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We consider maximal operators associated to singular averages
along finite subsets ¥ of the Grassmannian Gr(d,n) of d-
dimensional subspaces of R™. The well studied d = 1 case
corresponds to the directional maximal function with respect
to arbitrary finite subsets of Gr(1,n) = S"~!1. We provide a
systematic study of all cases 1 < d < n and prove essentially
sharp L2(R™) bounds for the maximal subspace averaging
operator in terms of the cardinality of ¥, with no assumption
on the structure of . In the codimension 1 case, that is
n = d+ 1, we prove the precise critical weak (2, 2)-bound.

Drawing on the analogy between maximal subspace averages
and (d,n)-Nikodym maximal averages, we also formulate the
appropriate maximal Nikodym conjecture for general 1 < d <
n by providing examples that determine the critical LP-space
for the (d,n)-Nikodym problem. Unlike the d = 1 case, the
maximal Kakeya and Nikodym problems are shown not to
be equivalent when d > 1. In this context, we prove the
best possible L?(R™)-bound for the (d,n)-Nikodym maximal
function for all combinations of dimension and codimension.
Our estimates rely on Fourier analytic almost orthogonality
principles, combined with polynomial partitioning, but we
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also use spatial analysis based on the precise calculation of
intersections of d-dimensional plates in R".
© 2022 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For o0 € Gr(d,n), the Grassmannian of d-dimensional subspaces of R™, the scale s
subspace average of f € C(R") is

Do) = [ -9 aern

where B,, C R" is the n-dimensional unit ball centered at the origin, sB,, is its concentric
dilate, and dy = d£%(y) denotes the Lebesgue measure on o € Gr(d, n). Fubini’s theorem
ensures that, up to the dimensional constant £¢(By), the map f + (f)s , preserves the
L'(R™)-norm of f and contracts all LP(R™)-norms for 1 < p < oo.

The general concern of this article is the LP-behavior of the positive maps

f = <f>s(),cr()(>

corresponding to a measurable choice of o € Gr(d,n) and scale s > 0 depending on
the point x € R™. When d = n, these maps are pointwise controlled by the standard
Hardy-Littlewood maximal operator for any pair of choice functions o, s. The singular
cases d < n give rise to a family of nontrivial problems of intrinsic relevance within
the theory of differentiation of integrals, and possessing applications to singular and
oscillatory operators, geometric measure theory and partial differential equations.

A central example is the classical question, attributed to Zygmund, of characterizing
the class of planar vector fields that differentiate L?(R?) functions. The corresponding
singular integral variant of Zygmund’s question, usually attributed to Stein, asks whether
Lipschitz vector-fields of directions allow for a weak (2,2) bound for the corresponding
directional Hilbert transform, after suitable truncation.

The case of choice functions o(-) whose range is a finite subset ¥ C Gr(d,n) is
also of particular importance. The averaging operator is of maximal nature, that is for
s€ S C(0,00)

My (s} f = sup(|f[)so(-),  Mssf =supMy g f.
oeED seS

The study of one-dimensional directional averages in R™, corresponding to Gr(1,n), is
connected to the problem of determining the Hausdorff dimension of Kakeya sets in R".
There is a classification of such questions for all d < n, with Gr(d, n) corresponding to the
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problem of studying the existence of (d,n) Besicovitch sets. For the study of directional
averages as above in relation to the Kakeya-Besicovitch category of problems, it suffices
to consider finite subsets > which are uniformly distributed at some distinct scale 4.
More specifically, the range 3 of o(-) is a maximal d-net in Gr(d,n). This in turn leads
to seeking for LP-bounds for the corresponding maximal directional averages as a function
of 4.

1.1. Thin (d,n)-averages for arbitrary finite ¥ C Gr(d,n)

The case of more general maximal directional averages, where o takes values in a finite
but arbitrary subset ¥ C Gr(d, n), is in general much harder as there is no distinct scale
in the set of directions, and any suitable method must make up for the lack of uniform
density in Y. This obstruction is already present in the single scale problem. Our first
main result is an essentially complete description of the sharp L?(R™)-bounds in the
whole range of dimensions and codimensions 1 < d < n.

Theorem A. For all N >0, 1 < d < n there holds

n—d
2

sup  sup HME7{S}HL2(R") < N(;@df_di) (log N) (1.1)

$>0 2CGr(d,n)
AN<N

with an implicit numerical constant depending only upon d,n. This bound is sharp in
terms of N when n = d+ 1 and sharp up to the logarithmic factor in general.

For the special case d = 1 and n = 3, we obtain an improved version of Theorem A
where the corrective logarithmic term appearing in the right hand side of (1.1) is replaced
by an arbitrarily iterated logarithm of N. The precise statement is given in Theorem F
of Section 5.

Before proceeding with the description of our second group of results, some remarks
are in order. The case d = 1,n = 2 is due to Katz, [18]. It should be noted that two-
dimensional versions of the theorem above are somewhat related to the resolution of
the Kakeya conjecture in two dimensions and to earlier results of Cérdoba [6,8] and
Stromberg [29]. We note here that Theorem A recovers the sharp result of Katz, [18], for
single scale maximal directional averages on L?(R?), so necessarily d = 1, in fact with a
new and independent proof. Note that Theorem A is a single-scale but with ¥ C Gr(d, n)
arbitrary. The d = 1,n = 3 improved result of Theorem F is itself an amelioration of [12,
Theorem B]. The proof technique for Theorem F combines the polynomial partitioning
ideas of [12] with a new algebraic almost-orthogonality result, Theorem E, which is of
independent interest and may be seen as a higher-dimensional analogue of the well-known
Alfonseca-Soria-Vargas almost-orthogonality principle [2].
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1.2. Sharp critical estimates for multiscale (d,d + 1)-averages

In the cases of maximal directional averages in arbitrary dimension and codimension
1 =n —d, we give a final theorem that provides the best possible LP-bounds, p > 2, for
the corresponding maximal averages with respect to arbitrary finite ¥ C Gr(d,d + 1).
It should be noted that in this case we can actually tackle the multiscale problem in a
sharp fashion. An important feature shared by the codimension 1 problems is that the
critical integrability space for the maximal function My, g is L?(R™).

Theorem B. Let n =d+ 1 and ¥ C Gr(d,d + 1) be a finite set. Then
M 0.00) = L*(R™) — L2 (R")]| 5 (log #3)*
and

(log #X)7, p>2,
log #%, p=2.

IMs,(0,00) : LP(R") = LP(R™)|| <

These bounds are best possible in terms of the dependence on the cardinality #3.

For the sharpness of the obtained bounds, we send to Proposition 5.4. The main
tool in the proof of the upper bounds is a directional Carleson embedding theorem
for suitable Carleson sequences indexed by d-plates, see Theorem I in Section 7. More
specifically, Theorem B is obtained by an application of Theorem I to the adjoint of
the (linearized) maximal operator My, g. More general applications of the directional
Carleson theorem are revealed by couplings with time-frequency analysis. Along these
lines, as a representative sample of the scope of Theorem I, we derive from it a sharp
estimate for the Rubio de Francia square function associated to IN well-distributed conical
sectors in R"”, see Theorem J.

1.3. L*-estimates for the (d,n)-Nikodym mazximal operator

With precise definitions and discussion to come later, we define the (d,n)-Nikodym
maximal function on R™ by

Nf@) = sw £ Wl aeR (12)
oceGr(d,n)
z+Ts (o)
where Ts(0) is a d-neighborhood of o N B, (1); see (2.3). This is the maximal operator
coupled with the dimensional analysis of (d,n)-Nikodym sets for general 1 < d < n. As
discussed in §6, suitable LP(R™)-bounds for Ns imply corresponding lower bounds for
the Hausdorff dimension of (d, n)-Nikodym sets. Our main result here is the following
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Theorem C. Let 1 <d < n and § > 0. There holds

s 1<d<n-1,
ING © L2 (R™) — L2®(R™)|| S =asn
log(6—1), d=n-1,
and
5§~ /log o1, 1<d<n-1,
ING : L2(R™) — LX(R™)| S o8 =asn
log(671), d=n-1.

The weak (2,2) bound is best possible while the strong (2,2) bound is best possible up to
the logarithmic factor \/log(6—1).

1.4. Motivation and background

The study of maximal directional averages has a long history, motivated for instance by
the Kakeya, Zygmund and Stein conjectures mentioned above. Maximal averages along
subsets of Gr(d,n) are also quantitatively connected with the behavior of the ball and
polygon multipliers and the convergence of Fourier series in higher dimensions, as well as
to square functions formed by frequency projections to the corresponding dual subsets
of the frequency domain. This last theme is explored in detail in [1] in dimension n = 2.
As mentioned above, we present an application of this type, for arbitrary dimension n,
in §7.8 below.

The study of Gr(d,n)-averages can be classified according to the structure of ¥ C
Gr(d,n). This classification is more established in the case d = 1, where ¥ C S"~! and
three particular cases of interest arise.

First, lacunary sets [7,21,27,28] are the only infinite subsets of S”~! that give rise
to bounded directional maximal functions. This characterization is due to Bateman in
n = 2, and albeit in a weaker form, to Parcet and Rogers [24], and relies ultimately on
the existence of Kakeya and Nikodym sets. Second, sharp LP(R"™)-bounds for maximal
averages along J-uniform sets of directions X5 C S™~! are the subject of the maximal
Nikodym conjecture, whose lower bounds tells us a fortiori that HMZJ,{l} HLP(Rn) cannot
be independent of § for any p € (1,00). In fact, the maximal Nikodym conjecture is
formally weaker than statements involving My, (1}, dealing with averages along d-tubes
instead of thin, d-uniformly spaced averages of the form My; (1;.

In two dimensions the sharp bounds for My, s are known, see for example [6,8,29].
In higher dimensions n > 3 the Kakeya conjecture is open but several partial and very
significant results are available; see for example [16] and the references therein. Best
possible L?(R™) bounds for multiscale averages along uniformly distributed sets in S™~*
recently appeared in [19].

The problem of sharp LP-bounds for My ¢ when ¥ C S"7! is instead arbitrary is
also fully solved when n = 2 [17,18]. However, in particular when n > 2, it is in general
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much harder than the d-net case, as there is no distinct scale on the set of directions,
or alternatively, there is no fixed density of directions. This lack of structure does not
allow for e.g. the use of induction on scales, and new tools are necessary. Recently, we
proved in [12] essentially sharp L?(R™)-bounds for My, {1} for arbitrary finite ¥ c S"~*
or ¥ C Z with Z algebraic submanifold of S*~!, via the polynomial method.

Moving away from the restriction d = 1, we introduce in this paper a family of
problems related to averages with respect to Gr(d,n) for general 1 < d < n. Such
Radon-type transforms have been studied in several forms in the literature, for example
for the (d,n)-Kakeya maximal function

Kf(L) := sup / fly) dy, L € Gr(d,n),

xERnLer

where f is a suitable function in R™. In analogy to the case d = 1, suitable L?(R"™) —
L%(Gr(d,n)) bounds for the (d,n)-Kakeya operator, or for corresponding d-plane trans-
forms, relate to the existence and dimension of (d,n)-Besicovitch sets; see [20, §24],
[22,23], and the discussion in Section 6. Our point of view is different, unifying the study
of d-plane averages for all 1 < d < n in the form of thin subspace averages My (.}, possi-
bly at different scales s, as operators acting on LP(R™). As in the case d = 1 the structure
of the subset ¥ C Gr(d, n) under consideration is of paramount importance. In this light,
our setup is new and, for example, there is currently no definition of lacunary subsets
of Gr(d,n). In this paper we thoroughly study the cases of arbitrary ¥ C Gr(d,n). The
case of uniformly distributed subsets 5 C Gr(d,n) is also important and is implicit in
the study of the (d, n)-Kakeya and Nikodym maximal operators in Section 6 and more
precisely in the statements of Proposition 6.2 and Theorem C. There is again a criti-
cal integrability space LP(4:m) (R™) for Mg; 1y relating to the problem of existence and
dimension of (d, n)-Nikodym sets.

