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Abstract

Katz and Tiep proved a characterization of the total Weil character
of finite special unitary groups SU,(q) for any integer n > 3 and any
prime power ¢ other than (n,q) = (3,2), in terms of the character
values and irreducible constituents. They asked whether a similar
characterization can be done for finite general unitary groups GU,(q).
In this article, we prove that such characterization for GU,,(¢q) can be
done up to endomorphisms and tensoring by real linear characters.
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1 Introduction

Fix a primitive (¢ + 1)th root of unity ¢ € C, where ¢ is a prime power.
Let 7 be a generator of IF;G. Also, let o = 791"+ and p = 071, Note
that o is a generator of F 5, and p is an element of F; of order ¢ + 1. Let
G = GU,(q) be the finite general unitary group, and let Irr(G) be the set of
complex irreducible characters of G. G has a linear character A € Irr(G) of
order ¢ + 1, defined as A\(g) = €' when det g = p'. Also, for each i € Z, there
is an irreducible Weil character ¢, , € Irr(G) defined as

(-1 ¢
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where we identify G with GU(W) for a unitary vector space W. Note that
g = CiHatlso we can take i from @ := {0, 1, ..., ¢} instead of Z. The sum
of all ¢ + 1 distinct irreducible Weil characters ¢, , is called the total Weil
character

n dimg ,, ker(g—1w)
Gra(9) = (=1)"(=g) 0

If we restrict the irreducible Weil characters thq to SU,(q), we obtain the
q + 1 pairwise distinct irreducible Weil characters Ct, i € Q, of SU,(q) if
n > 3. For the proofs of these facts, see [4].

Katz and Tiep [3] proved the following characterization of the total Weil
character of SU,(q):

Theorem 1.1. [3, Theorem 16.6] Let L = SU,(¢) with n > 3 and (n,q) #
(3,2). Suppose ¥ is a (not necessarily irreducible) complex character of L
such that

(a) (1) =q";
(b) ¥(g) € {0,£¢" | 0 <i < n} forall g € L; and

(c) every irreducible constituent of ¥ is among the g + 1 irreducible Weil
characters (', u € ), of L.

Then ¢ is the total Weil character, that is, ¢ = > 1 _ (Y.

They proved [3, Theorem 16.11] that the geometric monodromy group of
certain hypergeometric sheaves over G,,/FF, are isomorphic to GU,(q), and
the corresponding ¢"-dimensional representations can be viewed as the total
Weil character ¢, , up to automorphisms. Theorem 1.1 is used in the proof
of this theorem to show that certain representations of SU,,(¢q) are total Weil
representations up to automorphisms.

In the same paper [3], they posed the following question which extends
Theorem 1.1 to GU,(q):

Question. [3, Remark 16.7] Is the total Weil character ¢, = > 7 ¢,
the only character of GU,(g), whose irreducible constituents are among the
(¢ + 1)? irreducible Weil characters sz,q)\j , 0 < 4,7 < g, and which takes
values only among 0, +¢!, 0 <1 < n?

They gave a negative answer to this question by finding a family of ¢+1 en-
domorphisms (not necessarily isomorphisms) of GU,(¢q), whose compositions
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with the total Weil representation produce representations which afford char-
acters of the form Y 7 Cﬁyq)\ei, e € (). Such characters, and the characters
obtained by tensoring them with a real linear character, have the properties
in the question. However, they can still be considered to be close enough to
the total Weil character. One might ask whether there are other examples
of characters with these properties which are, in some sense, far from being
a total Weil character.

In this paper, we prove that these examples are the only characters which
have the properties in the question.

Theorem 1.2. Let n > 3 be an integer and ¢ be any prime power with
(n,q) # (3,2). Suppose that 1 is a character of G = GU,(q) with the
following properties.

(a) For every g € G, ¥(g) € V ={0}U{%q" : 0 <i<n}.

(b) Every irreducible constituent of v is among the (¢+1)? irreducible Weil
characters ¢}, .

Then ¢ = 27 (¢ A% (or possibly o = 377 Cf%q/\e”(‘frl)/2 if ¢ is odd) for
some 0 <e <gq.

This theorem tells that although the question of Katz and Tiep does not
have a completely positive answer, such characters are reasonably close to
the total Weil characters. This might help, as Theorem 1.1 did, identifying
the total Weil character and its variants in the study of monodromy groups
in situations similar to ones studied in [3] .

