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Abstract
Katz and Tiep proved a characterization of the total Weil character

of finite special unitary groups SUn(q) for any integer n ≥ 3 and any
prime power q other than (n, q) = (3, 2), in terms of the character
values and irreducible constituents. They asked whether a similar
characterization can be done for finite general unitary groups GUn(q).
In this article, we prove that such characterization for GUn(q) can be
done up to endomorphisms and tensoring by real linear characters.
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1 Introduction

Fix a primitive (q + 1)th root of unity ε ∈ C, where q is a prime power.
Let τ be a generator of F×q6 . Also, let σ = τ q

4+q2+1 and ρ = σq−1. Note

that σ is a generator of F×q2 , and ρ is an element of F×q2 of order q + 1. Let
G = GUn(q) be the finite general unitary group, and let Irr(G) be the set of
complex irreducible characters of G. G has a linear character λ ∈ Irr(G) of
order q + 1, defined as λ(g) = εt when det g = ρt. Also, for each i ∈ Z, there
is an irreducible Weil character ζ in,q ∈ Irr(G) defined as

ζ in,q(g) =
(−1)n

q + 1

q∑
l=0

εil(−q)dimker(g−ρl1W )
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where we identify G with GU(W ) for a unitary vector space W . Note that
ζ in,q = ζ i+q+1

n,q , so we can take i from Q := {0, 1, . . . , q} instead of Z. The sum
of all q + 1 distinct irreducible Weil characters ζ in,q is called the total Weil
character

ζn,q(g) = (−1)n(−q)dimF
q2

ker(g−1W )
.

If we restrict the irreducible Weil characters ζ in,q to SUn(q), we obtain the
q + 1 pairwise distinct irreducible Weil characters ζ in, i ∈ Q, of SUn(q) if
n ≥ 3. For the proofs of these facts, see [4].

Katz and Tiep [3] proved the following characterization of the total Weil
character of SUn(q):

Theorem 1.1. [3, Theorem 16.6] Let L = SUn(q) with n ≥ 3 and (n, q) 6=
(3, 2). Suppose ψ is a (not necessarily irreducible) complex character of L
such that

(a) ψ(1) = qn;

(b) ψ(g) ∈ {0,±qi | 0 ≤ i ≤ n} for all g ∈ L; and

(c) every irreducible constituent of ψ is among the q + 1 irreducible Weil
characters ζun , u ∈ Q, of L.

Then ψ is the total Weil character, that is, ψ =
∑q

u=0 ζ
u
n .

They proved [3, Theorem 16.11] that the geometric monodromy group of
certain hypergeometric sheaves over Gm/Fp are isomorphic to GUn(q), and
the corresponding qn-dimensional representations can be viewed as the total
Weil character ζn,q up to automorphisms. Theorem 1.1 is used in the proof
of this theorem to show that certain representations of SUn(q) are total Weil
representations up to automorphisms.

In the same paper [3], they posed the following question which extends
Theorem 1.1 to GUn(q):

Question. [3, Remark 16.7] Is the total Weil character ζn,q =
∑q

i=0 ζ
i
n,q

the only character of GUn(q), whose irreducible constituents are among the
(q + 1)2 irreducible Weil characters ζ in,qλ

j, 0 ≤ i, j ≤ q, and which takes
values only among 0,±ql, 0 ≤ l ≤ n?

They gave a negative answer to this question by finding a family of q+1 en-
domorphisms (not necessarily isomorphisms) of GUn(q), whose compositions
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with the total Weil representation produce representations which afford char-
acters of the form

∑q
i=0 ζ

i
n,qλ

ei, e ∈ Q. Such characters, and the characters
obtained by tensoring them with a real linear character, have the properties
in the question. However, they can still be considered to be close enough to
the total Weil character. One might ask whether there are other examples
of characters with these properties which are, in some sense, far from being
a total Weil character.

In this paper, we prove that these examples are the only characters which
have the properties in the question.

Theorem 1.2. Let n ≥ 3 be an integer and q be any prime power with
(n, q) 6= (3, 2). Suppose that ψ is a character of G = GUn(q) with the
following properties.

(a) For every g ∈ G, ψ(g) ∈ V = {0} ∪ {±qi : 0 ≤ i ≤ n}.

(b) Every irreducible constituent of ψ is among the (q+1)2 irreducible Weil
characters ζ in,qλ

j.

Then ψ =
∑q

i=0 ζ
i
n,qλ

ei (or possibly ψ =
∑q

i=0 ζ
i
n,qλ

ei+(q+1)/2 if q is odd) for
some 0 ≤ e ≤ q.

This theorem tells that although the question of Katz and Tiep does not
have a completely positive answer, such characters are reasonably close to
the total Weil characters. This might help, as Theorem 1.1 did, identifying
the total Weil character and its variants in the study of monodromy groups
in situations similar to ones studied in [3] .

2 Preliminary Results

One of the key ingredients of the proof of Theorem 1.1 given in [3] is the
following branching formula, which allows us to compute the values of irre-
ducible Weil characters of GUn(q) at certain conjugacy classes in terms of
the values of irreducible Weil characters of GU3(q).

Lemma 2.1. [3, Lemma 16.5(i)] Let n = m + l with m, l ∈ Z≥1. Then the
restriction of ζ in,q to the natural subgroup GUm(q)×GUl(q) of GUn(q) is∑

0≤r,s≤q,
(q+1)|(r+s−i)

ζrm,q � ζsl,q
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where � denotes the (outer) tensor product.

According to [2], the conjugacy classes of GU3(q) and their values of irre-
ducible Weil characters are as listed in Table 1 and Table 2 below.

Class Canonical Matrix Form Parameters

C
(k)
1 ρkI 0 ≤ k ≤ q

C
(k)
2

ρk1 ρk

ρk

 0 ≤ k ≤ q

C
(k)
3

ρk1 ρk

1 ρk

 0 ≤ k ≤ q

C
(k,l)
4

ρk ρk

ρl

 0 ≤ k, l ≤ q, k 6= l

C
(k,l)
5

ρk1 ρk

ρl

 0 ≤ k, l ≤ q, k 6= l

C
(k,l,m)
6

ρk ρl

ρm

 0 ≤ k < l < m ≤ q

C
(k,l)
7

ρk σl

σ−ql

 0 ≤ k ≤ q, 1 ≤ l ≤ q2 − 2,
l 6≡ 0 mod q − 1;

if l′ ≡ −ql mod q2 − 1

then C
(k,l)
7 = C

(k,l′)
7 .

C
(k)
8

 τ k(q
3−1)

τ q
2k(q3−1)

τ q
4k(q3−1)

 1 ≤ k ≤ q3, k 6≡ 0 mod q2 − q + 1;
if k′ ≡ q2k or q4k mod q3 + 1

then C
(k)
8 = C

(k′)
8 .

Table 1: The conjugacy classes of GU3(q), as described in [2].

For a monic polynomial p(x) =
∑m

i=0 αix
i ∈ Fq2 [x] with α0 6= 0, define

p̃(x) = a−q0

m∑
i=0

αqm−ix
i.

Note that (̃p̃) = p. We will make use of the following characterization of
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Class ζ03,qλ
j ζ i3,qλ

j

C
(k)
1 (q2 − q)ε3jk (q2 − q + 1)εik+3jk

C
(k)
2 −qε3jk −(q − 1)εik+3jk

C
(k)
3 0 εik+3jk

C
(k,l)
4 −(q − 1)ε2jk+jl −(q − 1)εik+2jk+jl + ε2jk+il+jl

C
(k,l)
5 ε2jk+jl εik+2jk+jl + ε2jk+il+jl

C
(k,l,m)
6 2εj(k+l+m) εjk+jl+jm(εik + εil + εim)

C
(k,l)
7 0 εik+jk−jl

C
(k)
8 −εjk 0

Table 2: The values of characters ζ i3,qλ
j, as described in [2].

the unitary matrices by Ennola [1] to show the existence of some conjugacy
class.

