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We consider maximal operators associated to singular averages 
along finite subsets Σ of the Grassmannian Gr(d, n) of d-
dimensional subspaces of Rn. The well studied d = 1 case 
corresponds to the directional maximal function with respect 
to arbitrary finite subsets of Gr(1, n) = Sn−1. We provide a 
systematic study of all cases 1 ≤ d < n and prove essentially 
sharp L2(Rn) bounds for the maximal subspace averaging 
operator in terms of the cardinality of Σ, with no assumption 
on the structure of Σ. In the codimension 1 case, that is 
n = d + 1, we prove the precise critical weak (2, 2)-bound.
Drawing on the analogy between maximal subspace averages 
and (d, n)-Nikodym maximal averages, we also formulate the 
appropriate maximal Nikodym conjecture for general 1 < d <
n by providing examples that determine the critical Lp-space 
for the (d, n)-Nikodym problem. Unlike the d = 1 case, the 
maximal Kakeya and Nikodym problems are shown not to 
be equivalent when d > 1. In this context, we prove the 
best possible L2(Rn)-bound for the (d, n)-Nikodym maximal 
function for all combinations of dimension and codimension.
Our estimates rely on Fourier analytic almost orthogonality 
principles, combined with polynomial partitioning, but we 
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also use spatial analysis based on the precise calculation of 
intersections of d-dimensional plates in Rn.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For σ ∈ Gr(d, n), the Grassmannian of d-dimensional subspaces of R
n, the scale s

subspace average of f ∈ C(Rn) is

〈f〉s,σ(x) :=

ˆ

sBn∩σ

f(x − y)
dy

sd
, x ∈ R

n,

where Bn ⊂ R
n is the n-dimensional unit ball centered at the origin, sBn is its concentric 

dilate, and dy = dLd(y) denotes the Lebesgue measure on σ ∈ Gr(d, n). Fubini’s theorem 

ensures that, up to the dimensional constant Ld(Bd), the map f �→ 〈f〉s,σ preserves the 

L1(Rn)-norm of f and contracts all Lp(Rn)-norms for 1 < p ≤ ∞.

The general concern of this article is the Lp-behavior of the positive maps

f �→ 〈f〉s(·),σ(·)(·)

corresponding to a measurable choice of σ ∈ Gr(d, n) and scale s > 0 depending on 

the point x ∈ R
n. When d = n, these maps are pointwise controlled by the standard 

Hardy-Littlewood maximal operator for any pair of choice functions σ, s. The singular 

cases d < n give rise to a family of nontrivial problems of intrinsic relevance within 

the theory of differentiation of integrals, and possessing applications to singular and 

oscillatory operators, geometric measure theory and partial differential equations.

A central example is the classical question, attributed to Zygmund, of characterizing 

the class of planar vector fields that differentiate L2(R2) functions. The corresponding 

singular integral variant of Zygmund’s question, usually attributed to Stein, asks whether 

Lipschitz vector-fields of directions allow for a weak (2, 2) bound for the corresponding 

directional Hilbert transform, after suitable truncation.

The case of choice functions σ(·) whose range is a finite subset Σ ⊂ Gr(d, n) is 

also of particular importance. The averaging operator is of maximal nature, that is for 

s ∈ S ⊂ (0, ∞)

MΣ,{s}f := sup
σ∈Σ

〈|f |〉s,σ(·), MΣ,Sf := sup
s∈S

MΣ,{s}f.

The study of one-dimensional directional averages in Rn, corresponding to Gr(1, n), is 

connected to the problem of determining the Hausdorff dimension of Kakeya sets in Rn. 

There is a classification of such questions for all d < n, with Gr(d, n) corresponding to the 
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problem of studying the existence of (d, n) Besicovitch sets. For the study of directional 

averages as above in relation to the Kakeya-Besicovitch category of problems, it suffices 

to consider finite subsets Σ which are uniformly distributed at some distinct scale δ. 

More specifically, the range Σ of σ(·) is a maximal δ-net in Gr(d, n). This in turn leads 

to seeking for Lp-bounds for the corresponding maximal directional averages as a function 

of δ.

1.1. Thin (d, n)-averages for arbitrary finite Σ ⊂ Gr(d, n)

The case of more general maximal directional averages, where σ takes values in a finite 

but arbitrary subset Σ ⊂ Gr(d, n), is in general much harder as there is no distinct scale 

in the set of directions, and any suitable method must make up for the lack of uniform 

density in Σ. This obstruction is already present in the single scale problem. Our first 

main result is an essentially complete description of the sharp L2(Rn)-bounds in the 

whole range of dimensions and codimensions 1 ≤ d < n.

Theorem A. For all N > 0, 1 ≤ d < n there holds

sup
s>0

sup
Σ⊂Gr(d,n)

#Σ≤N

∥∥MΣ,{s}

∥∥
L2(Rn)

� N
(n−d−1)
2(n−d) (log N)

n−d
2 (1.1)

with an implicit numerical constant depending only upon d, n. This bound is sharp in 

terms of N when n = d + 1 and sharp up to the logarithmic factor in general.

For the special case d = 1 and n = 3, we obtain an improved version of Theorem A

where the corrective logarithmic term appearing in the right hand side of (1.1) is replaced 

by an arbitrarily iterated logarithm of N . The precise statement is given in Theorem F

of Section 5.

Before proceeding with the description of our second group of results, some remarks 

are in order. The case d = 1, n = 2 is due to Katz, [18]. It should be noted that two-

dimensional versions of the theorem above are somewhat related to the resolution of 

the Kakeya conjecture in two dimensions and to earlier results of Córdoba [6,8] and 

Strömberg [29]. We note here that Theorem A recovers the sharp result of Katz, [18], for 

single scale maximal directional averages on L2(R2), so necessarily d = 1, in fact with a 

new and independent proof. Note that Theorem A is a single-scale but with Σ ⊂ Gr(d, n)

arbitrary. The d = 1, n = 3 improved result of Theorem F is itself an amelioration of [12, 

Theorem B]. The proof technique for Theorem F combines the polynomial partitioning 

ideas of [12] with a new algebraic almost-orthogonality result, Theorem E, which is of 

independent interest and may be seen as a higher-dimensional analogue of the well-known 

Alfonseca-Soria-Vargas almost-orthogonality principle [2].
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1.2. Sharp critical estimates for multiscale (d, d + 1)-averages

In the cases of maximal directional averages in arbitrary dimension and codimension 

1 = n − d, we give a final theorem that provides the best possible Lp-bounds, p ≥ 2, for 

the corresponding maximal averages with respect to arbitrary finite Σ ⊂ Gr(d, d + 1). 

It should be noted that in this case we can actually tackle the multiscale problem in a 

sharp fashion. An important feature shared by the codimension 1 problems is that the 

critical integrability space for the maximal function MΣ,S is L2(Rn).

Theorem B. Let n = d + 1 and Σ ⊂ Gr(d, d + 1) be a finite set. Then

‖MΣ,(0,∞) : L2(Rn) → L2,∞(Rn)‖ � (log #Σ)
1
2

and

‖MΣ,(0,∞) : Lp(Rn) → Lp(Rn)‖ �

⎧
⎨
⎩

(log #Σ)
1
p , p > 2,

log #Σ, p = 2.

These bounds are best possible in terms of the dependence on the cardinality #Σ.

For the sharpness of the obtained bounds, we send to Proposition 5.4. The main 

tool in the proof of the upper bounds is a directional Carleson embedding theorem 

for suitable Carleson sequences indexed by δ-plates, see Theorem I in Section 7. More 

specifically, Theorem B is obtained by an application of Theorem I to the adjoint of 

the (linearized) maximal operator MΣ,S . More general applications of the directional 

Carleson theorem are revealed by couplings with time-frequency analysis. Along these 

lines, as a representative sample of the scope of Theorem I, we derive from it a sharp 

estimate for the Rubio de Francia square function associated to N well-distributed conical 

sectors in Rn, see Theorem J.

1.3. L2-estimates for the (d, n)-Nikodym maximal operator

With precise definitions and discussion to come later, we define the (d, n)-Nikodym 

maximal function on Rn by

Nδf(x) := sup
σ∈Gr(d,n)

 

x+Tδ(σ)

|f(y)| dy, x ∈ R
n, (1.2)

where Tδ(σ) is a δ-neighborhood of σ ∩ Bn(1); see (2.3). This is the maximal operator 

coupled with the dimensional analysis of (d, n)-Nikodym sets for general 1 ≤ d < n. As 

discussed in §6, suitable Lp(Rn)-bounds for Nδ imply corresponding lower bounds for 

the Hausdorff dimension of (d, n)-Nikodym sets. Our main result here is the following
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Theorem C. Let 1 ≤ d < n and δ > 0. There holds

‖Nδ : L2(Rn) → L2,∞(Rn)‖ �

{
δ− n−d−1

2 , 1 ≤ d < n − 1,√
log(δ−1), d = n − 1,

and

‖Nδ : L2(Rn) → L2(Rn)‖ �

{
δ− n−d−1

2

√
log δ−1, 1 ≤ d < n − 1,

log(δ−1), d = n − 1.

The weak (2, 2) bound is best possible while the strong (2, 2) bound is best possible up to 

the logarithmic factor 
√

log(δ−1).

1.4. Motivation and background

The study of maximal directional averages has a long history, motivated for instance by 

the Kakeya, Zygmund and Stein conjectures mentioned above. Maximal averages along 

subsets of Gr(d, n) are also quantitatively connected with the behavior of the ball and 

polygon multipliers and the convergence of Fourier series in higher dimensions, as well as 

to square functions formed by frequency projections to the corresponding dual subsets 

of the frequency domain. This last theme is explored in detail in [1] in dimension n = 2. 

As mentioned above, we present an application of this type, for arbitrary dimension n, 

in §7.8 below.

The study of Gr(d, n)-averages can be classified according to the structure of Σ ⊂
Gr(d, n). This classification is more established in the case d = 1, where Σ ⊂ S

n−1 and 

three particular cases of interest arise.

First, lacunary sets [7,21,27,28] are the only infinite subsets of S
n−1 that give rise 

to bounded directional maximal functions. This characterization is due to Bateman in 

n = 2, and albeit in a weaker form, to Parcet and Rogers [24], and relies ultimately on 

the existence of Kakeya and Nikodym sets. Second, sharp Lp(Rn)-bounds for maximal 

averages along δ-uniform sets of directions Σδ ⊂ S
n−1 are the subject of the maximal 

Nikodym conjecture, whose lower bounds tells us a fortiori that ‖MΣδ,{1}‖Lp(Rn) cannot 

be independent of δ for any p ∈ (1, ∞). In fact, the maximal Nikodym conjecture is 

formally weaker than statements involving MΣδ,{1}, dealing with averages along δ-tubes 

instead of thin, δ-uniformly spaced averages of the form MΣδ,{1}.

In two dimensions the sharp bounds for MΣδ,S are known, see for example [6,8,29]. 

In higher dimensions n > 3 the Kakeya conjecture is open but several partial and very 

significant results are available; see for example [16] and the references therein. Best 

possible L2(Rn) bounds for multiscale averages along uniformly distributed sets in Sn−1

recently appeared in [19].

The problem of sharp Lp-bounds for MΣ,S when Σ ⊂ S
n−1 is instead arbitrary is 

also fully solved when n = 2 [17,18]. However, in particular when n > 2, it is in general 
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much harder than the δ-net case, as there is no distinct scale on the set of directions, 

or alternatively, there is no fixed density of directions. This lack of structure does not 

allow for e.g. the use of induction on scales, and new tools are necessary. Recently, we 

proved in [12] essentially sharp L2(Rn)-bounds for MΣ,{1} for arbitrary finite Σ ⊂ S
n−1

or Σ ⊂ Z with Z algebraic submanifold of Sn−1, via the polynomial method.

Moving away from the restriction d = 1, we introduce in this paper a family of 

problems related to averages with respect to Gr(d, n) for general 1 ≤ d < n. Such 

Radon-type transforms have been studied in several forms in the literature, for example 

for the (d, n)-Kakeya maximal function

Kf(L) := sup
x∈Rn

ˆ

L+x

f(y) dy, L ∈ Gr(d, n),

where f is a suitable function in Rn. In analogy to the case d = 1, suitable Lp(Rn) →
Lq(Gr(d, n)) bounds for the (d, n)-Kakeya operator, or for corresponding d-plane trans-

forms, relate to the existence and dimension of (d, n)-Besicovitch sets; see [20, §24], 

[22,23], and the discussion in Section 6. Our point of view is different, unifying the study 

of d-plane averages for all 1 ≤ d < n in the form of thin subspace averages MΣ,{s}, possi-

bly at different scales s, as operators acting on Lp(Rn). As in the case d = 1 the structure 

of the subset Σ ⊂ Gr(d, n) under consideration is of paramount importance. In this light, 

our setup is new and, for example, there is currently no definition of lacunary subsets 

of Gr(d, n). In this paper we thoroughly study the cases of arbitrary Σ ⊂ Gr(d, n). The 

case of uniformly distributed subsets Σδ ⊂ Gr(d, n) is also important and is implicit in 

the study of the (d, n)-Kakeya and Nikodym maximal operators in Section 6 and more 

precisely in the statements of Proposition 6.2 and Theorem C. There is again a criti-

cal integrability space Lp(d,n)(Rn) for MΣδ,{1} relating to the problem of existence and 

dimension of (d, n)-Nikodym sets.

An important difference is that for d > 1 the (d, n)-Kakeya conjecture and the (d, n)-

Nikodym conjecture appear to be independent of each other and so are the corresponding 

critical exponents p(d, n). This is in stark contrast with the case d = 1 where the maximal 

Kakeya and maximal Nikodym conjectures are equivalent; see [30]. For example a well 

known result of Falconer, [13], implies the there are no (d, n) Besicovitch sets for d > n/2

while another result of Falconer, [14], shows that there exist (d, n)-Nikodym sets for all 

1 ≤ d < n. This difference is also reflected in the fact that, unlike the case d = 1, the 

possibility of δ-free bounds for the (d, n)-Kakeya operator K, defined in (6.1) below, is 

not excluded. An instance of this is contained in the statement of Proposition 6.2. On 

the other hand this is not the case for the (d, n)-Nikodym maximal operator, nor for 

MΣ,{s}, as exhibited in Theorem C, in accordance to the previously mentioned result 

of Falconer. A more general study of d-plane averages of the form MΣ,S and of (d, n)-

Nikodym maximal operators for 1 < d < n is motivated by these connections and 

nuances. We introduce the maximal multiscale problem with S = (0, ∞) and generic 

Σ ⊂ Gr(d, n) and manage to fully resolve the problem in the codimension 1 = n − d
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case, in the form of Theorem B above. At the same time we formulate a general (d, n)-

Nikodym conjecture and discuss the critical integrability index for general d. From that 

point of view Theorem C stated above describes a sharp but subcritical estimate for the 

(d, n)-Nikodym function, and corresponding maximal conjecture.

The investigations in the current paper lead to several natural questions concerning the 

Lp(Rn)-bounds for d-subspace averages MΣ,S, and especially the study of such Lp-norms 

close to the critical exponent p = p(d, n) is particularly interesting, and consistently hard. 

The current paper addresses in particular all the L2(Rn)-bounds for such operators in a 

sharp fashion, whether L2(Rn) happens to be subcritical as in the case n > 2, d < n − 1, 

or critical as in the case d = n − 1 in any dimension.