2 Preliminary Results

One of the key ingredients of the proof of Theorem 1.1 given in [3] is the
following branching formula, which allows us to compute the values of irre-
ducible Weil characters of GU,(q) at certain conjugacy classes in terms of
the values of irreducible Weil characters of GUs(q).

Lemma 2.1. [3, Lemma 16.5(i)] Let n = m + [ with m,l € Z>;. Then the
restriction of Cﬁ“q to the natural subgroup GU,,(q) x GU;(q) of GU,(q) is

2. GG,

0<r,s<gq,
(g+1)|(r+s—1)
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where X denotes the (outer) tensor product.

According to [2], the conjugacy classes of GU3(q) and their values of irre-
ducible Weil characters are as listed in Table 1 and Table 2 below.

Class | Canonical Matrix Form Parameters
C’fk) Al 0<k<gqg
oF
) 1 P 0<k<g
5 o
o (pl b ) 0<k<
3 P SKkKX(q
1 p
oF
(k,0) k
E i
(k,0) P k
Cs (1 P ) 0<k1<q k#I
E i
C(kvlfm) p l
6 P ) 0<k<l<m<gq
pm
(k1) ! [ #£0 mod q—1;
C o .
7 —l if ' = —ql mod ¢*> —1
g ’
then Cék’l) = C’;k’l ),
@ -1 r 1<k<¢, k#0 mod ¢> —q+1;
Cék) ra*k(@®=1) if k' = ¢’k or ¢*k mod ¢* +1
ek 1) then ¢ = ).

Table 1: The conjugacy classes of GUs(q), as described in [2].

For a monic polynomial p(z) = > a;z* € F2[z] with ag # 0, define

Note that (p) = p. We will make use of the following characterization of
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Class 5,V 54N

01(k) (qz B q)€3jk (qz —q+ 1)€ik+3jk

Cék) _qESjk —(q— 1)6ik+3jk

C?Ek) 0 ctk+3jk

C’ik’l) —(q— 1)€2jk+jl —(q— 1)€ik+2jk+jl + 2kl
05(1:,1) 27k+jl ik t2ikil | (2ik-ril+l
Cék,l,m 9 ¢ (k+1+m) 6jk+jl+jm(€ik + ¢l +€im)
C’ék’l) 0 cik+ik—jl

Cék) —cik 0

Table 2: The values of characters Cé,q)\ja as described in [2].

the unitary matrices by Ennola [1] to show the existence of some conjugacy
class.

Theorem 2.2. [1, p. 12] Let A € GL,(¢*) be a matrix with the characteristic
polynomial fF fa2... ]’f,N , where fi,..., fy are distinct monic irreducible
polynomials over F2 and ky,...,ky € Z>,. Foreach ¢ =1,..., N, let v; be
the (unordered) partition of the positive integer k;, which can be obtained
by computing a generalized Jordan canonical form of A and looking at the
sizes of diagonal blocks corresponding to the irreducible factor f;. Then, A
is similar to a matrix of GU,(q) if and only if for every index r, 1 <r < N,

there is exactly one index s, 1 < s < N such that f, = f,; and v, = v,.

We will not need precise descriptions of the partitions v; and the gener-
alized Jordan canonical form, as we will use this theorem only for the cases
where k; = 1 for all 7.

3 Proof of Theorem 1.2

The main idea of the proof of Theorem 1.2 is the following theorem.

Theorem 3.1. Let jo = 0,71,...,J; € @, and for each a,b,i € @, let
Cap,i € @ be the unique number such that c,p; = ai+bj; mod g+1. Suppose
that for each pair a,b € @, either



(i) there exists an integer d,;, > 1 dividing ¢ + 1 such that

q
Z $Cabi — da,b<tq+1 . 1)/<tda’b o 1) _ da’b(tq—l—l—da,b +tQ+1—2da,b RS 1)7
=0
or

(i) °F  teeri =g+ 1, 1e. cop; =0"foreveryi=1,...,q.
Then there exists e € () such that j; = ei mod g+ 1 for every 7 € Q).
Proof. We divide the proof into several steps.

(1) We can assume j; = 0.

