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Abstract

We present forms of the classical Riesz—Kolmogorov theorem for compactness that are
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of Hankel operators on the Hardy space, and obtain general umbrella theorems.
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1 Introduction

The Riesz—Kolmogorov theorem is a fundamental result in analysis that characterizes
the precompact subsets of L” (R"). The statement is as follows.
Theorem A. Let p € [1, 00). A set F € LP(R") is precompact if and only if

lim sup / [f(xX)|Pdx =0
R*)OOfEJ: |x|>R

and

lim sup/ | f(x —h)— f(x)|?dx =0.

|h|—0 feF

Theorem A is classically presented with the additional condition of F being a bounded
subset of L?(R™), however this condition is redundant as it is implied by the other
two conditions of the theorem, see [21].

The Riesz—Kolmogorov criterion is named after the work of Kolmogorov and Riesz
from [27] and [34], respectively. In [27], Kolmogorov proved a version of Theorem
A in the case when 1 < p < oo and all functions in F are supported on a common
bounded set. Riesz independently discovered a version of Theorem A in [34] in the
case 1 < p < oo. See [20] for a more detailed historical accounting of this topic.

The Riesz—Kolmogorov characterization has been adapted to handle many other
situations. For example, Fréchet proved a version of the theorem that includes arbitrary
p > 0in[12], Phillips characterized precompact subsets of L? with respect to arbitrary
measure spaces in [32], Weil obtained a version of the theorem in the setting of locally
compact groups in [41], and Takahashi proved a version of the theorem for Orlicz
spaces in [37]. There are also versions of the precompactness criterion for weighted
settings in [7, 19] and matrix weighted settings in [29]. See [3, 5, 6, 10, 11, 14-17, 25,
26, 31, 33] for further references.

As shown in [21, Theorem 4] or [4, p. 466] the Riesz—Kolmogorov theorem can be

proved using the following more abstract compactness criterion of Mazur.
Theorem B. Let X' be a Banach space and suppose that {7,,}°° | is a sequence of
compact operators on X that converges to the identity in the strong operator topology;
thatis, lim, o |7, f — fllx = Oforall f € X. Abounded set F C X is precompact
if and only if

lim sup [|T,, f — fllx = 0.
n—)oofej_—

In [32, Theorem 3.7], Phillips proved a very similar theorem and applied it to
characterize the precompact subsets of L” with respect to arbitrary measure spaces.
In [36], Sudakov showed that if at least one of the operators 7,, does not have 1 as
an eigenvalue, then the boundedness condition on F in Theorem B is not needed (see
also [21, p. 90-91]).
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Proof of Theorem B First suppose that F is precompact. By the uniform boundedness
principle, B := sup,cy I Tullx—x < oo. Let ¢ > 0. Since F is precompact, there
exists a finite subset { f1, ..., fx} € F such that for each f € F there exists 1 <
Jj < K with | f; — fllx < §min(B, 1). Choose N so that ||T, f; — fjllx < % for
allm > Nandalll < j < K.For f € Fandn > N,let1 < j < K be such that
I fi — fllx < 5 and note

ITnf = fllx = ITu(f = fPllx +1Tufj = fillx +11f; = fllx <e.

Assuming the uniform strong operator topology convergence of 7}, to the identity,
we have that for any ¢ > 0 there exists N € N such that dist(f, Ty F) < e forall f €
JF. Since F is bounded and Ty is compact, T F is precompact. The precompactness
of F follows. O

We observe that a slight strengthening of Mazur’s Theorem B can be obtained in
a Hilbert space setting by relaxing the norm conditions involving |7, f — fllx to
quadratic form conditions. This result is likely already known, but we were unable to
find a reference.

Theorem 1.1 Let H be a Hilbert space and suppose that {T,}°2 | is a sequence of
compact operators on 'H such that lim,_, oo (T, f — f, [ = Oforall f € H. A
bounded set F C 'H is precompact if and only if

lim sup (T, f — f, fInl =0.

n—>oofe]_-

The usual way to derive the Riesz—Kolmogorov theorem when all functions in F are
supported on a common bounded set from Mazur’s Theorem B is to use the averaging
operators

1

1
T}’l = L d = _— 1 ,
/e V(B(x, %)) /I;(x,’ll) fdy=1x V(B(0, %))XB(O’b(x)

where V denotes the Lebesgue measure, see [21, 36]. Loosely speaking, the Riesz—
Kolmogorov theorem says that for a set F to be compact, all of its elements need to
have uniformly small tails on the spatial side (first condition) and on the frequency
side (second condition). Therefore, to use Mazur’s theorem to derive a compactness
criterion of Riesz—Kolmogorov type, one must use operators 7;, that “truncate" in both
of the spatial and frequency domains. The simplest application of this idea gives the
following theorem.

Theorem C. A bounded set F C L?(R") is precompact if and only if

lim sup/ |f(X)]*dx =0 and lim sup/ |f (&) dE = 0.
R‘)OOfEf |x|>R R~>oofe.7: |€E|>R

Theorem C inspired the work of Dorfler, Feichtinger, and Grochenig in [9] where
they derived compactness criteria for modulation spaces and co-orbit spaces using
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the short-time Fourier transform. Recall that the short-time Fourier transform Sy :
L?>(R") — L*(R?") with a window function ¢ € L>(R") is defined by Sy f (a, b) :=
(f. Ba.p). where dpap)(x) := e*""*¢(x — a). The most classical window ¢ is the
Gaussian window. The following is the compactness characterization in terms of the
short-time Fourier transform obtained in [9].

Theorem D. A bounded set F C L?(R") is precompact if and only if

lim sup / 1S f (a, b)|* dadb = 0.
R—o0 feF RZ"\[—R,R]Z"

Since that Gabor basis simultaneously respects both the spatial and the frequency
behavior, only one uniform decay condition is needed in Theorem D.

Our first main result is a direct generalization of Theorem D. It turns out that one
can replace the Gabor system {¢(, ) : (a,b) € ]RZ"} with any continuous Parseval
frame. Recall that for a Hilbert space H, a collection {k,} € H indexed by a measure
space (X, u) is a continuous Parseval frame for H if

||f||%1=[x|(f,kx>7-t|2dli(x)

foreach f € H.If {k,}cx is a continuous Parseval frame for a Hilbert space 7, then

fZ/X(f,kx)Hkxd,u(x)

o0

foreach f € H. By an exhaustion for X we mean a sequence of subsets of X, {F;,,}77 |,

such that F, C F, foreachn and J;2 | F, = X.

Theorem 1.2 Let H be a Hilbert space with a continuous Parseval frame {ky} indexed
by a measure space (X, ). Suppose that sup,.x kx|l < oo and that X has an
exhaustion {F,}° | such that u(F,) < oo for all n € N. A bounded set F C 'H is
precompact if and only if

lim sup / (f ko) w1 dp(x) = 0.
X\F,

l’l—)OOfe]_-

Assuming more on the the frame {k, }xcx, we may relax the finite measure assump-
tion of Theorem 1.2. The following frame-theoretic statement relies on Theorem 1.1.