1.5. Methodology

In this paper we employ a mix of geometric, Fourier analytic, and polynomial methods. 

The latter technique for the study of directional maximal operators along arbitrary sets 

of directions was introduced in [12]. Using a polynomial partition we divide the set of 

directions into subsets (cells) of controlled cardinality and such that the boundary of 

these subsets is an algebraic variety of controlled degree. The properties of this partition 

allow us to prove an almost orthogonality principle via Fourier methods, as the algebraic 

nature of the boundary of the cells (wall) yields suitable overlap estimates for the relevant 

Fourier multipliers. Using this scheme we prove a general almost orthogonality principle 

for single scale directional averages defined with respect to an arbitrary set of directions. 

In the current paper we apply this principle to yield essentially sharp bounds for maximal 

d = 1-dimensional averages given by arbitrary directions on the sphere. The application 

of the polynomial partitioning scheme to the case of d-dimensional averages in Rn will 

require a suitable polynomial partition on the Grassmannian Gr(d, n) and will be taken 

up in a future work. However, for general codimension n − d we present an alternative 

argument that recovers almost sharp L2-bounds for d-dimensional single-scale averages 

given by arbitrary subsets Σ ⊂ Gr(d, n). Indeed this approach misses the conjectured 

sharp L2-bound, which is polynomial in #Σ, by a logarithmic factor in #Σ.

In two cases, we employ a different point of view in order to obtain sharp L2(Rn)-

bounds via space analysis. This is particular efficient when proving L2(Rn)-bounds for 

maximal directional d-plane averages with n = d +1. It is important to note that for this 

codimension-1 case, the space L2(Rn) is critical and we do prove the best possible bound 

in Theorem B, in fact even for the multiscale maximal function. The approach, inspired 

by the works of Katz [17] and Bateman [4], is via a TT ∗-argument on the adjoint of the 

linearized maximal operator and an appeal to a suitable directional Carleson embedding 

theorem. In [1] this method was elaborated into a directional Carleson embedding the-

orem for suitable directional Carleson sequences. Here we suitably adapt the geometric 

part of the argument, resulting in a corresponding directional Carleson embedding for se-

quences indexed by (n − 1)-dimensional plates in Rn and satisfying a Carleson condition 

adjusted to the geometry of such plates.
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A second TT ∗ instance appears in the proof of sharp L2(Rn)-bounds for the Gr(d, n)-

Nikodym maximal operator. Here we are able to exploit specific structure of the nets 

Σδ and prove explicit estimates for the volume of the intersections of such δ-plates in 

all combinations of dimension and codimension. These volume estimates and the TT ∗

argument yield the sharp bound for the (d, n)-Nikodym maximal operator of Theorem C.

1.6. Notation

The purpose of this paragraph is to provide easy reference for a few central definitions, 

in particular for the several maximal and averaging operators that appear throughout 

the paper.

• The notation Bk(z) is reserved for the unit ball in Rk centered at z ∈ R
k, and we 

write Bk := Bk(0).

• If σ is a subspace of Rn, we denote by Πσ the corresponding orthogonal projection. 

For v ∈ S
n−1 we abuse notation and write Πv instead of Πspan{v}.

• The notation M is reserved for the Hardy-Littlewood maximal operator on the cor-

responding Rn.

• For Σ ⊂ Gr(d, n) and S ⊂ (0, ∞), MΣ,S stands for the maximal averaging operator 

with respect to thin plates σ ∩ Bn(s) with σ ∈ Σ and choice of scale s ∈ S. In 

symbols,

MΣ,Sf(x) := sup
s∈S
σ∈Σ

〈|f |〉σ,s(x), x ∈ R
n.

The case S = {s} for some s > 0 is the single-scale case and will appear in several 

places below. When S = {1} we simplify the notation to MΣf := MΣ,{1}f .

• The smooth, compactly Fourier supported version of MΣ,S, denoted by AΣ,S, and 

defined in (2.4), will be used throughout the paper.

• Also, given δ > 0 we consider the (d, n)-Nikodym maximal operator Nδ which is a 

maximal –with respect to σ– average along plates x + σ ∩ Bn(1), x ∈ R
n, oriented 

along any σ ∈ Gr(d, n) and having thickness δ in the σ⊥-directions, see (1.2).

All of the above operators are functions defined on Rn and we will be proving Lp(Rn) →
Lq(Rn) operator norm-bounds.

1.7. Structure of the article

In Section 2, we collect a few definitions related to the Grassmannian and its dis-

tance, and develop a technical subspace switch lemma for the Fourier version of our 

averages. Section 3 uses the switch lemma to give a new and simple proof of the L2-

almost-orthogonality principle of [2] for maximal directional operators in the plane. The 



F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749 9

argument of Section 3 serves as a model for the more complex Section 4, where an alge-

braic almost orthogonality principle in arbitrary dimension, of similar flavor, is proved. 

Section 5 contains the proof of Theorems A and F. In Section 6 we discuss the Nikodym 

analogue of the maximal function MΣ, formulating the relevant maximal conjecture and 

proving the L2 case. Finally, Section 7 is dedicated to the full solution of the codimension 

1 case via a subspace Carleson embedding theorem and to the application of the latter 

to the Rubio de Francia estimate for conical cutoffs in Rn.

2. Grassmannian, Fourier averages and switch lemmas

This section contains a few definitions and technical lemmas that will be used through-

out the paper.

2.1. Grassmannian

We write Gr(d, n) for the Grassmannian of d-dimensional subspaces of Rn. If O(n)

stands for the orthogonal group on Rn then

Gr(d, n) = O(n)\ [O(d) ⊗ O(n − d)] , (2.1)

identifying each subspace σ ∈ Gr(d, n) with the orthogonal map sending the first d

canonical vectors onto an orthonormal basis of σ. In particular Gr(d, n) is a smooth 

algebraic variety of dimension d(n − d). Equipped with the metric

d(σ, τ) := sup
v∈Sn−1

|σv − τv|, σ, τ ∈ Gr(d, n),

the Grassmanian Gr(d, n) can be viewed as a compact metric space. For δ > 0 and 

σ ∈ Gr(d, n) we denote by Bδ(σ) := {τ ∈ Gr(d, n) : d(σ, τ) < δ} the open δ-ball centered 

at σ ∈ Gr(d, n).

In analogy with the classical Kakeya-Nikodym directional maximal functions, we will 

consider below the maximal subspace averages along δ-separated subsets Σ ⊂ Gr(d, n). 

We say Σ ⊂ Gr(d, n) is δ-separated if {Bδ(σ) : σ ∈ Σ} is a collection of pairwise disjoint 

sets. We will need the following lemma concerning the cardinality of the subset of a 

δ-separated set Σ consisting of subspaces which are δ-approximately orthogonal to some 

ξ ∈ R
n. We will see that these belong to a δ-neighborhood of the Grassmanian hyperplane

Hξ(d) := {τ ∈ Gr(d, n) : Πτ ξ = 0}. (2.2)

Notice that Hξ(d) is linearly isomorphic to Gr(d, n − 1).

Lemma 2.2. Let ξ ∈ R
n \ {0}, Σ ⊂ Gr(d, n), δ > 0 and Σξ :=

{
σ ∈ Σ :

|Πσξ|
|ξ| <

δ

4

}
. 

Then
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1. The set Σξ is contained in the δ
3 -neighborhood of Hξ(d).

2. If Σ is a δ-separated set, then #Σξ � δ−d(n−d−1).

Proof. We first prove claim 2 assuming claim 1. Indeed, assuming 1, for each σ ∈ Σξ we 

may pick aσ ∈ Hξ(d) with d(aσ, σ) < δ
3 . By the triangle inequality Σ � σ, τ, σ �= τ =⇒

d(aσ, aτ ) ≥ δ
3 . Therefore, the set {aσ : σ ∈ Σξ} ⊂ Hξ(d) has at most ∼ δ−d(n−d−1)

elements by dimensionality of Hξ(d). This completes the proof of the lemma up to 

establishing the claim.

We now prove claim 1. By rotation invariance of the statement it suffices to prove the 

claim for ξ = e1. Let σ ∈ Σξ. Let u = |Πσe1|. If u = 0 there is nothing to prove, which 

means we may work with 0 < u < δ/4. Pick an orthonormal basis {b1, . . . , bd} of σ with 

b1 = Πσe1/|Πσe1|. Then b2, . . . , bd ∈ e⊥
1 ∩ b⊥

1 . Let

c1 :=
b1 − ue1

|b1 − ue1| .

Then aσ := span{c1, b2, . . . bd} ∈ Hξ(d) and as |c1 − b1| < δ
3 , we have shown that 

d(aσ, σ) < δ
3 as claimed. �

2.3. Fourier averages and switch lemmas

If 0 ≤ δ � 1 and σ ∈ Gr(d, n) then

Tδ(σ) := T 1
δ (σ) :=

{
ξ ∈ R

n : |Πσξ| ≤ 1, |Πσ⊥ξ| < δ
}

(2.3)

will stand for the unit scale d-dimensional δ-plate oriented along σ. In general, we think 

of Tδ(σ) as a slight fattening of the unit ball Bd on σ. Throughout the paper a few 

slightly different versions of this fattening will be employed depending on the problem 

being considered.

Let φd ∈ S(Rd) be a real valued even function with support in 2−8Bd, and 

‖φd‖L1(Rd) = 1. For σ ∈ Gr(d, n) and s > 0 we define the smooth subspace averages and 

maximal averages of f ∈ S(Rd) by

Aσ,sf(x) :=

ˆ

Rn

f̂(ξ)φd (sΠσξ) eix·ξ dξ, AΣ,Sf(x) := sup
s∈S
σ∈Σ

|Aσ,sf(x)|, x ∈ R
n.

(2.4)

When σ = Rv for some v ∈ S
n−1, we write Av,s in place of Aσ,s. The easily verified fact

‖MΣ,S‖L2(Rn) = sup
k∈Z

‖MΣ,2kS‖L2(Rn) ∼ sup
k∈Z

‖AΣ,2kS‖L2(Rn) = ‖AΣ,S‖L2(Rn) (2.5)

will be used in what follows, often in combination with (2.10) below.

Fix a radial function Φ ∈ S(Rn) with 1Bn
≤ Φ ≤ 12Bn

and for δ > 0 introduce the 

low-high splitting
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Aσ,sf = A>δ
σ,sf + A<δ

σ,sf, Â>δ
σ,sf(ξ) := Âσ,sf(ξ)Φ (4sδξ) , ξ ∈ R

n. (2.6)

The notation is motivated by the fact that A>δ
σ,s is a smooth average at spatial scale s

in the directions of σ, and scale sδ in the directions orthogonal to σ, and consequently 

containing frequency scales at most 1/(sδ). With this in mind, the parameter 0 < δ ≤ 1 in 

the following lemma measures the eccentricity of the plates with long directions oriented 

along the subspace τ appearing in the averages on the right hand side.

Lemma 2.4. Let s > 0, σ �= τ ∈ Gr(d, n) and δ ∈ [d(σ, τ), 1] be given. Then

∣∣A>δ
σ,sf(x)

∣∣ �
∞∑

k=0

2−kn

 

x+2ksTδ(τ)

|f | , (2.7)

∣∣A>δ
σ,sf(x) − A>δ

τ,sf(x)
∣∣ � d(σ, τ)

δ

∞∑

k=0

2−kn

 

x+2ksTδ(τ)

|f | . (2.8)

Proof. The case σ = τ of (2.7) follows easily by the Schwartz decay of the smooth 

function φd used in the definition of Aσ,s. This means that the general case of (2.7) is an 

immediate consequence of (2.8), which we now prove. By isotropic scaling and rotational 

invariance it suffices to treat the case s = 1, τ = span{e1, . . . , ed}. Let

ζ(ξ, y) := Πτ ξ + y(Πσ − Πτ )ξ, y ∈ [0, 1].

The Fourier transform of the integral kernel K of A>δ
σ,1 − A>δ

τ,1 is given by

K̂(ξ) = Φ(4δξ)

1
ˆ

0

∇φd(ζ(ξ, y)) · [(Πσ − Πτ ) ξ] dy

and is supported in a 1-neighborhood of σ⊥ ∩ 2δ−1Bn, which has measure ∼ δd−n. It 

also satisfies for each multi-index α = (α1, . . . , αn)

∣∣∂αK̂(ξ)
∣∣ � d(σ, τ)δαd+1+···+αn−1. (2.9)

This estimate is obtained via repeated use of the Leibniz rule and the following consid-

erations:

|supp K̂| � δd−n, sup
y∈[0,1]

sup
d+1≤j≤n

|∂jζ(ξ, y)| � d(σ, τ) ≤ δ, ‖Πσ − Πτ ‖ = d(σ, τ).

Integration by parts then readily yields

|K(x)| � d(σ, τ)

δn−d+1

[
1 + |Πτ x|

]−4n
[
1 +

|Πτ⊥x|
δ

]−4n

, x ∈ R
n,
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which in turn implies (2.8). The proof is thus complete. �

Remark 2.5. If M is the standard maximal function in Rn, a simple averaging argument 

leads from (2.7) and (2.8) to

∣∣A>δ
σ,sf(x)

∣∣+ δ

d(σ, τ)

∣∣A>δ
σ,sf(x) − A>δ

τ,sf(x)
∣∣ �

∞∑

k=0

2−knM[〈|f |〉τ,2ks](x), x ∈ R
n.

(2.10)

The previous lemma suggests that the low frequencies |ξ| � (sδ)−1 of the averages 

Aσ,s may be approximated by plates oriented along δ-nearby subspaces. The next lemma 

records the support of the complementary high-frequency components. For σ ∈ Gr(d, n)

and δ > 0, consider the two-sheeted cone

Γσ,δ :=

{
ξ ∈ R

n \ {0} :
|Πσξ|

|ξ| < 2−2δ

}

and, abusing notation, denote also the corresponding Fourier restriction by Γσ,δ, namely 

we write (Γσ,δf)∧(ξ) := 1Γσ,δ
(ξ)f̂(ξ).

Lemma 2.6. Let s > 0, σ ∈ Gr(d, n). Then A<δ
σ,sf = A<δ

σ,sΓσ,δf .

Proof. Suppose ξ belongs to the Fourier support of A<δ
σ,sf . Then |ξ| ≥ 4(δs)−1, and 

|Πσξ| < s−1 ≤ δ|ξ|/4. The latter means ξ ∈ Γσ,δ. �

3. Almost orthogonality for directions in the plane

In this section, we present a simple proof of the L2-almost-orthogonality principle of [2]

for maximal directional operators in the plane. Our argument uses Fourier analysis and 

overlap estimates instead of geometric considerations and TT ∗-type arguments. Although 

this result is known, we include here a new argument that serves as a prelude to the 

more technical algebraic almost orthogonality in arbitrary dimension devised in the next 

section. The statement is as follows.

Theorem D. There is an absolute constant C such that the following holds. Let S ⊂
(0, ∞), U = {u1, . . . , uN+1} ⊂ S

1 be a set of directions ordered counterclockwise. For 

each j = 1, . . . , N let Vj ⊂ S
1 be a set of directions contained in the cone bordered by 

uj , uj+1 and let V =
⋃{Vj : 1 ≤ j ≤ N}. Then,

‖AV,S‖L2(R2) ≤ C ‖AU,S‖L2(R2) + max
1≤j≤N

∥∥AVj ,S

∥∥
L2(R2)

.