For each i € @, define j! to be the unique element of @) such that j. =
Ji —tj1 mod ¢+ 1. Fix a pair a,b € Q. For each i € Q, let ¢, ; € Q be the

unique element of ) such that ¢, ., = ai + bj; mod g+ 1. Then

a,b,i
c;,,m. = ai + bj, = ai + bj; — bij1 = (a — bj1)i + bj; = cwrp; mod q + 1,
where o’ € @ is the number such that ¢’ = a — bj; mod ¢ + 1. Since

(Car 905 - - - Car bq) satisfies either (i) or (ii), so does (¢, ;,---;C,4,)- There-
fore, the numbers j! satisfy the assumption in the statement of this theorem,
so it is enough to show that if we have an additional assumption j; = 0, then

ji = 0 for every 1 € Q.

(2) We can assume that there exists a prime p such that every j; is a
multiple of d = (¢ + 1)/p.

Suppose that j; = 0 but j; # 0 for at least one ¢ € ). Let M be the
smallest positive integer such that for every ¢ € @, Mj; = 0 mod g + 1.
Since we assumed that j; # 0 for at least one ¢, we can see that M > 1, so
M = mp for some integer m > 1 and a prime p. For each i, let j/ € @ be
the unique element such that ji = mj; mod g+ 1. Note that every j! is a
multiple of d = (¢+1)/p, but some j; is nonzero by the minimality of M. For
each a,b,i € Q, let ¢, ; € @ be the unique element such that ¢, , ; = ai + bj;
mod ¢ + 1. Then

Cppi = 01+ bj; = ai +bmj; = copy; mod g+ 1

where ' = mb mod g + 1. By the same reason as in (1), the numbers j!
satisfy the assumption. If we can prove that these j! are all zero, then this
contradicts our earlier observation that some of them are nonzero. Therefore,
it is enough to prove the following:



If jo =71 =0,72,...,Jq € @ satisfy the condition of the theorem,
and if there exists some prime p such that every j; is a multiple
of d=(¢+1)/p, then j; =0 for all i.

For each k € Z>, let P, be the condition

P, pt<d, pk\dandjnld = j uga , for every 0 < my,mo < p*—1
=TT =TT

p

d
andOSrSﬁ—l
pk—

Assume that d > 1 (I will prove this in part (4)). Then P, says nothing more
than d > p = 1 since 0 < ny,ny < p° — 1 = 0 forces ny = ng, so P, is true.
I will use induction on k to prove that P is true for every k. Assume that
k > 1 and P,_; is true.

(3) Jnrdspr—14r = Jnpdjpi—14r for all ny,ng € {0,...,pF =1} and 0 < r <
d/pF=1 —1.

Suppose that n; # ny € {0,...,pF — 1} and r € {0,...,d/p" ! — 1}.
Let k1 = Jnyajpr-140/d, k2 = Jpya/ph-14,/d, and suppose that k; # ky. Note
that 0 < k1 = jpapi-14,/d < (¢4 1)/d = p and similarly 0 < ky < p,
so ki1 # ko implies ky Z ks mod p. Therefore, there exists u € @ such
that u(k; — ko) = 1 mod p. Consider the pair (a,b) = (p*~1,b) where
b= —u(n; —ny) mod g+1. Then cp-1,, = p*' # 0, so condition (i) holds
for this pair. Moreover, d,s-1; divides cpe-14; = p*~. On the other hand,
by P,_1, p*~! divides d, which divides j; for every i € Q. Since

Cpr1p; =P —u(ng —ng)j; mod g+ 1,

Cph—1,; 18 also divisible by p*~!. Therefore, dpp-1p = p*~! and every multiple

of p"~! in Q) appears exactly p"~! times among ¢ i1 4,0, . . ., Cph-14,,. However,
cp’“*l,by—p’}ei‘ﬁ tr Cp’ffl,b,—p’}idl = (= ng)d +0(j A T J 24 )
= (n1 — ng)d — u(m — ng)(kl - kg)d
=0 modq+ 1.