Theorem 1.3 Let 'H be a Hilbert space equipped with a continuous Parseval frame
{ky} indexed by an unbounded metric measure space (X, d, () satisfying for some
w:X — (0,00)

sup w(y) ™! /X (ks ky)plw(x) dpe(x) < oo,

yeX

lim sup w(y)”" / |tk ky)p¢lw(x) dpa(x) =0, and
X\B(y,R)

R—00 yecx
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[{kx, ky)nl — 0 as d(x,y) — oo.

Suppose that X has an exhaustion {F,,}>° | such that

lim  w(FaNB(y,R) =0
d(y.y0)—00

for some (any) yo € X, some (any) R > 0, and all n € N.
A bounded set F C 'H is precompact if and only if

lim sup / (f s ke)pl* dp(x) = 0.
X\F,

n—oo fe]:

A version of Theorem 1.2 also holds in appropriate Banach space settings.
For a Banach space X, p € [l,00), and a measure space (X, ), we say
{frlxex, {fi}xex) © X x X* is a continuous frame for X’ with respect to L” (X, i)
if
(1) sup [ f{llx—c < oo,

xeX

(2) the function x — (f, f{)isin L7 (X, u) forall f € X,
(3) there exist ¢, C > 0 such that

cllflle = ICF fO e = Cllfllx

forall f € X, and
(4) each f € X satisfies

= L5 fed .
f /X<f £ fe du(x)

Note that, unlike in the Hilbert space setting, the existence of f, € X such that (4)
holds is not guaranteed from condition (3) in general Banach spaces, so their existence
is assumed.

Theorem 1.4 Let p € [1,00) and X be a reflexive Banach space equipped with
a continuous frame ({ f}, {fF}) with respect to LP (X, ). Suppose that X has an
exhaustion {F,,};’f’=1 such that u(F,) < oo for alln € N. A bounded set F C X is
precompact if and only if

im_sup | I d =0

n— oo fEf

We next extend our compactness criterion to function spaces which are not neces-
sarily framed spaces. More precisely, we consider Banach function spaces consisting
of functions defined on a metric measure space (X, d, ;) with a Radon measure .
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Theorem 1.5 Let X be a Banach space of functions on a metric measure space
(X,d, n) with a compact exhaustion {Fn}zozl. Let p € [1,00) and suppose that
there is a point xo € X and linear maps D; : X — C(X), j =1,2,...,N + M,
such that

N+M

N
IIfII”X=Z/XIDjf(X)I”du(x)+ Y IDjfxo)”
j=1

J=N+1

forall f € X. Suppose also that

(i) F C X is bounded,
(ii) for each set F, and 1 < j < N, the collection of functions {D; f : f € F}is
equicontinuous on F,, and
(iii) foreachx € X and1 < j < N + M, supscr |D; f(x)| < o0.

Then F is precompact if and only if

N

lim sup Z/X\F |Djf(x)|PdpL(x) =0.

Note that Theorem 1.5 generalizes our Theorem 1.2 in the case when x — k is
continuous by taking N =1, M =0, p =2, and Df (x) = (f, kx)H-

1.1 Compactness Criteria in Function Spaces

We now show how our results can be used to establish compactness criteria in var-
ious function spaces including the Lebesgue space L?(R"), Paley—Wiener spaces,
weighted Bargmann-Fock spaces, and a scale of weighted Besov—Sobolev spaces that
includes weighted Bergman spaces, the Hardy space, and the Dirichlet space. This list
of applications is certainly not exhaustive—we only mention a focused selection of
well-known examples in which our results apply.

1.1.1 The Lebesgue Space L2(R")

We already presented several alternative compactness characterizations in L2(R")
besides the classical Riesz—Kolmogorov theorem. Our Theorem 1.2 shows that every
continuous Parseval frame provides a new compactness criterion. For example, if we
use the continuous Parseval frame of wavelets indexed as usual by the ax + b group
R’fl := (0, 00) x R" equipped with the usual hyperbolic measure and metric, we
obtain a compactness characterization in terms of the continuous wavelet transform.
Namely, a bounded set 7 C L?(R") is compact if and only if the continuous wavelet
transforms of all the elements of F have uniformly null tails. This fact seems to have
been first noticed in [9, Theorem 3].
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1.1.2 Paley-Wiener Spaces

Recall that for a Borel measurable set £ € R”" with finite Lebesgue measure, the
Paley—Wiener space PW(E) is the subspace of L?(R") consisting of functions whose
Fourier transform is supported in E. In the case when E = [—a, a]", all elements of
PW(E) can be extended to entire functions with exponential type no greater than a.
Every Paley—Wiener space is a reproducing kernel Hilbert space, and an application
of the Plancherel theorem shows that the normalized reproducing kernels form a
continuous Parseval frame for PVV(E). Therefore our Theorem 1.2 immediately gives
the following simple criterion for compactness in Paley—Wiener spaces.

Theorem 1.6 A bounded set F € PW(E) is precompact if and only if

lim sup/ | £ ()2 dx = 0.
R—00 rer Jix|>R

We remark that in the classical case E = [—a, a]” this fact is also immediate from
Theorem C since the second condition of that theorem is automatically satisfied by a
family of functions in the Paley—Wiener space PW([—a, a]").

1.1.3 Weighted Bargmann-Fock spaces

The weighted Bargmann-Fock space F(C") is the space of all entire functions f :
C" — C satisfying the integrability condition

171 = [ 1@ 0 ave) < o

where ¢ : C" — R is a plurisubharmonic function such that for all z € C”"
03¢ ~idd|z|%,

in the sense of positive currents. The classical Bargmann-Fock space F(C") is an
important special case obtained when ¢ (z) = % 1z|2.

Equipped with the norm ||-||4, the weighted Bargmann-Fock space Fy(C") is a
reproducing kernel Hilbert space. We will denote its reproducing kernel at z by K f’ It
is easy to see that the normalized reproducing kernels indexed by the metric measure
space (C", Vi, d), where d Vg (2) := || K? ||$e’2¢(1)dV(z) and d is the usual Euclidean
metric on C", form a continuous Parseval frame. A straightforward application of our
Theorem 1.2 gives the following criterion for compactness in weighted Bargmann-
Fock spaces.

Theorem 1.7 A bounded set F C F4(C") is precompact if and only if

lim sup / |f ()2 2@ av(z) = 0.
R—)oofej: lz|>R
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1.1.4 Weighted Besov-Sobolev Spaces

Let D € C" be a bounded domain, p € [1, 00), and o be an integrable weight on D,
that is, o is positive almost everywhere and | p 0 dV < oo. In order for our spaces to
be Banach spaces, we additionally suppose that for any compact K C D, there exists
a constant Cg , » > 0 such that

@I < cK,p,a/D|f|Po v ()

for every z € K and all holomorphic functions f for which |’ plfIPodV < oo. For
J € Nand such D € C", p € [1, 00), and such integrable weights o, we define the

weighted Besov—Sobolev space B ! (D) to be the space of holomorphic f : D — C
such that

1/p

Z/‘y odV < 00,

la|=J

sy = | 2 |5

la|<J

where o are multi-indices indicating complex derivatives and z¢ is an arbitrary fixed
point in D. For § > 0, define the subset Ds := {z € D : dist(z, dD) > §} and notice
that Dy = D. The following is a consequence of Theorem 1.5.