Theorem 2.2. [1, p. 12] Let A ∈ GLn(q2) be a matrix with the characteristic
polynomial fk11 f

k2
2 · · · f

kN
N , where f1, . . . , fN are distinct monic irreducible

polynomials over Fq2 and k1, . . . , kN ∈ Z≥1. For each i = 1, . . . , N , let νi be
the (unordered) partition of the positive integer ki, which can be obtained
by computing a generalized Jordan canonical form of A and looking at the
sizes of diagonal blocks corresponding to the irreducible factor fi. Then, A
is similar to a matrix of GUn(q) if and only if for every index r, 1 ≤ r ≤ N ,

there is exactly one index s, 1 ≤ s ≤ N such that fr = f̃s and νr = νs.

We will not need precise descriptions of the partitions νi and the gener-
alized Jordan canonical form, as we will use this theorem only for the cases
where ki = 1 for all i.

3 Proof of Theorem 1.2

The main idea of the proof of Theorem 1.2 is the following theorem.

Theorem 3.1. Let j0 = 0, j1, . . . , jq ∈ Q, and for each a, b, i ∈ Q, let
ca,b,i ∈ Q be the unique number such that ca,b,i ≡ ai+bji mod q+1. Suppose
that for each pair a, b ∈ Q, either
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(i) there exists an integer da,b ≥ 1 dividing q + 1 such that

q∑
i=0

tca,b,i = da,b(t
q+1−1)/(tda,b−1) = da,b(t

q+1−da,b + tq+1−2da,b + · · ·+1),

or

(ii)
∑q

i=0 t
ca,b,i = q + 1, i.e. ca,b,i = 0 for every i = 1, . . . , q.

Then there exists e ∈ Q such that ji ≡ ei mod q + 1 for every i ∈ Q.

Proof. We divide the proof into several steps.

(1) We can assume j1 = 0.

For each i ∈ Q, define j′i to be the unique element of Q such that j′i ≡
ji − ij1 mod q + 1. Fix a pair a, b ∈ Q. For each i ∈ Q, let c′a,b,i ∈ Q be the
unique element of Q such that c′a,b,i ≡ ai+ bj′i mod q + 1. Then

c′a,b,i ≡ ai+ bj′i = ai+ bji − bij1 = (a− bj1)i+ bji ≡ ca′,b,i mod q + 1,

where a′ ∈ Q is the number such that a′ ≡ a − bj1 mod q + 1. Since
(ca′,b,0, . . . , ca′,b,q) satisfies either (i) or (ii), so does (c′a,b,0, . . . , c

′
a,b,q). There-

fore, the numbers j′i satisfy the assumption in the statement of this theorem,
so it is enough to show that if we have an additional assumption j1 = 0, then
ji = 0 for every i ∈ Q.

(2) We can assume that there exists a prime p such that every ji is a
multiple of d = (q + 1)/p.

Suppose that j1 = 0 but ji 6= 0 for at least one i ∈ Q. Let M be the
smallest positive integer such that for every i ∈ Q, Mji ≡ 0 mod q + 1.
Since we assumed that ji 6= 0 for at least one i, we can see that M > 1, so
M = mp for some integer m ≥ 1 and a prime p. For each i, let j′i ∈ Q be
the unique element such that j′i ≡ mji mod q + 1. Note that every j′i is a
multiple of d = (q+1)/p, but some j′i is nonzero by the minimality of M . For
each a, b, i ∈ Q, let c′a,b,i ∈ Q be the unique element such that c′a,b,i ≡ ai+ bj′i
mod q + 1. Then

c′a,b,i ≡ ai+ bj′i ≡ ai+ bmji ≡ ca,b′,i mod q + 1

where b′ ≡ mb mod q + 1. By the same reason as in (1), the numbers j′i
satisfy the assumption. If we can prove that these j′i are all zero, then this
contradicts our earlier observation that some of them are nonzero. Therefore,
it is enough to prove the following:
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If j0 = j1 = 0, j2, . . . , jq ∈ Q satisfy the condition of the theorem,
and if there exists some prime p such that every ji is a multiple
of d = (q + 1)/p, then ji = 0 for all i.

For each k ∈ Z≥0, let Pk be the condition

Pk : pk < d, pk | d and j n1d

pk−1+r
= j n2d

pk−1+r
for every 0 ≤ n1, n2 ≤ pk − 1

and 0 ≤ r ≤ d

pk−1
− 1.

Assume that d > 1 (I will prove this in part (4)). Then P0 says nothing more
than d > p0 = 1 since 0 ≤ n1, n2 ≤ p0 − 1 = 0 forces n1 = n2, so P0 is true.
I will use induction on k to prove that Pk is true for every k. Assume that
k ≥ 1 and Pk−1 is true.

(3) jn1d/pk−1+r = jn2d/pk−1+r for all n1, n2 ∈ {0, . . . , pk − 1} and 0 ≤ r ≤
d/pk−1 − 1.

Suppose that n1 6= n2 ∈ {0, . . . , pk − 1} and r ∈ {0, . . . , d/pk−1 − 1}.
Let k1 = jn1d/pk−1+r/d, k2 = jn2d/pk−1+r/d, and suppose that k1 6= k2. Note
that 0 ≤ k1 = jn1d/pk−1+r/d < (q + 1)/d = p and similarly 0 ≤ k2 < p,
so k1 6= k2 implies k1 6≡ k2 mod p. Therefore, there exists u ∈ Q such
that u(k1 − k2) ≡ 1 mod p. Consider the pair (a, b) = (pk−1, b) where
b ≡ −u(n1−n2) mod q+ 1. Then cpk−1,b,1 = pk−1 6= 0, so condition (i) holds
for this pair. Moreover, dpk−1,b divides cpk−1,b,1 = pk−1. On the other hand,
by Pk−1, p

k−1 divides d, which divides ji for every i ∈ Q. Since

cpk−1,b,i ≡ pk−1i− u(n1 − n2)ji mod q + 1,

cpk−1,b,i is also divisible by pk−1. Therefore, dpk−1,b = pk−1 and every multiple
of pk−1 in Q appears exactly pk−1 times among cpk−1,b,0, . . . , cpk−1,b,q. However,

c
pk−1,b,

n1d

pk−1+r
− c

pk−1,b,
n2d

pk−1+r
≡ (n1 − n2)d+ b(j n1d

pk−1+r
− j n2d

pk−1+r
)

≡ (n1 − n2)d− u(n1 − n2)(k1 − k2)d
≡ 0 mod q + 1.

Since they are both in Q, cpk−1,b,n1d/pk−1+r = cpk−1,b,n2d/pk−1+r. Moreover,
if n1 = pm1 + l1 and n2 = pm2 + l2 for m1,m2 ∈ {0, . . . , pk−1 − 1} and
l1, l2 ∈ {0, . . . , p− 1}, then by Pk−1,

c
pk−1,b, md

pk−2+
l1d

pk−1+r
= c

pk−1,b,
n1d

pk−1+r
= c

pk−1,b,
n2d

pk−1+r
= c

pk−1,b, m′d
pk−2+

l2d

pk−1+r
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for every m,m′ ∈ {0, . . . , pk−1−1}. Also, since k1 6= k2, by Pk−1 we must have
l1d/p

k−1 6= l2d/p
k−1. Hence, this number appears at least 2pk−1 times among

cpk−1,b,0, . . . , cpk−1,b,q, which is impossible. Therefore k1 = k2, so jnd/pk−1+r

does not depend on the choice of n.

(4) d is divisible by pk, and d > pk.

If we choose a = 0 and b = 1, we get c0,1,i = ji. Since ji 6= 0 for some i,
this pair (a, b) = (0, 1) satisfies the condition (i), so

q∑
i=0

tji = d0,1(t
q+1−d0,1 + tq+1−2d0,1 + · · ·+ 1).

In particular, there are exactly d0,1 copies of each multiple of d0,1 among
j0, . . . , jq. Since they are multiples of d and p = (q+1)/d is a prime, it follows
that d0,1 = d. Moreover, by part (3), whenever we have jr = 0 for some
0 ≤ r ≤ d/pk−1− 1, we also have jnd/pk−1+r = 0 for every n ∈ {0, . . . , pk− 1}.
In particular, the number of 0 among jis, which is d, is precisely pk times
|{r : 0 ≤ r ≤ d/pk−1 − 1, jr = 0}|. By the assumption j0 = j1 = 0, the
number of such r is at least 2, so d is strictly larger than pk. Note that by
only using the facts j0 = j1 = 0 and d = |{i ∈ Q | ji = 0}|, we can see that
d ≥ 2 as we assumed before part (3).