Since they are both in Q, Cpr—1ppd/pk—14r = Cpr-1ppoa/pr—14r- Moreover,
if ny = pmq + 11 and ny = pmo + I for my,my € {O,...,pk_1 — 1} and
li,l € {0,...,p— 1}, then by Py_1,

C . d l1d = C ;. _ d = C d = C 'd
pk 1’b’p’;€nf2+pk1*1+r pk l’b’p”;l m

— n _ lod
T+ pk 17b7pk271 +r pk 17b7pk72+ 2

117
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for every m,m’ € {0,...,p*1—1}. Also, since k; # ks, by P,_; we must have
lid/p*=t # lyd/p"~1. Hence, this number appears at least 2p*~! times among
Cpk=1,05 - - - » Cph—1p g, Which is impossible. Therefore ki = ka, 80 Jna/pr—14r
does not depend on the choice of n.

(4) d is divisible by p*, and d > p*.

If we choose a = 0 and b = 1, we get ¢, = j;. Since j; # 0 for some 1,
this pair (a,b) = (0,1) satisfies the condition (i), so

q
Z t]L _ dO 1(tq+1—d0,1 + tq+1—2d0,1 4ot 1)
=0

In particular, there are exactly dy; copies of each multiple of dp; among
Jos - - -5 Jq- Since they are multiples of d and p = (¢+1)/d is a prime, it follows
that dyp; = d. Moreover, by part (3), whenever we have j, = 0 for some
0 <r<d/pF~'—1, we also have j, 451, = 0 for every n € {0,...,p" —1}.
In particular, the number of 0 among j;s, which is d, is precisely p* times
{r : 0 <r < d/p*~' — 1,5, = 0}|. By the assumption j, = j; = 0, the
number of such r is at least 2, so d is strictly larger than p*. Note that by
only using the facts jo = j1 = 0 and d = [{i € Q | ji = 0}|, we can see that
d > 2 as we assumed before part (3).

By parts (3) and (4), Px—; implies P;. By induction, P is true for all
k € Zso. In particular, d is divisible by p* for all k, which is impossible.
Therefore, our assumption that j; # 0 for some ¢ cannot be true. By parts
(1) and (2), this completes the proof. O

We will apply Theorem 3.1 on the exponents of \ appearing in the ¢ + 1
irreducible constituents Cﬁ, q)\j of y. To do this, we need to first check whether
these exponents satisfy the conditions of Theorem 3.1. This will be done by
applying the following lemma for the case r = q.

Lemma 3.2. Let r be a positive integer. Suppose that a polynomial f(t) =
oo cit’ € Z[t] has the following properties:

(1) ¢o > 0 and ¢; > 0 for every i € Q.

2) f1) =7r+1.



(3) There is an integer a relatively prime to 41, such that if € is a primitive
(r 4+ 1)th root of unity in C, then f(€") € {0,r+1}U{ta+ (r+1)m |
m € Z} for every integer n.

Then either f(t) =r+1or f(t) = d({t" 4 +t44+1) = d(t"—1)/(t?—1)
for some d > 0 dividing r + 1.

Proof. We first show that there is no integer n such that f(€") = £a mod r+
1. Consider the cyclic group G = () < C*. Let \; € Irr(G) be the linear
character defined by \;(¢) = €¢’. Then the restriction of f to G is the char-
acter x = >.._, ¢\ of G. Note that since the irreducible characters are
orthonormal with respect to the usual inner product (-, -),

Do 1 r r r
J;)T el S IX@P=06x) =0 x> a) =) el
geG

1=0 =0 1=0

In particular, the integer >°7_ [x(¢/)| is divisible by r + 1. Since x(¢/)* =
or > mod r + 1 and a? is relatively prime to r + 1, the number |[{j | j
{0,...,7},x(¢/) = £a mod r + 1}| must be divisible by r + 1. Since y(1)
f(1) =r+1% +a mod r + 1, so the above number is not r + 1, hence it
must be 0. Therefore, f(e") € {0, + 1} for every integer n.

Assume f(t) #r+ 1. Let 1 < s <7+ 1 be an integer such that

I m o

f@)=ce” +-Feg=r+1.
We also know that
lere®| 4t leol = o= f1)=r+ 1.

Therefore, c;e® = ¢; for every i € Q. Hence, ¢; = 0 unless is is divisible
by 7 + 1. This happens if and only if ¢ is a multiple of d, where d = (r +
1)/ged(r+1,s). We may assume that our choice of s maximizes this d. Note
that f(e"*1/4) = r 4+ 1, so we may assume that s = (r + 1)/d.