Theorem 1.8 A bounded set F C Bg’J (D) is precompact if and only if

afl’

9z%

odV =0.

lim sup /
s—0+ fe]-'|ZJ D\D;

Theorem 1.8 immediately gives compactness criteria for various function spaces
including weighted Bergman spaces, the Hardy space, and the Dirichlet space.

Let D be a strongly pseudoconvex domain with a C? defining function p, that is,
pisaC? plurisubharmonic function such that with D = {z € C" : p(z) < 0} and
Vp(z) # 0forz € 9D. For p € [1,00) and t > —1, define the weighted Bergman
space of D, A? (D), to be the space of holomorphic f : D — C such that

I/p
1 lr ) = (/lelp(—p)’dv) < .

Note that these spaces generalize the radially weighted Bergman spaces of the unit
ball B, € C” with weight (1 — |z|?)’. We denote A? (D) := .Ag (D).

Corollary 1.9 A bounded set F < AP (D) is precompact if and only if

lim sup / [ F1P(=p)' dV = 0.
8—0% reF JD\D;s
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We also apply Theorem 1.8 to weighted Bergman spaces with respect to B, weights;
see [39] for a definition of B, weights on C? domains. For a strongly pseudoconvex
C? domain D, p € [1,00), and o € B, define the weighted Bergman space of D
with respect to o, AL (D), to be the space of holomorphic f : D — C such that

1/p
1 £z = </D|f|”adV) - .

Notice that if o = 1, then A2 (D) = AP (D).
Corollary 1.10 A bounded set F < AL (D) is precompact if and only if

lim sup/ | f1PodV =0.
§=0% reF JD\Ds

Remark 1.11 The hypothesis that F is bounded can be removed in both Corollary 1.9
and Corollary 1.10 since the boundedness of F is implied by the uniformly vanishing
integral condition. We illustrate the proof when o is a B, weight and note that the
obvious modifications can be made when the weight is as in Corollary 1.9. Take ¢ = 1
and fix the corresponding § as in the proof of Theorem 1.8 (see Sect.2). It suffices to
show that

sup/ | f1PodV < oo.
feF JDs

We claim that the functions in F are uniformly bounded on the compact set d Ds .
Indeed, if z € 9Ds2, then the Euclidean ball B(z, §/4) is contained in D \ Ds. We
then estimate for such a point z and f € F as follows

1
R dv
|f(Z)| = V(B(Z» 5/4)) /;(2,5/4) |f|

<G / fldv
D\Ds

1/p 1/p
< Cs <f |f|1’adv> (/ o_l/(”_l)dv>
D\D; D

=GCs,po-

/

By the maximum principle, the functions in F are uniformly bounded on Dj, and thus
the above inequality holds.

Remark 1.12 We note that compactness criteria for A7 (B,) follow from either of
Theorem 1.8 or Theorem 1.4. An application of Theorem 1.8 with D = B,, p €
[1,00),0 = m, and J = 0 shows that 7 C A”(B,) is precompact if and only if

lim sup [ [ f )P dv(w) =0,
r—1- f€.7: Bn\an



40  Page 10 of 31 M. Mitkovski et al.

where dv represents normalized Lebesgue measure on the unit ball. On the other

hand, if p € (1, 00), then A? (B,,) is a reflexive Banach space with a continuous frame
n+l

{k,(up), k(p )} withrespectto L? (B, dA), where kP (2) = % denotes the “p-

normalized” reproducing kernel at w and dA(w) := (1 — lw|®)~®*tDdy(w) denotes
the hyperbolic measure on B,. Theorem 1.4 gives that 7 C A?(B,,) is precompact if
and only if

lim Sup/ (kPN P dr(w) = 0.
r—>1- feF IB,\rB

We also remark that Theorems 1.2 and 1.3 both apply in the Hilbert space case p = 2.

Remark 1.13 Both Corollary 1.9 and Corollary 1.10 apply in the case of weighted
Bergman spaces of B, with radial weights o (z) = (1 — lz|%)! fort € (=1, p — 1),
since o is a B, weight for this range of #. Corollary 1.9 extends this factto all > —1,
and Corollary 1.10 generalizes the result to arbitrary B, weights.

The Hardy space, H>(B,), is the space of holomorphic f : B, — C such that

172
I fll+2@,) = sup (/313 |f(r§)|2dS(§)> < 00,

O<r<l1

where s denotes the normalized Lebesgue surface measure on aB,,. The functions in
H2(B,,) have well-defined boundary values almost everywhere, and hence H2(B,)
can be isometrically identified with a closed subspace of L?(dB,,), see [42, Theorem
4.25]. The Hardy space can be defined using the following equivalent norm which we
also denote by || - ”Hz(IB%n):

1/2
2
—(0>’ Z/ ‘—(w)‘ (1—|w|2)2’—‘dv<w)) < o0,

la|=J

1f 12, = (Z

la|<J

where J is a positive integer, see [1]. Note that this space is independent of J.

Corollary 1.14 A bounded set F C H>(B,,) is precompact if and only if

8°‘f
97

2
1= wP* dvw) =0.

lim sup /
r—1- fE]:||Z:J B, \rB,

The Besov space D? (B,,) is the space of holomorphic f : B,, — C such that

1/p
P
Z/ ’—(w)’ (1—|w|2>”"<"+”dv(w)) < o0,

la|=J

I f e, = (Z
I

o|<J
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where J > % is an integer. These are precisely the scale of Besov spaces discussed in

[42, Chapter 6], and in the special case p = 2, D? (B,,) is the well-known Dirichlet
space. As with the Hardy space, these Besov spaces do not depend on the choice of J.

Corollary 1.15 A bounded set F C DP (B,,) is precompact if and only if

a“f

0z%

14
lim sup Z/ (w)‘ (1 = (w0 gyw) = 0.
rﬁl_f&]'—lal:‘] B, \rB,

1.2 Applications of Compactness Criteria

We apply our compactness criteria to characterize the compact Toeplitz operators on
the Bergman space, deduce the compactness of Hankel operators on the Hardy space,
and obtain general umbrella theorems. We have chosen to provide only a sampling of
the possible applications of our results. It is clear that more could be done including
working with different frames, extending applications outside of L?/L? settings, and
obtaining additional operator theoretic applications; however, we aim to provide just
a flavor of the possible applications.

1.2.1 Compactness of Toeplitz Operators on the Bergman Space

Our first application is a characterization of the compact Toeplitz operators on the
Bergman space of the unit ball. Given a function u on B,, the Toeplitz operator
assosociated to u, T,, is given by

T f(2) = P(uf)(z) = /B muwmw)du(wx

where P denotes the Bergman projection from L%*(B,) onto A%(B,) and zw =
Z?:l zjw;. Below, T represents the Berezin transform of a bounded operator T
on A”(B,,) defined by

T(z) = (Tkz, k) 2B,

where k, := kéz) is the normalized reproducing kernel of A2 (B,,) at z.

Theorem 1.16 Let T be a finite sum of finite products of Toeplitz operators with
L*°(B,,) symbols and p € (1, 00). Then T is compact on AP (By,) if and only if

lim T(z) = 0.

lz]—>1—

Theorem 1.16 contains the seminal result of Axler and Zheng from [2]. Theo-
rem 1.16 has recently been extended to strongly pseudoconvex domains with smooth
boundary by Wang and Xia in [40, Proposition 9.3], however our methods are different
and considerably less involved. See also [23, 30, 35] for related results. Additionally,
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we mention that the analogous result for smoothly bounded strongly pseudoconvex
domains can be obtained with our methods using our Corollary 1.9 or Corollary 1.10.