A simple induction argument using the leftmost and middle directions as elements of 

the dividing set U , together with the control from (2.5), bootstrap Theorem D to recover 

the following sharp bound from [17,2].
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Corollary D.1. Let V ⊂ S
1 be a finite set. Then 

∥∥MV,(0,∞)

∥∥
L2(R2)

� log(#V ).

Remark 3.1. The sharpness of the estimate in Corollary D.1 follows by a variation of 

an example employed in [9, Proposition 3.3] for the directional Hilbert transform. In 

particular one considers the action of MΣδ,(0,∞) on the function f(x) := |x|−1
1{1≤|x|�N}, 

where Σδ is a δ = N−1-net on S1. We omit the details.

Proof of Theorem D. In this proof the constant C > 0 is absolute and may vary at 

each occurrence. For each 1 ≤ j ≤ N , let Γj be the two-sheeted cone bordered by 

the supporting lines to u⊥
j , u⊥

j+1, and denote also by Γj be the corresponding Fourier 

restriction. The cones {Γj : 1 ≤ j ≤ n} are pairwise disjoint, so that

N∑

j=1

‖Γjf‖2
2 ≤ ‖f‖2

2. (3.1)

For v ∈ Vj , let u(v) = arg min {d(v, uj), d(v, uj+1)} and δ(v) = d(v, u(v)). By assump-

tion, the direction v⊥
j ∈ S

1 lies between u⊥
j , u⊥

j+1 and thus in Γj . The sense of the 

definitions above is that the whole cone Γv,δ(v) := {ξ : |ξ · v| < δv|ξ|} is contained in Γj , 

namely

Γv,δ(v) ⊂ Γj , v ∈ Vj . (3.2)

With this choice, Lemma 2.6 and (3.2) tell us that

∣∣∣A<δ(v)
v,s f

∣∣∣ =
∣∣∣A<δ(v)

v,s Γjf
∣∣∣ ≤
∣∣∣A>δ(v)

v,s Γjf
∣∣∣+ |Av,sΓjf | .

Applying Remark 2.5 twice, we obtain

|Av,sf | ≤
∣∣∣A>δ(v)

v,s f
∣∣∣+
∣∣∣A<δ(v)

v,s f
∣∣∣ ≤
∣∣∣A>δ(v)

v,s f
∣∣∣+
∣∣∣A>δ(v)

v,s Γjf
∣∣∣+ |Av,sΓjf |

≤ |Av,sΓjf | + C
∞∑

k=0

2−k
(

M[〈|f |〉u(v),2ks] + M[〈|Γjf |〉u(v),2ks]
)

,

where we remember that M denotes the Hardy-Littlewood maximal operator. Taking 

supremum over v ∈ Vj , s ∈ S, 1 ≤ j ≤ N , and subsequently taking L2 norms,

‖AV,Sf‖2 ≤
∥∥∥ max

1≤j≤N

{
AVj ,SΓjf

}∥∥∥
2

+ C sup
k

∥∥M ◦ MU,2kSf
∥∥

2
+ C sup

k

∥∥∥∥ sup
1≤j≤N

{
M ◦ MU,2kS [Γjf ]

}∥∥∥∥
2

.

(3.3)

Using the observation in (2.5)
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sup
k

∥∥M ◦ MU,2kS

∥∥
2→2

≤ C sup
k

∥∥MU,2kS

∥∥
2→2

≤ C ‖AU,S‖2→2 , (3.4)

and similarly using the orthogonality in (3.1) and a square function argument

∥∥∥∥ sup
1≤j≤N

{
M ◦ MU,2kS [Γjf ]

}∥∥∥∥
2

≤ C ‖AU,S‖2→2

√ ∑

1≤j≤N

‖Γjf‖2
2 ≤ C ‖AU,S‖2→2 ‖f‖2 (3.5)

and

∥∥∥ max
1≤j≤N

{
AVj ,SΓjf

}∥∥∥
2

≤
(

max
1≤j≤N

∥∥AVj ,S

∥∥
2→2

)√ ∑

1≤j≤N

‖Γjf‖2
2 ≤

(
max

1≤j≤N

∥∥AVj ,S

∥∥
2→2

)
‖f‖2 . (3.6)

Inserting (3.4), (3.5) and (3.6) into estimate (3.3) completes the proof of the theorem. �

4. Algebraic almost orthogonality in general codimension

This section contains an analogue of Theorem D in higher dimensions, where subsets 

of Gr(d, n) are partitioned by algebraic sets. The almost orthogonality result thus ob-

tained may then be employed in combination with polynomial partitioning to obtain a 

sharpening of the recent result of [12] concerning averages along arbitrary directions in 

R
3. For simplicity, we restrict ourselves to the case d = 1 below and identify Gr(1, n) with 

S
n−1 in the obvious way. Higher d analogues and the related polynomial partitioning 

theorems on Gr(d, n) for d > 1 are the object of a forthcoming companion paper.

Definition 1. Let p ∈ R[x1, . . . , xn] be a degree D polynomial and Z(p) := {x ∈ R
n :

p(x) = 0} be the corresponding zero set. The associated set of cells C(p) is the set of 

connected components of Sn−1 \ Z(p). Then C(p) has � Dn−1 elements, see e.g. [3].

Theorem E. Let p ∈ R[x1, . . . , xn] be a degree D polynomial. For every finite set Σ ⊂
S

n−1 and S ⊂ (0, ∞),

‖AΣ,S‖L2(Rn) � sup
U⊂S

n−1∩Z(p)
#U≤#Σ

‖AU,S‖L2(Rn) + D
(n−2)

2 sup
C∈C(p)

‖AΣ∩C,S‖L2(Rn) .

The gain in Theorem E is that the set Z := S
n−1 ∩ Z(p) is a (n − 2)-dimensional 

algebraic variety of controlled degree and AU,S is better behaved when U ⊂ Z.
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4.1. Proof of Theorem E

The strategy is similar to the one we used for Theorem D but with a few twists. 

We keep using the notation Z = S
n−1 ∩ Z(p) and the distance d used here is between 

elements of Sn−1. First of all we fix C ∈ C(P ) and σ ∈ C. We set

u(σ) := arg min{d(σ, u) : u ∈ Z}, δ(σ) :=
|d(σ, u(σ))|

4
,

and further introduce

ΓC :=
⋃

v∈C∩Σ

Γσ,δ(σ), Γ̂Cf(ξ) := f̂(ξ)1ΓC
(ξ), ξ ∈ R

n.

Note that we are again conflating the set ΓC with the corresponding Fourier restriction. 

We also define the sets

U :=
⋃

C∈C(P )

U(C), U(C) := {u(σ) : σ ∈ C} .

Clearly we have that U ⊂ Z and #U ≤ #Σ. An immediate though important geometric 

observation is made in the following lemma. For ξ ∈ R
n \{0}, recall the notation Hξ(1) =

{τ ∈ S
n−1 : Πτ ξ = 0}.

Lemma 4.2. Let C ∈ C(P ) and ξ ∈ ΓC. Then C ∩ Hξ(1) �= ∅.

Proof. As ΓC is a union of cones, it suffices to work with ξ ∈ ΓC ∩ S
n−1. By definition of 

ΓC we may find σ ∈ C such that |Πσξ| < δ(σ). The first claim of Lemma 2.2 tells us that 

there exists τ ∈ Hξ(1) with d(σ, τ) < δ(σ)/3. However the set {τ ∈ S
n−1 : d(σ, τ) < δ(σ)}

is contained in C by the definition of δ(σ). �

Lemma 4.2 is the main cog in the proof of the following square function estimate.

Lemma 4.3. 
∑

C∈C(P )

‖ΓCf‖2
2 � Dn−2 ‖f‖2

2.

Proof. It suffices to show that for almost every ξ ∈ S
n−1

#C(ξ) � Dn−2, C(ξ) := {C ∈ C(P ) : ξ ∈ ΓC} .

Lemma 4.2 tells us that if C ∈ C(ξ) then C ∩Hξ(1) is a connected component of Hξ(1)\Z. 

As dim Hξ(1) = n −2 this set has � Dn−2 connected components, see e.g. [26, Chapter 4]

or [3]. �
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We begin the main argument. Fixing C ∈ C(p), σ ∈ C, we apply Lemma 2.6 and the 

definition of ΓC to obtain

∣∣∣A<δ(σ)
σ,s f

∣∣∣ =
∣∣∣A<δ(σ)

σ,s ΓCf
∣∣∣ ≤ CM[Aσ,sΓCf ],

which together with Lemma 2.4 yields

|Aσ,sf | ≤
∣∣∣A>δ(σ)

σ,s f
∣∣∣+
∣∣∣A<δ(σ)

σ,s f
∣∣∣ ≤ CM ◦ Mu(σ),sf + CM[Av,sΓCf ].

We first take supremum over s ∈ S, σ ∈ C and obtain

AΣ∩C,Sf ≤ CM ◦ MU(C),Sf + CM ◦ AΣ∩C(ΓCf).

Subsequently taking supremum over C ∈ C(P ) leads to

AΣ,Sf � M ◦ MU f +

⎛
⎝ ∑

C∈C(p)

|M ◦ AΣ∩C(ΓCf)|2
⎞
⎠

1
2

. (4.1)

The estimate of Theorem E then follows easily from (4.1) and the square function esti-

mate of Lemma 4.3.

5. Sharp or nearly sharp bounds for maximal subspace averages

We now focus on the single scale maximal operator MΣ,{1} =: MΣ when Σ is a generic 

finite subset of Gr(d, n). The majority of this section is in fact dedicated to the proof of 

Theorem A. However, we first detail the announced sharpening of the case n = 3, d = 1. 

In this case, Theorem A tells us that

sup
Σ⊂S

2

#Σ≤N

‖MΣ‖L2(R3) � N
1
4 log N

which is sharp up to the logarithmic factor and recovers the bound from [10]. The 

following more precise estimate was previously proved in [12]: for any positive integer k

we have

sup
Σ⊂S

2

#Σ≤N

‖MΣ‖L2(R3) �k N
1
4 (log N)

1
2 log[k] N,

where log[1] N := log(2 + N), log[k] N := log(2 + log[k−1] N). For this special case of 

dimension and codimension we improve the result of the theorems above by exploiting 

the algebraic almost orthogonality principle of §4. This is the content of the following 

theorem.
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Theorem F. For all N > 0 and every positive integer k there holds

sup
Σ⊂S

2

#Σ≤N

‖MΣ‖L2(R3) �k N
1
4 log[k] N,

with implicit constant depending only on k. This bound is sharp in terms of N up to the 

iterated logarithmic factor.

We will prove the estimates of both Theorems A and F for the corresponding norm-

equivalent Fourier operator AΣ,{1} =: AΣ.

5.1. Clusters on Gr(d, n)

We begin with a definition related to Hξ(d) from (2.2). We say that Σ is a δ-cluster 

with top ξ ∈ S
n−1 if Σ is a finite set contained in the δ-neighborhood of Hξ(d). Somewhat 

dual to δ-clusters are the cone cutoffs

Γσ,δ =
{

η ∈ R
n \ {0} : |Πση| < 2−4δ|η|

}
, Γσ,δf(x) =

ˆ

ΓΣ,δ

f̂(η)eix·η dη.

We summarize two key steps of our proof in the estimate of the next lemma.

Lemma 5.2. Suppose f ∈ S(Rd) with

supp f̂ ⊂ Ann(δ) :=
{

η ∈ R
n : 2−4 < δ|η| < 2−2

}
.

Then

1. For all σ ∈ Gr(d, n) and s ≥ 1, we have Aσ,sf = Aσ,sΓσ,δf .

2. If Σ is a δ-cluster, we have the estimate

‖AΣ,{1}f‖2 �

⎛
⎜⎝ sup

Σ′⊂Gr(d,n−1)
#Σ′≤#Σ

‖AΣ′,{1}‖L2(Rn−1)

⎞
⎟⎠ ‖f‖2.

Proof. First of all we dispense with the support claim. As φd in the definition of Aσ,s is 

supported in 2−8Bd we have that Âσ,sf(η) = 0 unless |Πση| < 2−8s−1 and δ|η| > 2−4, 

whence the claim.

We then move to the proof of the estimate. Suppose that Σ is a δ-cluster with top 

ξ ∈ S
n−1. For σ ∈ Σ let τ(σ) ∈ Hξ(d) be such that d(σ, τ) < δ. As f̂(η) = 0 for 

δ|η| ≥ 2−2, we may insert the Φ(22δ·) cutoff for free and Aσ,1f = A>δ
σ,1f . Then using 

(2.7) from Lemma 2.4 and Remark 2.5 returns
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Aσ,1f �

∞∑

k=0

2−knM
(
〈f〉τ(σ),2k

)

which coupled with the norm equivalences of (2.5) tells us that

‖AΣ,{1}f‖2 �

⎛
⎜⎝ sup

Σ′⊂Hξ(d)
#Σ′≤#Σ

‖AΣ′,{1,}‖L2(Rn)

⎞
⎟⎠ ‖f‖2.

The conclusion of the lemma then follows from recalling that Hξ(d) � Gr(d, n − 1) and 

applying Fubini’s theorem in the ξ direction. �

5.3. Counterexamples yielding sharpness of Theorem A

In this subsection we discuss the sharpness of the estimate in Theorem A. In fact we 

will prove the more general proposition below.

Proposition 5.4. Let n ≥ 2 and 1 < d ≤ n − 1. There holds

sup
Σ⊂Gr(d,n)

#Σ≤N

‖MΣ‖Lp(Rn) �

{
N

n−d+1−p
p(n−d) , 1 < p < n − d + 1,

(log N)
1
p , p ≥ n − d + 1.

Proof of Proposition 5.4 for d = 1. This case is classical and well understood but we 

include it here as it is instructive for case of 2 ≤ d < n that follows. Indeed we just 

need to consider f to be the indicator function of the unit ball in Rn and Σ be a εδ-

net in the unit sphere with ε a numerical constant to be chosen momentarily. Clearly 

#Σ �ε δ−(n−1) and note that for x ∈ R
n and v(x) := x/|x| we have that

A>δ
v(x),δ−1f(x) � δ, x ∈ Bn(δ−1) \ Bn(0, 1).

On the other hand for every x ∈ R
n there exists v ∈ Σ with dist(v, v(x)) ≤ εδ so we get 

by Lemma (2.4)

A>δ
v,δ−1f(x) ≥ cδ − Cε

∞∑

k=0

2−kn

 

x+2kδ−1Tδ

|f | � δ

if ε is chosen to be sufficiently small. This readily implies

‖MΣ,{δ−1}‖Lp(Rn) � ‖AΣ,{δ−1}‖Lp(Rn) � δ− n−p
p , 1 < p < n.

Since #Σ = δ−(n−1) = N this proves the proposition when d = 1 and p < n.
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For the case d = 1, p ≥ n the lower bound of the order (log N)1/p follows by the 

Besicovitch construction of a Kakeya set as in [15]. Briefly, one constructs a set Kδ =⋃
Tδ ⊂ R

2, the δ-neighborhood of a Kakeya set, which is a union of δ × 1 tubes pointing 

along the directions Σ of a δ-net on S1, and so that |Kδ| � (log N)−1. Then it is simple 

to check that

MΣ,{3}1Kδ
� 1 on the set K∗

δ :=
⋃

T ∗
δ \ Kδ,

where T ∗
δ is the tube with the same center and direction as Tδ and 3 times the length. 

It follows that |K∗
δ | � 1 and so

‖MΣ,1‖Lp(R2) � (log N)
1
p .