An important difference is that for d > 1 the (d, n)-Kakeya conjecture and the (d, n)-
Nikodym conjecture appear to be independent of each other and so are the corresponding
critical exponents p(d, n). This is in stark contrast with the case d = 1 where the maximal
Kakeya and maximal Nikodym conjectures are equivalent; see [30]. For example a well
known result of Falconer, [13], implies the there are no (d, n) Besicovitch sets for d > n/2
while another result of Falconer, [14], shows that there exist (d,n)-Nikodym sets for all
1 < d < n. This difference is also reflected in the fact that, unlike the case d = 1, the
possibility of d-free bounds for the (d, n)-Kakeya operator I, defined in (6.1) below, is
not excluded. An instance of this is contained in the statement of Proposition 6.2. On
the other hand this is not the case for the (d,n)-Nikodym maximal operator, nor for
Mgy (s}, as exhibited in Theorem C, in accordance to the previously mentioned result
of Falconer. A more general study of d-plane averages of the form My g and of (d, n)-
Nikodym maximal operators for 1 < d < n is motivated by these connections and
nuances. We introduce the maximal multiscale problem with S = (0,00) and generic
¥ C Gr(d,n) and manage to fully resolve the problem in the codimension 1 = n —d
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case, in the form of Theorem B above. At the same time we formulate a general (d, n)-
Nikodym conjecture and discuss the critical integrability index for general d. From that
point of view Theorem C stated above describes a sharp but subcritical estimate for the
(d,n)-Nikodym function, and corresponding maximal conjecture.

The investigations in the current paper lead to several natural questions concerning the
LP(R™)-bounds for d-subspace averages My, g, and especially the study of such LP-norms
close to the critical exponent p = p(d, n) is particularly interesting, and consistently hard.
The current paper addresses in particular all the L?(R™)-bounds for such operators in a
sharp fashion, whether L?(R™) happens to be subcritical as in the case n > 2, d < n — 1,
or critical as in the case d = n — 1 in any dimension.

1.5. Methodology

In this paper we employ a mix of geometric, Fourier analytic, and polynomial methods.
The latter technique for the study of directional maximal operators along arbitrary sets
of directions was introduced in [12]. Using a polynomial partition we divide the set of
directions into subsets (cells) of controlled cardinality and such that the boundary of
these subsets is an algebraic variety of controlled degree. The properties of this partition
allow us to prove an almost orthogonality principle via Fourier methods, as the algebraic
nature of the boundary of the cells (wall) yields suitable overlap estimates for the relevant
Fourier multipliers. Using this scheme we prove a general almost orthogonality principle
for single scale directional averages defined with respect to an arbitrary set of directions.
In the current paper we apply this principle to yield essentially sharp bounds for maximal
d = 1-dimensional averages given by arbitrary directions on the sphere. The application
of the polynomial partitioning scheme to the case of d-dimensional averages in R™ will
require a suitable polynomial partition on the Grassmannian Gr(d,n) and will be taken
up in a future work. However, for general codimension n — d we present an alternative
argument that recovers almost sharp L2-bounds for d-dimensional single-scale averages
given by arbitrary subsets ¥ C Gr(d,n). Indeed this approach misses the conjectured
sharp L?-bound, which is polynomial in #X, by a logarithmic factor in #X.

In two cases, we employ a different point of view in order to obtain sharp L?(R")-
bounds via space analysis. This is particular efficient when proving L?(R"™)-bounds for
maximal directional d-plane averages with n = d+ 1. It is important to note that for this
codimension-1 case, the space L?(R™) is critical and we do prove the best possible bound
in Theorem B, in fact even for the multiscale maximal function. The approach, inspired
by the works of Katz [17] and Bateman [4], is via a TT*-argument on the adjoint of the
linearized maximal operator and an appeal to a suitable directional Carleson embedding
theorem. In [1] this method was elaborated into a directional Carleson embedding the-
orem for suitable directional Carleson sequences. Here we suitably adapt the geometric
part of the argument, resulting in a corresponding directional Carleson embedding for se-
quences indexed by (n — 1)-dimensional plates in R™ and satisfying a Carleson condition
adjusted to the geometry of such plates.



8 F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749

A second T'T* instance appears in the proof of sharp L?(R™)-bounds for the Gr(d,n)-
Nikodym maximal operator. Here we are able to exploit specific structure of the nets
Y5 and prove explicit estimates for the volume of the intersections of such d-plates in
all combinations of dimension and codimension. These volume estimates and the 77
argument yield the sharp bound for the (d, n)-Nikodym maximal operator of Theorem C.

1.6. Notation

The purpose of this paragraph is to provide easy reference for a few central definitions,
in particular for the several maximal and averaging operators that appear throughout
the paper.

o The notation By(z) is reserved for the unit ball in R* centered at z € R*, and we
write By = By(0).

o If 0 is a subspace of R™, we denote by II, the corresponding orthogonal projection.
For v € S"~! we abuse notation and write II, instead of Hgpango} -

e The notation M is reserved for the Hardy-Littlewood maximal operator on the cor-
responding R™.

o For ¥ C Gr(d,n) and S C (0,00), Mx, s stands for the maximal averaging operator
with respect to thin plates o N B, (s) with ¢ € ¥ and choice of scale s € S. In
symbols,

Mg s f(z) = sup(|f])s,s(z), r € R"
sES

o€x

The case S = {s} for some s > 0 is the single-scale case and will appear in several
places below. When S = {1} we simplify the notation to Ms f = Mx, 11 f.

e The smooth, compactly Fourier supported version of My, g, denoted by As g, and
defined in (2.4), will be used throughout the paper.

e Also, given 6§ > 0 we consider the (d,n)-Nikodym maximal operator N5 which is a
maximal —with respect to o— average along plates  + o N B, (1), x € R™, oriented
along any o € Gr(d,n) and having thickness § in the o*-directions, see (1.2).

All of the above operators are functions defined on R™ and we will be proving L?(R") —
L%(R™) operator norm-bounds.

1.7. Structure of the article

In Section 2, we collect a few definitions related to the Grassmannian and its dis-
tance, and develop a technical subspace switch lemma for the Fourier version of our
averages. Section 3 uses the switch lemma to give a new and simple proof of the L2-
almost-orthogonality principle of [2] for maximal directional operators in the plane. The



F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749 9

argument of Section 3 serves as a model for the more complex Section 4, where an alge-
braic almost orthogonality principle in arbitrary dimension, of similar flavor, is proved.
Section 5 contains the proof of Theorems A and F. In Section 6 we discuss the Nikodym
analogue of the maximal function My, formulating the relevant maximal conjecture and
proving the L? case. Finally, Section 7 is dedicated to the full solution of the codimension
1 case via a subspace Carleson embedding theorem and to the application of the latter
to the Rubio de Francia estimate for conical cutoffs in R™.

2. Grassmannian, Fourier averages and switch lemmas

This section contains a few definitions and technical lemmas that will be used through-
out the paper.

2.1. Grassmannian

We write Gr(d,n) for the Grassmannian of d-dimensional subspaces of R™. If O(n)
stands for the orthogonal group on R™ then

Gr(d,n) = O(n)\ [0(d) ® O(n — d)] , (2.1)

identifying each subspace o € Gr(d,n) with the orthogonal map sending the first d
canonical vectors onto an orthonormal basis of o. In particular Gr(d,n) is a smooth
algebraic variety of dimension d(n — d). Equipped with the metric

d(o,7) = sup |ov—Tv|, o, 7 € Gr(d,n),
veSn—1
the Grassmanian Gr(d,n) can be viewed as a compact metric space. For § > 0 and
o € Gr(d,n) we denote by Bs(c) :== {7 € Gr(d,n) : d(o,7) < §} the open J-ball centered
at o € Gr(d,n).

In analogy with the classical Kakeya-Nikodym directional maximal functions, we will
consider below the maximal subspace averages along d-separated subsets X C Gr(d, n).
We say ¥ C Gr(d, n) is d-separated if {Bs(c) : 0 € 3} is a collection of pairwise disjoint
sets. We will need the following lemma concerning the cardinality of the subset of a
d-separated set ¥ consisting of subspaces which are §-approximately orthogonal to some
& € R™. We will see that these belong to a §-neighborhood of the Grassmanian hyperplane

He(d) == {r € Gr(d,n) : II,.£ = 0}. (2.2)

Notice that He(d) is linearly isomorphic to Gr(d,n — 1).

Lemma 2.2. Let £ € R™\ {0}, ¥ C Gr(d,n), § > 0 and ¢ = {O’ € H§|£| < %}
Then
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1. The set ¢ is contained in the %—neighborhood of He(d).
2. If ¥ is a 0-separated set, then #X¢ S §-dn—d=1)

Proof. We first prove claim 2 assuming claim 1. Indeed, assuming 1, for each o € 3¢ we
may pick a, € He(d) with d(as,0) < %. By the triangle inequality ¥ 5> 0,7, 0 # 17 —
d(ag,a;) > g. Therefore, the set {a, : ¢ € Y¢} C He(d) has at most ~ §—4n—d=1)
elements by dimensionality of He¢(d). This completes the proof of the lemma up to
establishing the claim.

We now prove claim 1. By rotation invariance of the statement it suffices to prove the
claim for { = e;. Let 0 € X¢. Let u = |l eq|. If w = 0 there is nothing to prove, which
means we may work with 0 < u < 6/4. Pick an orthonormal basis {b1,...,bq} of o with
by = Il e, /|[gye1|. Then by, ..., by € e Nbi. Let

b1 — uep

4T o e

Then a, = span{cy,bs,...bg} € He(d) and as |c; — by| < ¢, we have shown that

3
d(as,0) < g as claimed. O

2.8. Fourier averages and switch lemmas
If 0 < <« 1and o€ Gr(d,n) then
Ts(o) =Ty (o) == {€ e R": [II;¢| <1, [,.&| <&} (2.3)

will stand for the unit scale d-dimensional d-plate oriented along o. In general, we think
of Ts(o) as a slight fattening of the unit ball B; on o. Throughout the paper a few
slightly different versions of this fattening will be employed depending on the problem
being considered.

Let ¢4 € S(R?) be a real valued even function with support in 278B,, and
|pallL1(ray = 1. For 0 € Gr(d,n) and s > 0 we define the smooth subspace averages and
maximal averages of f € S(R?) by

Agsf(x) = /f(é)(zﬁd (sIL:€) e, Assf(x) =sup|Aosf(z)l,  z€R™

ses
R~ oED

(2.4)
When ¢ = Ruv for some v € S* 1, we write A, s in place of A, s. The easily verified fact

[Mss||L2@n) = sup [ My arslL2@n) ~ sup [|As ovsll2@n) = [Assll2wny  (2.5)
keZ kEZ
will be used in what follows, often in combination with (2.10) below.

Fix a radial function ® € S(R™) with 15, < ® < 155 and for 6 > 0 introduce the
low-high splitting
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Apuf = A+ A AT = A J(OB (s66),  EER™ (2.6)

The notation is motivated by the fact that Aa ° is a smooth average at spatial scale s
in the directions of o, and scale sd in the directions orthogonal to o, and consequently
containing frequency scales at most 1/(sd). With this in mind, the parameter 0 < § < 1in
the following lemma measures the eccentricity of the plates with long directions oriented

along the subspace 7 appearing in the averages on the right hand side.

Lemma 2.4. Let s > 0, 0 # 7 € Gr(d,n) and 6 € [d(o,7),1] be given. Then

o0

A8 f(@)] 3 2k ][ 1, 27)
k=0 z+2ksTs(T)
A4700() - A7) £ 2T Zz-’m f o 28)

z+2ksT5 ()

Proof. The case 0 = 7 of (2.7) follows easily by the Schwartz decay of the smooth
function ¢q used in the definition of A, ;. This means that the general case of (2.7) is an
immediate consequence of (2.8), which we now prove. By isotropic scaling and rotational
invariance it suffices to treat the case s = 1, 7 = span{ey,...,eq}. Let

C(fvy) =1+ y(Ho - HT)€7 y e [Oa 1]'

The Fourier transform of the integral kernel K of A;‘i - A2 ¢ is given by

R(€) = @(45¢) / Voa(C(,y)) - [(My —TL,) ] dy
0

and is supported in a 1-neighborhood of o N 26~ B,,, which has measure ~ 6%~ ". It
also satisfies for each multi-index o = (v, ..., ap)

09K (6)] < d(g, 7)geattan=l, (2.9)

This estimate is obtained via repeated use of the Leibniz rule and the following consid-
erations:

jsupp K| < 677, sup sup |9;¢(&, )| Sd(oy7) <6, [y — 1| = d(o,7).
y€[0,1] d+1<j<n

Integration by parts then readily yields

(o, 7) |H7w|]‘4" .