If s’ is another integer such that f(e*') = 0 and d’ = (r + 1)/gcd(r +
1,5"), then ¢; = 0 unless it is a multiple of lem(d,d’). But then s” = (r +
1)/lem(d,d') satisfies f(e") = 0 and (r + 1)/s” = lem(d,d'), so by the
maximality of d, d must divide d. Therefore, f(¢") = r + 1 if and only if n
is a multiple of s. In particular, f(t) — (r + 1) is divisible by t? — 1 and f(¢)
is divisible by (#"+! —1)/(t? — 1) = ¢r+i-d g grtl=2d 4 .. 41,
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If we write f(t) = g(t)(#" 174 4+ ¢"+172d 1 ... 1+ 1), then since degg =
degf—(r+1—d)<r—(r+1—d)=d—1, we can compare the terms of
degree < d — 1 in both sides to see that g(t) = cq_ 1t 1+ +co = ¢p. Also,
r+1 = f(1) = co(r+1)/d, so g(t) = co = d and f(t) = d(t"+1—1)/(t?—1). O

Now we are ready to prove Theorem 1.2, which we restate here.

Theorem. Let n > 3 be an integer and ¢ be any prime power with (n,q) #
(3,2). Suppose that ¢ is a character of G = GU,(q) with the following
properties.

(a) For every g € G, ¢(g9) € V={0}U{zxq": 0 <i < n}.
(b) Every irreducible constituent of ¢ is among ¢}, M.

Then ¢ = Y7 ¢t A (or possibly o = Y7 (2 A“T@TD/2if ¢ is odd) for
some 0 <e <gq.

Proof. We first assume that ¢ > 4. The cases ¢ < 3 will be proved later.
(1) v=>71, Cf't,q)\ji for some 0 < j; <q.

To prove this, we mimic the proof of Theorem 1.1 given in [3]. In fact, this
could be done by merely restricting ¢ to SU,(¢q) and applying Theorem 1.1.
We included the details in order to fix notations and do some computations
which will be used later.

By assumption (b), we can write ¢ = >3 (379 a;;¢;, N for some non-
negative integers a, ;. Define b; = Z?:o a; ;. To find by, note that

"> Pp(1) =) a G N1 =D biG (1)
=0

i—0 =0

n —1)" 4q n_ (_1)

P (Gt P el Gt
q+1 q+1

i=1

The above number is a power of ¢ by condition (a), while the degrees of
the characters Cf;,,q are not powers of ¢, so we must have > {_,b; > 1. Then
(1) > 22=1 > ¢" 1 which forces ¥(1) = ¢". It follows that

—q
g+l

b _1_w(_1)n +1_ib‘

0 - q+1 q o 7 B
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In particular, by — 1 is divisible by (¢" — (—1)")/(¢+1). On the other hand,

1 "(g+1 n_ (—1)
_1360_1§f<)_1: g+l _¢" -1

since (n,q) # (3,2) and n > 3. Therefore by =1 and > "7 b, = ¢+ 1.

Let G = GU(F;,) be acting on a n-dimensional Fg-vector space with a
G-invariant nondegenerate Hermitian form. Let H = GUj;(q) be a subgroup
of G acting trivially on a nondegenerate (n — 3)-dimensional subspace. By
Lemma 2.1,

q q
Vi = Z > ai (G N

/\Z‘I Z (Cg,q X gi—S,q)H

=0 7=0 0<r,s<q
(g+1)|(r+s—1)

Il
R
<

= ag [ X > Gl (DG,

=0 7=0 0<r,s<q
(g+1)|(r+s—1)

> ;:g,qm) G N

where Crj = Zg:o ai’jq"—37q(+1)n—3 + (—1)”_3%&. Let dz = Z?:O Cij- Note
that since by = 1 and » ;_, b; = ¢, we have

q

q q qn—3 _ (_1)71—3 - 4q
dOZZOCO,j Zzzam‘ g+ 1 +(=1) Zoao,j
j= =

j=0 =0
_ qn—3 o (_1)71—3 + (_l)n—?) — qn—3
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and

s}

i=1 i=1 j=0
q q q n—3 n—3
— (-1
3 (S
i=1 j=0 \r=0 q
"= (1)"Pg+ (-1)"q
:qn—Z

By evaluating ¢y at g;, € C’§k’k) (or C§k’k+q+1) if k=0 mod ¢qg— 1), we
get:

Y N = 33 e Zde”“

=0 7=0 =1 7=0

On the other hand, by evaluating vy at g, € Céo’k’fk) for0<k<(¢g+1)/2
(note that det g = 1), we get:

= Z Z Ci,jCé,q)‘j (gr)

i=0 j=0

— ZQC I OHk+(=R)) | Z Z I OHRER) (10 y ik ik
i=1 7=0

= ZQCOJ +ZZC” 1+6’k+e_1k)

zle

= 2dy + Z d; + Z dye™ + Z dye*
=1 =1 =1
=2¢" + " +(g;) + ¥ (g})-

By assumption (a), ¥ (gx), ¥(g}) € V (s0 1(g},) = 1(g,)). Moreover, from the

above observations, we know that [¢(g})] < D7 d; = ¢" 2 and [¢(gx)| <

2¢" 3 +3¢"% < ¢"' (we assumed g > 4). Therefore, > 7 d;e™* = 1(g}) =
=3 and ¥ (gx) = ¢" 2. In particular, the polynomial

—q
Doditt =3 et =2 > (¢ (21" (1= ai)t

i=0 j=0 i=0 j=0
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has a zero at each ¢* for 0 < k < ¢+1, k # (¢+1)/2. Since 33379 _(¢" >+
(—1)™)t" also vanishes at each €*, the same is true for the polynomial

a 4 q
Z Z ai,jti = Z b,tl
i=0 j=0 =0
If ¢+ 1 is odd, then this polynomial is divisible by (t7*! —1)/(t — 1) =
t9 4+ t971 4+ ... + 1. Comparing the degrees and the value at 1 (=sum of
coefficients), we get b; = 1 for i« = 0,...,q. If ¢ + 1 is even, then the
polynomial is divisible by (#9771 —1)/(t*—1) = t7 ' +¢93+..-+1. Again, by
comparing the degrees and the values at 0 and 1, we get b; = 1 fori =0,...,q.
The nonnegativity of a, ;’s now implies that for each i = 0, ..., g, there exists
Ji such that a; ;, = 1 and a, ; = 0 for all j # j;, so that

q
=Y ¢ N
1=0

(2) jo=0or (¢g+1)/2.

We will find a monic polynomial f € Fp2[z] of degree n, which is either
an irreducible polynomial such that f = f, or a product of two irreducible
monic polynomials f1, f» such that fi = fo. We also require its roots to be
distinct elements none of which is a power of p and whose product is p. Such
an f, if it exists, satisfies the condition of Theorem 2.2, so there exists a
matrix B € G whose characteristic polynomial is f. By looking at ¢(B), we
will be able to see that jo = 0 or (¢ + 1)/2. The following constructions of f
are motivated by [5, Proposition 7).

If n is odd, let 6 € Fp2n be a primitive (¢" + 1)th root of unity such that
p= 0"/ Let f(z) € Fzz] be the minimal polynomial of 6 over Fe.
Then deg f = |Fpen : Fp2| = n since ¢" + 1 does not divide ¢ — 1 for any
m < 2n, so that 0 is not contained in any proper subfield of Fy2n. Also, every
other root of f must be another primitive (¢" + 1)th root of unity. Moreover,
z + 29 is an automorphism of Fg2n which acts trivially on Fg, so 67" for
d=0,1,...,n—1 are also roots of f. They are distinct, since if 67" = §4°*
for some 0 < dy < dy < m — 1, then H@? -1 — 1 go g’ 711 = |
which is impossible since ¢" + 1 does not divide ¢™ — 1 for any m < 2n.

Hence,
n—1

f=1J-0").

d=0
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Note that 67" = 01, so =" = 9" """ = g """ From this, we can see
that
n—1 n—1 1
~ o . q2d —q n - . q2d q
o) = (H( o) )x [1C + (o)
d=0 d=0
n—1 2d
(—7*" )
— T
T g)( + . )
n—1
_ H(l’ B Q_qMH)
d=0
(n—1)/2—-1 n—1
n+2d+1 —n+2d+1
= JI @-6""") [ @-¢ )| = f(=).
d=0 d=(n—1)/2

Let A € GL,(¢*) be the companion matrix of f. By Theorem 2.2, this
matrix is similar to an element B € G. Moreover, its eigenvalues are precisely
the roots of f, which are §9 for d = 0,...,n — 1. Then none of these is a
power of p, and

det B = " VPVt _ g =1)/(@*-1) _ pla"+1)(@"=1)/(a+1)(g—1)

qn71+qn72+...+1

= =/,

W(B) = ZC}L,Q(B))\J'Z'(B) = (=" eV CR.