For general n ≥ 2 we just test the maximal operator on the tensor product of the 

Kakeya-type set above with a unit cube in Rn−2, namely Kδ × [−1/2, 1/2]n−2 and the 

lower bound ‖MΣ,1‖Lp(Rn) � (log N)
1
p follows. �

Proof of Proposition 5.4 for 1 < d < n. In general we consider (d, n) plates of scale M :=

N1/(n−d) and thickness 0 as follows. If σ ∈ Gr(d, n), then

T M
0 (σ) := {x ∈ R

n : |x| < M, Πσ⊥x = 0}

is the scale M plate oriented along σ. Let ω ∈ Gr(d − 1, n) that will remain fixed 

throughout the argument below. Then we define

E = E(ω) := {η ∈ Gr(1, n) : Πωv = 0 ∀v ∈ η} ∼ Gr(1, n − d + 1) ∼ S
n−d.

Notice that span {ω, η} ∈ Gr(d, n) for all η ∈ E. We may then write every x ∈ R
n as 

x = Πωx +ρη for η ∈ E ∼ S
n−d and ρ ≥ 0. We use the notation x = (xω, ρη) accordingly 

where xω = Πωx. We also set

CM = CM (ω) := {x = (xω, ρη) ∈ R
n : |xω| ≤ M, |ρ| ≤ 1}.

Lemma 5.5. Let ω ∈ Gr(d − 1, n) and x = (xω, ρη) with |xω| ≤ M
2 , 2−8M ≤ ρ ≤ 2−7M . 

Suppose v ∈ E with |v − η| < 2−8

M . Let σ = span(ω, η) ∈ Gr(d, n). Then

∣∣[x + T M
0 (σ)] ∩ CM

∣∣ ≥ 2−10Md−1.

Proof. By a rotation we may assume ω = {e1, . . . , ed−1}. Choose β so that {η, β} is an 

orthonormal basis of span{η, v}. Then from the assumption of |v − η| < 2−8M−1 we 

obtain that

v = (cos θ)η + (sin θ)β, |θ| ≤ 2−7

M
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so that x = (xω, ρη) and write the generic point on the plate x + T M
0 (σ) as

y = (xω + t1e1 + . . . + td−1ed−1, (ρ + td cos θ)η + td(sin θ)β), t1, . . . , td ∈ (−M, M).

Note that

sup
j

|tj | <
M

2(d − 1)
=⇒ |yω| ≤ |xω| + (d − 1) sup

j
|tj | < M.

Also,

td ∈ I :=

[
− ρ

cos θ
+

1

8
, − ρ

cos θ
+

1

4
,

]
=⇒ 2−10M ≤ |td| ≤ 2−6M

so that

|(ρ + td cos θ)η + td(sin θ)β| ≤ 1

4
+ 2−6M | sin θ| ≤ 1

2
.

It follows that y ∈ CM in the range |t1|, . . . |td−1| < M
2(d−1) , td ∈ I which is a set of 

measure ≥ 2−10Md−1. �

We continue with the proof of Proposition 5.4. Let EM be a 2−18M -net in E ∼ S
n−d

and consider the set

ΣM := {σ = span(ω, v) : v ∈ EM } ⊂ Gr(d, n)

which has ∼ Mn−d = N elements. The maximal function

MΣM ,{M}f(x) = sup
σ∈ΣM

1

Md

ˆ

x+T M
0 (σ)

|f |

then satisfies

MΣM ,{M}1CM
(x) �

Md−1

Md
∼ M−1,

x ∈ UM := {(xω, ρη) : |xω| ≤ 2−1M, 2−8M ≤ ρ ≤ 2−7M},

whence

‖MΣM ,{M}‖Lp(Rn) ≥ ‖MΣM ,{M}1CM
‖p

|CM | 1
p

� M−1+ 1−d
p |UM | 1

p � M
n−d+1

p
−1 = N

n−d+1−p
p(n−d) .

This proves the desired bound for 1 < d < n and p < n − d + 1.
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For the case p ≥ n − d + 1 we repeat the proof above but replacing the ball with 

a Kakeya set. More precisely, fixing ω ∈ Gr(d − 1, n) we let Kδ ⊂ R
2 ⊆ ω⊥ be a δ-

neighborhood of a Kakeya set as before, namely Kδ is a union of δ × 1 tubes pointing 

along a δ-net Σδ ⊂ S
1. Note that this is always possible as ω⊥ always contains a copy 

of R2. Remembering that xω = Πωx we modify the definition of CN as follows

Cδ = Cδ(ω) := {x ∈ R
n : |xω| ≤ 1, x − xω ∈ Kδ}.

It is then easy to check that

‖MΣM ,{M}‖Lp(Rn) ≥ ‖MΣM ,{M}1Cδ
‖p

|Cδ| 1
p

� (log δ−1)
1
p � (log #Σδ)

1
p

as desired. �

5.6. Proof of the upper bound in Theorem A

We seek an inductive estimate for

Kd,n := sup
N>0

1

N
n−d−1

n−d (log N)α(d,n)
sup

Σ⊂Gr(d,n)
#Σ≤N

‖AΣ‖2
L2(Rn) ,

where α(d, n) will be determined along the induction argument. The first step in the 

reduction is a classical use of the Chang-Wilson-Wolff inequality. For similar applications 

in the setting of directional singular integrals see for example [9,11].

Lemma 5.7. There holds Kd,n �n Qd,n, where

Qd,n := sup
N>0

1

N
n−d−1

n−d (log N)α(d,n)−1
sup

0<δ<1
sup

Σ⊂Gr(d,n)
#Σ≤N

sup
‖f‖2=1

supp f̂⊂Ann(δ)

‖AΣf‖2
L2(Rn) ,

with Ann(δ) as defined in Lemma 5.2.

The induction parameter is n, while d is kept fixed along the induction. The seed for 

the induction is the base case n = d + 1.

Lemma 5.8. If α(d, d + 1) = 1, then Qd,d+1 �d 1.

The proof of Lemma 5.8 is given at the end of this section. Notice that the lemma, 

together with Lemma 5.7, implies Kd,d+1 � 1 with the choice α(d, d + 1) = 1. Fix 

now N > 0, 0 < δ < 1, Σ ⊂ Gr(d, n) with #Σ ≤ N , f ∈ S(Rn) with ‖f‖2 = 1 and 

supp f̂ ⊂ Ann(δ). Using a greedy selection algorithm, we may achieve
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Σ = Σ0 ∪
Θ⋃

j=1

Σj ,

where 0 ≤ Θ ≤ Nd, each Σj is a δ-cluster and Σ0 has the property that

∑

σ∈Σ0

1Γσ,δ
(η) ≤ N

n−d−1
n−d ∀η ∈ R

n \ {0}. (5.1)

Say ξ ∈ S
n−1 is bad for Σ′ if the set {σ ∈ Σ′ : ξ ∈ Γσ,δ} has cardinality > N

n−d−1
n−d . The 

first step in the greedy selection algorithm is to initialize and set Σ′ = Σ. If some bad 

ξ exists for Σ′, set Σ1 := {σ ∈ Σ′ : ξ ∈ Γσ,δ}. Notice that by Lemma 2.2 the set Σ1 is 

a δ-cluster. Now set Σ′ := Σ′ \ Σ1 and repeat. The algorithm terminates when no bad 

ξ exists for Σ′, in which case set Σ0 = Σ′. Notice that (5.1) then holds by construction. 

Cardinality considerations tell us that the algorithm terminates after Θ ≤ Nd steps. 

Using the first claim of Lemma 5.2, we get at once

‖AΣ0
f‖2

2 ≤
∑

σ∈Σ0

‖AΣ0
Γσ,δf‖2

2 �
∑

σ∈Σ0

1Γσ,δ
≤ N

n−d−1
n−d . (5.2)

Suppose that the cluster Σj has ∼ 2kN
n−d−1

n−d elements for some 1 ≤ 2k ≤ N
1

n−d . Then 

the second claim of Lemma 5.2 tells us that

∥∥AΣj
f
∥∥2

2
� Kd,n−12k n−d−2

n−d−1 N
n−d−2

n−d (log N)α(d,n−1)

Notice that #{j : Σj ∼ 2kN
n−d−1

n−d } ≤ 2−kN
1

n−d , so that

Θ∑

j=1

∥∥AΣj
f
∥∥2

2
� Kd,n−1N

n−d−1
n−d (log N)α(d,n−1)

∞∑

k=1

2k n−d−2
n−d−1 −k

� Kd,n−1N
n−d−1

n−d (log N)α(n−1).

(5.3)

Combining (5.2) and (5.3) we see that Qd,n � Kd,n−1, so that Kd,n � Kd,n−1 provided 

that α(d, n) = α(d, n − 1) + 1. Induction completes the proof with α(d, n) = n − d.

5.9. Proof of Lemma 5.8

We have n = d + 1 throughout the proof of the lemma. We use below the slight 

enlargement of Ann(δ) from the statement of Lemma 5.2

Ann+(δ) :=
{

η ∈ R
n : 2−5 < δ|η| < 2−1

}
⊃ Ann(δ).

Before the proof proper we carefully reshuffle the conclusion of Lemma 2.4. We say that 

m ∈ S(Rn) is δ-adapted to τ = span{e1, . . . , ed} if
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a. supp m ⊂ Oτ,δ := {ξ ∈ Ann+(δ) : |Πτ ξ| ≤ 2δ|ξ|},

b. ‖∂αm‖∞ ≤ δαd+1 for all multi-indices α = (α1, . . . , αd+1) of order |α| ≤ 100d.

Now if τ ∈ Gr(d, d + 1) is generic, we say that m is δ-adapted to τ if m ◦ τ is δ-adapted 

to span{e1, . . . , ed}, where τ also stands for the rotation mapping span{e1, . . . , ed} to τ

and ed+1 to τ⊥. A typical example of function δ-adapted to τ is

m(ξ) := μ(Πτ ξ)Ψ(δξ), ξ ∈ R
d+1,

where Ψ ∈ S(Rd+1) is supported in Ann(1) and μ ∈ S(Rd) is supported on a small ball 

near the origin and suitably normalized. We denote by m(τ, δ) the class of multipliers 

which are δ-adapted to τ and define

A
δ
τ f(x) := sup

m∈m(τ,δ)

∣∣∣∣∣∣

ˆ

Rd+1

f̂(ξ)m(ξ)eix·ξ dξ

∣∣∣∣∣∣
, x ∈ R

d+1.

A repetition of the proof of (2.7) of Lemma 2.4 tells us that Aδ
τ f is pointwise bounded by 

the right hand side of (2.7) for s = 1. This together with frequency support considerations 

yield

‖A
δ
τ f‖2 � ‖Oτ,δf‖2 (5.4)

uniformly in τ ∈ Gr(d, d + 1) and δ > 0, where we have denoted by Oτ,δ the frequency 

cutoff to the corresponding conical sector. Now, if Σδ is 2−10δ-net in Gr(d, d + 1), we 

have

∑

τ∈Σδ

‖Oτ,δf‖2
2 � ‖f‖2

2 (5.5)

as the projection on S
d of Oτ,δ lies in a ∼ δ-neighborhood of τ . A square function 

argument combining (5.4) with (5.5) then yields

∥∥∥∥ sup
τ∈Σδ

A
δ
τ f

∥∥∥∥
2

� ‖f‖2. (5.6)

We are ready to complete the proof proper of this lemma. Fix δ > 0 and let f ∈ L2(Rd+1)

with supp f̂ ⊂ Ann(δ). Read from the proof of Lemma 2.4, cf. (2.9) in particular, that

sup
σ∈Gr(d,d+1)

d(σ,τ)<δ

|Aσ,1f | � A
δ
τ f (5.7)

by means of a suitable insertion of a Littlewood-Paley cutoff equal to 1 on Ann(δ) and 

supported on Ann+(δ). As Σδ is a 2−10δ-net, an application of (5.7) followed by (5.6)

returns



24 F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749

∥∥∥∥ sup
σ∈Gr(d,d+1)

|Aσ,1f |
∥∥∥∥

L2(Rd+1)

�

∥∥∥∥ sup
τ∈Σδ

A
δ
τ f

∥∥∥∥
2

� ‖f‖2

which is what is claimed in the lemma.

5.10. Polynomial partition for the proof of Theorem F

We plan to apply the algebraic almost orthogonality principle of §4 in order to prove 

Theorem F. The first order of business is to feed the almost orthogonality result of 

Theorem E with a suitable polynomial partition of the set Σ ⊆ S
2 with #Σ ≤ N2, 

tailored to the problem in hand.

Proposition 5.11. Let Σ ⊂ S
2 be a finite set with #Σ ≤ N and let δ > 0. For each integer 

D ≥ 23 there exists a partition

Σ = Σ◦ ∪ Σ×

satisfying the following properties:

1. There exist O(1) transverse complete intersections Wj ⊂ S
2 of dimension 1 and 

degree O(D) such that

sup
σ∈Σ×

inf
j

dist(σ, Wj) < δ.

2. There exist O(D2) disjoint connected open subsets C ∈ �C of S
2 with the property 

that

Σ◦ =
⋃

C∈
C

ΣC, ΣC := Σ ∩ C, #ΣC ≤ N

D2
.

The proposition above is a consequence of the more general polynomial partitioning 

result of [12, Proposition 2.10]. We also refer the reader to [12, §2.9] for the definition 

of a transverse complete intersection and further background on polynomial partitioning 

results.

The partition of Proposition 5.11 is not directly applicable as an input for Theorem E

as the set Σ× also contains directions close to the algebraic variety Z := ∪jWj instead 

of just directions on the Z. This is easily remedied by a soft approximation argument. 

Indeed as the conclusion of Theorem F is an L2(R3)-operator norm bound, we can work 

with functions f ∈ L2(R3) such that supp(f̂) ⊆ B3(R) for some R > 0, as long as we 

prove bounds independent of R. Now if we choose δ � R−1 in Proposition 5.11, we 

will have that ‖Aσf‖L2(R3) � ‖Mτ(σ)f‖L2(R3) for all σ ∈ Σ×, where τ(σ) denotes a 

direction on Z such that dist(σ, τ(σ)) < δ, whose existence is guaranteed from point 1. 

of Proposition 5.11. This remark allows us to assume that Σ× ⊂ Z = ∪jWj .
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With the remark above taken as understood, the almost orthogonality principle of 

Theorem F reduces the proof of Theorem F to a recursive cellular term, and a wall

term which is the L2(R3)-norm of AΣ×
. The latter operator is a single scale, maximal 

directional average along directions on a one-dimensional algebraic subvariety of S2. It 

follows from [12, Theorem D] that

sup
Σ′⊂∪jWj

#Σ′≤N

‖AΣ′‖L2(R3) � D
1
2 (log N)

3
2 . (5.8)

5.12. The proof of Theorem F

We are seeking an estimate for

KN := sup
Σ⊂S

2

#Σ≤N

‖AΣ‖2
L2(Rn).

Combining Theorem E with the polynomial partition of Proposition 5.11, the subsequent 

remarks, and (5.8) we can estimate for any D � 1

KN ≤ K1D(log N)3 + K2DK N

D2

for numerical constants K1, K2 > 0 and D a sufficiently large degree, to be chosen 

momentarily. Indeed choosing D :=
√

N/(log N)3 yields

KN√
N

≤ K1 + K2

K(log N)6√
(log N)6

which readily implies the estimate in statement of Theorem F by recursion.