K@ S 2 1+ e 1 I
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which in turn implies (2.8). The proof is thus complete. O

Remark 2.5. If M is the standard maximal function in R™, a simple averaging argument
leads from (2.7) and (2.8) to

23] + gy 4520@) — 4280 @] £ 2 MU ) rare). @ R
’ k=0

(2.10)

The previous lemma suggests that the low frequencies || < (s8)~! of the averages
A, s may be approximated by plates oriented along §-nearby subspaces. The next lemma
records the support of the complementary high-frequency components. For o € Gr(d, n)
and 6 > 0, consider the two-sheeted cone

Tys = {g eR™\ {0} : 'Hg|5| < 2-25}

and, abusing notation, denote also the corresponding Fourier restriction by I'; 5, namely

we write (To,5/)" (€) = 1r, , () f(€).
Lemma 2.6. Let s > 0,0 € Gr(d,n). Then A<‘2f A<6FU75f.

Proof. Suppose £ belongs to the Fourier support of A;‘if. Then |£| > 4(8s)7!, and
IIL,¢| < s71 < §|¢|/4. The latter means £ € [y 5. O

3. Almost orthogonality for directions in the plane

In this section, we present a simple proof of the L2-almost-orthogonality principle of [2]
for maximal directional operators in the plane. Our argument uses Fourier analysis and
overlap estimates instead of geometric considerations and TT*-type arguments. Although
this result is known, we include here a new argument that serves as a prelude to the
more technical algebraic almost orthogonality in arbitrary dimension devised in the next
section. The statement is as follows.

Theorem D. There is an absolute constant C' such that the following holds. Let S C
(0,00), U = {u1,...,uns+1} C S be a set of directions ordered counterclockwise. For

each j = 1,...,N let V; C S be a set of directions contained in the cone bordered by
uj,ujr1 and let V.=J{V; : 1 < j < N}. Then,

||AV,SHL2(]R2) <C ||AU,S||L2(]R2) + 1r<n3«<XN HA SHL2(]R2) .
A simple induction argument using the leftmost and middle directions as elements of
the dividing set U, together with the control from (2.5), bootstrap Theorem D to recover
the following sharp bound from [17,2].
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Corollary D.1. Let V C S! be a finite set. Then HMV)(O,OO)HLQ(RQ) < log(#V).

Remark 3.1. The sharpness of the estimate in Corollary D.1 follows by a variation of
an example employed in [9, Proposition 3.3] for the directional Hilbert transform. In
particular one considers the action of My (9,) on the function f(z) == ‘$|_11{1§|m|§N}7
where Y5 is a § = N~ l-net on S'. We omit the details.

Proof of Theorem D. In this proof the constant C' > 0 is absolute and may vary at
each occurrence. For each 1 < j < N, let I'; be the two-sheeted cone bordered by
the supporting lines to uj-, “j_-s—l’ and denote also by I'; be the corresponding Fourier
restriction. The cones {I'; : 1 < j < n} are pairwise disjoint, so that

N
DoITifIE < 13- (3.1)

Jj=1

For v € V}, let u(v) = argmin {d(v, u;),d(v,u;41)} and 6(v) = d(v,u(v)). By assump-

tion, the direction v;- € S' lies between uj,ujy; and thus in T;. The sense of the

definitions above is that the whole cone I';, 50,y = {{ : [§-v] < 6,[€|} is contained in I'j,
namely

Fv,&(v) C Fj, v E Vj (3.2)
With this choice, Lemma 2.6 and (3.2) tell us that
‘Aii(v)f‘ — ‘Aii(”)rjf‘ < ‘Aii(")ﬂ‘f) 4 |Av,stf| )
Applying Remark 2.5 twice, we obtain
v I < [A720 7] + 4530 | < | 47800 1| + [A72000,7] + |01

< A Tif |+ € D7 275 (MU oy 5] + MU ey 204,
k=0

where we remember that M denotes the Hardy-Littlewood maximal operator. Taking
supremum over v € V;,s € §, 1 < j < N, and subsequently taking L? norms,

Avsfle < || max {Av, 01},
(3.3)

+ C'sup HM o MU72kaH2 + C'sup
k k 2

sup {M o MU,2kS[ij]}
1<j<N

Using the observation in (2.5)
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sup [ Mo Myas [, 5 < Csup|[Myses]l; ,, < CllAvslly-o (3.4)

and similarly using the orthogonality in (3.1) and a square function argument

sup {M o My o[l f]}
1<j<N

2

< CllAusllyy [ Do ITifll; < CllAuslly s 1f1 (3.5)
1<G<N

[ s, st}

< (s sl ) [ 32 IaslE < (o sl ) 191 9
WA

Inserting (3.4), (3.5) and (3.6) into estimate (3.3) completes the proof of the theorem. 0O

and

N

4. Algebraic almost orthogonality in general codimension

This section contains an analogue of Theorem D in higher dimensions, where subsets
of Gr(d,n) are partitioned by algebraic sets. The almost orthogonality result thus ob-
tained may then be employed in combination with polynomial partitioning to obtain a
sharpening of the recent result of [12] concerning averages along arbitrary directions in
R3. For simplicity, we restrict ourselves to the case d = 1 below and identify Gr(1,n) with
S™ 1 in the obvious way. Higher d analogues and the related polynomial partitioning
theorems on Gr(d,n) for d > 1 are the object of a forthcoming companion paper.

Definition 1. Let p € R[z1,...,2,] be a degree D polynomial and Z(p) = {z € R" :
p(z) = 0} be the corresponding zero set. The associated set of cells C(p) is the set of
connected components of S*~1\ Z(p). Then C(p) has < D"~ ! elements, see e.g. [3].

Theorem E. Let p € R[zy,...,x,] be a degree D polynomial. For every finite set ¥ C
S ! and S C (0,00),

(n-2)
||AZ,S||L2(]Rn) S sup ||AU,SHL2(Rn) +D = sup ||AZOC,S||L2(Rn) :
UucsS" 'nZz(p) CeC(p)

#HUSH#Z

The gain in Theorem E is that the set Z :== S"~! N Z(p) is a (n — 2)-dimensional
algebraic variety of controlled degree and Ay g is better behaved when U C Z.
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4.1. Proof of Theorem E

The strategy is similar to the one we used for Theorem D but with a few twists.
We keep using the notation Z = S"~1 N Z(p) and the distance d used here is between
elements of S"~1. First of all we fix C € C(P) and o € C. We set

|d(o, u())|

u(o) == argmin{d(o,u) : u € Z}, §(o) = 1 ,

and further introduce

~

Te= |J Tose)  Tcf€) = FOIr(§), €eR™

veCNX

Note that we are again conflating the set I'c with the corresponding Fourier restriction.
We also define the sets

U= |J U©, UQ:={u(o): cecC}.
CeC(P)

Clearly we have that U C Z and #U < #¥. An immediate though important geometric
observation is made in the following lemma. For £ € R™\ {0}, recall the notation H¢(1) =
{resn 1 IL.¢ =0}.

Lemma 4.2. Let C € C(P) and £ € T'c. Then CN H¢(1) # @.

Proof. As I'c is a union of cones, it suffices to work with & € I'c NS™~!. By definition of
I'c we may find o € C such that [II,{| < (o). The first claim of Lemma 2.2 tells us that
there exists 7 € H¢(1) with d(o,7) < §(c)/3. However the set {7 € S"~! : d(0,7) < 6(0)}
is contained in C by the definition of §(c). O

Lemma 4.2 is the main cog in the proof of the following square function estimate.

Lemma 4.3. Z HFCf”g S D2 ||f||§
CeC(P)

Proof. It suffices to show that for almost every £ € S"~1
#C(E) D2, C()={CeC(P):£eTc}.

Lemma 4.2 tells us that if C € C(§) then CNH¢(1) is a connected component of He(1)\Z.
As dim He (1) = n—2 this set has < D"~? connected components, see e.g. [26, Chapter 4]
or [3]. O
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We begin the main argument. Fixing C € C(p),o € C, we apply Lemma 2.6 and the
definition of I'c to obtain

45200 f| = [A4529)Te f] < OM[Ag, T,
which together with Lemma 2.4 yields
Ao fl < [AZ50) 1] + 4550 f| < OMo Moy 1f + OMIAL T ).
We first take supremum over s € 5,0 € C and obtain

Asnc,sf < CMoMy(c),sf + CMo Agnc(Tcf).

Subsequently taking supremum over C € C(P) leads to

Apsf SMoMyf+ | Y [MoAsnc(Tef)f | (4.1)
CeC(p)

The estimate of Theorem E then follows easily from (4.1) and the square function esti-
mate of Lemma 4.3.

5. Sharp or nearly sharp bounds for maximal subspace averages

We now focus on the single scale maximal operator My, {13 =t My, when ¥ is a generic
finite subset of Gr(d,n). The majority of this section is in fact dedicated to the proof of
Theorem A. However, we first detail the announced sharpening of the case n =3, d = 1.
In this case, Theorem A tells us that

1
sup [|Ms||p2gs)y S N*log N
ncs?

#I<N
which is sharp up to the logarithmic factor and recovers the bound from [10]. The
following more precise estimate was previously proved in [12]: for any positive integer k
we have

sup [ M| 2gay Sk N7 (log N)# log! N,
2

»CS
#3<N

where logl!! N = log(2 + N), log*l N = log(2 + log*~1 N). For this special case of
dimension and codimension we improve the result of the theorems above by exploiting

the algebraic almost orthogonality principle of §4. This is the content of the following
theorem.
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Theorem F. For all N > 0 and every positive integer k there holds

sup [|Msll.>gs) Sk Nilog" N,

»cSs?
#3<N

with implicit constant depending only on k. This bound is sharp in terms of N up to the
iterated logarithmic factor.

We will prove the estimates of both Theorems A and F for the corresponding norm-
equivalent Fourier operator Ay, 1} = Asx.

5.1. Clusters on Gr(d, n)

We begin with a definition related to He¢(d) from (2.2). We say that ¥ is a d-cluster
with top £ € S"71 if ¥ is a finite set contained in the §-neighborhood of H¢(d). Somewhat
dual to d-clusters are the cone cutoffs

Los = {n € R\{0): ol <200l} . Taosf@) = [ Fpenan
I's.s

We summarize two key steps of our proof in the estimate of the next lemma.

Lemma 5.2. Suppose f € S(R?) with
supp f C Ann(6) = {n e R": 27 < §Jn| < 272},

Then
1. For all o € Gr(d,n) and s > 1, we have Ay sf = A sTosf.

2. If ¥ is a d-cluster, we have the estimate

[As, 1y fll2 S sup [l Az gy lle ey | £ ]2
2’ CcGr(d,n—1)
#X <H®

Proof. First of all we dispense with the support claim. As ¢4 in the definition of A, s is
supported in 278 B, we have that A/gs\f(n) = 0 unless [II,n| < 278s7! and d|n| > 274,
whence the claim.

We then move to the proof of the estimate. Suppose that ¥ is a J-cluster with top
€ € Sl For 0 € ¥ let 7(0) € He(d) be such that d(o,7) < 6. As f(n) = 0 for
§n| > 272, we may insert the ®(226-) cutoff for free and A, f = A;‘if. Then using
(2.7) from Lemma 2.4 and Remark 2.5 returns
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s3]
—kn
Alef 5 E 2 M (<f>‘r(0),2k)
k=0

which coupled with the norm equivalences of (2.5) tells us that

’

b CHg(d
#E<HD

[As iy fll2 S | sup ) Az gyl | [f]l2-
The conclusion of the lemma then follows from recalling that He¢(d) = Gr(d,n — 1) and
applying Fubini’s theorem in the ¢ direction. O
5.8. Counterezamples yielding sharpness of Theorem A

In this subsection we discuss the sharpness of the estimate in Theorem A. In fact we
will prove the more general proposition below.