Therefore €° € R, so jo =0 (or (¢ + 1)/2, if ¢ is odd).

If n is even, let § € F» be a primitive (¢" — 1)th root of unity such that
9" =D/a+) = p=1 and let f(z) € F2[z] be the minimal polynomial of 6 over
F,2. By the same logic, 07" for d = 0,...,n/2 — 1 are distinct roots of f,
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and deg f = [Fgn : F2| =n/2, s0 f(z) = Zfo_l(x — 07"). Also,

n/2—1 n/2—1
fay={ TI @™y ) e IT G + (o))
d=0 d=0
n/2—1 729\ —q
:.I'n/Q H(1+(_9 ) )
d=0 v
n/2—1
_ H (x_e_q2d+l>
d=0
n/2—1 o
= [ @—6""") # f(a)
d=0

since 67" is not among 6,09 ,...,09" . Let h = ff. Then h satisfies the
condition of Theorem 2.2, so there is a matrix B € GG which is similar to the
direct sum of companion matrices of f and f in GL,(¢*). In particular, the
eigenvalues of B are 97" and 9_q2d+1, where d = 0,...,n/2—1. None of them
is a power of p, and

det B = gqn—2+qn—4+...+1_q_q3_..._qn—l _ Q(_qn+1)/(q+1) = p.
Hence,
q
U(B) = 3¢ (BIN(B) = (—1)"e €V C R,
=0
Therefore, €© € R, so jo = 0 (or (¢ + 1)/2, if ¢ is odd).

If ¢ is odd, then the assumptions (a) and (b) about 1 also holds for
YA tD/2 . Therefore, we can safely assume that j, = 0.

(3) Applying Lemma 3.2 and Theorem 3.1.

Our plan is to show that for each a,b, k € Q,

q

Z eaik—i_bﬁk S {07 17 _17 q,—4,4 + 1} (*)

1=0

15



Once we have this, we can apply Lemma 3.2 to the polynomial

q
foal) = 3
=0

where ¢, € @ is the unique element such that cqp,; = at + bj; mod ¢ + 1.
This polynomial clearly satisfies conditions (1) and (2) of Lemma 3.2, and
the condition (3) is also satisfied since

q
fa,b(€k> = Z eaik—i_bjik € {07 17 _17 q,—4,49 + 1}
=0

C{0,g+1}U{xl+ (¢+1)m|m e Z}.

Therefore, the numbers jo, ..., j, satisfy the condition of Theorem 3.1, so
there exists some integer 0 < e < ¢ such that j; = ei mod ¢ + 1 for every

1 € @, and
V=30 iGN =D G
i=0 §=0 i=0
which is the conclusion of this theorem.

To show (%), we will use some relations between the values of ¥y at

Cébk)’ Céak), C?Eak)7 Ctgak:,(a—b)k)7 C,éb—?a)k’,—Qak)7

. Here, when the parameters for some conjugacy
classes are out of the ranges given in Table 1, then add some (possibly neg-
ative) integer multiples of ¢ + 1 to those parameters so that each of the new
parameters is in the range given in Table 1 for the corresponding conjugacy
class. This modification will not affect what follows.

Recall that in part (1), we saw that

certain conjugacy classes of H:
C,iak:,(b—Za)k)7 and Céak,(b—&z)k)

and
a q
_ i\
Yy = E g Cz’,ng,q)\H
i=0 j=0
where

q n—3 n—3
q — (‘1) -3
cl-lzgar- +(—1)""a;;.
J v J g1 ( ) J

Let b,k € @, and let gy € Cébk). We will deal with the cases where
Yu(g0) = 0 and ¥u(go) # 0 separately.

16



(4) Proof of (x) for the cases where ¥y (go) = 0.