1.2.2 Compactness of Little Hankel Operators on the Hardy Space

Our second application deals with the compactness of little Hankel operators on the
Hardy space. Given g € H?(B,), the little Hankel operator, H,, is given by

— 1 _
Hgy f(z) == S(gf)(2) :/ ——8(w) f(w) ds(w),

B, (1 —zw)"

where S denotes the Szegd projection from L?(dB,) onto H%(B,). Below, VMOA
represents the space of f € H?(B,,) with vanishing mean oscillation, that is

2

lim ds(w) = 0,

sup ————— fds
r—0t ream, S(QC, 1)) Jow,n

w) — ————
s(Q¢.r) Jow,r

where Q(¢, r) denotes to the ball in dB,, centered at ¢ of radius r with respect to the
non-isotropic metric d(z, w) = |1 — zw|1/ 2 see [42].

Theorem 1.17 Let g € H*(B,,). The little Hankel operator H, is compact on H2(B,)
if and only if g € VMOA.

This result first appeared in [22] in the 1-dimensional setting and appears in [8]
for the unit ball in C". Similar questions have been considered for more general
commutators of Calderén—Zygmund operators in [38]. Our framework is best suited
to proving the sufficiency of VMOA for compactness — we only supply a proof for
this direction of the theorem.

1.2.3 General Umbrella Theorems

The following is a form of uncertainty principle of Fourier analysis known as Shapiro’s
umbrella theorem that follows quickly from the classical Riesz—Kolmogorov theorem
on L%(R), or more precisely from Theorem C above, see [24]: “Let ¢, ¥ € L2(R). If
{er} < L?(R) is an orthonormal sequence of functions such that for each k£ and almost
every x, & € R,

lex () < le(x)|  and |k (®)] < [¥ ()],

then {ex} is finite." In other words, no infinite orthonormal sequence of L? functions
can have common umbrella functions ¢, ¥ € L2(R).

The orthonormality assumption in the umbrella theorem can be replaced with many
weaker conditions, such as separation, being a Bessel sequence, being a frame for its
closed span, being a Schauder basis for its closed span, etc. Any sequence of vectors
having a common umbrella, due to Riesz—Kolmogorov type criteria is forced to be
compact, and consequently to have a convergent subsequence, which is not possible
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for any of the above mentioned types of sequences. With this in mind, it is clear that
each of our compactness criteria will imply a corresponding umbrella theorem. We
only state the one for Besov—Sobolev spaces.

Theorem 1.18 Let D € C”" be a bounded domain and o be an integrable weight on

D. Let F C B([;’J(D) be a separated family of functions, that is, there exists § > 0
such that || f — > § for all distinct f,g € F. If there exists ¢ € L5 (D)

such that

8l ()

o

0 f
3 — (@)

<92

forall f € F,z € D, and |a| = J, then F is a finite set.

The remainder of the paper is organized as follows. We prove our precompactness
characterizations Theorem 1.1, Theorem 1.2, Theorem 1.3, Theorem 1.4, Theorem 1.5,
Theorem 1.8, Corollary 1.9, Corollary 1.10, Corollary 1.14, and Corollary 1.15 in
Sect. 2. We then prove the characterization of compact Toeplitz operators on A” (B,,),
Theorem 1.16, and the compactness of little Hankel operators on H?(B,), Theo-
rem 1.17, in Sect. 3.

2 Proofs of Compactness Criteria
2.1 General Compactness Characterizations

Proof of Theorem 1.1 To prove the forward direction, we suppose F is precompact
and proceed by contradiction. Assuming that the uniform decay condition fails, there
exists &g > 0 such that for each n € N, there exists f,, € F with

Ty fn — fu, Ju)H| > 0.

Consider the sequence { f,,}5° ;. By the precompactness of F, there exists a subse-
quence { fy,, }72, converging to some f in . We claim that for all k > 0, we have

hatl

(Taf = £, F)ml > 5

providing a contradiction since lim,, oo (T f — f, f)H = 0.

In order to justify the claim, we first note that the condition lim,_, (T}, f —
f, f)r =0forall f € H and polarization imply that

lim (T, f. g)p = lim —Zz (To(f +i%9). f+i*g)n
=0

3
Ry . .
=2 i +ife f it
k=0
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for all f, g € H, which implies that the 7, are uniformly bounded. Indeed, the above
weak operator topology convergence of the 7,, implies that the linear functionals
T, r:H— Cgivenby T, rg = (T, f, g)n satisfy

sup |1y, gl = sup (T f, g)H| < o0
n>0 n>0
for all f, g € 'H. By the uniform boundedness principle,

sup |1, fll = sup [| T, fllH—C < 00

n>0 n>0

for all f € H, and therefore, by another application of the uniform boundedness
principle,

B :=sup ||T,||lH=H < 00.

n>0

Write A := sup;_g |l fu, llx and choose k > 0 large enough such that

||fnk—f||H<max( fo 0 )
2B+ ISl 4B+ DA

Using the reverse triangle inequality, we have for each k > 0 that

‘(Tnkf - fs f)Hl > |<Tnkfnk - fnky fnk>H| - |<Tnkf - fs f)H - (Tnkfnk - fnks fnk)HI
>e0 — (T f — fo f = fudml + U T (f = fu) — (F = fuids fu 1D

The claim holds since, the Cauchy-Schwarz inequality implies

KT f = fo f = JadH1l = W f = RIS — falln
=B+ DIfIHIS = fallrn

€0 =%
< B+ D flx (M) 4

and similarly

(T, (f = fu) = (F = Ju)s fud w1 S W (f — fu) — (F = S Il el
<(B+ 1)A||f - fnk”H

<(B+DA (8—‘)) =%
B+DA) 4

To establish the reverse direction, let { f; };?Oz | € F.Since F is bounded, there exists

a subsequence {fj, }72, converging weakly to some f € H; we claim that {f}, }72,



Riesz-Kolmogorov Type Compactness Criteria... Page 15 of 31 40

converges strongly to f. Let & > 0 and apply the hypotheses to choose N > 0 such
that

sup|<TNf,~k—f,-k,f,»,»m<§1 and |<TNf—f,f>H|<§.
k>0

By the compactness of T, we have that {Ty f, }72 | converges strongly to Ty f, which

implies that (T fj, — f, fj)n = (Inf — f, f)x as k — oo. Take K > 0 such
that

(T fis = Fo fudwl < I F = Fo Pyl +5 and 1(fi = fo Pl <

forall k > K. Then

I fie = fl3 = —(Tn fi = Fies Fidm + TN Fi = Fies Fidm + (e = fo fie = F)m
<WUINnfj. = fier Fidml + KIN i = f Fid w15 = > FIxl

&
<I(Tzvfjk—fjk,fjk)H|+I(TNf—f,f)H|+Z+|(fjk—f,f)HI
a+8+8+£_
27373 Tf

forallk > K. |

Proof of Theorem 1.2 The proof of the forward direction is similar to the corresponding
implication in the proof of Theorem 1.1. Suppose F is precompact and assume towards
contradiction that there exists &g > 0 such that for each n € N, there exists f,, € F
with