By parts (3) and (4), Pk−1 implies Pk. By induction, Pk is true for all
k ∈ Z≥0. In particular, d is divisible by pk for all k, which is impossible.
Therefore, our assumption that ji 6= 0 for some i cannot be true. By parts
(1) and (2), this completes the proof.

We will apply Theorem 3.1 on the exponents of λ appearing in the q + 1
irreducible constituents ζ in,qλ

j of ψ. To do this, we need to first check whether
these exponents satisfy the conditions of Theorem 3.1. This will be done by
applying the following lemma for the case r = q.

Lemma 3.2. Let r be a positive integer. Suppose that a polynomial f(t) =∑r
i=0 cit

i ∈ Z[t] has the following properties:

(1) c0 > 0 and ci ≥ 0 for every i ∈ Q.

(2) f(1) = r + 1.
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(3) There is an integer a relatively prime to r+1, such that if ε is a primitive
(r+ 1)th root of unity in C, then f(εn) ∈ {0, r+ 1} ∪ {±a+ (r+ 1)m |
m ∈ Z} for every integer n.

Then either f(t) = r+1 or f(t) = d(tr+1−d+· · ·+td+1) = d(tr+1−1)/(td−1)
for some d > 0 dividing r + 1.

Proof. We first show that there is no integer n such that f(εn) ≡ ±a mod r+
1. Consider the cyclic group G = 〈ε〉 ≤ C∗. Let λi ∈ Irr(G) be the linear
character defined by λi(ε) = εi. Then the restriction of f to G is the char-
acter χ =

∑r
i=0 ciλi of G. Note that since the irreducible characters are

orthonormal with respect to the usual inner product (·, ·),∑r
j=0 |χ(εj)|2

r + 1
=

1

|G|
∑
g∈G

|χ(g)|2 = (χ, χ) = (
r∑
i=0

ciλi,
r∑
i=0

ciλi) =
r∑
i=0

c2i ∈ Z.

In particular, the integer
∑r

j=0 |χ(εj)|2 is divisible by r+ 1. Since χ(εj)2 ≡ 0

or a2 mod r + 1 and a2 is relatively prime to r + 1, the number |{j | j ∈
{0, . . . , r}, χ(εj) ≡ ±a mod r+ 1}| must be divisible by r+ 1. Since χ(1) =
f(1) = r + 1 6≡ ±a mod r + 1, so the above number is not r + 1, hence it
must be 0. Therefore, f(εn) ∈ {0, r + 1} for every integer n.

Assume f(t) 6= r + 1. Let 1 ≤ s ≤ r + 1 be an integer such that

f(εs) = crε
rs + · · ·+ c0 = r + 1.

We also know that

|crεrs|+ · · ·+ |c0| = cr + · · ·+ c0 = f(1) = r + 1.

Therefore, ciε
is = ci for every i ∈ Q. Hence, ci = 0 unless is is divisible

by r + 1. This happens if and only if i is a multiple of d, where d = (r +
1)/gcd(r+1, s). We may assume that our choice of s maximizes this d. Note
that f(ε(r+1)/d) = r + 1, so we may assume that s = (r + 1)/d.

If s′ is another integer such that f(εs
′
) = 0 and d′ = (r + 1)/gcd(r +

1, s′), then ci = 0 unless it is a multiple of lcm(d, d′). But then s′′ = (r +
1)/lcm(d, d′) satisfies f(εs

′′
) = 0 and (r + 1)/s′′ = lcm(d, d′), so by the

maximality of d, d′ must divide d. Therefore, f(εn) = r + 1 if and only if n
is a multiple of s. In particular, f(t)− (r + 1) is divisible by td − 1 and f(t)
is divisible by (tr+1 − 1)/(td − 1) = tr+1−d + tr+1−2d + · · ·+ 1.
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If we write f(t) = g(t)(tr+1−d + tr+1−2d + · · · + 1), then since deg g =
deg f − (r + 1− d) ≤ r − (r + 1− d) = d− 1, we can compare the terms of
degree ≤ d− 1 in both sides to see that g(t) = cd−1t

d−1 + · · ·+ c0 = c0. Also,
r+1 = f(1) = c0(r+1)/d, so g(t) = c0 = d and f(t) = d(tr+1−1)/(td−1).

Now we are ready to prove Theorem 1.2, which we restate here.

Theorem. Let n ≥ 3 be an integer and q be any prime power with (n, q) 6=
(3, 2). Suppose that ψ is a character of G = GUn(q) with the following
properties.

(a) For every g ∈ G, ψ(g) ∈ V = {0} ∪ {±qi : 0 ≤ i ≤ n}.

(b) Every irreducible constituent of ψ is among ζ in,qλ
j.

Then ψ =
∑q

i=0 ζ
i
n,qλ

ei (or possibly ψ =
∑q

i=0 ζ
i
n,qλ

ei+(q+1)/2 if q is odd) for
some 0 ≤ e ≤ q.

Proof. We first assume that q ≥ 4. The cases q ≤ 3 will be proved later.

(1) ψ =
∑q

i=0 ζ
i
n,qλ

ji for some 0 ≤ ji ≤ q.

To prove this, we mimic the proof of Theorem 1.1 given in [3]. In fact, this
could be done by merely restricting ψ to SUn(q) and applying Theorem 1.1.
We included the details in order to fix notations and do some computations
which will be used later.

By assumption (b), we can write ψ =
∑q

i=0

∑q
j=0 ai,jζ

i
n,qλ

j for some non-
negative integers ai,j. Define bi =

∑q
j=0 ai,j. To find b0, note that

qn ≥ ψ(1) =

q∑
i=0

q∑
j=0

ai,jζ
i
n,qλ

j(1) =

q∑
i=0

biζ
i
n,q(1)

= b0
qn + q(−1)n

q + 1
+

q∑
i=1

bi
qn − (−1)n

q + 1
.

The above number is a power of q by condition (a), while the degrees of
the characters ζ in,q are not powers of q, so we must have

∑q
i=0 bi > 1. Then

ψ(1) ≥ 2 q
n−q
q+1

> qn−1, which forces ψ(1) = qn. It follows that

b0 − 1 =
qn − (−1)n

q + 1
(−1)n

(
q + 1−

q∑
i=0

bi

)
.
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In particular, b0− 1 is divisible by (qn− (−1)n)/(q+ 1). On the other hand,

−1 ≤ b0 − 1 ≤ ψ(1)

ζ0n,q(1)
− 1 =

qn(q + 1)

qn + q(−1)n
− 1 <

qn − (−1)n

q + 1

since (n, q) 6= (3, 2) and n ≥ 3. Therefore b0 = 1 and
∑q

i=0 bi = q + 1.
Let G = GU(Fnq2) be acting on a n-dimensional Fq2-vector space with a

G-invariant nondegenerate Hermitian form. Let H ∼= GU3(q) be a subgroup
of G acting trivially on a nondegenerate (n − 3)-dimensional subspace. By
Lemma 2.1,

ψH =

q∑
i=0

q∑
j=0

ai,j(ζ
i
n,qλ

j)H

=

q∑
i=0

q∑
j=0

ai,j

λjH ∑
0≤r,s≤q

(q+1)|(r+s−i)

(ζr3,q � ζsn−3,q)H



=

q∑
i=0

q∑
j=0

ai,j

λjH ∑
0≤r,s≤q

(q+1)|(r+s−i)

ζsn−3,q(1)ζr3,q


=

q∑
r=0

q∑
j=0

(
q∑
i=0

ai,jζ
i−r
n−3,q(1)

)
ζr3,qλ

j
H

=

q∑
r=0

q∑
j=0

(
q∑
i=0

ai,j
qn−3 − (−1)n−3

q + 1
+ (−1)n−3ar,j

)
ζr3,qλ

j
H

=

q∑
r=0

q∑
j=0

cr,jζ
r
3,qλ

j
H

where cr,j =
∑q

i=0 ai,j
qn−3−(−1)n−3

q+1
+ (−1)n−3ar,j. Let di =

∑q
j=0 ci,j. Note

that since b0 = 1 and
∑q

i=1 bi = q, we have

d0 =

q∑
j=0

c0,j =

q∑
j=0

q∑
i=0

ai,j
qn−3 − (−1)n−3

q + 1
+ (−1)n−3

q∑
j=0

a0,j

= qn−3 − (−1)n−3 + (−1)n−3 = qn−3
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and
q∑
i=1

di =

q∑
i=1

q∑
j=0

ci,j

=

q∑
i=1

q∑
j=0

(
q∑
r=0

ar,j
qn−3 − (−1)n−3

q + 1
+ (−1)n−3ai,j

)
=qn−2 − (−1)n−3q + (−1)n−3q

=qn−2.