Proposition 5.4. Letn > 2 and 1 <d < n — 1. There holds

n—d+1—p
N p=d) | l<p<n-—-d+1,
sup  [[Msllzr®n) 2 1
£CGr(d,n) (log N7, p>n—d+1.
#2<N

Proof of Proposition 5.4 for d = 1. This case is classical and well understood but we
include it here as it is instructive for case of 2 < d < n that follows. Indeed we just
need to consider f to be the indicator function of the unit ball in R™ and ¥ be a &4-
net in the unit sphere with € a numerical constant to be chosen momentarily. Clearly
#% <. 6~ and note that for € R” and v(x) := 2/|z| we have that

AZL s f@) 20, we Bu(67h)\ Ba(0,1).

On the other hand for every « € R™ there exists v € ¥ with dist(v,v(x)) < €d so we get
by Lemma (2.4)

ATS  f(z) =6 —Cey 27hn ][ If]| =0

k=0 T+2K 51T

if € is chosen to be sufficiently small. This readily implies
|Ms 513 o®ny 2 1 As 15-13 |l omey 267 7, 1<p<n.

Since #% = §~("=1) = N this proves the proposition when d = 1 and p < n.
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For the case d = 1, p > n the lower bound of the order (log N)l/p follows by the
Besicovitch construction of a Kakeya set as in [15]. Briefly, one constructs a set Ks =
UTs C R2, the -neighborhood of a Kakeya set, which is a union of 6 x 1 tubes pointing
along the directions ¥ of a §-net on S*, and so that |K;| < (log N)~!. Then it is simple
to check that

My (331ks 21 ontheset Kj = LJTgk \ K5,

where T is the tube with the same center and direction as 75 and 3 times the length.
It follows that |K¥| ~ 1 and so

M 1| Lrr2) 2 (log N)7.

For general n > 2 we just test the maximal operator on the tensor product of the

Kakeya-type set above with a unit cube in R”~2, namely K5 x [~1/2,1/2]"2 and the
1

lower bound ||[Ms 1[|z»r) 2 (log N)#» follows. O

Proof of Proposition 5.4 for 1 < d < n. In general we consider (d, n) plates of scale M :=
NY/(=d) and thickness 0 as follows. If o € Gr(d,n), then

TM(o) ={z € R": |z| < M, II,.x = 0}

is the scale M plate oriented along o. Let w € Gr(d — 1,n) that will remain fixed
throughout the argument below. Then we define

FE=Fw)={neCGr(l,n): Myv=0% en} ~GCGr(l,n—d+1) ~S"9

Notice that span {w,n} € Gr(d,n) for all n € E. We may then write every € R™ as
x =1, z+pnforn e E~ S"?and p > 0. We use the notation x = (z,,, pn) accordingly
where z,, = II,x. We also set

Cm = Cu(w) = {z = (zw,m) € R" ¢ |z,| < M, [p| < 1}

Lemma 5.5. Let w € Gr(d — 1,n) and @ = (., pn) with |z,| < &, 278M < p <27"M.
Suppose v € E with |v —n| < % Let 0 = span(w,n) € Gr(d,n). Then

[z + T3 (o)) N Char| = 271001,

Proof. By a rotation we may assume w = {ey,...,eq—1}. Choose  so that {n, 8} is an
orthonormal basis of span{n,v}. Then from the assumption of |[v —n| < 278M~! we
obtain that

-7

2
= 1 < —
v=(cosf)n+ (sinh)s, 0] <
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so that o = (z,,, p) and write the generic point on the plate x + T (o) as
y=(rw+ties+...+ti—1€4-1,(p+tqgcos0)n + tqa(sinh)p), t1,...,tq € (=M, M).
Note that

sup [t;] <

M
— = (Y| < 2w d—1)suplt;| < M.
Il < gy = el < el + (@ =T suplty| <

Also,

1 p 1 —10 —6
-, - | = 27M < |tq4] <27°M
cosf 8 cos@+4 [tal

so that

1
[(p+tgcos@)n+ tq(sinh)p] < 1 +275M|sinf| <

N =

It follows that y € Cj in the range |t1],...|ta—1] < %,td € I which is a set of
measure > 2-10fd=1

We continue with the proof of Proposition 5.4. Let Ey; be a 278 M-net in E ~ S*—¢
and consider the set

Yp = {o =span(w,v) : v € Ep} C Gr(d,n)

which has ~ M™% = N elements. The maximal function

1
M T)= sup — /
EZW,{M}f( ) 06213\4 M |f|
a+T3" (o)

then satisfies

Md—l L
MEI\l,{M}ch(ir) 2 Md ~ M,

z €Ut i=A{(xw, ) ¢ || <27'M,275M < p <27 "M},

whence

Mg, (ary Lol
|Cutl?

n—d+1_q n—d+1—p

> M Up|r > M — NS5eoa”,

Ms,, (ary e ry >

This proves the desired bound for 1 <d <nandp<n—d+ 1.
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For the case p > n — d + 1 we repeat the proof above but replacing the ball with
a Kakeya set. More precisely, fixing w € Gr(d — 1,n) we let K5 C R?> C w' be a 4-
neighborhood of a Kakeya set as before, namely K is a union of § x 1 tubes pointing
along a é-net X5 C S'. Note that this is always possible as w' always contains a copy
of R2. Remembering that ., = I,z we modify the definition of Cy as follows

Cs=Cs(w) ={zeR": |z,| <1, z—=x, € Ks}.

It is then easy to check that

o=

M 1 !
|| EM|é]W|i C‘SHP pe (1og5_1)5 ~ (1og#26)
s|?

Ms,, (a3 llLe@rny >

as desired. O
5.6. Proof of the upper bound in Theorem A

We seek an inductive estimate for

1 2
Ky = sup ——3= sup [|As]| n) o
" NSO N5 (log N )d:n) £cGr(d,n) L2(®)
#2<N

where a(d,n) will be determined along the induction argument. The first step in the
reduction is a classical use of the Chang-Wilson-Wolff inequality. For similar applications
in the setting of directional singular integrals see for example [9,11].

Lemma 5.7. There holds Kqpn Sp Qd,n, where

1 2
Qan = 8UP — =i sup  sup sup [ Az fllzz®n)
N>0 N 7= (log N)a(dn)=1 0<6<1SCGr(dn)  [|f]l2=1
#EN supp fCAnn((S)

with Ann(d) as defined in Lemma 5.2.

The induction parameter is n, while d is kept fixed along the induction. The seed for
the induction is the base case n = d + 1.

Lemma 5.8. If a(d,d+ 1) =1, then Qga+1 Sa 1.

The proof of Lemma 5.8 is given at the end of this section. Notice that the lemma,
together with Lemma 5.7, implies Kgq441 < 1 with the choice a(d,d + 1) = 1. Fix

now N >0,0< 6 <1, ¥ C Gr(d,n) with #3 < N, f € S(R") with ||f||2 = 1 and
supp f C Ann(¢). Using a greedy selection algorithm, we may achieve
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©
Z:EOUUEj,

Jj=1

where 0 < © < N?, each Y, is a d-cluster and Xy has the property that

Soir,, ) <NTT O vneR™\ {0} (5.1)
og€Xo

Say £ € S~ is bad for X' if the set {o € ¥’ : £ € ', 5} has cardinality > N5 The
first step in the greedy selection algorithm is to initialize and set ¥’ = X. If some bad
¢ exists for X', set X1 := {0 € ¥’ : £ € T, 5}. Notice that by Lemma 2.2 the set 3 is
a d-cluster. Now set X' := X'\ ¥; and repeat. The algorithm terminates when no bad
¢ exists for 3, in which case set £y = ¥'. Notice that (5.1) then holds by construction.
Cardinality considerations tell us that the algorithm terminates after © < N¢ steps.
Using the first claim of Lemma 5.2, we get at once

2 2 n—d—1
A5, fll; < Y 1A Tosfllz S D 1r,, < Nova . (5.2)
oc€Xg o€

Suppose that the cluster >; has ~ 2’“]\77551 elements for some 1 < 2F < Nﬁ. Then
the second claim of Lemma 5.2 tells us that

|45, f|2 S Kan12"7=01 N7 (log N)*(4n=D)

n

Notice that #{j : ; ~ 2*N 5591} < 2 kNwa, g0 that

@ o0
S ([ A5, |2 S K1 V555 (log N)2(@n=1) S gki=izt =+
= k=1 (5.3)

< Kgp i N5 (log N)*(n=D).

Combining (5.2) and (5.3) we see that Qq,n S Kgn—1, so that Ky, < Kg,—1 provided
that a(d,n) = a(d,n — 1) 4+ 1. Induction completes the proof with a(d,n) =n —d.

5.9. Proof of Lemma 5.8

We have n = d + 1 throughout the proof of the lemma. We use below the slight
enlargement of Ann(§) from the statement of Lemma 5.2

Ann™(6) == {n € R™: 27° < §|n| < 27"} D Ann(9).

Before the proof proper we carefully reshuffle the conclusion of Lemma 2.4. We say that
m € S(R™) is d-adapted to 7 = span{ey,...,eq} if
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a. suppm C O, 5 = {£ € Ann™(9) : |I1.€| < 26|¢},
b. [[0%M||ee < §¥+1 for all multi-indices o = (av, ..., ag4+1) of order || < 100d.

Now if 7 € Gr(d,d + 1) is generic, we say that m is d-adapted to 7 if m o 7 is §-adapted
to span{es,...,eq}, where 7 also stands for the rotation mapping span{es,...,eq} to 7
and eqyq to 7. A typical example of function d-adapted to 7 is

m(€) = p(IL€)w(5), £ eRM,

where ¥ € S(R4*!) is supported in Ann(1) and p € S(R?) is supported on a small ball
near the origin and suitably normalized. We denote by m(7,d) the class of multipliers
which are d-adapted to 7 and define

AYf(x) = sup /f(i)m(S)e”'Edf, z e R
) d+1

mem(T,6

A repetition of the proof of (2.7) of Lemma 2.4 tells us that A% f is pointwise bounded by
the right hand side of (2.7) for s = 1. This together with frequency support considerations
yield

1A fll2 S 10+5f 2 (5-4)

uniformly in 7 € Gr(d,d + 1) and § > 0, where we have denoted by O, s the frequency
cutoff to the corresponding conical sector. Now, if ¥s is 271%5-net in Gr(d,d + 1), we
have

> 05 f13 S 1IF1I3 (5.5)

TEYs
as the projection on S¢ of O, lies in a ~ d-neighborhood of 7. A square function

argument combining (5.4) with (5.5) then yields

sup ALf
TEDS

S A2 (5.6)
2

We are ready to complete the proof proper of this lemma. Fix § > 0 and let f € L?(R*!)
with supp f C Ann(d). Read from the proof of Lemma 2.4, cf. (2.9) in particular, that

sup  [Ae1 fI SALS (5.7)
oeGr(d,d+1)
d(o,7)<8
by means of a suitable insertion of a Littlewood-Paley cutoff equal to 1 on Ann(d) and
supported on Ann™(§). As N5 is a 27'06-net, an application of (5.7) followed by (5.6)

returns
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sup Aff
TEYS

sup  [Ag1f]
o€Gr(d,d+1)

S
L2(Rd+1)

S 2
2

which is what is claimed in the lemma.
5.10. Polynomial partition for the proof of Theorem F

We plan to apply the algebraic almost orthogonality principle of §4 in order to prove
Theorem F. The first order of business is to feed the almost orthogonality result of
Theorem E with a suitable polynomial partition of the set ¥ C S? with #3 < N?2,
tailored to the problem in hand.

Proposition 5.11. Let ¥ C S? be a finite set with #% < N and let § > 0. For each integer
D > 23 there exists a partition

¥ =3, UXy
satisfying the following properties:

1. There exist O(1) transverse complete intersections W; C S? of dimension 1 and
degree O(D) such that

sup inf dist(o, W;) < 0.
oceXy J

2. There exist O(D?) disjoint connected open subsets C € C of S? with the property
that

N
Y, = U e, Yec=2nC, #¥e < —.
cec

The proposition above is a consequence of the more general polynomial partitioning
result of [12, Proposition 2.10]. We also refer the reader to [12, §2.9] for the definition
of a transverse complete intersection and further background on polynomial partitioning
results.