6. Kakeya and Nikodym maximal operators

In this section we digress a bit in order to discuss two maximal operators that appear 

naturally in the context of this paper, namely the Kakeya and Nikodym maximal opera-

tors. These operators have been studied extensively in the case d = 1 in relation to the 

maximal Kakeya conjecture and the maximal Nikodym conjecture, which are equivalent 

when d = 1; see [30]. For d > 1, the corresponding Kakeya maximal function on Gr(d, n)

has been studied in relation to the existence and dimension of (d, n)-Besicovitch sets. 

We send the interested reader to [20] for general background on the topic, and will focus 

below on just a few notions central to our discussion.

We briefly recall some elementary properties of the Haar measure on Gr(d, n). Let 

1 ≤ d < n be fixed parameters and dσ be the quotient Haar measure on Gr(d, n) seen 

as a quotient group as in (2.1), that is
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ˆ

Gr(d,n)

f(σ) dσ =

ˆ

O(n)

f(ω) dω

where O(n) is equipped with its left-invariant Haar probability measure. When A ⊂
Gr(d, n), the notation |A| stands for the dσ-measure of A. As the measure dσ is the 

unique probability measure on Gr(d, n) which is left invariant under the action of O(n), 

it coincides with the normalized Riemannian volume form on Gr(d, n). This implies that, 

if

Bδ(σ) := {τ ∈ Gr(d, n) : d(σ, τ) < δ},

the measure |Bδ(σ)| is independent of σ and |Bδ(σ)| ∼ δd(n−d).

6.1. The Kakeya maximal operator

Recall from (2.3) the notation Tδ(σ) for the δ-plate oriented along σ ∈ Gr(d, n)

Consider the dual maximal operator acting on f ∈ L1
loc(Rn) and its tailed version

Kδf(σ) = sup
x∈Rn

 

x+Tδ(σ)

|f |, K̃δf(σ) = sup
x∈Rn

∞∑

k=0

2−2kn

 

x+2kTδ(σ)

|f |, σ ∈ Gr(d, n).

(6.1)

Definition 2. Let 1 ≤ d < n. A Borel set A ⊂ R
n is said to be a (d, n)-set if for every 

σ ∈ Gr(d, n) there is y ∈ R
n such that Bn(y, 1) ∩ (σ + y) ⊂ E. If |A| = 0 then A is called 

a (d, n)-Besicovitch set.

It is well known that for d = 1 there exist (1, n)-Besicovitch or Kakeya sets and the 

Kakeya conjecture states that the Hausdorff dimension of Kakeya sets should be at least 

n. The maximal Kakeya conjecture is the statement that for all δ, ε > 0 we should have 

the estimate

‖Kδ‖Ln(Gr(1,n)) �ε δ−ε‖f‖Ln(Rn). (6.2)

When 1 < d < n, it is conjectured that no (d, n)-Besicovitch sets exist. For d > n/2 this 

conjecture was verified by Falconer, [13]. The range of non-existence of (d, n)-Besicovitch 

sets was extended by Bourgain in [5] and further by Oberlin in [23]. The reader is also 

referred to [23] for further results and lower bounds on the Hausdorff dimensions of 

(d, n)-Besicovitch for general d. The connection with the Kakeya maximal function is 

revealed by the following well known implication; see [23, p. 3].

Proposition 6.2. Let 1 ≤ d < n and suppose that there exists 1 ≤ p < ∞ and ε > 0 such 

that for every δ > 0 we have the bound
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‖Kδf‖Lp(Gr(d,n)) �ε δ− ε
p ‖f‖Lp(Bn).

Then every (d, n)-set has Hausdorff dimension at least n − ε.

In the context of the current paper the case 1 < d < n is the most relevant. The 

estimate of the following proposition is a natural consequence of the methods of this 

paper and we include as an illustration of how these methods can be applied in the 

context of the (d, n)-Kakeya maximal function. Our estimate below recovers the well 

known result of Falconer [13]: there are no (d, n)-Besicovitch sets when d > n/2. By 

Proposition 6.2, it also yields that a (d, n)-Besicovitch set necessarily has full Hausdorff 

dimension when d = n/2.

Proposition 6.3. 
∥∥Kδ : L2(Rn) → L2(Gr(d, n))

∥∥ �

⎧
⎪⎪⎨
⎪⎪⎩

1 2d > n

log δ 2d = n

δd− n
2 2d < n.

Proof. By an isotropic rescaling of the input function f , the norm equivalence

‖Kδ : Lp(Rn) → Lq(Gr(d, n))‖ ∼p,q

∥∥∥K̃δ : Lp(Rn) → Lq(Gr(d, n))
∥∥∥ ∀1 ≤ p, q ≤ ∞

holds. By standard arguments and Lemma 2.4, if τ ∈ Gr(d, n) and σ ∈ B2−10δ(τ) we 

have the pointwise estimates

Kδf(σ) � sup
x∈Rn

∣∣A>δ
σ,1f(x)

∣∣ � sup
x∈Rn

A
δ
τ f(x) � K̃δf(τ) � δ− (n−d)

p ‖f‖p. (6.3)

The proof of the Proposition relies on an inductive estimate for

]Qδ :=
∥∥Kδ : L2(Rn) → L2(Gr(d, n))

∥∥ ,

having defined the Fourier localized operator

Kδf(σ) := sup
x∈Rn

∣∣A>δ
σ,1f(x)

∣∣ , σ ∈ Gr(d, n).

Let Φ be as in (2.6) and set fδ := F−1[f̂(·)(1 − Φ(24δ·))]. Then

A>δ
σ,1f = A>4δ

σ,1 f + A>δ
σ,1fδ, σ ∈ Gr(d, n)

which tells us immediately that

Qδ ≤ Q4δ + sup
‖f‖2=1

‖Kδfδ‖2 . (6.4)
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The important fact to notice here is that due to the support of fδ being contained in 

Ann+(δ), we have

σ ∈ Bhδ(τ) =⇒ A>δ
σ,1fδ = A>δ

σ,1Oτ,δf

where Oτ,δ is the frequency cutoff to the set Oτ,δ := {ξ ∈ Ann+(δ) : |Πτ ξ| ≤ 2δ|ξ|}. 

Notice that by Lemma 2.2 we have for every δ-separated set Σδ ⊂ Gr(d, n) that

∑

τ∈Σδ

‖Oτ,δf‖2
2 � δ−d(n−d−1)‖f‖2

2 (6.5)

Therefore if Σδ is a maximal 2−11δ-net in Gr(d, n), relying on (6.3) to pass to the second 

line and on the overlap estimate (6.5)

‖Kδfδ‖2
2 ≤ δd(n−d)

∑

τ∈Σδ

sup
σ∈B2−10δ

(τ)

sup
x∈Rn

∣∣A>δ
σ,1Oτ,δf(x)

∣∣2

� δ(d−1)(n−d)
∑

τ∈Σδ

‖Oτ,δf‖2
2 � δ2d−n

(6.6)

Combining (6.6) with (6.4) yields the recursion

Qδ ≤ Q4δ + Θδ2d−n,

for some dimensional constant Θ. This proves the proposition via easy induction. �

6.4. The Nikodym maximal operator

For 1 ≤ d < n, f ∈ L1
loc(Rn), consider the maximal δ-plate averages

Nδf(x) := sup
σ∈Gr(d,n)

 

x+Tδ(σ)

|f |, x ∈ R
n.

The role of Gr(d, n) is kept implicit in the notation of the Nikodym maximal function Nδ. 

The study of the Nikodym maximal operator is motivated by the question of existence 

and dimension of (d, n)-Nikodym sets as defined below.

Definition 3. We say that A ⊂ R
n is a (d, n)-Nikodym set if |A| = 0 and for every x ∈ A

there exists an affine d-plane σ + y, with σ ∈ Gr(d, n) and y ∈ R
n, such that

x ∈ σ + y and Bn(y, 1) ∩ (σ + y) ⊂ E.

For d = 1 it is easy to see that the Kakeya conjecture would imply that all (1, n)-

Nikodym sets have Hausdorff dimension at least n. Again for the case d = 1 the maximal 

Kakeya conjecture (6.2) is equivalent to the statement that for all δ, ε > 0 we have
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‖Nδf‖Ln(Rn) �ε δ−ε‖f‖Ln(Rn), d = 1.

On the other hand, while for d > n/2 there are no (d, n)-Besicovitch sets, it is known 

that for all 1 ≤ d < n there exist (d, n)-Nikodym sets; see [14, Corollary 6.6]. It is thus 

natural to focus on lower bounds for the Hausdorff dimension of such Nikodym sets. In 

order to formulate the relevant conjecture on the maximal level we briefly explore below 

the relation of Hausdorff dimension with Lp(Rn)-bounds for Nδ. The proof is similar to 

[20, Theorem 22.9].

Proposition 6.5. Suppose that there exists 1 ≤ p < ∞, 1 ≤ q < ∞ and ε > 0 such that 

the following estimate holds. For all δ, ε > 0 there holds

‖Nδf : Lp(Rn) → Lp(Rn)‖ �ε δ− ε
p .

Then every (d, n)-Nikodym set has Hausdorff dimension at least n − ε.

For general 1 ≤ d < n the counterexample presented in Proposition 5.4 for the 

maximal operator MΣ,{1} can be easily modified for the Nikodym maximal function 

with δ−1 = N1/(n−d), showing that the following conjecture would yield the best possible 

quantification of the range of boundedness.

Conjecture G. Let Nδ denote the (d, n)-Nikodym maximal function for 1 ≤ d < n. There 

holds

‖Nδ : Lp(Rn) → Lp(Rn)‖ �

{
δ− n−d+1−p

p , 1 < p < n − d + 1,

(log δ−1)α(n,d,p), p ≥ n − d + 1,

for some exponent α(n, d, p) > 0.

The conjecture above suggests that the critical exponent for the (d, n)-Nikodym prob-

lem is po := n − d + 1. We verify the conjecture in the case d = n − 1, so that po = 2, in 

Section 7 below; in fact we prove the same logarithmic dependence for a more general 

operator given with respect to (n − 1)-plates in Rn of arbitrary eccentricity. A range of 

off-diagonal estimates can be conjectured by interpolating the estimate of Conjecture G

with the trivial L1 → L∞ estimate.

Conjecture H. Let Nδ denote the (d, n)-Nikodym maximal function for 1 ≤ d < n. For 

1 ≤ p ≤ n − d + 1, q = p′(n − d), and all ε > 0

‖Nδf : Lp(Rn) → Lq(Rn)‖ �

{
δ−
(

n−d+1−p
p

)
, 1 ≤ p < n − d + 1,

(log δ−1)β(n,d,p), p = n − d + 1,

for some exponent β(n, d, p) > 0.
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For the case of general 1 < d < n, we include here the proof of the best possible 

L2(Rn)-estimate for the (d, n)-Nikodym maximal operator, namely the proof of The-

orem C as stated in the introduction of the paper. Unlike the previous parts of this 

paper, the proof of Theorem C, as well as the one yielding the sharp critical bound for 

d = n − 1 in Section 7 below, rely on geometric rather than Fourier analytic consid-

erations, together with TT ∗ types of arguments. In particular we will rely on precise 

estimate for pairwise intersections of δ-neighborhoods of elements of Gr(d, n). When 

n ≥ 2d pairwise intersections of elements of Gr(d, n) may have any dimension between 

0 and d − 1, requiring a corresponding classification of the volume estimates; these es-

timates are stated and proved in Lemma 6.9 below. Similar estimates have appeared in 

[25] for d = 2.

6.6. Pairwise intersections in Gr(d, n) and volume estimates

For σ ∈ Gr(d, n) it is convenient to denote S
σ := S

n ∩ σ. Let σ, τ ∈ Gr(d, n) and 

suppose that η = σ ∩ τ ∈ Gr(m, n) with 0 ≤ m < d. We define the angles

0 < θm+1(σ, τ) ≤ · · · ≤ θd(σ, τ)

inductively as follows. Initially set σm+1 = σ ∩ η⊥, τm+1 = τ ∩ η⊥. For m + 1 ≤ j < d

and σj , τj have been defined let

(sj , tj) := arg min {arccos(st) : s ∈ S
σj , t ∈ S

τj } , θj := arccos(sjtj),

σj+1 := σj ∩ s⊥
j , τj+1 := τj ∩ t⊥

j ,

and repeat with j + 1 in place of j. The algorithm stops when j = d.

Remark 6.7. Notice that θm+1 > 0, as there is no pair (s, t) ∈ S
σm+1 × S

τm+1 with s and 

t colinear, and that clearly θj is nondecreasing. Also notice that if s1 = t1, · · · sm = tm is 

an orthonormal basis of σ ∩ τ , then {s1, . . . , sd} and {t1, . . . , td} are orthonormal bases 

of σ, τ respectively. In addition, the construction of sm+1, . . . , sd, tm+1, . . . , td yields a 

further orthogonality property; namely if πj = span{sj , tj} for m + 1 ≤ j ≤ d then

1 ≤ j < k ≤ d =⇒ xy = 0 ∀x ∈ πj , y ∈ πk.

This is obvious if j ≤ m. Otherwise, if t ∈ τk is such that sjt �= 0 for some j < k, we 

may write t = (cos φ)t̃ + (sin φ)sj for some φ �= 0 and t̃ ∈ τk. Thus for any s ∈ σk as 

ssj = 0 we have

st = (cos φ)st̃ + (sin φ)ssj = (cos φ)st̃ < st̃

thus no s ∈ σk exists such that (s, t) is a minimizer. It follows that tk is orthogonal to 

sj whence xy = 0 for all x ∈ πj , y ∈ πk. The angles and bases
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0 = θ1 = · · · = θm, 0 < θm+1 ≤ · · · ≤ θd ≤ π

2
,

S = {s1, . . . , sd}, T = {t1, . . . , td},

are respectively called canonical angles and bases and may be obtained, respectively, as 

inverse cosines of the eigenvalues and eigenvectors of the 2d × 2d matrix M of inner 

products between elements of arbitrary orthonormal bases of σ and τ . Finally we stress 

that θd(σ, τ) ∼ d(σ, τ), where the latter refers to the Gr(d, n) distance.

Remark 6.8. Given σ, τ ∈ Gr(d, n), suppose σ ∩ τ ∈ Gr(m, n), so that ζ = span {σ, τ} ∈
Gr(2d − m, n). Let S = {s1, . . . , sd} and T = {t1, . . . , td} be the principal bases of σ, τ

respectively that we constructed above. For each j = m + 1, . . . , d let zj be the unit 

vector so that

tj = (cos θj)sj + (sin θj)zj .

Notice that zj belongs to πj and is thus orthogonal to sk for all k �= j by Remark 6.7

and to sj by construction. It follows that

Z = {s1, . . . , sd, zm+1, . . . , zd}

is an orthonormal basis of ζ.

Lemma 6.9. Let σ, τ ∈ Gr(d, n) and suppose that η = σ ∩ τ ∈ Gr(m, n). Let a, b ∈ R
n, 

P (σ) = a + Tδ(σ), P (τ) = b + Tδ(τ) be δ-plates. Then

|P (σ) ∩ P (τ)| �n,d δn−m

⎛
⎝

d∏

j=m+1

max{δ, θj(σ, τ)}

⎞
⎠

−1

.

Proof. Let {s1, . . . , sd} and {t1, . . . , td} be the orthonormal bases of σ, τ respectively we 

obtained with the principal angle construction. Let {sd+1, . . . sn} also be a basis of σ⊥. 