By evaluating ψH at g′k ∈ C
(k,k)
7 (or C

(k,k+q+1)
7 if k ≡ 0 mod q − 1), we

get:

ψ(g′k) =

q∑
i=0

q∑
j=0

ci,jζ
i
3,q(g

′
k)λ

j(g′k) =

q∑
i=1

q∑
j=0

ci,jε
ik =

q∑
i=1

diε
ik.

On the other hand, by evaluating ψH at gk ∈ C(0,k,−k)
6 for 0 < k < (q + 1)/2

(note that det g = 1), we get:

ψ(gk) =

q∑
i=0

q∑
j=0

ci,jζ
i
3,qλ

j(gk)

=

q∑
j=0

2c0,jε
j(0+k+(−k)) +

q∑
i=1

q∑
j=0

ci,jε
j(0+k+(−k))(εi0 + εik + ε−ik)

=

q∑
j=0

2c0,j +

q∑
i=1

q∑
j=0

ci,j(1 + εik + ε−ik)

= 2d0 +

q∑
i=1

di +

q∑
i=1

diε
ik +

q∑
i=1

diε
−ik

= 2qn−3 + qn−2 + ψ(g′k) + ψ(g′k).

By assumption (a), ψ(gk), ψ(g′k) ∈ V (so ψ(g′k) = ψ(g′k)). Moreover, from the
above observations, we know that |ψ(g′k)| ≤

∑q
i=1 di = qn−2 and |ψ(gk)| ≤

2qn−3 + 3qn−2 < qn−1 (we assumed q ≥ 4). Therefore,
∑q

i=1 diε
ik = ψ(g′k) =

−qn−3 and ψ(gk) = qn−2. In particular, the polynomial

q∑
i=0

dit
i =

q∑
i=0

q∑
j=0

ci,jt
i =

q∑
i=0

q∑
j=0

(qn−3 + (−1)n(1− ai,j))ti
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has a zero at each εk for 0 < k < q+1, k 6= (q+1)/2. Since
∑q

i=0

∑q
j=0(q

n−3+

(−1)n)ti also vanishes at each εk, the same is true for the polynomial

q∑
i=0

q∑
j=0

ai,jt
i =

q∑
i=0

bit
i.

If q + 1 is odd, then this polynomial is divisible by (tq+1 − 1)/(t − 1) =
tq + tq−1 + · · · + 1. Comparing the degrees and the value at 1 (=sum of
coefficients), we get bi = 1 for i = 0, . . . , q. If q + 1 is even, then the
polynomial is divisible by (tq+1−1)/(t2−1) = tq−1 + tq−3 + · · ·+1. Again, by
comparing the degrees and the values at 0 and 1, we get bi = 1 for i = 0, . . . , q.
The nonnegativity of ai,j’s now implies that for each i = 0, . . . , q, there exists
ji such that ai,ji = 1 and ai,j = 0 for all j 6= ji, so that

ψ =

q∑
i=0

ζ in,qλ
ji .

(2) j0 = 0 or (q + 1)/2.

We will find a monic polynomial f ∈ Fq2 [x] of degree n, which is either

an irreducible polynomial such that f̃ = f , or a product of two irreducible
monic polynomials f1, f2 such that f̃1 = f2. We also require its roots to be
distinct elements none of which is a power of ρ and whose product is ρ. Such
an f , if it exists, satisfies the condition of Theorem 2.2, so there exists a
matrix B ∈ G whose characteristic polynomial is f . By looking at ψ(B), we
will be able to see that j0 = 0 or (q + 1)/2. The following constructions of f
are motivated by [5, Proposition 7].

If n is odd, let θ ∈ Fq2n be a primitive (qn + 1)th root of unity such that
ρ = θ(q

n+1)/(q+1). Let f(x) ∈ Fq2 [x] be the minimal polynomial of θ over Fq2 .
Then deg f = |Fq2n : Fq2 | = n since qn + 1 does not divide qm − 1 for any
m < 2n, so that θ is not contained in any proper subfield of Fq2n . Also, every
other root of f must be another primitive (qn+1)th root of unity. Moreover,
z 7→ zq

2
is an automorphism of Fq2n which acts trivially on Fq2 , so θq

2d
for

d = 0, 1, . . . , n− 1 are also roots of f . They are distinct, since if θq
2d1 = θq

2d2

for some 0 ≤ d1 < d2 ≤ n − 1, then θ(q
2d2−2d1−1)q2d1 = 1, so θq

2d2−2d1−1 = 1,
which is impossible since qn + 1 does not divide qm − 1 for any m < 2n.
Hence,

f =
n−1∏
d=0

(x− θq2d).

13



Note that θq
n

= θ−1, so θ−q
2d+1

= θq
n+2d+1

= θq
−n+2d+1

. From this, we can see
that

f̃(x) =

(
n−1∏
d=0

(−θq2d)−q

)
xn

n−1∏
d=0

(
1

x
+ (−θq2d)q)

= xn
n−1∏
d=0

(1 +
(−θq2d)−q

x
)

=
n−1∏
d=0

(x− θ−q2d+1

)

=

(n−1)/2−1∏
d=0

(x− θqn+2d+1

)

 n−1∏
d=(n−1)/2

(x− θq−n+2d+1

)

 = f(x).

Let A ∈ GLn(q2) be the companion matrix of f . By Theorem 2.2, this
matrix is similar to an element B ∈ G. Moreover, its eigenvalues are precisely
the roots of f , which are θq

2d
for d = 0, . . . , n − 1. Then none of these is a

power of ρ, and

detB = θq
2(n−1)+q2(n−2)+···+1 = θ(q

2n−1)/(q2−1) = θ(q
n+1)(qn−1)/(q+1)(q−1)

= ρq
n−1+qn−2+···+1 = ρ,

so

ψ(B) =

q∑
i=0

ζ in,q(B)λji(B) = (−1)nεj0 ∈ V ⊂ R.

Therefore εj0 ∈ R, so j0 = 0 (or (q + 1)/2, if q is odd).
If n is even, let θ ∈ Fqn be a primitive (qn − 1)th root of unity such that

θ(q
n−1)/(q+1) = ρ−1, and let f(x) ∈ Fq2 [x] be the minimal polynomial of θ over

Fq2 . By the same logic, θq
2d

for d = 0, . . . , n/2 − 1 are distinct roots of f ,
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and deg f = |Fqn : Fq2 | = n/2, so f(x) =
∏n/2−1

d=0 (x− θq2d). Also,

f̃(x) =

n/2−1∏
d=0

(−(θq
2d

)−q)

xn/2
n/2−1∏
d=0

(
1

x
+ (−θq2d)q)

= xn/2
n/2−1∏
d=0

(1 +
(−θq2d)−q

x
)

=

n/2−1∏
d=0

(x− θ−q2d+1

)

=

n/2−1∏
d=0

(x− θqn+2d−1

) 6= f(x)

since θq
n−1

is not among θ, θq
2
, . . . , θq

n−2
. Let h = ff̃ . Then h satisfies the

condition of Theorem 2.2, so there is a matrix B ∈ G which is similar to the
direct sum of companion matrices of f and f̃ in GLn(q2). In particular, the
eigenvalues of B are θq

2d
and θ−q

2d+1
, where d = 0, . . . , n/2−1. None of them

is a power of ρ, and

detB = θq
n−2+qn−4+···+1−q−q3−···−qn−1

= θ(−q
n+1)/(q+1) = ρ.