The partition of Proposition 5.11 is not directly applicable as an input for Theorem E
as the set X also contains directions close to the algebraic variety Z = U;W; instead
of just directions on the Z. This is easily remedied by a soft approximation argument.
Indeed as the conclusion of Theorem F is an L?(R?)-operator norm bound, we can work
with functions f € L2(R3) such that supp(f) C Bs(R) for some R > 0, as long as we
prove bounds independent of R. Now if we choose § < R~! in Proposition 5.11, we
will have that ||Asfllz2®s) S [Mr(o)fllz2ws) for all o € ¥y, where 7(0) denotes a
direction on Z such that dist(o, 7(0)) < &, whose existence is guaranteed from point 1.
of Proposition 5.11. This remark allows us to assume that ¥y C Z = U;W;.
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With the remark above taken as understood, the almost orthogonality principle of
Theorem F reduces the proof of Theorem F to a recursive cellular term, and a wall
term which is the L?(R®)-norm of Ay, . The latter operator is a single scale, maximal
directional average along directions on a one-dimensional algebraic subvariety of S2. It
follows from [12, Theorem D] that

sup || Asy[|z2ms) S D (log N)Z. (5.8)
='CU; W
#'<N

5.12. The proof of Theorem F
We are seeking an estimate for

Ky = sup [|As|Z2gn)-
»cs?
HE<N
Combining Theorem E with the polynomial partition of Proposition 5.11, the subsequent
remarks, and (5.8) we can estimate for any D 2 1

Ky < K1D(log N)* + KosDK
D

for numerical constants K7, Ko > 0 and D a sufficiently large degree, to be chosen
momentarily. Indeed choosing D := /N /(log N)? yields

K Ko
N < Ky 4 Ky eeN)°

VN T (log N)

which readily implies the estimate in statement of Theorem F by recursion.
6. Kakeya and Nikodym maximal operators

In this section we digress a bit in order to discuss two maximal operators that appear
naturally in the context of this paper, namely the Kakeya and Nikodym maximal opera-
tors. These operators have been studied extensively in the case d = 1 in relation to the
maximal Kakeya conjecture and the maximal Nikodym conjecture, which are equivalent
when d = 1; see [30]. For d > 1, the corresponding Kakeya maximal function on Gr(d,n)
has been studied in relation to the existence and dimension of (d,n)-Besicovitch sets.
We send the interested reader to [20] for general background on the topic, and will focus
below on just a few notions central to our discussion.

We briefly recall some elementary properties of the Haar measure on Gr(d,n). Let
1 < d < n be fixed parameters and do be the quotient Haar measure on Gr(d,n) seen
as a quotient group as in (2.1), that is
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/f do—/f

Gr(d,n)

where O(n) is equipped with its left-invariant Haar probability measure. When A C
Gr(d,n), the notation |A| stands for the do-measure of A. As the measure do is the
unique probability measure on Gr(d,n) which is left invariant under the action of O(n),
it coincides with the normalized Riemannian volume form on Gr(d, n). This implies that,
if

Bs(o) == {7 € Gr(d,n) : d(o,7) < ¢},
the measure |B;s(c)| is independent of o and |Bs(c)| ~ §4 =,
6.1. The Kakeya maximal operator

Recall from (2.3) the notation Ts(o) for the o-plate oriented along o € Gr(d,n)
Consider the dual maximal operator acting on f € LIOC(R") and its tailed version

Kof(o) = swp fIfl, Kaf(o :su]é»Zz s fifl o€ Grldn)
z+T5 (o) e z+2KT5 (o)

(6.1)

Definition 2. Let 1 < d < n. A Borel set A C R” is said to be a (d,n)-set if for every
o € Gr(d,n) there is y € R™ such that B, (y,1)N(oc+y) C E. If |A] = 0 then A is called
a (d, n)-Besicovitch set.

It is well known that for d = 1 there exist (1,n)-Besicovitch or Kakeya sets and the
Kakeya conjecture states that the Hausdorff dimension of Kakeya sets should be at least
n. The mazimal Kakeya conjecture is the statement that for all d,e > 0 we should have
the estimate

15l Lr (ar1,n)) Se 0 |1 fllon@n)- (6.2)

When 1 < d < n, it is conjectured that no (d, n)-Besicovitch sets exist. For d > n/2 this
conjecture was verified by Falconer, [13]. The range of non-existence of (d, n)-Besicovitch
sets was extended by Bourgain in [5] and further by Oberlin in [23]. The reader is also
referred to [23] for further results and lower bounds on the Hausdorff dimensions of
(d,n)-Besicovitch for general d. The connection with the Kakeya maximal function is
revealed by the following well known implication; see [23, p. 3].

Proposition 6.2. Let 1 < d < n and suppose that there exists 1 < p < oo and € > 0 such
that for every 0 > 0 we have the bound
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IKs fllLe (Gramny) Se 6 7 1 fllLr(m.)-
Then every (d,n)-set has Hausdor(f dimension at least n — ¢.

In the context of the current paper the case 1 < d < n is the most relevant. The
estimate of the following proposition is a natural consequence of the methods of this
paper and we include as an illustration of how these methods can be applied in the
context of the (d,n)-Kakeya maximal function. Our estimate below recovers the well
known result of Falconer [13]: there are no (d,n)-Besicovitch sets when d > n/2. By
Proposition 6.2, it also yields that a (d, n)-Besicovitch set necessarily has full Hausdorff
dimension when d = n/2.

1 2d >n
Proposition 6.3. ||Ks : L*(R™) — L*(Gr(d,n))|| £ { logd 2d=n
5% 2d < n.

Proof. By an isotropic rescaling of the input function f, the norm equivalence
15 5 LP(R™) = LA(Gr(d, )| ~p.g || s+ L2(R™) = L9(Gr(d,m)| V1< pg< o

holds. By standard arguments and Lemma 2.4, if 7 € Gr(d,n) and 0 € By-105(7) we
have the pointwise estimates

(n

Ksf(o) S sup [AZSF(2)] S sup A2f(2) SKof(r) S0 7 | fllp-  (6.3)

zeRn zeR"”

The proof of the Proposition relies on an inductive estimate for

)

1Qs = ||Ks : L*(R™) — L*(Gr(d,n))

having defined the Fourier localized operator

Ksf(o) == sup ’A;‘if(ac)
zeR”

, o € Gr(d,n).

o~

Let ® be as in (2.6) and set f5 == F~Y[f(-)(1 — ®(2%§-))]. Then
AN f=AZVF+ A2 fs, o €Gr(dn)
which tells us immediately that

Qs < Qus + sup [Ksfsll, - (6.4)
fll2=1
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The important fact to notice here is that due to the support of fs being contained in
Ann™ (), we have

0 € Bys(1) = AZfs = AZ30:5f

where O, s is the frequency cutoff to the set O, 5 = {¢€ € Ann™(8) : |IL.¢] < 25|¢[}.
Notice that by Lemma 2.2 we have for every d-separated set X5 C Gr(d,n) that

D 10msf113 S 57V 13 (6.5)

TEYS

Therefore if ¥5 is a maximal 27 é-net in Gr(d, n), relying on (6.3) to pass to the second
line and on the overlap estimate (6.5)
IKafslly < 6% 37 sup sup [A750,5/(@)["
rex, ©€By—10,(7) zER™
SOy 0l S 8%
TESSs

(6.6)

Combining (6.6) with (6.4) yields the recursion

Qs < Qus + 035%™

for some dimensional constant ©. This proves the proposition via easy induction. 0O
6.4. The Nikodym mazimal operator

For 1 <d <mn, f € L} (R™), consider the maximal §-plate averages

Nsf(z) = sup ][ | f1, r € R™
oceGr(d,n)
z+Ts(o)
The role of Gr(d, n) is kept implicit in the notation of the Nikodym maximal function N.
The study of the Nikodym maximal operator is motivated by the question of existence
and dimension of (d,n)-Nikodym sets as defined below.

Definition 3. We say that A C R" is a (d, n)-Nikodym set if |A| = 0 and for every = € A
there exists an affine d-plane o 4 y, with o € Gr(d,n) and y € R", such that

r€o+y and B,(y,1)N(c+y) CE.

For d = 1 it is easy to see that the Kakeya conjecture would imply that all (1,n)-
Nikodym sets have Hausdorff dimension at least n. Again for the case d = 1 the maximal
Kakeya conjecture (6.2) is equivalent to the statement that for all §,& > 0 we have
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INs £

@) Se 0| /]

Ln(Rn), d=1

On the other hand, while for d > n/2 there are no (d,n)-Besicovitch sets, it is known
that for all 1 < d < n there exist (d,n)-Nikodym sets; see [14, Corollary 6.6]. It is thus
natural to focus on lower bounds for the Hausdorff dimension of such Nikodym sets. In
order to formulate the relevant conjecture on the maximal level we briefly explore below
the relation of Hausdorff dimension with LP(R™)-bounds for As. The proof is similar to
[20, Theorem 22.9].

Proposition 6.5. Suppose that there exists 1 < p < 0o, 1 < q < o0 and € > 0 such that
the following estimate holds. For all 0, > 0 there holds

INGf = LP(R™) = LP(R™)|| S 677
Then every (d,n)-Nikodym set has Hausdorff dimension at least n — €.

For general 1 < d < n the counterexample presented in Proposition 5.4 for the
maximal operator My 11} can be easily modified for the Nikodym maximal function
with =1 = NV/("=d) ghowing that the following conjecture would yield the best possible
quantification of the range of boundedness.

Conjecture G. Let Ny denote the (d,n)-Nikodym mazimal function for 1 < d < n. There
holds
n—d+1—p
o , l<p<n-—-d+1,
NG+ LP(R™) > LP(R™)| S ” ne
(log 6= 1)«(mdp) p>n—d+1,

for some exponent a(n,d,p) > 0.

The conjecture above suggests that the critical exponent for the (d, n)-Nikodym prob-
lem is p, == n — d 4+ 1. We verify the conjecture in the case d =n — 1, so that p, = 2, in
Section 7 below; in fact we prove the same logarithmic dependence for a more general
operator given with respect to (n — 1)-plates in R™ of arbitrary eccentricity. A range of
off-diagonal estimates can be conjectured by interpolating the estimate of Conjecture G
with the trivial L' — L estimate.

Conjecture H. Let Ns denote the (d,n)-Nikodym mazimal function for 1 < d < n. For
1<p<n—-d+1,¢g=p'(n—d), and alle >0

§—(=HER) l<p<n_dil,
IWef : LP(R™) = LI(E)]| S ’ Sp<n—d+
(log 6~ 1)Plndp) p=n—d+1,

for some exponent B(n,d,p) > 0.



30 F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749

For the case of general 1 < d < n, we include here the proof of the best possible
L?(R™)-estimate for the (d,n)-Nikodym maximal operator, namely the proof of The-
orem C as stated in the introduction of the paper. Unlike the previous parts of this
paper, the proof of Theorem C, as well as the one yielding the sharp critical bound for
d = n — 1 in Section 7 below, rely on geometric rather than Fourier analytic consid-
erations, together with TT™* types of arguments. In particular we will rely on precise
estimate for pairwise intersections of d-neighborhoods of elements of Gr(d,n). When
n > 2d pairwise intersections of elements of Gr(d,n) may have any dimension between
0 and d — 1, requiring a corresponding classification of the volume estimates; these es-
timates are stated and proved in Lemma 6.9 below. Similar estimates have appeared in
[25] for d = 2.

6.6. Pairwise intersections in Gr(d,n) and volume estimates

For o0 € Gr(d,n) it is convenient to denote S? := S™ No. Let 0,7 € Gr(d,n) and
suppose that n = o N7 € Gr(m,n) with 0 < m < d. We define the angles

0<Omir(o,7) < <b4(o,7)

inductively as follows. Initially set 0,1 = o NNt Ty = 7Nt Form+1<j <d
and o, 7; have been defined let

(sj,t;) == argmin {arccos(st) : s € S%,te SV}, 0; = arccos(s;t;),

o1 =008y, Tipn= 0t
and repeat with j + 1 in place of j. The algorithm stops when j = d.

Remark 6.7. Notice that 6,11 > 0, as there is no pair (s,t) € S7m+1 x S™+1 with s and

t colinear, and that clearly 6; is nondecreasing. Also notice that if s; =t1,--- s, =ty is
an orthonormal basis of o N7, then {s1,...,s4} and {t1,...,t4} are orthonormal bases
of o, T respectively. In addition, the construction of $,41,..., 54, tm+1,--.,tq yields a

further orthogonality property; namely if 7; = span{s;,t;} for m +1 < j < d then
1<j<k<d = zy=0 Vx € T,y € .