/ I foo k) |? dpe(x) > .
X\F,

Since F is precompact, there exists a subsequence { f,,, };2, of { f},2 | that converges
to some f in H. We claim that

[ f k)P dpa(x) > %"
X\Fy,

for all k € N, providing a contradiction since f € H. Choose k € N large enough
12

such that || f — fu, lln < EOT Then applying the reverse triangle inequality, we have

12 1/2
( / |<f,kx>H|2du<x>> > ( / |<fnk,kx>H|2du<x>>
X\ Foy X\ Fy

1/2
- (f = fu kx>H|2du<x)>
X\ Fy
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1/2
>80/

—If = fallm

To prove the other direction, let { f j}oo C F. Since F is bounded, there exists a
subsequence { f}, }72, that converges weakly Without loss of generality, assume that
{fji )72, converges weakly to 0. We claim that { f}, }72 | converges strongly to 0. Let
& > O and apply the condition to choose N € N such that fX\FN [ fies k) |? dp(x) <
5 for all k. Then

I £ill3, = /X {fie ke dpl* dpe(x)
:/ f]kv H| d“(x)—i_/\ f]k’ H| d,u,(x)

</ |(fjkvkx>H|2dlL(x)+E.
Fn

Now, [ [ fjes k) > dp(x) < u(Fn)(supygex Ik ll7)(sup ez I £17,), and there-
fore, we may use the fact that the f;, converge weakly to 0 and apply the dominated
convergence theorem to choose K € N such that f Fy [ fi» kx)m2 du(x) < % for all
k > K. This establishes the result. O

Proof of Theorem 1.3 Consider the operators Tr, : H — H given by

Tan=_/F (f s kx )k dpn(x).

Note that
(Tp, f — [, f>H=_</ (kax>7—[kxdl/‘(x)’f> =—/ s k)l dp().
X\Fy H X\Fy

This identity implies that (Tr, f — f, f) — Oasn — oo for each f € H (by the
dominated convergence theorem) and that the condition

lim sup (Tr, f — f, finl =
n—o0 fef
is equivalent to

lim sup / [(f k)l dpx) = 0.
X\Fy

n—oo f€.7:

Appealing to [18, Proposition 1 and Theorem 1] by the hypotheses on the frame {k,},
each T, is compact on H. The theorem follows upon applying Theorem 1.1 with
T, = Tpn. O
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Proof of Theorem 1.4 The proof is very similar to the proof of Theorem 1.2. We omit
the details of the forward direction.

To show the reverse direction. Let { f j};?o: | © F. Since F is bounded and since &
is reflexive, there exists a subsequence { f;, }72 | that converges weakly. Without loss
of generality, assume that { f;,};2, converges weakly to 0. We claim that {f}, }72,
converges strongly to 0. Let ¢ > 0 and apply the condition to choose N € N such that
fX\FN I Fies P du(x) < el for all k. Then

1
13l = =5 [ 1 217 duo
c X

L s rap+— [ 1 1P due
cP Fy Jk* Jx Hx ) X\FN Jk* Jx MAX

A

1 NIY €
c_P/FNHf”"f"H nx)+ 5.

Since F is bounded, [ 1(fjs P dpu(x) = w(FN)(supyex £l x—csuprer
| fllx)?. Therefore, we may use the fact that the f; converge weakly to 0
and apply the the dominated convergence theorem to choose K € N such that
fFN [{f» L7 du(x) < cP5 forall k > K. This establishes the result. O

Remark 2.1 We remark that the reflexivity assumption of X’ in Theorem 1.4 can be
removed. This fact (and its short proof which we include below) has been brought to
our attention by Daniel Freeman [13].

Freeman’s proof of Theorem 1.4 without the reflexivity assumption of X is as
follows:

Let 7 C X be such that | fllx < C forall f € F. Foreach V C X, let
Yy : X — LP(X) be the map defined by ¢y (f)(x) = xv(x)({f, fi) for f € X and
x € X. Since sup,cy Il /il < 0o, ¥y is a compact operator whenever (V) < oo.
By our assumptions, we have that lim,, . o sup s | ¥x\£, f e (x) = 0.

Let {k,};2 , be such that SUp re ”ka"+| \Fi, S lLr(x) < 27" for all n € N. Then,

letting By and Byr(x) denote the unit balls in X and L?(X) respectively, one has

o
Yx(F) S Yk, (CBx)+ ) VR, _\A, (CBx) N 27" BLox),

n=l1

and

o
Vi, (CBx) N CBLox) + )V, \Fy (CBx) N 27" BLrx)

n=1
is compact. Thus F is precompact in X as ¢¥x : X — LP(X) is an embedding.

Proof of Theorem 1.5 The forward direction follows from making slight modifications
to the argument in the proof of Theorem 1.2. We omit the details.
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To show the reverse direction, let {f;, 2021 C F be a sequence. Consider
{len)(Fm};'zo:1 C C(Fy,) for a fixed m € N. This sequence is equicontinuous and
pointwise bounded (due to hypotheses (ii) and (iii)), and therefore has a subsequence
that converges in the uniform norm on F;;, by the Arzela-Ascoli theorem. Denote the
uniformly convergent subsequence { D1 fu, XF,, }fo ;-

Repeating the above argument with the sequence { D> fy,, X F,, }7o.; We obtain indices
(which we also denote by ny) such that { D1 fy,, x £, }72, and {D2 fu, XF, }7o., converge
uniformly on F,,. Repeating this process N times, we obtain a subsequence { f, }72
of { fu}o; suchthat {D; f,, xr, }z=, converges uniformly on F, foreach1 < j < N.
A standard diagonal selection process then allows one to extract a further subsequence
(again denoted by { f, }7= ;) such that {D; f,,, xF,, };= converges uniformly on £, for
all 1 < j < N and all m € N. Since {Dy41 fn, (x0)}72; is a bounded sequence
of complex numbers, it has a convergent subsequence (also indexed by ny) by the
Bolzano-Weierstrass theorem. Iterating this argument M times yields a subsequence
{fudeey of { fuloo, such that {D;(fu.)xF,}z—, converges uniformly on F,, for all
1 <j<Nandallm € Nand {Djf,,k(xo)},fo:] converges forallN+1 < j < N+ M.

We claim that { f,,}72, is Cauchy in X'. To see this, let ¢ > 0. By hypothesis, we

may choose My € N such that Zj»v:l fX\FM IDj fu, P dp < # forall k € N. Let
o ;

1/p
No € N be such that for all k, £ > No, | D; fu, (x) — Dj fu, (X)] < (W) for

allx € Fyyandall 1 < j < N, and |D; fu, (x0) — D; fu, (x0)| < (55)" for all
N+1<j<N+ M.Fork, ¢ > Ny, we have

N N
I foe = Fuel = Z/ 1D (fe) = Dy (fa)lP dps + Z/ ID(fu) = D (fu)|P dps
j=17X\Fig —1 Y Fug

N+M

+ 3 IDj fu, (0) = Dj fu, (x0)I

J=N+1

N N
<23 [ poran+ 2y [ D de
j=1 X\Fig j=1 X\Fig

N+M
2, G X G
2 Gt e X,
<or b2 AN (Fu)+ M- =¢.
3. 2p+1 3.2p+1 3Nu(Fy,) 0 3M
This proves our claim and therefore establishes the theorem. O

2.2 Weighted Besov-Sobolev Space Compactness Characterization

We begin by establishing that the weighted Besov—Sobolev spaces, B - (D), are in
fact Banach spaces.
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Proposition 2.2 If D C C" is a bounded domain, p € [1,00), J € N, and o is an
integrable weight satisfying (1), then B(I;’J (D) is a Banach space.