Hence,

ψ(B) =

q∑
i=0

ζ in,q(B)λji(B) = (−1)nεj0 ∈ V ⊂ R.

Therefore, εj0 ∈ R, so j0 = 0 (or (q + 1)/2, if q is odd).

If q is odd, then the assumptions (a) and (b) about ψ also holds for
ψλ(q+1)/2. Therefore, we can safely assume that j0 = 0.

(3) Applying Lemma 3.2 and Theorem 3.1.

Our plan is to show that for each a, b, k ∈ Q,

q∑
i=0

εaik+bjik ∈ {0, 1,−1, q,−q, q + 1}. (∗)
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Once we have this, we can apply Lemma 3.2 to the polynomial

fa,b(t) =

q∑
i=0

tca,b,i

where ca,b,i ∈ Q is the unique element such that ca,b,i ≡ ai + bji mod q + 1.
This polynomial clearly satisfies conditions (1) and (2) of Lemma 3.2, and
the condition (3) is also satisfied since

fa,b(ε
k) =

q∑
i=0

εaik+bjik ∈ {0, 1,−1, q,−q, q + 1}

⊆ {0, q + 1} ∪ {±1 + (q + 1)m | m ∈ Z}.

Therefore, the numbers j0, . . . , jq satisfy the condition of Theorem 3.1, so
there exists some integer 0 ≤ e ≤ q such that ji ≡ ei mod q + 1 for every
i ∈ Q, and

ψ =

q∑
i=0

q∑
j=0

ai,jζ
i
n,qλ

j =

q∑
i=0

ζ in,qλ
ei

which is the conclusion of this theorem.
To show (∗), we will use some relations between the values of ψH at

certain conjugacy classes of H: C
(bk)
8 , C

(ak)
2 , C

(ak)
3 , C

(ak,(a−b)k)
7 , C

(b−2a)k,−2ak)
7 ,

C
(ak,(b−2a)k)
4 , and C

(ak,(b−2a)k)
5 . Here, when the parameters for some conjugacy

classes are out of the ranges given in Table 1, then add some (possibly neg-
ative) integer multiples of q + 1 to those parameters so that each of the new
parameters is in the range given in Table 1 for the corresponding conjugacy
class. This modification will not affect what follows.

Recall that in part (1), we saw that

ai,j = δj,ji

and

ψH =

q∑
i=0

q∑
j=0

ci,jζ
i
3,qλ

j
H

where

ci,j =

q∑
r=0

ar,j
qn−3 − (−1)n−3

q + 1
+ (−1)n−3ai,j.

Let b, k ∈ Q, and let g0 ∈ C
(bk)
8 . We will deal with the cases where

ψH(g0) = 0 and ψH(g0) 6= 0 separately.
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(4) Proof of (∗) for the cases where ψH(g0) = 0.

Suppose that ψH(g0) = 0 for g0 ∈ C(bk)
8 . For a ∈ Q, let h1 ∈ C(ak,(a−b)k)

7 .
Then according to Table 2 and the equalities we just recalled,

0 = ψH(g0) =

q∑
i=0

q∑
j=0

ci,jζ
i
3,q(g0)λ

j
H(g0)

=

q∑
j=0

−c0,jεbjk

= −
q∑
j=0

(

q∑
r=0

ar,j
qn−3 − (−1)n−3

q + 1
+ (−1)n−3a0,j)ε

bjk

= −(−1)n−3 − qn−3 − (−1)n−3

q + 1

q∑
i=0

εbjik.

When n = 3, then qn−3−(−1)n−3

q+1
= 0, so this cannot happen. So n > 3 and

−(−1)n−3
q + 1

qn−3 − (−1)n−3
=

q∑
i=0

εbjik.

This is an algebraic integer which is also a rational number, so it is an integer.
If n ≥ 5, then |qn−3 − (−1)n−3| ≥ q2 − 1 > q + 1, so the number cannot be
an integer. Therefore,

n = 4 and

q∑
i=0

εbjik = −(−1)4−3
q + 1

q4−3 − (−1)4−3
= 1.
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Also,

ψH(h1) =

q∑
i=1

q∑
j=0

ci,jε
aik+bjk

=

q∑
i=1

q∑
j=0

(
q∑
r=0

ar,j
q4−3 − (−1)4−3

q + 1
+ (−1)4−3ai,j

)
εaik+bjk

=

q∑
i=1

q∑
j=0

q∑
r=0

ar,jε
aik+bjk −

q∑
i=1

q∑
j=0

ai,jε
aik+bjk

=

q∑
i=1

q∑
r=0

εaik+bjrk −
q∑
i=1

εaik+bjik

= (

q∑
i=1

εaik)(

q∑
r=0

εbjrk)−
q∑
i=1

εaik+bjik.

By plugging in
∑q

i=0 ε
bjik = 1, we get

q∑
i=0

εaik+bjik = 1 +

q∑
i=1

εaik+bjik

= 1 +

q∑
i=1

εaik − ψH(h1)

=

q∑
i=0

εaik − ψH(h1)

= (0 or q + 1)± (0 or power of q) ∈ Z.

On the other hand, since |
∑q

i=1 ε
aik+bjik| ≤

∑q
i=1 |εaik+bjik| = q,

q∑
i=0

εaik+bjik = 1 +

q∑
i=1

εaik+bjik ∈ [−q + 1, q + 1].

Therefore, the possible values of
∑q

i=0 ε
aik+bjik are {0, 1,−1, q, q+ 1}, so this

case satisfies (∗).

(5) Proof of (∗) for the cases where ψH(g0) 6= 0.
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Now consider the pairs (b, k) such that ψH(g0) 6= 0 for g0 ∈ C(bk)
8 . I claim

that for every a ∈ Q,

q∑
i=1

q∑
j=0

ci,jε
aik+bjk ∈ {0,−1

q
ψH(g0), ψH(g0),−qψH(g0)}. (∗∗)

First, consider the case where 3ak ≡ bk mod q + 1. Let g1 ∈ C(ak)
2 and

g2 ∈ C(ak)
3 . Then by Table 2,

ψH(g0) =

q∑
j=0

−c0,jεbk ∈ V \ {0},

ψH(g2) =

q∑
i=1

q∑
j=0

ci,jε
aik+3ajk =

q∑
i=1

q∑
j=0

ci,jε
aik+bjk ∈ V ,

ψH(g1) =

q∑
j=0

−qc0,jε3ajk +

q∑
i=1

q∑
j=0

−(q − 1)ci,jε
aik+3ajk

=qψH(g0)− (q − 1)ψH(g2) ∈ V .

Note that ψH(g2) is exactly the number appearing in (∗∗).
If ψH(g1) = 0, then qψH(g0) = (q − 1)ψH(g2). Since ψH(g0) is a nonzero

element of V , qψH(g0) is not divisible by q − 1, so this is impossible. If
ψH(g2) = 0, this already satisfies (∗∗). So assume that they are all nonzero.
We may write ψH(g`) = (−1)s`qt` for some s0, s1, s2 ∈ {0, 1} and t0, t1, t2 ∈
Z≥0.

If t0 ≥ t2, then

(−1)s1qt1 = ψH(g1) = qψH(g0)− (q − 1)ψH(g2)

=
(
(−1)s0qt0+1−t2 − (−1)s2q + (−1)s2

)
qt2 .

Hence, (−1)s0qt0+1−t2−(−1)s2q+(−1)s2 = (−1)s1qt1−t2 . Since t0+1−t2 ≥ 1,
the left hand side is not divisible by q, so the right hand side must be ±1.
Then the first two terms of the left hand side must cancel each other, so
t0 = t2 and s0 = s2, hence ψH(g2) = ψH(g0).

If t0 < t2, then

(−1)s1qt1 = ψH(g1) = qψH(g0)− (q − 1)ψH(g2)

=
(
(−1)s0 − (−1)s2qt2−t0 + (−1)s2qt2−t0−1

)
qt0+1.
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Hence, (−1)s0− (−1)s2qt2−t0 +(−1)s2qt2−t0−1 = (−1)s1qt1−t0−1. The left hand
side cannot be ±1 since qt2−t0 > qt2−t0−1 + 1. Hence, this number must be
divisible by q, so (−1)s0 and (−1)s2qt2−t0−1 must cancel each other. Therefore,
s0 = −s2 and t2 − t0 − 1 = 0, so ψH(g2) = (−1)s2qt2 = −(−1)s0qt0+1 =
−qψH(g0).