This is obvious if j < m. Otherwise, if ¢t € 75 is such that s;¢t # 0 for some j < k, we
may write ¢ = (cos @)t + (sin ¢)s; for some ¢ # 0 and t € 73,. Thus for any s € oy, as
ss; = 0 we have

st = (cos ¢)st + (sin ¢)ss; = (cos ¢)st < st

thus no s € oy, exists such that (s,t) is a minimizer. It follows that t; is orthogonal to
s; whence xy = 0 for all x € 7,y € m;,. The angles and bases
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0=01 = =0y, 0<9m+1g---§9dsg,
S={s1,...,84} T={t1,...,ta},

are respectively called canonical angles and bases and may be obtained, respectively, as
inverse cosines of the eigenvalues and eigenvectors of the 2d x 2d matrix M of inner
products between elements of arbitrary orthonormal bases of ¢ and 7. Finally we stress
that 64(c,7) ~ d(o,7), where the latter refers to the Gr(d,n) distance.

Remark 6.8. Given 0,7 € Gr(d,n), suppose 0 N7 € Gr(m,n), so that ( = span{o,7} €
Gr(2d — m,n). Let S = {s1,...,84} and T = {¢t1,...,tq} be the principal bases of o, 7
respectively that we constructed above. For each j = m + 1,...,d let z; be the unit
vector so that

tj = (cosb;)s; + (sinb;)z;.

Notice that z; belongs to m; and is thus orthogonal to sj for all £ # j by Remark 6.7
and to s; by construction. It follows that

Z =81,y Sdy Zm+41s---,2d}
is an orthonormal basis of (.

Lemma 6.9. Let 0,7 € Gr(d,n) and suppose that n = o N7 € Gr(m,n). Let a,b € R™,
P(o) =a+Ts(0), P(1) = b+ T5(7) be d-plates. Then
—1

d
|P(o) N P(7)| Spa 0”7 H max{d,0;(c,7)}

j=m+1
Proof. Let {s1,...,8q4} and {t1,...,ts} be the orthonormal bases of o, T respectively we
obtained with the principal angle construction. Let {s441,...5,} also be a basis of o*.

Pick any point p € P(o) N P(7). Choose coordinates y = (y1,...,y;) € R™ so that p is
the origin and y; = y - s;. We claim that P(c) N P(7) is contained in the intersection of
the n bands

{y e R™: |y;| < 3}, j=1,...,m,
Bj = {yeR”:ijRﬁf{g,}}, j=m+1,....4d,
{y e R™ : |y,| < 36}, j=d+1,...,n.

The claim readily yields the conclusion of the lemma and is completely obvious for
j=1,...,mand j = d+1,...,n, because for those values of j one has P(o) C B,
as well. It is also obvious for j € {m +1,...,d} if max{d,6;} = 4, thus we fix now
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j € {m+1,...,d} and arguing by contradiction, suppose that there exists y € P(c)NP(7)
with [y;| > S°. Let z; be as in Remark 6.8. It follows that

ly - z;| < 26.

However simple geometry shows that

a contradiction if C is large enough. O

In the next lemma we describe how to construct the essentially minimal dilate of a
d-plate P(o) that covers a nearby plate P(7), depending on the principal angles of o, 7.
We need some notation first

Let 0,7 € Gr(d, n) and suppose that cN7 € Gr(m,n). Let S, T and Z be the respective
orthonormal bases of o, 7 and ¢ = span(o, 7) constructed in Remark 6.8. Then the plates
Ts(0), Ts(7) may be described by

Ts5(0) = {x © max |z-s;| <1, max |z-z] <0, max |z-w| < 5},
{1,..., d} m+1<;5<d wel+

5(T) x {maﬁ} |z - s;] < ,{mgllax }|x [(cosb,;)s; + (sinb,)z;]| < 1,

geeny geuey

max |z - w| < 5}.
weTt
We define the dilation 75" (o) of T5(o) by

Ty (o) = {x : {F%ﬁ} |z - s;] <3, mfllg}j{gdm - zj| < 3max{4,0;}, ur)rézz)i |z w| < 35}.

)

Lemma 6.10. Let a,b € R", P(o) = a+ T5(0), P(1) = b+ Ts5(7) be d-plates with P(o) N
P(r) # @. Then

P(r)Ca+ T;_T(O').

Proof. By translation invariance, we may assume ¢ = 0. Then P(7) is contained in the
moderate dilate

SThr) = o e sl <8 s e eosti)s + (g5 <5

max |z - w| < 35}.
weTt

Simple geometry tells us that when j € {m+1,...,d}
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x € 3T5(1) = |z -[(cosbj)s; + (sinb;)z;| <3 = |z -z;| < 3sinb; < 30;.

On the other hand it is obvious that |z - s;| < 3 for all 1 < j < d when z € 3T5(7).
Therefore 375(7) C T, " (o), and the proof is complete. O

6.11. The proof of Theorem C'

As noted in the discussion leading to the formulation of Conjecture G, the bound
of Theorem C is best possible so it suffices to prove the upper bound. We begin by
linearizing the maximal operator N as follows. For ¥ C Gr(d,n) that will remain fixed
throughout the proof we let Ty, denote the collection of all §-plates of the form ar+T5 (o)
for ar € R™ and or € X. Now given f € S(R™) and 7 C Ty we consider the linear
operator

Nrsta) = 3 (f 1)tenta)

TET Vi

where Fr C T for every T' € T and the collection {Fr}re7 is pairwise disjoint. Denoting
by N the adjoint of N7 we have that

IVG = L*(R™) — L**(R™)| ~ sup INT = L2(R™) — L**(R")|
]

INT L]l
~ sup Ssup ——1 —
TCTs EcR»  |E|z

i

where the supremum in 7 C 75 can be taken over finite collections 7. As the adjoint
operator has the form

M@—Z(ﬁ/ah@

TeT Fr

we readily see that

" 1 1
Nilp =) |FTmE|ﬁ = |ET|ﬁ
TeT TeT

with Er = Fr N E pairwise disjoint and Ez C T. Note that the collection {|Er|}reT is
a Carleson sequence: for any open set U C R™ we have

> |Er| <|UNE

TeT
TCU
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We now expand the square of the L?-norm as follows

y [T NT|
INFLEI3= S 1Brl S 1B

TeT T €T
TNT' 42

For fixed T € T and 0 < k < log§~! we define
77€(T) = {T/ eT:TNnT # o, 2k5 < dlSt(T, T/) < 2k+16}.

This notation allows us to write

log 6!
" E TnT'
NGl = e B E0E (6.7
7
k=0 TeT T'eTi(T)

Now for fixed k,T and T” € T (T) we use Lemma 6.9 to estimate for every m € {0,...,d—

1}

TNT| 1 1 il

d T okg  gn—d

=27"
|T'| - 5d*m*1dist(aT,aT/) |T/|

Then for every fixed k we will have by Lemma 6.10 and the Carleson property of the
sequence {|Er|}reT

Z |Er| <

T €Tk

U 7| <17 (or)l:

T €Tk

Since 0;(or, o7/) < O4(or,01) =~ 28§ and 286 > § we can use the definition of T} (o)
to estimate

T3 (or)] < (2%0)" 77

Using the estimate in the last two displays and the calculation in (6.7) we gather

log 5! —(n—d-1) B
Wi s S 3 Erl gy  JOTTIEL S s den
= i T log(0~Y|E|, d=n—1,

which proves the desired weak (2,2) norm-estimate. The corresponding strong (2,2)
bound with an additional \/log §~!-term follows from the corresponding weak-type (2, 2)
bound and a well known interpolation argument of Strémberg, [29]; see also [17, p. 77-78]
for the details of this argument.
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7. The sharp bound for codimension one maximal operators

In this section, we prove Theorem B as a consequence of a more general directional
Carleson embedding theorem, Theorem I below. Therefore, we work with fixed codimen-
sion 1, so that n = d+1 > 2 throughout. Recall that our goal is to prove a sharp estimate
in terms of the cardinality parameter N for the maximal d-subspace averaging operator
My (0,00) When ¥ C Gr(d,d + 1) is a finite set with #X = N.

Our setup is more conveniently described by taking advantage of the isometric iso-
morphism

ceYCGr(d,d+1)—v=0"CGr(l,d+1)~S?

By finite splitting and rotational invariance, we may work under the assumption that
V c S? is contained in a small neighborhood of e,,. This choice of coordinate system is
conveniently exploited by modifying slightly our definition of d-plate (2.3), as follows.
For a d-dimensional axis-parallel cube I C e;- with center (c,0) € R™ and sidelength
O, for v € V, an interval K C R with | K| < {1, let

p(I o) ={y vt +(cr,t): Moy eI},  P(LKv)=|]pU t0).
te K

The set Q = P(I, K,v) is a d-plate with orientation vg = v, basis Ig = I, scale sg = {7,
height Ko = K and center cg = (CIQ,CKQ), where ck,, is the center of the interval
K C R. Each set p(Ig,t,vg) with t € K is referred to as the t-slice of Q.

Remark 7.1. The plate @ is the shearing of an axis-parallel box whose short side is
oriented along e,,. To compare with (2.3), observe that if § = fk,/¢r,, then Q and
Q =co+ SQTg(’Ué) are comparable, that is Q € CQ’,Q’ C CQ for a suitably chosen
dimensional constant C'.

We will work with different special collections of d-plates which we define below.

Definition 4. Let V' C S? be a finite set of directions, § > 0 be a small parameter.

- The collection of all d-plates in R™ with orientation along v € V' will be denoted by
Py, and Py = U, ey Po-

- For @ = P(I, K,v) € Py, write afg := vt 4 cg and call afg the plane of Q.

- A d-plate Q(I, K,v) will be called a (d, §)-plate if £{(Kg) = ¢ > 0, namely if it is a
d-plate with fixed thickness 6 > 0. The subcollection of those (d, d)-plates belonging
to P, is referred to by P, s and Py :i= U, Py 5.

- Given a dyadic grid D in R¢, special subcollections of P, Py are produced by defining
D, ={Q € P, : Ig € D}, and Dy = (J,cy Do. The special subcollection of Dy

consisting of (d, §)-plates will be denoted by Dy,s := J,cy Do,s-
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- For a generic collection @ C Py, set Q, = {Q € Q : vg = v}. This yields Q =
UUEV QU'

- A partial order on Dy is defined as follows. If Q,R € Dy, say Q < Rif QN R # o
and I C Ig.

- If @ C Py we will use the notation sh(Q) = Ugeco@ for the shadow of the collection.

With these definitions we introduce below maximal operators defined with respect to
collection of plates. For any £ C Py, set

Mef(@) =sup | f Ifldy) 1), R
LeLl ’

Note that in general M, is a directional operator as the plates have variable orientation.
In the special case that £ = £, C P, for some fixed v € V then M, is pointwise bounded
by the strong maximal function in a suitable coordinate system. Another special case
of interest occurs when £ C P, for fixed v € V and § > 0, in which case M, is a
one-parameter operator and satisfies weak (1, 1) bounds uniformly in v and §. Note that
the weak (1, 1)-bound persists if £ C P, is a collection of fixed eccentricity: in that case
the operators M, are again of weak-type (1,1) uniformly in v € V and the eccentricity
of the collection.

Carleson sequences. Directional Carleson sequences of positive numbers {ag}gep, are
introduced in the string of definitions that follow.

Definition 5. Let £ C Py be a collection of d-plates and let v € V' be a fixed direction.
The collection L is subordinate to T C P, if for every L € L there exists T' € T such
that L C T.

We stress that 7 C P, in the definition above only contains plates with fixed orienta-
tion v.

Definition 6. Let ¢ = {ag}gep, be a sequence of positive numbers. The sequence a is an
(L°°-normalized) Carleson sequence if for every £ C Dy which is subordinate to some
T C P, for some fixed v € V we have

Z ar, < |sh(T)], mass,(Q) = Z ag < 0.