Pick any point p ∈ P (σ) ∩ P (τ). Choose coordinates y = (y1, . . . , yj) ∈ R
n so that p is 

the origin and yj = y · sj . We claim that P (σ) ∩ P (τ) is contained in the intersection of 

the n bands

Bj :=

⎧
⎪⎪⎨
⎪⎪⎩

{y ∈ R
n : |yj | < 3} , j = 1, . . . , m,{

y ∈ R
n : |yj | < Cδ

max{δ,θj}

}
, j = m + 1, . . . , d,

{y ∈ R
n : |yj | < 3δ} , j = d + 1, . . . , n.

The claim readily yields the conclusion of the lemma and is completely obvious for 

j = 1, . . . , m and j = d + 1, . . . , n, because for those values of j one has P (σ) ⊂ Bj

as well. It is also obvious for j ∈ {m + 1, . . . , d} if max{δ, θj} = δ, thus we fix now 
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j ∈ {m +1, . . . , d} and arguing by contradiction, suppose that there exists y ∈ P (σ) ∩P (τ)

with |yj | ≥ Cδ
θj

. Let zj be as in Remark 6.8. It follows that

|y · zj | ≤ 2δ.

However simple geometry shows that

tan θj =
|y · zj |

|yj | ≤ 2δ
Cδ
θj

=
2θj

C
,

a contradiction if C is large enough. �

In the next lemma we describe how to construct the essentially minimal dilate of a 

δ-plate P (σ) that covers a nearby plate P (τ), depending on the principal angles of σ, τ . 

We need some notation first

Let σ, τ ∈ Gr(d, n) and suppose that σ∩τ ∈ Gr(m, n). Let S, T and Z be the respective 

orthonormal bases of σ, τ and ζ = span(σ, τ) constructed in Remark 6.8. Then the plates 

Tδ(σ), Tδ(τ) may be described by

Tδ(σ) =

{
x : max

{1,...,d}
|x · sj | < 1, max

m+1≤j≤d
|x · zj | < δ, max

w∈ζ⊥

|x · w| < δ

}
,

Tδ(τ) =
{

x : max
{1,...,m}

|x · sj | < 1, max
{m+1,...,d}

|x · [(cos θj)sj + (sin θj)zj ]| < 1,

max
w∈τ⊥

|x · w| < δ
}

.

We define the dilation T +τ
δ (σ) of Tδ(σ) by

T +τ
δ (σ) :=

{
x : max

{1,...,d}
|x · sj | < 3, max

m+1≤j≤d
|x · zj | < 3 max{δ, θj}, max

w∈ζ⊥

|x · w| < 3δ

}
.

Lemma 6.10. Let a, b ∈ R
n, P (σ) = a + Tδ(σ), P (τ) = b + Tδ(τ) be δ-plates with P (σ) ∩

P (τ) �= ∅. Then

P (τ) ⊂ a + T +
δ τ(σ).

Proof. By translation invariance, we may assume a = 0. Then P (τ) is contained in the 

moderate dilate

3Tδ(τ) :=
{

x : max
{1,...,m}

|x · sj | < 3, max
{m+1,...,d}

|x · [(cos θj)sj + (sin θj)zj ]| < 3,

max
w∈τ⊥

|x · w| < 3δ
}

.

Simple geometry tells us that when j ∈ {m + 1, . . . , d}
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x ∈ 3Tδ(τ) =⇒ |x · [(cos θj)sj + (sin θj)zj | ≤ 3 =⇒ |x · zj | ≤ 3 sin θj ≤ 3θj .

On the other hand it is obvious that |x · sj | < 3 for all 1 ≤ j ≤ d when x ∈ 3Tδ(τ). 

Therefore 3Tδ(τ) ⊂ T +τ
δ (σ), and the proof is complete. �

6.11. The proof of Theorem C

As noted in the discussion leading to the formulation of Conjecture G, the bound 

of Theorem C is best possible so it suffices to prove the upper bound. We begin by 

linearizing the maximal operator Nδ as follows. For Σ ⊂ Gr(d, n) that will remain fixed 

throughout the proof we let TΣ denote the collection of all δ-plates of the form aT +Tδ(σT )

for aT ∈ R
n and σT ∈ Σ. Now given f ∈ S(Rn) and T ⊂ TΣ we consider the linear 

operator

NT f(x) :=
∑

T ∈T

(
 

T

f

)
1FT

(x)

where FT ⊂ T for every T ∈ T and the collection {FT }T ∈T is pairwise disjoint. Denoting 

by N ∗
T the adjoint of NT we have that

‖Nδ : L2(Rn) → L2,∞(Rn)‖ � sup
T ⊂TΣ

‖NT : L2(Rn) → L2,∞(Rn)‖

� sup
T ⊂TΣ

sup
E⊂Rn

‖N ∗
T 1E‖2

|E| 1
2

,

where the supremum in T ⊂ TΣ can be taken over finite collections T . As the adjoint 

operator has the form

N ∗
T g :=

∑

T ∈T

(
1

|T |

ˆ

FT

g

)
1T (x)

we readily see that

N ∗
T 1E =

∑

T ∈T

|FT ∩ E| 1T

|T | =:
∑

T ∈T

|ET | 1T

|T |

with ET := FT ∩ E pairwise disjoint and ET ⊂ T . Note that the collection {|ET |}T ∈T is 

a Carleson sequence: for any open set U ⊂ R
n we have

∑

T ∈T
T ⊂U

|ET | ≤ |U ∩ E|.
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We now expand the square of the L2-norm as follows

‖N ∗
T 1E‖2

2 =
∑

T ∈T

|ET |
∑

T ′∈T
T ∩T ′ �=∅

|ET ′ | |T ∩ T ′|
|T ||T ′| .

For fixed T ∈ T and 0 ≤ k ≤ log δ−1 we define

Tk(T ) := {T ′ ∈ T : T ∩ T ′ �= ∅, 2kδ ≤ dist(T, T ′) ≤ 2k+1δ}.

This notation allows us to write

‖N ∗
T 1E‖2

2 =

log δ−1∑

k=0

∑

T ∈T

|ET |
|T |

∑

T ′∈Tk(T )

|ET ′ | |T ∩ T ′|
|T ′| . (6.7)

Now for fixed k, T and T ′ ∈ Tk(T ) we use Lemma 6.9 to estimate for every m ∈ {0, . . . , d −
1}

|T ∩ T ′|
|T ′| ≤ δn−m 1

δd−m−1dist(σT , σT ′)

1

|T ′| �
δn−d+1

2kδ

1

δn−d
= 2−k.

Then for every fixed k we will have by Lemma 6.10 and the Carleson property of the 

sequence {|ET |}T ∈T

∑

T ′∈Tk

|ET ′ | ≤
∣∣∣∣
⋃

T ′∈Tk

T ′

∣∣∣∣ ≤ |T +
δ (σT )|.

Since θj(σT , σT ′) ≤ θd(σT , σT ′) � 2kδ and 2kδ ≥ δ we can use the definition of T +
δ (σT )

to estimate

|T +
δ (σT )| � (2kδ)n−d.

Using the estimate in the last two displays and the calculation in (6.7) we gather

‖N ∗
T 1E‖2

2 �

log δ−1∑

k=0

∑

T ∈T

|ET |
|T | (2kδ)n−d2−k �

⎧
⎨
⎩

δ−(n−d−1)|E|, 1 ≤ d < n − 1,

log(δ−1)|E|, d = n − 1,

which proves the desired weak (2, 2) norm-estimate. The corresponding strong (2, 2)

bound with an additional 
√

log δ−1-term follows from the corresponding weak-type (2, 2)

bound and a well known interpolation argument of Strömberg, [29]; see also [17, p. 77–78]

for the details of this argument.
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7. The sharp bound for codimension one maximal operators

In this section, we prove Theorem B as a consequence of a more general directional 

Carleson embedding theorem, Theorem I below. Therefore, we work with fixed codimen-

sion 1, so that n = d +1 ≥ 2 throughout. Recall that our goal is to prove a sharp estimate 

in terms of the cardinality parameter N for the maximal d-subspace averaging operator 

MΣ,(0,∞) when Σ ⊂ Gr(d, d + 1) is a finite set with #Σ = N .

Our setup is more conveniently described by taking advantage of the isometric iso-

morphism

σ ∈ Σ ⊂ Gr(d, d + 1) �→ v = σ⊥ ⊂ Gr(1, d + 1) ∼ S
d

By finite splitting and rotational invariance, we may work under the assumption that 

V ⊂ S
d is contained in a small neighborhood of en. This choice of coordinate system is 

conveniently exploited by modifying slightly our definition of d-plate (2.3), as follows. 

For a d-dimensional axis-parallel cube I ⊂ e⊥
n with center (cI , 0) ∈ R

n and sidelength 

�I , for v ∈ V , an interval K ⊂ R with |K| ≤ �I , let

p(I, t, v) := {y ∈ v⊥ + (cI , t) : Πe⊥
n

y ∈ I}, P (I, K, v) :=
⋃

t∈K

p(I, t, v).

The set Q = P (I, K, v) is a d-plate with orientation vQ = v, basis IQ = I, scale sQ = �I , 

height KQ = K and center cQ = (cIQ
, cKQ

), where cKQ
is the center of the interval 

K ⊂ R. Each set p(IQ, t, vQ) with t ∈ KQ is referred to as the t-slice of Q.

Remark 7.1. The plate Q is the shearing of an axis-parallel box whose short side is 

oriented along en. To compare with (2.3), observe that if δ = �KQ
/�IQ

, then Q and 

Q′ := cQ + sQTδ(v⊥
Q) are comparable, that is Q ⊂ CQ′, Q′ ⊂ CQ for a suitably chosen 

dimensional constant C.

We will work with different special collections of d-plates which we define below.

Definition 4. Let V ⊂ S
d be a finite set of directions, δ > 0 be a small parameter.

· The collection of all d-plates in Rn with orientation along v ∈ V will be denoted by 

Pv, and PV :=
⋃

v∈V Pv.

· For Q = P (I, K, v) ∈ PV , write afQ := v⊥ + cQ and call afQ the plane of Q.

· A d-plate Q(I, K, v) will be called a (d, δ)-plate if �(KQ) = δ > 0, namely if it is a 

d-plate with fixed thickness δ > 0. The subcollection of those (d, δ)-plates belonging 

to Pv is referred to by Pv,δ and PV,δ := ∪vPv,δ.

· Given a dyadic grid D in Rd, special subcollections of Pv, PV are produced by defining 

Dv := {Q ∈ Pv : IQ ∈ D}, and DV :=
⋃

v∈V Dv. The special subcollection of DV

consisting of (d, δ)-plates will be denoted by DV,δ :=
⋃

v∈V Dv,δ.
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· For a generic collection Q ⊆ PV , set Qv := {Q ∈ Q : vQ = v}. This yields Q =⋃
v∈V Qv.

· A partial order on DV is defined as follows. If Q, R ∈ DV , say Q ≤ R if Q ∩ R �= ∅
and IQ ⊆ IR.

· If Q ⊂ PV we will use the notation sh(Q) := ∪Q∈QQ for the shadow of the collection.

With these definitions we introduce below maximal operators defined with respect to 

collection of plates. For any L ⊆ PV , set

MLf(x) := sup
L∈L

⎛
⎝−
ˆ

L

|f | dy

⎞
⎠1L(x), x ∈ R

n.

Note that in general ML is a directional operator as the plates have variable orientation. 

In the special case that L = Lv ⊆ Pv for some fixed v ∈ V then MLv
is pointwise bounded 

by the strong maximal function in a suitable coordinate system. Another special case 

of interest occurs when L ⊆ Pv,δ for fixed v ∈ V and δ > 0, in which case ML is a 

one-parameter operator and satisfies weak (1, 1) bounds uniformly in v and δ. Note that 

the weak (1, 1)-bound persists if L ⊂ Pv is a collection of fixed eccentricity: in that case 

the operators ML are again of weak-type (1, 1) uniformly in v ∈ V and the eccentricity 

of the collection.

Carleson sequences. Directional Carleson sequences of positive numbers {aQ}Q∈DV
are 

introduced in the string of definitions that follow.

Definition 5. Let L ⊂ PV be a collection of d-plates and let v ∈ V be a fixed direction. 

The collection L is subordinate to T ⊂ Pv if for every L ∈ L there exists T ∈ T such 

that L ⊆ T .

We stress that T ⊂ Pv in the definition above only contains plates with fixed orienta-

tion v.

Definition 6. Let a = {aQ}Q∈DV
be a sequence of positive numbers. The sequence a is an 

(L∞-normalized) Carleson sequence if for every L ⊂ DV which is subordinate to some 

T ⊂ Pv for some fixed v ∈ V we have

∑

L∈L

aL ≤ |sh(T )|, massa(Q) :=
∑

Q∈DV

aQ < ∞.

For Q ⊂ DV and a Carleson sequence a = {aQ}Q∈DV
define the balayage

TQ(a)(x) :=
∑

Q∈Q

aQ
1Q(x)

|Q| , x ∈ R
n. (7.1)
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It follows from the definition above that if a is a Carleson sequence and T ⊂ Pv for 

some fixed v ∈ V then T is subordinate to itself and thus massa(T ) ≤ |sh(T )|.

An L2-Carleson embedding theorem for d-plates. Here we describe and prove the main 

result of this section, a directional Carleson embedding theorem for d-plates in Rn. In 

order to state it we also introduce for any Q ⊆ PV the notation

Q̂ :=
⋃

1≤s≤100n

⋃

Q∈Q

(1 + s)Q.

Theorem I. Let V ⊂ S
d be a finite set of directions and Q ⊆ DV be a collection of 

d-plates in Rn. We assume that the operators {MQv
: v ∈ V } satisfy

sup
v∈V

∥∥MQ̂v
: L1(Rn) → L1,∞(Rn)‖ �n 1.

If a = {aQ}Q∈DV,δ
is a Carleson sequence then

‖TQ(a)‖L2(Rn) �n (log #V )
1
2 massa(Q)

1
2

with implicit constant depending only upon dimension.

The proof of Theorem I begins with some reductions that simplify and highlight the 

main argument. First, for any Q ⊆ DV we expand the square of the L2-norm in the 

statement of the theorem as

1

2
‖TQ(a)‖2

L2(Rn) ≤
∑

R∈Q

aR−
ˆ

R

∑

Q�Q≤R

aQ
1Q

|Q|

≤ μ(log #V )massa(Q) + μ(#V )
∑

k>μ(log #V )

(k + 1) sup
v∈V

∑

R∈Qv,k

aR

(7.2)

where μ > 0 is a numerical constant to be chosen later and

Qv,k :=
{

R ∈ Qv : μk ≤ −
ˆ

R

∑

Q�Q≤R

aQ
1Q

|Q| < μ(k + 1)
}

.

Thus the proof reduces to proving a suitable estimate for massa(Qv,k) for every fixed v ∈
V and every k > μ(log #V ). The next remark encapsulates some simple but important 

geometric observations that are at the heart of the argument.

Remark 7.2. Fix R = P (IR, KR, vR) ∈ PV and consider a d-plate PV � Q =

P (IQ, KQ, vQ) ≤ R. Note that if vQ �= vR then afQ ∩ afR is a (d − 1)-dimensional affine 

subspace and let linQ,R be the subspace parallel to afQ ∩ afR. As vQ, vR lie in a small 
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neighborhood of e⊥
n , the subspace Πe⊥

n
linQ,R has dimension d − 1 as well and is a codi-

mension 1 subspace of e⊥
n . We may thus pick an orthonormal basis GQ,R := (g1, . . . , gd)

for e⊥
n such that (g1, . . . , gd−1) is an orthonormal basis of Πe⊥

n
linQ,R.