Proof 1t suffices to prove completeness. Suppose { f; }oo | is Cauchy in BY ! (D). We
claim that { f; }°° 1 is uniformly Cauchy on compact subsets of D. Assuming the claim,
then { f; }°° | converges pointwise to a function g, and since the convergence is uniform
on compact subsets, g is holomorphic and we also have Convergence of the derivatives.

Moreover, for each o with || = J, we know that { 3ZU/ 10 =1 converges in LE(D) to

a functron he. We also know that { a

° | converges pointwise to a £ 5o in fact

hy = a £ It follows that {f,}oo " converges to g in Bp (D).

It remains to establish the clarm We first consider the special case where D is a
star domain with respect to the point zg. Fix a compact set K € D. Note that for each
a with |o| = J and any z € K, we have, by hypothesis (1), that

=< CK,O',p/
D

Since the right hand side is independent of z and vanishes as j, k — oo, we conclude

fi % fil|?

0z% 0z%

odV.

99 f Qv P
—fj(z) - ?{:k(z)

that for each @ with |«| = J, the sequence { a ~ | is uniformly Cauchy on K.
Next, take a multi-index B with |8| = J — 1. Note that our assumption implies the

=1 is Cauchy. For ease of notation, let

af S B B ipB
0p ~ cp T Fiw = Gt i

where G and H are real valued functions. We estimate as follows, applying the real-
variable mean value theorem on C” = R?" (here V denotes the real gradient):

dP d
fJ()— a];k@

)

<1G" @)+ 1H  (2)]
< IGBk(zo)I + sup IVG(w)|lz — zol + |H k(Zo)I + sup |VH(w)l|z — zol

/2
SIFfGol+sup | D7 |5 1z — 20l
wek lal=J
B Pl 12
d a9
f’(o) ];(zo) +sup [ ) a{:’( )——f< )‘ |z = 2ol

wekK la|=J



40  Page 20 of 31 M. Mitkovski et al.

- | is uniformly Cauchy on K. This
argument can be iterated until we finally 0bta1n that {fi }°o | is uniformly Cauchy on
K. Since K was an arbitrary compact set, we are done.

We next prove the claim in the case where D is not a star domain. Fix a compact
set K € D, z € K, and assume without loss of generality that K contains zo and is
path-connected. Because K is compact, it can be covered by finitely many Euclidean
balls, where the number of balls depends only on K. Replacing K by a potentially
larger compact set, we can assume that K is equal to the finite union of the closed
balls. Let y be a simple path connecting z € K and z¢. In particular, we can assume
that the path y passes through each ball in the finite cover at most once. Construct a
piece-wise linear path between z and zo with finitely many segments by connecting the
centers of these balls with the boundary points that y intersects, and this piece-wise
linear path remains in K. For each line segment, we can apply the same estimates as

B
3 f k(. )‘ Iterate to obtain

9P £ PY: oP P
‘ ﬁ’(z)— Ji f’( .

()' ‘ 8ﬂ<o>

o\ 12

aﬂl aa

i )——f"(w)‘ :
0z

+Ck sup Z

wek lot|=J

where Ck is a constant that only depends on K. The remainder of the proof is as
before. O

Proof of Theorem 1.8 We apply Theorem 1.5. In the notation of Theorem 1.5, we have

X =B ’J(D) d is the Euclidean metric, and u is the induced Lebesgue measure on
D. We can choose {F;,}_; to be any compact exhaustion of D and xg = zg € D any

arbitrary fixed point with respect to which we compute the B(’,j norm. In this case,
the maps D; for 1 < j < N are the J t order complex partial derivatives, that is, the
maps f +— 9% f where |@| = J (in particular, there are N = (":Jl ]) such maps).
The maps D; for N+ 1 < j < N + M are all the lower order derivatives, that is, all
the maps f — 9P f with |8| < J. Given a bounded set F C Bf,”J, it only remains to
establish conditions (ii) and (iii) of Theorem 1.5.

We deal with condition (iii) first. We claim that foreach 1 < j < N + M + 1,
the collection of functions {D; f} < 7 is uniformly bounded on each compact set Fy,.
Since F is bounded, we put A := sup rerIfIl B! Condition (1) implies the

uniform estimate

(D)’

0 f
sup sup (w)| < Cm,p,oA
feF weF, | 2%
for all multi-indices o with |o| = J. Note that we also trivially have that for any

multi-index g with [B| < J, sup;cr ’%(Zo)’ < A. This implies that for all such
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B, the collection of functions { 5 } feF is uniformly bounded on F,. In particular,
using an argument very similar to the one in Proposition 2.2, we can show that when
B is any multi-index with || = |«| — 1, the following estimate holds uniformly for
feFandz e Fy:

172

(Zo)

+ sup Z

wek la|=J

|z — 20l < Cin,p.oA.

a8
7] < |5

This argument can be iterated to obtain the result for all multi-indices 8 with || <
J. This establishes the uniform boundedness of the collection {D; f} s+ on each
compact F,,,. The argument also shows that F},, can be replaced by an arbitrary compact
set (with potentially a different constant). In particular, this establishes condition (iii)
of Theorem 1.5.

To establish condition (ii), we show that any collection of holomorphic functions
on D, G, that is uniformly bounded on compact sets is equicontinuous on each F,,. Let
28 = dist(F,,, D). Then F,, C ‘Ds and for any z € F),, the Euclidean ball B(z, §) is
contained in Ds. Let M; := SUP feg SUP, 5, | f(2)|. First, if f € Gand |z — w| > %,
we have

AWE:
If(2) = f(w)| =2M, =2M, (5> <6) < M|z —wl,

where My 1= 2M; (g). So it suffices to prove the estimate for z, w € F,,, and |z —w| <
s

6" _
In this case, notice B(w, %) C B(z,6) € Ds. The mean-value property give that

1
£ @) — £ >|=7/ dV—if v
TO= TN = G ) e ™ ™ VBw. ) Jsws '
FOxpe @ FO X )(©)
_ / B@é) B B( é) V@)
seo \ V(BG@ L) V(B )
o e @ XpwpH© ‘dv(o

By |V(BE. ) V(Bw.$)

(o) o (o)1)

To control the measures of the symmetric set differences above, note that B(z, % —
lz—wl) € B(w, $), and so

(e (o) v e
_c, ((g) - (§—|z—w|) ) < Cuslz—wl.
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The other term is obviously handled similiarly. O

Proof of Corollary 1.9 Note the condition ¢ > —1 guarantees that (—p)’ is integrable,
see [28, Lemma 4.1]. We will apply Theorem 1.8 to Bé”J(D) with / = 0and o =
(—=p)".