The above results together shows that if 3ak ≡ bk mod q + 1, then

q∑
i=1

q∑
j=0

ci,jε
aik+bjk = ψH(g2) ∈ {0, ψH(g0),−qψH(g0)}.

Therefore, such a satisfies (∗∗).
Now consider a ∈ Q with 3ak 6≡ bk mod q + 1. In this case, let h1 ∈

C
(ak,(a−b)k)
7 (or C

(ak,(a−b)k+q+1)
7 ), h2 ∈ C((b−2a)k,−2ak)

7 (or C
((b−2a)k,−2ak+q+1)
7 ), h3 ∈

C
(ak,(b−2a)k)
4 , and h4 ∈ C(ak,(b−2a)k)

5 , where the alternative parameters are used
when the original parameters are not in the ranges given in Table 1. Then
by Table 2 and the previous observations,

ψH(g0) =

q∑
j=0

−c0,jεbjk ∈ V \ {0},

ψH(h1) =

q∑
i=1

q∑
j=0

ci,jε
aik+bjk ∈ V ,

ψH(h2) =

q∑
i=1

q∑
j=0

ci,jε
(b−2a)ik+bjk ∈ V ,

ψH(h3) = −(q − 1)

(
q∑
j=0

c0,jε
bjk +

q∑
i=1

q∑
j=0

ci,jε
aik+bjk

)
+

q∑
i=1

q∑
j=0

ci,jε
(b−2a)ik+bjk

= −(q − 1)(−ψH(g0) + ψH(h1)) + ψH(h2) ∈ V ,

ψH(h4) =

q∑
j=0

c0,jε
bjk +

q∑
i=1

q∑
j=0

ci,jε
aik+bjk +

q∑
i=1

q∑
j=0

ci,jε
(b−2a)ik+bjk

= −ψH(g0) + ψH(h1) + ψH(h2) ∈ V .

Note that ψH(h1) is the number appearing in (∗∗). Also, since ε is a primitive
(q+ 1)th root of unity, the choices of parameters in the definitions of h1 and
h2 does not change the above values.

If ψH(h1) = 0, then this a satisfies (∗∗). If ψH(h2) = 0, then ψH(h3) =
−(q − 1)(−ψH(g0) + ψH(h1)) = −(q − 1)ψH(h4). Since the only element of
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V which is divisible by q − 1 is 0, it follows that ψH(h3) = ψH(h4) = 0, so
ψH(h1) = ψH(g0). This also satisfies (∗∗).

If ψH(h4) = 0, then ψH(g0) = ψH(h1) + ψH(h2). A sum or difference of
two powers of q is never a power of q (since q ≥ 4). However, ψH(g0) 6= 0,
so it is a power of q. Therefore, either ψH(h1) = 0 or ψH(h2) = 0, and we
already checked these cases. Similarly, if ψH(h3) = 0, then (q−1)(−ψH(g0)+
ψH(h1)) = ψH(h2), so ψH(h2) = 0.

The remaining cases are where these character values are all nonzero. As
before, we can write ψH(g0) = (−1)s0qt0 and ψH(h`) = (−1)s`qt` for some
s0, . . . , s4 ∈ {0, 1} and t0, . . . , t4 ∈ Z≥0.

Suppose that there is exactly one largest number among t0, t1 and t2, so
that the other two are strictly less than the largest one. Then since q ≥ 4,

qt4 = |ψH(h4)| = | − ψH(g0) + ψH(h1) + ψH(h2)|
= | − (−1)s0qt0 + (−1)s1qt1 + (−1)s2qt2 |
∈ (qmax(t0,t1,t2)−1, 3qmax(t0,t1,t2))

⊂ (qmax(t0,t1,t2)−1, qmax(t0,t1,t2)+1)

so it must be exactly qmax(t0,t1,t2), and the two terms in ψH(h4) = −ψH(g0) +
ψH(h1) + ψH(h2) with smaller absolute value must cancel each other.

If t0 = max(t0, t1, t2), then (−1)s1qt1 + (−1)s2qt2 = ψH(h1) + ψH(h2) = 0,
so t0 > t1 = t2 and s1 6= s2. Since

qt3 = |ψH(h3)| = | − (q − 1)(−ψH(g0) + ψH(h1)) + ψH(h2)|
= |(q − 1)(−1)s0qt0 − (q − 1)(−1)s1qt1 + (−1)s2qt2 |
= |(−1)s0qt0+1 − (−1)s0qt0 − (−1)s1qt1+1|
∈ (qt0+1 − qt0 − qt1+1, qt0+1 + qt0 + qt1+1)

⊂ (qt0 , qt0+2)

this number is exactly qt0+1, so it follows that (−1)s0qt0 + (−1)s1qt1+1 = 0.
Therefore ψH(h1) = (−1)s1qt1 = −ψH(g0)/q.

If t1 = max(t0, t1, t2), then−(−1)s0qt0+(−1)s2qt2 = −ψH(g0)+ψH(h2) = 0
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and t1 > t0 = t2, so

qt3 = |ψH(h3)| = | − (q − 1)(−ψH(g0) + ψH(h1)) + ψH(h2)|
= |(q − 1)(−1)s0qt0 − (q − 1)(−1)s1qt1 + (−1)s2qt2 |
= |(−1)s0qt0+1 − (−1)s1qt1+1 + (−1)s1qt1 |
∈ (qt1+1 − qt1 − qt0+1, qt1+1 + qt1 + qt0+1)

⊂ (qt1 , qt1+2).

Therefore, this number must be qt1+1, so (−1)s0qt0+1 + (−1)s1qt1 = 0, hence
ψH(h1) = (−1)s1qt1 = −(−1)s0qt0+1 = −qψH(g0).

If t2 = max(t0, t1, t2), then −(−1)s0qt0 + (−1)s1qt1 = −ψH(g0) +ψH(h1) =
0, so ψH(h1) = ψH(g0).

Suppose that there are exactly two largest numbers among t0, t1, t2. Then

qt4 = |ψH(h4)| = | − (−1)s0qt0 + (−1)s1qt1 + (−1)s2qt2 |.

If t0 = t1 > t2 and s0 6= s1, then the above number becomes 2qt0 ± qt2 ,
which cannot be a power of q. Therefore s0 = s1 and ψH(h1) = (−1)s1qt1 =
(−1)s0qt0 = ψH(g0).

Similarly, if t0 = t2 > t1, then s0 = s2 and ψH(h2) = ψH(g0). In this case,

qt3 = |ψH(h3)| = | − (q − 1)(−ψH(g0) + ψH(h1)) + ψH(h2)|
= |(q − 1)(−1)s0qt0 − (q − 1)(−1)s1qt1 + (−1)s2qt2 |
= |(−1)s0qt0+1 − (−1)s1qt1+1 + (−1)s1qt1 |
∈ (qt0+1 − qt1+1 − qt1 , qt0+1 + qt1+1 + qt1)

⊂ (qt0 , qt0+2).

Therefore this number is qt0+1, so −(−1)s1qt1+1 + (−1)s1qt1 = 0. There is no
such t1, so this case cannot happen.

If t1 = t2 > t0, then by the same reason, s1 6= s2 and ψH(h1) = −ψH(h2).
In this case,

qt3 = |ψH(h3)| = | − (q − 1)(−ψH(g0) + ψH(h1)) + ψH(h2)|
= |(q − 1)(−1)s0qt0 − (q − 1)(−1)s1qt1 + (−1)s2qt2 |
= |(−1)s0qt0+1 − (−1)s0qt0 − (−1)s1qt1+1|
∈ (qt1+1 − qt0+1 − qt0 , qt1+1 + qt0+1 + qt0)

⊂ (qt1 , qt1+2).
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Therefore, this number is qt1+1, so (−1)s0qt0+1 − (−1)s0qt0 = 0. There is no
such t0, so this case also cannot happen.