LeL QeDy

For @ C Dy and a Carleson sequence a = {ag }gep, define the balayage

To(a)(z) = Z ag 1&576), x € R™ (7.1)
QeQ



F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749 37

It follows from the definition above that if a is a Carleson sequence and 7 C P, for
some fixed v € V then 7 is subordinate to itself and thus mass,(7) < [sh(T)].

An L2-Carleson embedding theorem for d-plates. Here we describe and prove the main
result of this section, a directional Carleson embedding theorem for d-plates in R™. In
order to state it we also introduce for any @ C Py the notation

o= |J Uu+se

1<s<100n QeQ

Theorem 1. Let V. C S¢ be a finite set of directions and Q C Dy be a collection of
d-plates in R™. We assume that the operators {Mg, : v € V'} satisfy

sup | Mg = LY(R™) = LY(R"™)|| <, 1.
veV
If a = {ag}qepy. s is a Carleson sequence then
1 1
[To(a)l| L2y Sn (log #V) 2 mass,(Q)>
with implicit constant depending only upon dimension.

The proof of Theorem I begins with some reductions that simplify and highlight the
main argument. First, for any @ C Dy we expand the square of the L?-norm in the
statement of the theorem as

1 1
SITe@ emey < X anf 3 a0i

ReQ R Q3Q<R

< u(log #V)mass, (Q) + u(#V) Z (k+1)sup Z ar

k>p(log #V) vev ReQy &
(7.2)

where 4 > 0 is a numerical constant to be chosen later and

Qv,k = {RG Q,: pk S][ Z GQ%<MU€+1)}.

7 Q3Q<R

Thus the proof reduces to proving a suitable estimate for mass,(Q, ) for every fixed v €
V and every k > u(log #V). The next remark encapsulates some simple but important
geometric observations that are at the heart of the argument.

Remark 7.2. Fix R = P(Ig,Kgr,vg) € Py and consider a d-plate Py > @Q =
P(Ig,Kq,vq) < R. Note that if vg # vg then afg Nafg is a (d — 1)-dimensional affine
subspace and let ling r be the subspace parallel to afg N afr. As vg,vg lie in a small
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neighborhood of e;-, the subspace H,1ling, r has dimension d — 1 as well and is a codi-
mension 1 subspace of e;-. We may thus pick an orthonormal basis Gor=1(91,---,94)
for e such that (gi,...,g4—1) is an orthonormal basis of Heling g

Let ./T\Qy r C be the smallest d-dimensional cube in the coordinates G r that contains
Ig. Then

IAQ,RCefL, IngQ,RngQ,
where the dilation is taken with respect to the center of Ig. Furthermore, defining

Q = P(Ig.r, Kq,vq)

then Q C Q and ’Q‘ ~n Q- In case Vg = VR We Just set Q Q for the sake of having
a general definition. Finally, setting IR =dlgr and R= P(IR, Kg,vg) yields

vg=vg, R2DR, 13215 YQ<R.

As vg = V5 and afA = af, the plate @ is a rotation and afg-tangential dilation of @
with respect to the hne {cq ttug:te vg }. Also, our construction yields that one of the
(d — 1)-dimensional edges of Q lies on an affine copy of afg N afg. Note also that IQ R
depends both on @ and R; we will however many times suppress the R-dependence as
R will be fixed and just write fQ in place of TQR.

With these definitions and conventions in hand, we state a geometric slicing lemma
that will be important for the proof of Theorem I.

Lemma 7.3. Let R = P(Ig, Kg,vg) € Dy and Dy 5 Q = P(I, Ko, vg) < R, and R,Q
be as in Remark 7.2. Let K C R be an interval with 11, (Q) € 3K and Kr C K. Then

max
a€R ’Iﬁ

Qnpg avp)| . 1 / L
| IR[IK] ¢
IﬁXBK

with implicit constant depending only upon dimension.

Proof. By composing d shearing transformations, we reduce to the case of v = e,. In
this case the slices may simply be described by p(I5,a,vz) = I5 x {a}. The conclusion
is immediate if vg = vz = e, since then the slices of @ by planes perpendicular to
en have all constant measure. Thus we assume that e, = vy # vg. Then, afg N afp
is an affine space of dimension d — 1 parallel to the subspace ling r. As vy = e,, we
have ling,r = Il 1 ling g, in other words ling,r C ei. Setting H(t) =t + (ling g)* for
teafrNafgN @, we have for any a € R that
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Z)QEV

Kol = ST

i,

Fig. 7.1. A plate Q = P(Ig, Kqg,vq) in R? perpendicular to vg € V.
]Qﬂ(lﬁx{a}ﬂ: / ‘H(t)ﬂQﬂ(Iﬁx{a})]dt.
afRﬂanﬂ@

Now observe that for each ¢t € afg Nafg N Q the set H t)n Q is a two-dimensional
parallelogram lying on H(t) with long side perpendicular to vg and short side of length
| K| parallel to e, (Fig. 7.1). Our assumptions yield

M., (QNK #o, I, (Q) ¢ 3K;

a two-dimensional calculation then reveals that there exists a set A C 3K \ K with
|A| > |K|/3 such that for each o’ € A and all t € afg Nafg N Q

[H) N QN (I x {d'})| = max |H(t) NQN (I x {a})];

the implicit constant in the estimate above is independent everything and in particular
this estimate holds uniformly in ¢. This clearly implies that

max | H(1)1QN (T % {a) |<][|H NG5 {a'} |da’<][|QﬂH A(Ipx{a'})] dd.

The conclusion of the lemma readily follows by noticing that for every a € R the quantlty
|H(t) N Qn (I x {a})| is independent of ¢ and integrating for ¢ € afg Nafg N Q. O

We now return to the estimate for mass,(Q, x). Letting R € Q, j we note that for
every @ 3 @ < R we have Q@ O Q and |Q| =, |@| so that

= ][ 2 “Q|Q|~”][ 2 QQEQSJ[ 2

Q3Q<LR Q3QLR Q3Q<R

since R C R and |R| ~, |§| For a collection of plates £ C Dy we define

i f S

Oet Ql
R Q<R
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Then the considerations above imply that
Qv,k g Qv,k = {Q € Qv : B]% > Cn;U’k} (73)

for some dimensional constant ¢, > 0 and p to be chosen.
The proof of Theorem I relies upon the estimate for sh(Q,, x) contained in the following
lemma.

Lemma 7.4. Let 6 > 0, V C S? be a finite set of directions, and Q C Dy satisfy the
assumptions of Theorem I. For v € V and k > 1 we define Q, x as in (7.3) above, with
o sufficiently large dimensional constant. Then

|sh(@v’k)‘ <n 2_kmassa(Q).

With Lemma 7.4 in our disposal we can complete the proof of the main result of this
paragraph.

Proof of Theorem I. Let Q C Dy be a collection of plates such that the operators {Mg, :
v € V'} are of weak-type (1, 1), uniformly in v € V| with weak (1,1) bound depending
only on the dimension. By (7.2) combined with (7.3) and the estimate of Lemma 7.4 we
have that

ITo(@) 32 S n((og #V) + (#V) Y. k27 )massa(£) S pllog #V)massa(L)
k>p(log #V')

so that

N[

1To(a)|| 2@y < Cnu% (log #V)%massa(g)

with p as in the assumption of Lemma 7.4. Note that this means that p can be chosen
to be a dimensional constant and this completes the proof of the theorem. O

It remains to prove Lemma 7.4 which follows by an iterative application of the lemma
below, as in the proof of [1, Lemma 2.21].

Lemma 7.5. Let V C S? be a finite set of directions and £ C R C Dy such that for every
L € L there exists R € R with L < R. Furthermore we assume that

sup Mz = LY(R™) = LY (R™)|| S 1.
IS

Fiz some v € V and let u be a sufficiently large dimensional constant. There exists
L1 C L such that

(i) mass,(L1) < %massa(ﬁ);
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i) For all plates R € R, such that B5 > pu we have
R M
B: < pu+ BE'.

Proof. Without loss of generality we can assume that v = e,. Let R/ denote the collec-

tion of R € R, with BE > p. For the plates R € R, and plates Q € L with Q < R we

define R Q as in Remark 7.2. We remember also the notation R = P(IR, KR,UR) and

Q= P(IQ, Kq,vq); since we will always consider the case () < R we have that IQ CIg.
Given some interval K C R and R € R/, we define the collections

BR={QeLl: Q<R (@)CSK},
Byt ={Qel:Q<R, ., (Q) ¢3K}.
We define
in Q/m fRXK) ou QQ(TRXK>
Bic= Y a Q0 Ur X K)| - pows S [QN{Ir x K)]

ol " Al < K o " 00T < K]

and note that for any K we have the splitting
erBm ‘Q| fQEBout

Easy case: Let Ry be the collection of those R € R/ such that B%?}(R < p. Then we
have for R € R that

Ll
Bf <+ Bi g, = n+ Bg', = U B, -
PER1
Noting that for all Q € L] we have that Q C @ » X 3K, for some p € R1, we get

mass, 1(L]) = Z a

QeL]

U U as

PERT QEBIN

U (1, x3K,)].

PER1L

Furthermore for every p € Ry we have

1A
n < BPL 2][ Z GQTQ.
P Q<p ’Q’

QeL

As all the p € R have fixed orientation our assumption entails that the maximal operator
Mﬁu = Mﬁe, is of weak type (1, 1) with constant depending only on the dimension. Since
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U (@, x3K,) € {Mg (ZaQ|Q|)znu},

PER1

we conclude that mass,(£]) < mass,(£)/4 if 4 > 0 is chosen to be a sufficiently large
dimensional constant.

The main case: Here we consider R € Ry := R, \ Ry. Let us write again R= :fR x Kgr
and consider the intervals J of the form J = 3°K g for £ > 0 such that BOut > p. Since
Blo%u}( > p for R € R the maximal such J which we call Jg will contam Kpr and
B?%u:téJR = [

By Lemma 7.3 we have for each a € 3Jg and Q) € B%‘ff]R

We can then calculate

QN fo{a})y QN (Tr x 3JR)|
Z aqQ N Z aqQ ~ =
acmmy, QN x{a}l ™ o, T QIR x 3k

1,\

S BORuit’JR - / Z aQTQ

(Trx37r) QBRI \Bbp @

<ust 3 w0 |Q 0 (Ir x 3JR)|

qenyi s, QIR x3Jr|

in passing to the last line we used the maximality of Jz. Now all the plates @ appearing
in the sum of the right hand side in the estimate above are contained in Ir x 9Jg and
so the sum of the second summand above is estimated by a dimensional constant ¢, > 1
so that

S \Qm Tn x {a})|

Sn bt Cn Sn
QB . ’QH IRX{“H ! e

if p is sufficiently large depending only upon dimension. Since Jg O K we can integrate
for a € Kr = K to conclude that

o _
> @ Font
o, “1alA =

for some dimensional constant x,, > 1. This shows that for u sufficiently large depending
upon dimension we have
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1y / .
Bi<wmt 3 a0 i oo B,
o5z, “1alR] .
with
Y ag<| U I, x3J,. (7.4)
QeL) PER2

By the previous estimates we have that for each p € Ro

[@n(, x J,)] |Qm[><{a})\
M<Bojl}p = Z aQ ][ Z da
’ QeBg 1QI|Z, % 7| Qe |QHI x {a}|

< \J\H a€Jy: Ypla) > p/24 4 p/2
with

o @N (I, x {a})]
Bp(a) QEBZ 710N, x {a}]

Thus there exists a set J, C J, with [J}| 2, [J,] so that ¢,(a) > /2 for a € J;. Now
note that for a € J,

14 1,
g wp(a)ﬁ—/ Z aQ|C§| < 1nfMi(ZaQ|Q|)(a:,a).
- el
Ty fay B2 ' 35

In the estimate above we write M, 1 for the maximal function

M, f(x) ::sup—/ |f(x+1)|dt, z €R",
s>0
Q,1(0,s)

where @, (0,s) denotes the cube in v+ ~ R? with sidelength s > 0 and centered at
0 € v*. Note that for v € S? the operator M, is of weak-type (1,1), uniformly in v.
Thus

U (fp xJ,) CS = {ZGR": MUL< E ag 1C2Q)(2) >/1,/2}

pER: Gen le2€
On the other hand since J), C Jg with [J}| 2 |J,| we readily see that

U Gox g c{zeR™: Mo, (1, 7)) 20 1}
PER2

C{zeR": M, (15)(z) Zn 1}.
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Combining (7.4) with the weak type (1, 1) inequalities for M., and M, = M, (since
we assume that v = e,,) and choosing p to be a sufficiently large dimensional constant

mass, 1 (L Z ag < — Z <1 Z ag = massg 1 (L)/4.