We only need to verify that the weight o = (—p)’ satisfies condition (1). Let K € D
be compact. Note that there exist a radius rx and a compact set K’ with K € K’ € D
such that for any z € K, the Euclidean ball B(z, rx) € K’. We then have, using the
mean value property for holomorphic functions and Holder’s Inequality

1
I f ()] < m By [ f (w)|dV (w)

1
<
= (infrex (—p(@)") V(B(z. &) By

=< CK,:AIf(W)I(—p(w))’dV(w)

1/p 1/p
< Ck, (/ (—,O)IdV> ([ |f|p(—,0)th) ,
D D

so condition (1) is satisfied. O

|f () (=p(w)" dV (w)

Proof of Corollary 1.10 We will apply Theorem 1.8 to BY ! (D) withJ =0and o €
B, Itis clear that o is a finite measure. We only must verify that o satisfies condition
(1). Let K and rx be defined as in the proof of Corollary 1.9. Then we have, forz € K,
using Holder’s inequality and the fact that o —/(?—1 is integrable on D:

1
, —_— dv
|f @) =< VB ) s |f(w)[dV (w)

CK/D (W) dV (w)

1/p 1/p
<Cg (/ |f|Padv> (/ a—l/@—l)dv)
D D
1/p
SCK,]J,O' </ |f|p0dv> s
D

so condition (1) is satisfied. O

IA

/

Proof of Corollary 1.14 and Corollary 1.15 This is a straightforward application of The-
orem 1.8. =
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3 Applications of Compactness Criteria
3.1 Compactness of Toeplitz Operators on the Bergman Space

As before, let B,, denote the unit ball in C" and let .A2(B,,) denote the usual Bergman
space on the unit ball, which is a reproducing kernel Hilbert space. The reproducing
kernels and normalized reproducing kernels are respectively given by

(1 —|w?)T

Kw(Z)Z W

W and kw(Z)Z

Recall that the “p-normalized" reproducing kernels given by

ntl
Kiz,w) (1= |w?

20 T (1= zw)rtl
1Kl (20"

kP () =

and that the hyperbolic measure on B, is given by

dv(z)
drz) == ———.
@ 1- |Z|2)n+l
Let ¢, denote the Mobius transformation on B, that interchanges z and 0. The Bergman
metric on B, B, is given by

g (Lt ezl
Bz, w) = B log (1 — |<pz(w)|>‘

Forz € B, andr > 0, set D(z,r) := {w € B, : B(z, w) < r}. It is well-known
that for any r > 0, there exists C, > 0 such that

L K,

r

< <C 2
IKwll g2@,) ~

for all z, w € B,, with 8(z, w) < r, see [42, Lemma 2.20]. It is also well-known that
MD(z,r)) = A(D(w, r))

forall z, w € B, and r > 0, see [42, Lemma 1.24].
The following corollary is immediate from Theorem 1.4 or Theorem 1.8 (see
Remark 1.12).

Corollary 3.1 Let p € (1,00) and T be a bounded operator on AP (B,,). Then T is
compact on AP (B,,) if and only if

lim  sup / NTF. k) pow, )P dA(w) = 0.
R—00 tcAr®B,) JB,\DO.R)
£ ar@y)<t
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Proposition 3.2 Let p € (1, 00) and T be a bounded operator on AP (B,,) such that

25(p—1)?

1—
1Kl a2m, Pt
sup/ T ke k) g2, )| | T ) daw) <00 (3)
zeB, /B ||Kw||A2(IBn)

for some § > 0. If

_25(p—1)2

. 1Kl 42 poED
lim sup/ (Tkz, kw) 42, NPV ARBY). dr(w) =0, 4)
R—00 ;cB, JB,\D(0.R) 1 Kwll 428,

then T is compact on AP (B,).

Proof We verify the condition of Corollary 3.1. Let f € AP (B,,) with || f || 4»s,) < 1.
Then, by Fubini’s theorem

(T kD) 25, = <T (/ (fs ko) a2 m,)ke dl(z)) ,kfu”/)>
B A2(B,)

=/B k) o (TP KD s, dA).

By Holder’s inequality and the assumption (3), we have

’ / )4
|(Tf’kr(:f7)>A2(Bn)|p§<A; F k) o, INT -.”,k,if”)Az(Bn)ldx(z))

2 28 £/

P
) Loy 1Kl Az(Bj)*”
|Tk sk A2(B,,)|ﬁd)‘(z)

7

' (n+1)
1K ol 7

[~

2_ 2 7
”K ” 1’2 p/(n+1)
! ! A2(B,
fB e 1 T L e el IEZC)

”K A ACE))
w

” .AZ(]Bn)

_ 25

2_
i ((ORA)) ) K- “Az(m ">+1)
<Cr / Tk, kY Y21 ke )AZ(B”)VD —725 dr(z),

~ p(n+1)

~fs

1Kl ol

-2
where C is the finite constant from (3). Using |Ik§p ) la2@,) = IK: Az(”B ) one has

that for any R > 0, fEn\D(O,R) KTf, k,(f/))Az(Bn) |” dA(w) can be controlled above by
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2 28

. 1K ™
LA / ’ Z B,
[ [T k) 1K) P | 5 | dr@an)
B, \D(O,R) /B, 1Koyl A
WiA2(B,)

25(p—1)
1K1l a2B,)

0 , TP D
—cv f ) oI / (The. k) 2| [ A n A2 En) AMW)AAG).
B, B,\D(0.R) 1Kwll a2,)

Let ¢ > 0 be given. Apply the assumption (4) to get a constant R > 0 such that

1—
L
Jeno.r (Tke ko) 42w, (ﬁ) () < Zp forallz € By.
Then

&

’ L’
/ ITf|P dv :f UTf k) 2@ |” di(w) < C77—5 / [fIP dv <e.
B,\D(0,R) B,\D(0,R) Ccv JBa

Therefore T is compact by Corollary 3.1. O

We now characterize the compact operators within a class of bounded and localized
operators on A” (B,,).

Theorem 3.3 Let p € (1, 00) and T be a bounded operator on AP (B,) satisfying (3)
and

_25(p—1)?

K 2 pn+1)
lim sup / (T ke, kw) 42, )] MKzl 2@ dr(w) = 0. (5)
R—00 ¢, JB,\D(,R) 1 Kwll 428,

Then T is compact on AP (B),) if and only if%(z) —0asz— 1.

