ex > 10$)	0.0001	0.004 (HR 1.54; 95% CI: 1.15–2.10)	0.012	0.049 (HR 1.4; 95% CI: 1.00–1.96)
HPV status (positive)	0.066	0.522	0.343	
T stage (T3-T4)	< 0.0001	0.010 (HR 1.52; 95% CI: 1.10– 2.10)	0.001	0.082
Nstage	0.0009	0.067	0.01	0.372
Induction chemotherapy	0.231		0.101	
Concurrent chemotherapy	0.016	0.312	0.023	0.181
Lowest ALC during radiotherapy	0.570		0.124	