Finally, suppose that t0 = t1 = t2. If ψH(g0) 6= ψH(h1), then ψH(g0) =
−ψH(h1) = ±ψH(h2), so

(−1)s3qt3 = ψH(h3) = −(q − 1)(−ψH(g0) + ψH(h1)) + ψH(h2)

= 2(q − 1)ψH(g0)± ψH(g0)

= (2(q − 1)± 1)(−1)s0qt0

which is impossible. Therefore ψH(g0) = ψH(h1) in this case.
In all of the above cases, we always got

q∑
i=1

q∑
j=0

ci,jε
aik+bjk = ψH(h1) ∈ {0,−

1

q
ψH(g0), ψH(g0),−qψH(g0)}.

Therefore, such a also satisfies (∗∗), so (∗∗) is true for every a ∈ Q.
Since ψH(g0) =

∑q
j=0−c0,jεbjk, by (∗∗),

q∑
i=0

q∑
j=0

ci,j
ψH(g0)

εaik+bjk =

q∑
j=0

c0,j
ψH(g0)

εbjk +

q∑
i=1

q∑
j=0

ci,j
ψH(g0)

εaik+bjk

= −1 +

∑q
i=1

∑q
j=0 ci,jε

aik+bjk

ψH(g0)

∈ {−1,−q + 1

q
, 0,−(q + 1)}.

On the other hand,

q∑
i=0

q∑
j=0

ci,j
ψH(g0)

εaik+bjk

=

∑q
i=0

∑q
j=0 ci,jε

aik+bjk∑q
s=0−c0,sεbsk

=

∑q
i=0

∑q
j=0(

∑q
r=0 ar,j

qn−3−(−1)n−3

q+1
+ (−1)n−3ai,j)ε

aik+bjk∑q
s=0−(

∑q
u=0 au,s

qn−3−(−1)n−3

q+1
+ (−1)n−3a0,s)εbsk

=−
qn−3−(−1)n−3

q+1
(
∑q

i=0

∑q
r=0 ε

aik+bjrk) + (−1)n−3
∑q

i=0 ε
aik+bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

.
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Note that the denominator does not depend on the choice of a. When ak ≡ 0
mod q + 1, this becomes

−
qn−3−(−1)n−3

q+1
(
∑q

i=0

∑q
r=0 ε

aik+bjrk) + (−1)n−3
∑q

i=0 ε
aik+bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

=−
qn−3−(−1)n−3

q+1
(
∑q

i=0

∑q
r=0 ε

bjrk) + (−1)n−3
∑q

i=0 ε
bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

=−
qn−3−(−1)n−3

q+1
((q + 1)

∑q
r=0 ε

bjrk) + (−1)n−3
∑q

i=0 ε
bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

=− (q + 1)− −(−1)n−3(q + 1) + (−1)n−3
∑q

i=0 ε
bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

.

If v ∈ {−1,− q+1
q
, 0,−(q + 1)} is the value of the above number, then

(v + q + 1)

(
qn−3 − (−1)n−3

q + 1
(

q∑
u=0

εbjuk) + (−1)n−3

)

=(−1)n−3(q + 1)− (−1)n−3
q∑
i=0

εbjik.

Solve this for
∑q

i=0 ε
bjik. Then we get

q∑
i=0

εbjik =
(−1)n−3(q + 1)− (−1)n−3(v + q + 1)

(v + q + 1) q
n−3−(−1)n−3

q+1
+ (−1)n−3

=
−(q + 1)v

(v + q + 1)(−q)n−3 − v

When v = −1, this becomes

q∑
i=0

εbjik =
q + 1

q(−q)n−3 + 1
.

This number is a rational number which is also an algebraic integer, so it
must be an integer. This is possible only when n = 3, and in this case∑q

i=0 ε
bjik = 1.
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If v = − q+1
q

, then

q∑
i=0

εbjik =
−(q + 1)(− q+1

q
)

(− q+1
q

+ q + 1)(−q)n−3 + q+1
q

=
(q + 1)2

(q2 − 1)(−q)n−3 + q + 1

=
q + 1

(q − 1)(−q)n−3 + 1
.

This is also an integer by the same reason as the previous case, but there is
no such n. Therefore, this case is impossible.

If v = −(q + 1), then

q∑
i=0

εbjik =
−(q + 1)(−(q + 1))

0(−q)n−3 + q + 1
= q + 1.

Finally, if v = 0, then
q∑
i=0

εbjik = 0.

This shows that for those a ∈ Q such that ak ≡ 0 mod q + 1, we have

q∑
i=0

εaik+bjik =

q∑
i=0

εbjik ∈ {0, 1, q + 1}.

In particular, these (a, b, k) satisfy (∗). Also, with these values, we can
compute the values of the denominator of

∑q
i=0

∑q
j=0

cij
ψH(g0)

εaik+bjk:

qn−3 − (−1)n−3

q + 1
(

q∑
u=0

εbjuk) + (−1)n−3 =

{
qn−3 when v = (−q + 1),

(−1)n−3 when v = −1 or 0.

For those a ∈ Q with ak 6≡ 0 mod q + 1, we know that
∑q

i=0 ε
aik = 0, so
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by the previous observations,

q∑
i=0

q∑
j=0

ci,j
ψH(g0)

εaik+bjk

=−
qn−3−(−1)n−3

q+1
(
∑q

i=0

∑q
r=0 ε

aik+bjrk) + (−1)n−3
∑q

i=0 ε
aik+bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

=−
qn−3−(−1)n−3

q+1

(
(
∑q

i=0 ε
aik)(

∑q
r=0 ε

bjrk)
)

+ (−1)n−3
∑q

i=0 ε
aik+bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

=− (−1)n−3
∑q

i=0 ε
aik+bjik

qn−3−(−1)n−3

q+1
(
∑q

u=0 ε
bjuk) + (−1)n−3

∈
{
−1,−q + 1

q
, 0,−(q + 1)

}
Since we know the possible values of the denominator, we can solve this for∑q

i=0 ε
aik+bjik and get:

q∑
i=0

εaik+bjik ∈
{

1,
q + 1

q
, 0, q + 1, (−q)n−3, (−q)n−3 q + 1

q
, (−q)n−3(q + 1)

}
.

On the other hand, as we saw before,
∑q

i=0 ε
aik+bjik = 1 +

∑q
i=1 ε

aik+bjik is 1
plus an algebraic integer whose absolute value does not exceed q. Therefore,
it cannot be q+1

q
. If it is (−q)n−3, then n ≤ 4 and the values are −q or 1. If

it is (−q)n−3 q+1
q

, then n ≤ 4; n 6= 3 since it is q+1
q

when n = 3, and when

n = 4, it is −(q + 1), which is not a sum of 1 plus some number of absolute
value at most q. Therefore, it is never of the form (−q)n−3 q+1

q
. Finally, if it

is (−q)n−3(q + 1), then n = 3 and the value becomes q + 1. Therefore,

q∑
i=0

εaik+bjik ∈ {0, 1, q + 1,−q}

so these (a, b, k) satisfy (∗). Therefore, (∗) is true for all possible triples
(a, b, k).

(6) The case q = 2, 3.

Here, we again mimic the proof of Theorem 1.1 given in [3]. Note that
first few arguments of part (1) did not assume that q ≥ 4. In particular,
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ψ(1) = qn,
∑q

j=0 a0,j = b0 = 1 and
∑q

i=0

∑q
j=0 ai,j =

∑q
i=0 bi = q + 1 still

holds in these cases (we still need (n, q) 6= (3, 2)).
First, suppose that q = 2 and n ≥ 4. By condition (a), ψ is real-valued.

Note that ζ1n,2 = ζ2n,2 and λ = λ2. Therefore,

2∑
i=0

2∑
j=0

ai,jζ
i
n,2λ

j = ψ = ψ =
2∑
i=0

2∑
j=0

ai,jζ in,2λ
j

=
2∑
j=0

a0,jζ
0
n,2λ

2j +
2∑
i=1

2∑
j=0

ai,jζ
3−i
n,2 λ

2j.