Proof The forward direction is clear (in particular, use the well-known fact that the

p-normalized kernels k;p ) converge weakly to 0 in AP (B,) as z — 17), so we only
consider the reverse direction. We will verify condition (4) and establish the theorem
by applying Proposition 3.2. We will use the following condition which is implied by
the vanishing Berezin transform hypothesis (see [23]): for each R > 0, we have

lim  sup [Tk, kw) 42, = 0. (6)
z=>17 weD(z,R)

Let ¢ > 0 be given. Apply assumption (5) to find Rp > 0 such that

28(p—1)2

1K a2,y \ " €
KTks, kw) g2 )| | ————— di(w) < =
/IB,,\D(z,RO) % S0 A5 W) 1 Kwll 428, 2

for all z € B,,. For such R, we next use condition (6) to get Nyg > 0 such that

Tkz, kw) g2,y < 25@_1)’32 for all z € B,\D(, Ng) and w €
20k, PUED 5 (D(0, Ro))

D(z, Ro), where Cpg, is the constant given in (2). Set R = No + Rp.
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Write
1 28(p—1)?
”K”_AZ B, p(n+1)
/ Tk, kw)Az(Bn)l A dr(w)
B, \D(0.R) 1Kwll 42,
_2(p=1)?
1K1l a2m, poED
= / Tz, k) 2] | 7ot dr(w)
B, \(D(0.R)UD(z. Ro)) 1Kl A2(B,)
l_zmp—ll)z
1Kl a2B, Pl
+ / (Tke, kw) a2, A dr(w).
(B,\D(0,R)ND(z, Ro) 1 Kwll 42,
The first term above is controlled by the choice of Ry:
- 28(p—1)2
| K-l a2 poeD €
/ Tk, k) o, )| | 7o) dr(w) < £
B,\(D(0, R)UD(z, Ro)) 1Kwll 42(B,) 2

For the second term, we only need to consider the case when (B, \ D(0, R)) N
D(z, Ro) # 9.1fw € (B,\ D(0, R))ND(z, Ro), thend(z,0) > d(w, 0)—d(z, w) >
R — Ry = Ny. Thus we can control the second term by choice of Ny:

25(p—1)%

1_
1K1l 42w, porED
f (The k) g | [ ot 2B dr(w)
(B, \D(z0,R))ND(z, Ro) I1Kwll 42(,)
_25(p—1)2 s
n+l
< Cy "D, R

2Cg, " MD(O, Ro))

e
<-.
-2
Therefore
|_26(p=1)?
K 2 pn+1)
/ |(Tk17kw>| ”Z”ﬂ di(w) < £—|—£:g,
B,\D(0,R) 1 Kwll 428,) 2 2
completing the proof. O

Proof of Theorem 1.16 For a sufficiently small choice of § > 0, conditions (3) and (5)
are satisfied in the case where T is a Toeplitz operator with L°°(B,,) symbol by [23,

2
Proposition 2.2] (in particular, for § such that % <1- 22((‘;’—;3), so the result follows
for such a Toeplitz operator by Theorem 3.3. We pass to the case where T is a finite
sum of finite products of Toeplitz operators using the argument in [23, Proposition

2.3]. O
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3.2 Compactness of Little Hankel Operators on the Hardy Space

We prove the sufficiency portion of Theorem 1.17 using Corollary 1.14. Our proof
is different from the usual argument that uses the Stone—Weierstrass theorem and the
fact that little Hankel operators with polynomial symbols are of finite rank. Our proof
does not use the approximation of H, by finite rank operators.

Proof of Theorem 1.17 Suppose g € VMOA. By [42, Theorem 5.18], there exists a
function g € C(dB,,) such that S(g) = g. Since S(g f) = Hg(g) f (as densely defined
operators) for any g € L*(B,) and f € H?(dB,), we may assume without loss of
generality that g € C(0B,).

Let 1 < ¢ < n be an index and note that for z € B,,,

L H(h) = / wegW) W) oy

9z¢ om, (1 —zw)"t!

Using our Corollary 1.14, it suffices to show that given ¢ > 0, there exists R sufficiently
close to 1 such that

n

wp o[-
feH?B,) =1 Y (RBn)*
17132, <!

2
dv(z) < e.

a —
3.5 @)
ze

Clearly, it suffices to prove the bound for a fixed index £ (just replace & by £).
Take any f in H2(B,) with || f l+2@,) < 1. Consider a decomposition of C" = R
into closed cubes with disjoint interiors Q ; with side length 7. Let D; = Q; N 0B,,.
Clearly, these sets are non-empty for only finitely many j, and we may assume that
0B, = UI.V;1 D;, where the interiors of D; are pairwise disjoint and N, is a positive
integer that depends on the side length r. Also note that the sets D ; have the following
finite overlap property: there exists a constant K (independent of ) such that each set
Dy, intersects at most K members of {D} j.\/; |- Now, use the (uniform) continuity of g

3 . _ & 1
to choose r such thatif z, w € Dj, then |[g(z) — g(w)| < /8CH2KN3, where Cy2 is
a constant such that

af | 2 )
S @) A=l dv@) < G | 1f@Fds(©)
Va4 Bn

9

IFOP+) f
t=1YBn

forall f € H2(B,).

Define C; = {z € B, : n(z) € D; or z = 0}, where 7 (z) = z/|z| is the standard
radial projection to the boundary. It is straightforward to verify there exists a constant
M, that depends on r such that if w € D; and z € Cy with D; N Dy = @, then

1

Ty < M,. Choose a sample point z; € D; for each j. Define the functions
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gj =g —g(z;) for1 < j < N, and use the mean value property to write

[ a-ip
(RBp)¢
N,
=> / =1z
21 Y (RBa)NC;
Ny
vy [ a-ip
jk=1¢

RB,)“NC;

2
dv(z)

/ weg(w) f(w) ds(w)
)

B, (] _ zﬁ)"“

2
dv(z)

/ wegj(w) f(w) ds(w)

om, (1 —zw)nt!

2
dv(z)

/ wegj(w) f(w) ds(w)
D,

' (1 _ Zw)"'H

2
dv(z)

/ wegj(w) f(w) ds(w)
k

D (1 _ Zw)n—&—l

_ N / (112
: Z JrB,)nc;

1<j k<N
DjNDy=y

+NF Y f (1 =1z
1<j k=<, *
DiNDy#9

=: N2[(D) + (ID)].

2
ds(w)| dv(z)

/ wegj(w) f(w)
k

1- zﬁ)”“

We control (I) using the bound on the kernel, the disjointness of the Dy, and Holder’s
inequality together with the fact that || f || 312(p,, as follows:

. 2
M < [ ae ([ B W) ae
1<j.k<N, Y (RB)NC; e 11 —zwl
DjﬁDk=Q)
N, )
=2y [ a-ip) (/ |gj<w>||f<w>|ds<w>) dv(2)
o JrBC; 4B,
N,
<M} 12 / 1— 1z d
= rj;”gj”HZ(]B;n) (RIBn)Uij( |Z|) U(Z)

<42 el e, [ (=P ).
(RBy)c

n

i i — 172 &
Choosing R sufficiently close to 1 so that f(REn)C(l lz]7) dv(z) < VTP
we deduce that (I) < ZSW

To control (IT), we use the equivalence of H? (B,,) norms and the boundedness of
the Szegd projection on L?(dB,,). If z € Dy and Dy N D j # @, then the continuity

of g together with the triangle inequality implies that |g;(z)| = [g(z) — g(z;)| <

&
2 /—SCHzKN,?' Thus
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() < / (1—

1<j,k<N,
D;iNDy#Y

2 Y / 1S(xpe 8 H) @I ds(2)
1<j,k<N,
D;iNDg#9

Y / 18j(2) f () ds(2)

1<j,k<N,
D;iNDy#0

CinK
et Z/ f @ ds(z)

)@ dv(Z)

I /\

| /\

<
2Cy zKN2

&
2N2

IA

Putting all this together, we deduce that for this choice of R,

TN 2
op|f T e
/;R]B%n)r(l [zI7) /MB,, (1 — zwyri1 ds(w)| dv(z) < 5 + 5= e

which completes the proof. O
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