QEeL) Qeﬁ QeL

Now we set L = L] UL} and the proof is complete. O
7.6. Application to a maximal function estimate

As an immediate application of the directional Carleson embedding theorem for plates
we describe below a sharp theorem for maximal averages along codimension 1 plates. Let
d =n—1 and consider o € Gr(d,n) = Gr(d,d + 1). We remember that the codimension
1 averages at scale s > 0 of a function f € S(R%!) can be given in the form

Nua) = [ fa-nSf  weri,

Bg+1(s)No

where By 1(s) denotes the ball of radius s and centered at 0 € R4, Given a finite subset
Y C Gr(d,d+1) we are interested in the corresponding maximal averaging operator along
codimension 1 plates given by X

My f(z) == sup sup{|f])o,s(x), r € R4
s>00€eX

As a consequence of the directional Carleson embedding theorem we obtain the sharp
bounds for My, for arbitrary finite ¥ C Gr(d,d + 1).

Proof of Theorem B. We write n = d + 1 throughout the proof. It suffices to prove
the weak-type (2,2) estimate. Indeed the LP-estimate will then follow by interpolation
between the L?(R"™) — L%>°(R") and L*°(R") — L*(R") bounds. Furthermore the
strong-type (2,2) estimate follows by the corresponding weak-type estimate with an
additional v/log #3-loss by the well known interpolation argument of Strémberg, [29] as
in the proof of Theorem C.

For the L?(R™) — L*°°(R™) note that is suffices to prove the weak-type (2, 2) estimate
with the same dependence on #X for the closely related dyadic maximal operator

My f(@) = sup ][\fI zeR",
Q€EDy,s
Q>3x

for V. S? finite and fixed § > 0, and with a bound independent of §. This operator can
be linearized as in the proof of Theorem C in the form
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Tof@) =Y (f1/)1rela),  aer”

QeQ Q

where @ C Dy, a finite collection of (d,d) plates and {Fp}geo a pairwise disjoint
collection of measurable sets with Fgg C @ for every @ € Q. Denoting by T4 the adjoint
of Tg we have that

[Myv,s

B 1T5(1E)| L2 ®n)
|L2(Rn)— L2 (Rn) = SUP sup ———————
QCDy, s 0<|E|<oo |E|2

where

To(lp)(e) = 3 [Fon B,
QeQ

Clearly a = {ag}geco = {|Fg N E|}geo is a Carleson sequence in the sense of Defini-
tion 6 so the required estimate for T (1x) follows by a straightforward application of
Theorem 1.

The fact that these estimates are best possible follows by considering A to be a Kakeya
collection of § x 1-tubes in R? and taking A’ :== A x [—1,1]"~2. Now for each tube in A
we can consider a 1 x §"~2 plate that contains the tube and is perpendicular to the copy
of R? that contains A. Calculating the averages of 14 with respect to these plates yields
the sharpness of the weak-type (2,2) estimate and the sharpness of the strong (p,p)
estimate for p > 2. Note that the numerology here is #% = #V ~ 1/§. The optimality
of the strong (2, 2)-estimate follows similarly by considering a function in R? that yields
the sharpness of the 2-dimensional results and extending them in R™ by taking a tensor
product with a smooth bump in R”~2; see also Remark 3.1. O

Remark 7.7. We stress an important switch in our point of view when proving estimates
for the maximal operator My,; above, compared to say the corresponding estimates for
the Nikodym operator Ns in §6. Indeed although these two operators appear to be quite
similar, in the case of My, we are interested in proving estimates for arbitrary finite
subsets V C S¢ = Gr(d,d + 1). Thus our é-fattening of the thin plates B, (s) N o for
o € Gr(d,d+ 1) is purely qualitative, it is there just to allow us to use J-plates which
have positive measure in R?*! and are more amenable to geometric arguments. These
estimates are to be d-free as we use a limiting argument in order to recover thin plates
as & — 0F. Necessarily, for this argument the cardinality #V and § are completely
independent of each other. This is in contrast to the geometric setup underlying the
definition of the Nikodym operator A5 where the implicit subset of Gr(d,d + 1) is a
d-net and thus has cardinality ~ 6~ ¢, namely the thickness of the plates and the set of
essentially directions present in A are intimately connected.
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7.8. Application to a conical frequency square function
We describe below a square function estimate in the spirit of Rubio de Francia, given

with respect to conical frequency projections in R4+, Let {Bk}gzl be a collection of
open balls in R%*! whose centers vy, lie on S¢, and is well-distributed in the sense that

N
> lsm, S1
k=1

Here, as usual, 3By is a threefold dilation of the Euclidean ball By with respect to its
center. For each k, let

or € SR, 1p, < ¢r < 13p,

and define the conical frequency projection

Skf(z) = //f(rf’)qbk(f’)e”'rg,rd drdog(¢), r € R,
Sd 0

The d-plate Carleson embedding Theorem I may be used to deduce a square function
estimate for the projections S with sharp dependence on the parameter N.

Theorem J. For 2 <p < 4,

(i)'

Spod (log N)27 7 || fll o atry.-

Lr (Rd+1)

Furthermore, the restricted L*(R™)-type estimate

H (Z |Sk(f1E)|2)%
2

LA(REHT) Sa (g N) & || f[ oo (ra+1) | E]F

holds for all bounded measurable sets E C R, These bounds are best possible up to
the implicit numerical constants.

For the optimality in the estimate of Theorem J we send to [1, Section 8], noting that
the two-dimension bound becomes a lower bound in R%*+! for general d by taking balls
{Bk}szl having centers lying on a copy of S! and functions f which are suitable tensor
products.

The remainder of this section contains the proof of the upper bounds in Theorem J.
Below, ¢%; stands for the Euclidean norm on C¥. The first step consists of the radial
decoupling
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||SkaLp(Rd+1;£§V) Sp.d ||Skaf||Lp(Rd+1;e§V®z%) (7.5)

where p € [2,00) and {Q,, : m € Z} are Fourier multiplier operators whose associated
multipliers are radial and a partition of unity of R?*!\ {0} subordinated to the finitely
overlapping cover A,, = {¢ € R . 27m=1 < |¢| < 27m+1} 4y € Z. The proof is a
simple application of the weighted norm inequality

||gHL2(w) 5 ”ng”Lz (Mw;é%)

where M stands for the third iterate of the standard (d+1)-dimensional Hardy-Littlewood
maximal operator see [1, Lemma 5.6] for details.
Note that SiQ., is supported in the frequency tube

Whym, = {§ €A, : % S 3Bk}

whose center line is through the center vy of By and whose spatial dual is the plate
R), . ={z e R [y a| < 276, T, 2 < 27}

of eccentricity Jx, the radius of By and sidelength 2™. Let R, 1 be a S4 1-overlapping
cover of R4t! by translates R of R?n,k and t € Ty, i be the collection of tiles t = (R, wy)
with wy = wyr and R € R, k. The space-frequency projection on t is represented by
the intrinsic coefficient

ar(f) = sup |(f,8)|?

pedM

where ®M C S(R*1!) is the class of functions whose frequency support is contained in
wy and are uniformly spatially adapted to R; in the sense that

v |Rt||¢| S 1Rt + ZQ_Mk12k+1Rt\2th
k=0

uniformly over ¢ € ®M. A standard space-frequency discretization, see e.g. [1, Sect.
5] the right-hand side of (7.5) is pointwise bounded by the discretized square function
associated to the coefficients a;, namely

1Sx@mfllz 02 S Af = (Z at(f) |1]§;t|>

teT

where Ty = U,,cz T and T = U; <<y Tr. Theorem J is thus reduced to the
corresponding bounds for the discretized square function Af. In fact, by standard
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restricted-type interpolation, it suffices to prove the restricted type estimate that fol-
lows.

Proposition 7.9. HA(flE)2’ <4 (logN)? ||fHLoo(Rd+l)|E|%.

L2(Rd+1)

Proof. By a limiting argument, it suffices to replace the universe of tiles T in the defini-
tion of A by a finite subcollection, which we still call T. We still denote by T, , T), the
subcollections of T with sidelength and frequency parameters m, k. Recall that n = d+1.
By linearity, we may restrict to the case || f||ooc = 1. By finite splitting of the cones, we
can assume all v lie in a small neighborhood of e,, as specified in Theorem I. Using the
well known 3%-grid lemma and finite splitting of T, we may find a dyadic grid D on e;-
such that for all ¢t € T, x, He# R, C I, for some I, € D with £; = 2™*3. Let also K7,
j =0,1,2 be a system of three shifted dyadic grids on R and define

Qi ={P(I,K,vy): I €Dl =2"" K e K UK UK?, () € [27F36;,,2H6,) ),
Qk = U Qm,k; Q = U Qk-

meZ 1<k<N

Notice that for each ¢ € T,  there exists at least 1 and at most 3 elements Q) € O,
with R; C @ and |Q| < |R¢|. Thus, setting

T(Q) = {t € Tm,k : Rt C Q}7 aQ = Z at(f1E>7 Q S Qm,k
teT(Q)

leads to the pointwise estimate A(f1g)? < To(a), with Tg(a) in the form (7.1).

Proposition 7.9 may then be obtained by an application of Theorem I to the union Q
of the N collections Q.. Notice that the plates of Qy have fixed eccentricity d; and thus
obey the weak (1,1) assumption of that theorem. We must then compute the directional
Carleson norm of the sequence {ag : Q € Q}. Firstly, from the finite frequency overlap
of the Fourier supports of any collection {¢; € ®M : ¢ € T} and the spatial localization
of the collection {¢, € @, :t € T : w; = Wy i} to a finitely overlapping collection Ry, k,
we gather that

> g, 60 S lglls (7.6)

teT

whence

mass, (Q) < QZat(flE) < |E).

teT

The details of this estimate are similar to those of [1, Lemma 4.4].
We turn to the verification of the directional Carleson sequence property. That is for
each fixed k, let T C P,,, we need to prove that
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Z ar, < [sh(T)|

Lel

whenever L is a collection subordinated to 7. If M stands locally for the maximal aver-
aging operator over all plates P,, , which is of type (2,2) say, define the enlargement of

sh(T)
U= {Mlsh(T) > 2710}

so that |U| < |sh(7)|. Then

ZGLSZ Z at(fLEmU)"‘Z Z at(flenue).

Lec LELtET(Q) LEL teT(L)

The local part f1gny is then dealt with using (7.6) as follows:

> alf1eaw) S sl S U S [sh(T)].
teT(L)

To estimate the nonlocal part split 7 € T into the union of collections T(u), saying
T € T(u) if u is the least integer such that 2“T'T N U® # &. A suitable version of
Journé’s lemma [1, Lemma 4.7] yields

> 1T S 24 Ish(T))

TeT(u)

therefore the estimate for the non-local part follows from bounding uniformly in T’ € T (u)

Z Z axt(flEﬂUC) 52_10du|T|. (77)

LeL teT(L)
LCT

To prove the latter estimate, write

—100d
O,ox? 1L, 22
x(z) = <1+ . | 1 Mol )

Ir lry

for the rapidly decaying function adapted to the plate T. Note that ¢, € ®M with
t € T(L) is adapted to R; and thus to the slight enlargement L. When L C T, by =
corx € <I>iw/2 if M > 22904 and ¢ > 0 is suitably chosen; in particular we have used that
the frequency support of th is the same as that of ¢; as x is the inverse of a polynomial.

Let h = flpaye and T7 = 2vF7 T\ 247 As 2T N U° = @, we may write
h =322, hlp-. Then for suitable choice of ¢, € ®M and applying (7.6) to pass to the
second line
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S0 ahir) <Y YT [P S D Y [(hrex, én)|?

LeL teT(L) Le£ teT (L) fe% teT(L)
C

SP1zexl3 < e 51T
2 100d(u+r) o (2rd|T|) 29— 99d(u+7')|T|

Summing up over r > 0 yields the bound (7.7), and completes the proof of the Proposi-
tion. O
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