Let ÎQ,R ⊂ be the smallest d-dimensional cube in the coordinates GQ,R that contains 

IQ. Then

ÎQ,R ⊂ e⊥
n , IQ ⊆ ÎQ,R ⊆ dIQ,

where the dilation is taken with respect to the center of IQ. Furthermore, defining

Q̂ := P (ÎQ,R, KQ, vQ)

then Q ⊆ Q̂ and 
∣∣Q̂
∣∣ �n |Q|. In case vq = vR we just set Q̂ := Q for the sake of having 

a general definition. Finally, setting ÎR := dIR and R̂ := P (ÎR, KR, vR) yields

vR̂ = vR, R̂ ⊇ R, IR̂ ⊇ IQ̂ ∀Q ≤ R.

As vQ = vQ̂ and afQ̂ = afQ, the plate Q̂ is a rotation and afQ-tangential dilation of Q

with respect to the line {cQ + tvQ : t ∈ vQ}. Also, our construction yields that one of the 

(d − 1)-dimensional edges of Q̂ lies on an affine copy of afQ ∩ afR. Note also that ÎQ,R

depends both on Q and R; we will however many times suppress the R-dependence as 

R will be fixed and just write ÎQ in place of ÎQ,R.

With these definitions and conventions in hand, we state a geometric slicing lemma 

that will be important for the proof of Theorem I.

Lemma 7.3. Let R = P (IR, KR, vR) ∈ Dv and DV � Q = P (IQ, KQ, vQ) ≤ R, and R̂, Q̂

be as in Remark 7.2. Let K ⊂ R be an interval with Πen
(Q̂) � 3K and KR ⊆ K. Then

max
a∈R

∣∣Q̂ ∩ p(IR̂, a, vR̂)
∣∣

∣∣IR̂

∣∣ �n
1∣∣IR̂

∣∣|K|

ˆ

I
R̂

×3K

1Q̂

with implicit constant depending only upon dimension.

Proof. By composing d shearing transformations, we reduce to the case of vR̂ = en. In 

this case the slices may simply be described by p(IR̂, a, vR̂) = IR̂ × {a}. The conclusion 

is immediate if vQ = vR̂ = en since then the slices of Q by planes perpendicular to 

en have all constant measure. Thus we assume that en = vR̂ �= vQ. Then, afQ ∩ afR

is an affine space of dimension d − 1 parallel to the subspace linQ,R. As vR̂ = en, we 

have linQ,R = Πe⊥
n

linQ,R, in other words linQ,R ⊂ e⊥
n . Setting H(t) := t + (linQ,R)⊥ for 

t ∈ afR ∩ afQ ∩ Q̂, we have for any a ∈ R that
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Fig. 7.1. A plate Q = P (IQ, KQ, vQ) in R
3 perpendicular to vQ ∈ V .

∣∣Q̂ ∩ (IR̂ × {a})
∣∣ =

ˆ

afR∩afQ∩Q̂

∣∣H(t) ∩ Q̂ ∩ (IR̂ × {a})
∣∣dt.

Now observe that for each t ∈ afR ∩ afQ ∩ Q̂ the set H(t) ∩ Q̂ is a two-dimensional 

parallelogram lying on H(t) with long side perpendicular to vQ and short side of length 

|KQ| parallel to en (Fig. 7.1). Our assumptions yield

Πen
(Q̂) ∩ K �= ∅, Πen

(Q̂) � 3K;

a two-dimensional calculation then reveals that there exists a set A ⊂ 3K \ K with 

|A| ≥ |K|/3 such that for each a′ ∈ A and all t ∈ afR ∩ afQ ∩ Q̂

|H(t) ∩ Q̂ ∩ (IR̂ × {a′})| � max
a∈R

|H(t) ∩ Q̂ ∩ (IR̂ × {a})|;

the implicit constant in the estimate above is independent everything and in particular 

this estimate holds uniformly in t. This clearly implies that

max
a∈R

|H(t)∩Q̂∩(IR̂×{a})| ≤ −
ˆ

A

|H(t)∩Q̂∩(IR̂×{a′})| da′ � −
ˆ

3K

∣∣Q̂∩H(t)∩(IR̂×{a′})
∣∣da′.

The conclusion of the lemma readily follows by noticing that for every a ∈ R the quantity 

|H(t) ∩ Q̂ ∩ (IR̂ × {a})| is independent of t and integrating for t ∈ afR ∩ afQ ∩ Q̂. �

We now return to the estimate for massa(Qv,k). Letting R ∈ Qv,k we note that for 

every Q � Q ≤ R we have Q̂ ⊇ Q and |Q̂| �n |Q| so that

μk ≤ −
ˆ

R

∑

Q�Q≤R

aQ
1Q

|Q| �n −
ˆ

R

∑

Q�Q≤R

aQ

1Q̂

|Q̂|
�n −

ˆ

R̂

∑

Q�Q≤R

aQ

1Q̂

|Q̂|

since R ⊆ R̂ and |R| �n

∣∣R̂
∣∣. For a collection of plates L ⊆ DV we define

BL
R := −

ˆ

R̂

∑

Q∈L
Q≤R

aQ

1Q̂

|Q̂|
.
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Then the considerations above imply that

Qv,k ⊆ Q̂v,k := {Q ∈ Qv : BQ
R > cnμk} (7.3)

for some dimensional constant cn > 0 and μ to be chosen.

The proof of Theorem I relies upon the estimate for sh(Q̂v,k) contained in the following 

lemma.

Lemma 7.4. Let δ > 0, V ⊂ S
d be a finite set of directions, and Q ⊆ DV satisfy the 

assumptions of Theorem I. For v ∈ V and k ≥ 1 we define Q̂v,k as in (7.3) above, with 

μ a sufficiently large dimensional constant. Then

∣∣sh(Q̂v,k)
∣∣ �n 2−k

massa(Q).

With Lemma 7.4 in our disposal we can complete the proof of the main result of this 

paragraph.

Proof of Theorem I. Let Q ⊆ DV be a collection of plates such that the operators {MQv
:

v ∈ V } are of weak-type (1, 1), uniformly in v ∈ V , with weak (1, 1) bound depending 

only on the dimension. By (7.2) combined with (7.3) and the estimate of Lemma 7.4 we 

have that

‖TQ(a)‖2
L2(Rn) � μ

(
(log #V ) + (#V )

∑

k≥μ(log #V )

k2−k
)

massa(L) � μ(log #V )massa(L)

so that

‖TQ(a)‖L2(Rn) ≤ Cnμ
1
2 (log #V )

1
2 massa(Q)

1
2

with μ as in the assumption of Lemma 7.4. Note that this means that μ can be chosen 

to be a dimensional constant and this completes the proof of the theorem. �

It remains to prove Lemma 7.4 which follows by an iterative application of the lemma 

below, as in the proof of [1, Lemma 2.21].

Lemma 7.5. Let V ⊂ S
d be a finite set of directions and L ⊆ R ⊆ DV such that for every 

L ∈ L there exists R ∈ R with L ≤ R. Furthermore we assume that

sup
v∈V

‖MR̂v
: L1(Rn) → L1,∞(Rn)‖ �n 1.

Fix some v ∈ V and let μ be a sufficiently large dimensional constant. There exists 

L1 ⊂ L such that

(i) massa(L1) ≤ 1

2
massa(L);
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(ii) For all plates R ∈ Rv such that BL
R > μ we have

BL
R ≤ μ + BL1

R .

Proof. Without loss of generality we can assume that v = en. Let R′
v denote the collec-

tion of R ∈ Rv with BL
R > μ. For the plates R ∈ R′

v and plates Q ∈ L with Q ≤ R we 

define R̂, Q̂ as in Remark 7.2. We remember also the notation R̂ = P (ÎR, KR, vR) and 

Q = P (ÎQ, KQ, vQ); since we will always consider the case Q ≤ R we have that ÎQ ⊆ ÎR.

Given some interval K ⊂ R and R ∈ R′
v we define the collections

Bin
R,K := {Q ∈ L : Q ≤ R, πen

(Q̂) ⊆ 3K},

Bout
R,K := {Q ∈ L : Q ≤ R, πen

(Q̂) � 3K}.

We define

Bin
R,K :=

∑

Q∈Bin
R,K

aQ
|Q′ ∩ (ÎR × K)|∣∣Q̂

∣∣∣∣ÎR × K
∣∣ , Bout

R,K :=
∑

Q∈Bout
R,K

aQ

∣∣Q̂ ∩ (ÎR × K)
∣∣

∣∣Q̂
∣∣∣∣ÎR × K

∣∣ ,

and note that for any K we have the splitting

BL
R = −

ˆ

R̂

∑

Q∈Bin
R,K

aQ

1Q̂∣∣Q̂
∣∣ + −

ˆ

R̂

∑

Q∈Bout
R,K

aQ

1Q̂∣∣Q̂
∣∣ .

Easy case: Let R1 be the collection of those R ∈ R′
v such that Bout

R,KR
≤ μ. Then we 

have for R ∈ R1 that

BL
R ≤ μ + Bin

R,KR
= μ + B

L′

1

R , L′
1 :=

⋃

ρ∈R1

Bin
ρ,Kρ

.

Noting that for all Q ∈ L′
1 we have that Q ⊆ Q̂ ⊆ Îρ × 3Kρ for some ρ ∈ R1, we get

massa,1(L′
1) :=

∑

Q∈L′
1

aQ ≤
∣∣∣∣
⋃

ρ∈R1

⋃

Q∈Bin
ρ,Kρ

Q

∣∣∣∣ ≤
∣∣∣∣
⋃

ρ∈R1

(Îρ × 3Kρ)

∣∣∣∣.

Furthermore for every ρ ∈ R1 we have

μ < BL
ρ = −

ˆ

ρ̂

∑

Q≤ρ
Q∈L

aQ

1Q̂∣∣Q̂
∣∣ .

As all the ρ ∈ R1 have fixed orientation our assumption entails that the maximal operator 

MR̂v
= MR̂en

is of weak type (1, 1) with constant depending only on the dimension. Since
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⋃

ρ∈R1

(Îρ × 3Kρ) ⊆
{

MR̂v

( ∑

Q∈L

aQ

1Q̂∣∣Q̂
∣∣
)
�n μ

}
,

we conclude that massa(L′
1) ≤ massa(L)/4 if μ > 0 is chosen to be a sufficiently large 

dimensional constant.

The main case: Here we consider R ∈ R2 := R′
v \ R1. Let us write again R̂ = ÎR × KR

and consider the intervals J of the form J = 3�KR for � ≥ 0 such that Bout
R,J > μ. Since 

Bout
R,KR

> μ for R ∈ R2 the maximal such J which we call JR will contain KR and 

Bout
R,3JR

≤ μ.

By Lemma 7.3 we have for each a ∈ 3JR and Q ∈ Bout
R,JR

∣∣Q̂ ∩ (ÎR × {a})
∣∣ � 1

|3JR|

ˆ

ÎR×3JR

1Q̂.

We can then calculate

∑

Q∈Bout
R,JR

aQ

∣∣Q̂ ∩ (ÎR × {a})
∣∣

∣∣Q̂
∣∣|ÎR × {a}|

�
∑

Q∈Bout
R,JR

aQ

∣∣Q̂ ∩ (ÎR × 3JR)
∣∣

∣∣Q̂
∣∣∣∣ÎR × 3JR

∣∣

� Bout
R,3JR

+ −
ˆ

(ÎR×3JR)

∑

Q∈Bout
R,JR

\Bout
R,3JR

aQ

1Q̂

|Q̂|

≤ μ +
∑

Q∈Bout
R,JR

\Bout
R,3JR

aQ

∣∣Q̂ ∩ (ÎR × 3JR)
∣∣

∣∣Q̂
∣∣∣∣ÎR × 3JR

∣∣ ;

in passing to the last line we used the maximality of JR. Now all the plates Q̂ appearing 

in the sum of the right hand side in the estimate above are contained in ÎR × 9JR and 

so the sum of the second summand above is estimated by a dimensional constant cn > 1

so that

∑

Q∈Bout
R,JR

aQ

∣∣Q̂ ∩ (ÎR × {a})
∣∣

∣∣Q̂
∣∣∣∣(ÎR × {a}

∣∣ �n μ + cn �n μ

if μ is sufficiently large depending only upon dimension. Since JR ⊇ KR we can integrate 

for a ∈ KR = K̂R to conclude that

∑

Q∈Bout
R,JR

aQ

∣∣Q̂ ∩ R̂
∣∣

∣∣Q̂
∣∣∣∣R̂
∣∣ ≤ κnμ

for some dimensional constant κn > 1. This shows that for μ sufficiently large depending 

upon dimension we have



F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749 43

BL
R ≤ κnμ +

∑

Q∈Bin
R,JR

aQ

∣∣Q̂ ∩ R̂
∣∣

∣∣Q̂
∣∣∣∣R̂
∣∣ = κnμ + B

L′

2

R , L′
2 :=

⋃

ρ∈R2

Bin
ρ,Jρ

,

with

∑

Q∈L′
2

aQ ≤
∣∣∣∣
⋃

ρ∈R2

Îρ × 3Jρ

∣∣∣∣. (7.4)

By the previous estimates we have that for each ρ ∈ R2

μ < Bout
ρ,Jρ

=
∑

Q∈Bout
ρ,Jρ

aQ

∣∣Q̂ ∩ (Îρ × Jρ)
∣∣

∣∣Q̂
∣∣∣∣Îρ × Jρ

∣∣ = −
ˆ

Jρ

∑

Q∈Bout
ρ,Jρ

aQ

∣∣Q̂ ∩ (Îρ × {a})
∣∣

∣∣Q̂
∣∣∣∣Îρ × {a}

∣∣ da

≤ κnμ

|Jρ| |{a ∈ Jρ : ψρ(a) > μ/2}| + μ/2

with

ψρ(a) :=
∑

Q∈Bout
ρ,Jρ

aQ

∣∣Q̂ ∩ (Îρ × {a})
∣∣

∣∣Q̂||Îρ × {a}
∣∣ .

Thus there exists a set J ′
ρ ⊆ Jρ with |J ′

ρ| �n |Jρ| so that ψρ(a) > μ/2 for a ∈ J ′
ρ. Now 

note that for a ∈ J ′
ρ

μ

2
≤ ψρ(α) ≤ −

ˆ

Îρ×{a}

∑

Q∈Bout
ρ,Kρ

aQ

1Q̂∣∣Q̂
∣∣ ≤ inf

x∈Îρ

Mv⊥

( ∑

Q∈L
Q≤ρ

aQ

1Q̂∣∣Q̂
∣∣
)

(x, a).

In the estimate above we write Mv⊥ for the maximal function

Mv⊥f(x) := sup
s>0

−
ˆ

Q
v⊥ (0,s)

|f(x + t)| dt, x ∈ R
n,

where Qv⊥(0, s) denotes the cube in v⊥ � R
d with sidelength s > 0 and centered at 

0 ∈ v⊥. Note that for v ∈ S
d the operator Mv⊥ is of weak-type (1, 1), uniformly in v. 