By comparing the coefficients and using the linear independence of irreducible
characters, we obtain a0,1 = a0,2, a1,0 = a2,0, a1,1 = a2,2, and a2,1 = a1,2.
The observation in part (1) that

∑2
i=0

∑2
j=0 ai,j =

∑2
i=0 bi = 2 + 1 = 3

and
∑2

j=0 a0,j = b0 = 1, together with the fact that ai,j are nonnegative
integers, forces a0,0 = 1, a0,1 = a0,2 = 0, and that one of the three pairs
(a1,0, a2,0), (a1,1, a2,2), (a2,1, a1,2) is (1, 1) and the other two pairs are (0, 0).
Therefore, this theorem is valid for q = 2 when n ≥ 4.

Suppose that q = 3. Again, ψ is real-valued, ζ1n,3 = ζ3n,3, and λ = λ3. Also,
ζ2n,3 and λ2 are real-valued. As in the previous case, we get

3∑
i=0

3∑
j=0

ai,jζ
i
n,3λ

j = ψ = ψ =
3∑
i=0

3∑
j=0

ai,jζ in,3λ
j

=
∑
i=0,2

3∑
j=0

ai,jζ
i
n,3λ

3j +
∑
i=1,3

3∑
j=0

ai,jζ
4−i
n,3 λ

3j.

Hence a0,1 = a0,3, a2,1 = a2,3, a1,1 = a3,3, a1,3 = a3,1, a1,0 = a3,0, and
a1,2 = a3,2.

Since b0 = 1, exactly one of a0,0 and a0,2 is 1 and the other one is 0. Also,
exactly one of a2,0 and a2,2 is 1 or 3 and the other one is 0, since the sum of
all ai,j is 4, while all ai,js other than a0,0, a0,2, a2,0, a2,2 appear in the above
pairs so that their sum must be even. Note that each of these pairs, except
(a0,1, a0,3) and (a2,1, a2,3), consists of ai,j and ai′,j′ with i 6= i′. Moreover,
a0,1 = a0,3 = 0 since b0 = 1. Hence, for each i, there is unique ji such that
ai,j = δj,ji , unless a2,1 = a2,3 = 1 or one of a2,0, a2,2 is 3. Recall that in part

27



(1) we saw that

ψH =
3∑
i=0

3∑
j=0

ci,jζ
i
3,3λ

j
H

where

ci,j =
3∑
r=0

ar,j
3n−3 − (−1)n−3

4
+ (−1)n−3ai,j.

Hence, for g ∈ H with det g = 1, we get

ψH(g) =
3∑
i=0

3∑
j=0

ci,jζ
i
3,3(g)λjH(g)

=
3∑
i=0

3∑
j=0

(
3∑
r=0

ar,j
3n−3 − (−1)n−3

4
+ (−1)n−3ai,j)ζ

i
3,3(g)

= (3n−3 − (−1)n−3)
3∑
i=0

ζ i3,3(g) + (−1)n−3
3∑
i=0

3∑
j=0

ai,jζ
i
3,3(g).

When g ∈ C
(2,0)
4 , it has det g = 1, and the irreducible Weil characters has

values
ζ03,3(g) = −2, ζ13,3(g) = 3, ζ23,3(g) = −1, ζ33,3(g) = 3.

Therefore,

ψH(g) = (3n−3 − (−1)n−3)(3) + (−1)n−3

(
−2 + 3

3∑
j=0

(a1,j + a3,j)−
3∑
j=0

a2,j

)

= 3n−2 + (−1)n−3

(
−5 + 3

3∑
j=0

(a1,j + a3,j)−
3∑
j=0

a2,j

)
∑3

j=0(a1,j + a3,j) is either 0 or 2, and in these cases,
∑3

j=0 a2,j = 3 and 1,

respectively. If
∑3

j=0(a1,j+a3,j) = 0, then ψH(g) = 3n−2+(−1)n−3(−5−3) =

3n−2 − 8(−1)n−3. This is not an element of V , so
∑3

j=0(a1,j + a3,j) = 2. In
particular, a2,1 = a2,3 = 0 and for each i, there exists unique ji such that
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ai,j = δj,ji for all j. It follows that for general g ∈ H,

ψH(g) =
3∑
i=0

3∑
j=0

ci,jζ
i
3,3(g)λjH(g)

=
3∑
i=0

3∑
j=0

(
3∑
r=0

ar,j
3n−3 − (−1)n−3

4
+ (−1)n−3ai,j

)
ζ i3,3(g)λjH(g)

=
3n−3 − (−1)n−3

4

(
3∑
i=0

ζ i3,3(g)

)(
3∑
r=0

λjrH(g)

)
+ (−1)n−3

3∑
i=0

ζ i3,3(g)λjiH(g)

Let h1 ∈ C(1)
1 and h8 ∈ C(3)

8 . Then

ψH(h1) =
−3n−3 + (−1)n−3

4

(
ε3j0 + ε3j1 + ε3j2 + ε3j3

)
+ (−1)n−3(6ε3j0 + 7(ε1+3j1 + ε2+3j2 + ε3+3j3)),

ψH(h8) =
−3n−3 + (−1)n−3

4
(ε3j0 + ε3j1 + ε3j2 + ε3j3) + (−1)n−3(−ε3j0).

With these formulas, we can compute the values for given j0, j1, j2, j3. We
saw at the end of part (2) that we only need to check the cases where j0 = 0.

Suppose that (j0, j1, j2, j3) = (0, 1, 0, 3). Then by the above formulas,

ψH(h1) =
−3n−3 + 27(−1)n−3

2
, ψH(h8) =

−3n−3 − (−1)n−3

2
.

Hence, ψH(h8) = ψH(h1) − 14(−1)n−3. No elements of V satisfy these rela-
tions, so (j0, j1, j2, j3) 6= (0, 1, 0, 3).

Similarly, if (j0, j1, j2, j3) = (0, 3, 0, 1), then

ψH(h1) =
−3n−3 − 29(−1)n−3

2
, ψH(h8) =

−3n−3 − (−1)n−3

2
.

Hence, ψH(h8) = ψH(h1) + 14(−1)n−3. Again, there is no such elements in
V , so this case is also impossible.

If (j0, j1, j2, j3) = (0, 0, 2, 0), then

ψH(h1) =
−3n−3 + 27(−1)n−3

2
, ψH(h8) =

−3n−3 − (−1)n−3

2
.

This is the same as in the case (j0, j1, j2, j3) = (0, 1, 0, 3), so it is impossible.
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If (j0, j1, j2, j3) = (0, 2, 2, 2), then

ψH(h1) =
3n−3 + 25(−1)n−3

2
, ψH(h8) =

3n−3 − 3(−1)n−3

2
.

Hence, ψH(h8) = ψH(h1)−14(−1)n−3. Again, this is impossible. All remain-
ing choices of (j0, j1, j2, j3), where j0 = 0, are (0, 0, 0, 0), (0, 2, 0, 2), (0, 1, 2, 3),
and (0, 3, 2, 1). Each of these are of the form ji ≡ ei mod 4 for some e ∈ Z.
Therefore, the theorem holds for q = 3.

Acknowledgments

I am very grateful to Pham Huu Tiep for proposing this problem and for
his devoted guidance. I am also thankful to the referee for careful reading
and helpful comments that pointed out an unnecessary assumption in the
statement of Theorem 1.2.

References

[1] Ennola, V. (1962). On the conjugacy classes of the finite unitary groups.
Ann. Acad. Sci. Fenn. Ser. A I No., 313:13.

[2] Ennola, V. (1963). On the characters of the finite unitary groups. Ann.
Acad. Sci. Fenn. Ser. A I No., 323:35.

[3] Katz, N. M., Tiep, P. H. (submitted). Hypergeometric sheaves and finite
symplectic and unitary groups.

[4] Tiep, P. H., Zalesskii, A. E. (1997). Some characterizations of the
Weil representations of the symplectic and unitary groups. J. Algebra,
192(1):130–165.

[5] Yucas, J. L., Mullen, G. L. (2004). Self-reciprocal irreducible polynomials
over finite fields. Des. Codes Cryptogr., 33(3):275–281.

30


	Introduction
	Preliminary Results
	Proof of Theorem 1.2