Thus

⋃

ρ∈R2

(Îρ × J ′
ρ) ⊆ S :=

{
z ∈ R

n : Mv⊥

( ∑

Q∈R

aQ
1c2Q

|c2Q|
)

(z) > μ/2
}

On the other hand since J ′
ρ ⊆ JR with |J ′

ρ| � |Jρ| we readily see that

⋃

ρ∈R2

(Îρ × Jρ) ⊆
{

z ∈ R
n : Men

(
1∪ρ∈R2 Îρ×J ′

ρ

)
(z) �n 1

}

⊆
{

z ∈ R
n : Men

(1S)(z) �n 1
}

.
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Combining (7.4) with the weak type (1, 1) inequalities for Men
and Mv⊥ = Me⊥

n
(since 

we assume that v = en) and choosing μ to be a sufficiently large dimensional constant

massa,1(L′
2) =

∑

Q∈L′
2

aQ ≤ C

λ

∑

Q∈L

≤ 1

4

∑

Q∈L

aQ = massa,1(L)/4.

Now we set L′ := L′
1 ∪ L′

2 and the proof is complete. �

7.6. Application to a maximal function estimate

As an immediate application of the directional Carleson embedding theorem for plates 

we describe below a sharp theorem for maximal averages along codimension 1 plates. Let 

d = n − 1 and consider σ ∈ Gr(d, n) = Gr(d, d + 1). We remember that the codimension 

1 averages at scale s > 0 of a function f ∈ S(Rd+1) can be given in the form

〈f〉s,σ(x) :=

ˆ

Bd+1(s)∩σ

f(x − y)
dy

sd
, x ∈ R

d+1,

where Bd+1(s) denotes the ball of radius s and centered at 0 ∈ R
d+1. Given a finite subset 

Σ ⊂ Gr(d, d +1) we are interested in the corresponding maximal averaging operator along 

codimension 1 plates given by Σ

MΣf(x) := sup
s>0

sup
σ∈Σ

〈|f |〉σ,s(x), x ∈ R
d+1.

As a consequence of the directional Carleson embedding theorem we obtain the sharp 

bounds for MΣ for arbitrary finite Σ ⊂ Gr(d, d + 1).

Proof of Theorem B. We write n = d + 1 throughout the proof. It suffices to prove 

the weak-type (2, 2) estimate. Indeed the Lp-estimate will then follow by interpolation 

between the L2(Rn) → L2,∞(Rn) and L∞(Rn) → L∞(Rn) bounds. Furthermore the 

strong-type (2, 2) estimate follows by the corresponding weak-type estimate with an 

additional 
√

log #Σ-loss by the well known interpolation argument of Strömberg, [29] as 

in the proof of Theorem C.

For the L2(Rn) → L2,∞(Rn) note that is suffices to prove the weak-type (2, 2) estimate 

with the same dependence on #Σ for the closely related dyadic maximal operator

MV,δf(x) := sup
Q∈DV,δ

Q�x

−
ˆ

Q

|f |, x ∈ R
n,

for V ⊂ S
d finite and fixed δ > 0, and with a bound independent of δ. This operator can 

be linearized as in the proof of Theorem C in the form
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TQf(x) :=
∑

Q∈Q

(
−
ˆ

Q

|f |
)

1FQ
(x), x ∈ R

n

where Q ⊂ DV,δ a finite collection of (d, δ) plates and {FQ}Q∈Q a pairwise disjoint 

collection of measurable sets with FQ ⊆ Q for every Q ∈ Q. Denoting by T ∗
Q the adjoint 

of TQ we have that

‖MV,δ‖L2(Rn)→L2,∞(Rn) = sup
Q⊂DV,δ

sup
0<|E|<∞

‖T ∗
Q(1E)‖L2(Rn)

|E| 1
2

where

T ∗
Q(1E)(x) =

∑

Q∈Q

|FQ ∩ E| 1Q

|Q| .

Clearly a = {aQ}Q∈Q = {|FQ ∩ E|}Q∈Q is a Carleson sequence in the sense of Defini-

tion 6 so the required estimate for T ∗
Q(1E) follows by a straightforward application of 

Theorem I.

The fact that these estimates are best possible follows by considering A to be a Kakeya 

collection of δ × 1-tubes in R2 and taking A′ := A × [−1, 1]n−2. Now for each tube in A

we can consider a 1 × δn−2 plate that contains the tube and is perpendicular to the copy 

of R2 that contains A. Calculating the averages of 1A′ with respect to these plates yields 

the sharpness of the weak-type (2, 2) estimate and the sharpness of the strong (p, p)

estimate for p > 2. Note that the numerology here is #Σ = #V � 1/δ. The optimality 

of the strong (2, 2)-estimate follows similarly by considering a function in R2 that yields 

the sharpness of the 2-dimensional results and extending them in Rn by taking a tensor 

product with a smooth bump in Rn−2; see also Remark 3.1. �

Remark 7.7. We stress an important switch in our point of view when proving estimates 

for the maximal operator MV,δ above, compared to say the corresponding estimates for 

the Nikodym operator Nδ in §6. Indeed although these two operators appear to be quite 

similar, in the case of MV,δ we are interested in proving estimates for arbitrary finite 

subsets V ⊂ S
d � Gr(d, d + 1). Thus our δ-fattening of the thin plates Bn(s) ∩ σ for 

σ ∈ Gr(d, d + 1) is purely qualitative, it is there just to allow us to use δ-plates which 

have positive measure in Rd+1 and are more amenable to geometric arguments. These 

estimates are to be δ-free as we use a limiting argument in order to recover thin plates 

as δ → 0+. Necessarily, for this argument the cardinality #V and δ are completely 

independent of each other. This is in contrast to the geometric setup underlying the 

definition of the Nikodym operator Nδ where the implicit subset of Gr(d, d + 1) is a 

δ-net and thus has cardinality ∼ δ−d, namely the thickness of the plates and the set of 

essentially directions present in Nδ are intimately connected.
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7.8. Application to a conical frequency square function

We describe below a square function estimate in the spirit of Rubio de Francia, given 

with respect to conical frequency projections in Rd+1. Let {Bk}N
k=1 be a collection of 

open balls in Rd+1 whose centers vk lie on Sd, and is well-distributed in the sense that

N∑

k=1

13Bk
� 1

Here, as usual, 3Bk is a threefold dilation of the Euclidean ball Bk with respect to its 

center. For each k, let

φk ∈ S(Rd+1), 1Bk
≤ φk ≤ 13Bk

and define the conical frequency projection

Skf(x) :=

ˆ

Sd

∞̂

0

f̂(rξ′)φk(ξ′)eix·rξ′

rd dr dσd(ξ′), x ∈ R
d+1.

The d-plate Carleson embedding Theorem I may be used to deduce a square function 

estimate for the projections Sk with sharp dependence on the parameter N .

Theorem J. For 2 ≤ p < 4,

∥∥∥
(∑

k

|Skf |2
) 1

2
∥∥∥

Lp(Rd+1)
�p,d (log N)

1
2 − 1

p ‖f‖Lp(Rd+1).

Furthermore, the restricted L4(Rn)-type estimate

∥∥∥
(∑

k

|Sk(f1E)|2
) 1

2
∥∥∥

L4(Rd+1)
�d (log N)

1
4 ‖f‖L∞(Rd+1)|E| 1

4

holds for all bounded measurable sets E ⊂ R
d+1. These bounds are best possible up to 

the implicit numerical constants.

For the optimality in the estimate of Theorem J we send to [1, Section 8], noting that 

the two-dimension bound becomes a lower bound in Rd+1 for general d by taking balls 

{Bk}N
k=1 having centers lying on a copy of S1 and functions f which are suitable tensor 

products.

The remainder of this section contains the proof of the upper bounds in Theorem J. 

Below, �2
N stands for the Euclidean norm on CN . The first step consists of the radial 

decoupling



F. Di Plinio, I. Parissis / Advances in Mathematics 410 (2022) 108749 47

‖Skf‖Lp(Rd+1;�2
N ) �p,d ‖SkQmf‖Lp

(
Rd+1;�2

N ⊗�2
Z

) (7.5)

where p ∈ [2, ∞) and {Qm : m ∈ Z} are Fourier multiplier operators whose associated 

multipliers are radial and a partition of unity of Rd+1 \ {0} subordinated to the finitely 

overlapping cover Am = {ξ ∈ R
d+1 : 2−m−1 < |ξ| < 2−m+1}, m ∈ Z. The proof is a 

simple application of the weighted norm inequality

‖g‖L2(w) � ‖Qmg‖
L2
(

M̃w;�2
Z

)

where M̃ stands for the third iterate of the standard (d +1)-dimensional Hardy-Littlewood 

maximal operator see [1, Lemma 5.6] for details.

Note that SkQm is supported in the frequency tube

ωk,m :=

{
ξ ∈ Am :

ξ

|ξ| ∈ 3Bk

}

whose center line is through the center vk of Bk and whose spatial dual is the plate

R0
m,k := {x ∈ R

d+1 : |Πvk
x| < 2mδk, Πv⊥

k
x < 2m}

of eccentricity δk, the radius of Bk and sidelength 2m. Let Rm,k be a �d 1-overlapping 

cover of Rd+1 by translates R of R0
m,k and t ∈ Tm,k be the collection of tiles t = (Rt, ωt)

with ωt = ωm,k and R ∈ Rm,k. The space-frequency projection on t is represented by 

the intrinsic coefficient

at(f) = sup
φ∈ΦM

t

|〈f, φ〉|2

where ΦM
t ⊂ S(Rd+1) is the class of functions whose frequency support is contained in 

ωt and are uniformly spatially adapted to Rt in the sense that

√
|Rt||φ| ≤ 1Rt

+
∞∑

k=0

2−Mk
12k+1Rt\2kRt

uniformly over φ ∈ ΦM
t . A standard space-frequency discretization, see e.g. [1, Sect. 

5] the right-hand side of (7.5) is pointwise bounded by the discretized square function 

associated to the coefficients at, namely

‖SkQmf‖�2
N ⊗�2

Z

� ∆f :=

(∑

t∈T

at(f)
1Rt

|Rt|

) 1
2

where Tk =
⋃

m∈Z
Tm,k and T =

⋃
1≤k≤N Tk. Theorem J is thus reduced to the 

corresponding bounds for the discretized square function ∆f . In fact, by standard 
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restricted-type interpolation, it suffices to prove the restricted type estimate that fol-

lows.

Proposition 7.9. 
∥∥∥∆(f1E)2

∥∥∥
L2(Rd+1)

�d (log N)
1
2 ‖f‖L∞(Rd+1)|E| 1

2 .

Proof. By a limiting argument, it suffices to replace the universe of tiles T in the defini-

tion of ∆ by a finite subcollection, which we still call T. We still denote by Tm,k, Tk the 

subcollections of T with sidelength and frequency parameters m, k. Recall that n = d +1. 

By linearity, we may restrict to the case ‖f‖∞ = 1. By finite splitting of the cones, we 

can assume all vk lie in a small neighborhood of en as specified in Theorem I. Using the 

well known 3d-grid lemma and finite splitting of T, we may find a dyadic grid D on e⊥
n

such that for all t ∈ Tm,k, Πe⊥
n

Rt ⊂ It for some It ∈ D with �I = 2m+3. Let also Kj , 

j = 0, 1, 2 be a system of three shifted dyadic grids on R and define

Qm,k :=
{

P (I, K, vk) : I ∈ D, �I = 2m+3, K ∈ K0 ∪ K1 ∪ K2, �K ∈ [2m+3δk, 2m+4δk)
}

,

Qk :=
⋃

m∈Z

Qm,k, Q :=
⋃

1≤k≤N

Qk.

Notice that for each t ∈ Tm,k there exists at least 1 and at most 3 elements Q ∈ Qm,k

with Rt ⊂ Q and |Q| � |Rt|. Thus, setting

T(Q) := {t ∈ Tm,k : Rt ⊂ Q} , aQ :=
∑

t∈T(Q)

at(f1E), Q ∈ Qm,k

leads to the pointwise estimate ∆(f1E)2 � TQ(a), with TQ(a) in the form (7.1).

Proposition 7.9 may then be obtained by an application of Theorem I to the union Q
of the N collections Qk. Notice that the plates of Qk have fixed eccentricity δk and thus 

obey the weak (1,1) assumption of that theorem. We must then compute the directional 

Carleson norm of the sequence {aQ : Q ∈ Q}. Firstly, from the finite frequency overlap 

of the Fourier supports of any collection {φt ∈ ΦM
t : t ∈ T} and the spatial localization 

of the collection {φt ∈ Φt : t ∈ T : ωt = ωm,k} to a finitely overlapping collection Rm,k, 

we gather that

∑

t∈T

|〈g, φt〉|2 � ‖g‖2
2 (7.6)

whence

massa(Q) ≤ 2
∑

t∈T

at(f1E) � |E|.

The details of this estimate are similar to those of [1, Lemma 4.4].

We turn to the verification of the directional Carleson sequence property. That is for 

each fixed k, let T ⊂ Pvk
, we need to prove that
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∑

L∈L

aL � |sh(T )|

whenever L is a collection subordinated to T . If M stands locally for the maximal aver-

aging operator over all plates Pvk
, which is of type (2, 2) say, define the enlargement of 

sh(T )

U :=
{

M1sh(T ) > 2−10
}

so that |U | � |sh(T )|. Then

∑

L∈L

aL ≤
∑

L∈L

∑

t∈T(Q)

at(f1E∩U ) +
∑

L∈L

∑

t∈T(L)

at(f1E∩Uc).

The local part f1E∩U is then dealt with using (7.6) as follows:

∑

t∈T(L)

at(f1E∩U ) � ‖f1E∩U ‖2
2 � |U | � |sh(T )|.

To estimate the nonlocal part split T ∈ T into the union of collections T(u), saying 

T ∈ T(u) if u is the least integer such that 2u+1T ∩ U c �= ∅. A suitable version of 

Journé’s lemma [1, Lemma 4.7] yields

∑

T ∈T(u)

|T | � 2u|sh(T )|

therefore the estimate for the non-local part follows from bounding uniformly in T ∈ T (u)

∑

L∈L
L⊂T

∑

t∈T(L)

at(f1E∩Uc) � 2−10du|T |. (7.7)

To prove the latter estimate, write

χ(x) :=

(
1 +

|Πv⊥
k

x|2
�IT

+
|Πvk

x|2
�KT

)−100d

for the rapidly decaying function adapted to the plate T . Note that φt ∈ ΦM
t with 

t ∈ T(L) is adapted to Rt and thus to the slight enlargement L. When L ⊂ T , φ̃t :=

cφtχ
−1 ∈ Φ

M/2
t if M > 2200d and c > 0 is suitably chosen; in particular we have used that 

the frequency support of φ̃t is the same as that of φt as χ is the inverse of a polynomial.

Let h = f1E∩Uc and T r = 2u+r+1T \ 2u+rT . As 2uT ∩ U c = ∅, we may write 

h =
∑∞

r=0 h1T r . Then for suitable choice of φt ∈ ΦM
t and applying (7.6) to pass to the 

second line
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∑

L∈L
L⊂T

∑

t∈T(L)

at(h1T r ) ≤
∑

L∈L
L⊂T

∑

t∈T(L)

|〈h1T r , φt〉|2 �
∑

L∈L
L⊂T

∑

t∈T(L)

|〈h1T r χ, φ̃t〉|2

� ‖h1T r χ‖2
2 ≤ ‖χ1T r ‖2

∞|T r|
� 2−100d(u+r) × (2rd|T |) � 2−99d(u+r)|T |

Summing up over r ≥ 0 yields the bound (7.7), and completes the proof of the Proposi-

tion. �
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