Suppose that 1 (go) = 0 for go € C™. For a € Q, let hy € CL™ @08,
Then according to Table 2 and the equalities we just recalled,

q q

0= v¢u(g0) IZZCUCM o)A go)

=0 5=0

q
bjk

—CO’jE
7=0

4q 4q n=3 _ (_1)n—3 )
_ (Z amq (-1 + (_l)n—?)alo,j)ebjk

7=0 r=0 q+ 1
n—3 n—3 4
- " — (-1 bjik
_ _1 n—3 7i )
-1 Sy

When n = 3, then qnfg_q(f_ll)ﬂ = 0, so this cannot happen. So n > 3 and

n—3 Q+1 bjik
e Y

This is an algebraic integer which is also a rational number, so it is an integer.
If n > 5, then |¢"3 — (—=1)"3| > ¢* — 1 > g + 1, so the number cannot be
an integer. Therefore,

=4 d i bjik__(_1)473 q+1 -1
n = 4 an : € = q4_3 — (_1)4_3 = 1.

17



Also,

q

hl _ Z Z Cij€ azk+b]k

i=1 7=0
9 g q 4-3 4-3

_ Z Z (Z amq q _f_ 11) n (_1)4—3%],) caik-+bik
i=1 j=0 \r=0
q q q q q

— Z Z . Ealk+bjk Z Z a; Eaikerjk
=1 5=0 r=0 =1 7=0
q q q

_ Z eaik-l-bjrk . Z 6aik+bjik
=1 r=0 =1

q q q

_ (Z 6az’k)< 6bjrk) - Z Eaikerjik.

=1 r=0 =1

By plugging in > 7 €%i* =1, we get
q q
aik+bjik _ aik-+bjik
S 14 3
i=1

=0

q
=1 + Z Eaik — 1/][{(}11)
i=1

= Z ™ — 1y ()
i=0

= (0 or ¢+ 1) £ (0 or power of q) € Z.

On the other hand, since | Y 7 | e?k+biik| < N1 jeaiktbiik| — ¢
q . . q . .
Z 6azk+bjik =1+ Z 6azk+bjik c [_q +1,q+ 1]
i—0 i1

Therefore, the possible values of Y7 e** ik are {0,1,—1, ¢, ¢+ 1}, so this

case satisfies (x).

(5) Proof of (x) for the cases where ¥y (go) # 0.

18



Now consider the pairs (b, k) such that ¥y (go) # 0 for go € C’ébk). I claim
that for every a € @,

ZZC” aktbik e {0, ——¢H(90) ¥r(90), —q¥m(go) }- (%)

First, consider the case where 3ak = bk mod ¢ + 1. Let g, € Céak) and
g2 € C’g(,ak). Then by Table 2,

q

Yu(go) = Z —co e € V\ {0},
=0
q q q q
92) _ Z Z Ci’jeaik-i-?)ajk _ Z Z Cijjeaik-&-bjk c V,
=1 5=0 =1 7=0
Z —qco ]63a]k + Z Z q . 1 ng azk+3ajk
=1 7=0

:qu(go) — (¢ —Dvu(ge) € V.

Note that ¥y (go) is exactly the number appearing in ().

If Y (g1) = 0, then ¢y (g0) = (¢ — 1)¥u(g2). Since ¥y (go) is a nonzero
element of V, qig(go) is not divisible by ¢ — 1, so this is impossible. If
¥y (g2) = 0, this already satisfies (xx). So assume that they are all nonzero.
We may write ¥y (ge) = (—1)%q" for some sg, s1,52 € {0,1} and tg,t1,t5 €
ZZO'

If tg > to, then

(=1)¢" = vu(91) = @ulgo) — (¢ — )¥u(g2)
= (-1 = (g (1)) g
Hence, (—1)%0glot1=t2 — (—1)%2g4(—1)%2 = (—1)%1¢" 2. Since tq+1—1ty > 1,

the left hand side is not divisible by ¢, so the right hand side must be +1.
Then the first two terms of the left hand side must cancel each other, so

to = t2 and sg = S, hence ¥y (g2) = Y (go)-
If ty < to, then

(=1)"¢" = Yu(g) = q@u(go) — (¢ — 1)vu(g2)
= ((_1)80 _( 1) qtz to +< 1)52qt2—t0—1) C]t0+1.
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Hence, (—1)% — (=1)%2¢27t 4 (—1)52¢2~to=1 = (—1)s1¢"1=%~1 The left hand
side cannot be &1 since ¢27% > ¢27%~! 1 1. Hence, this number must be
divisible by ¢, so (—1)% and (—1)*2¢*27%~! must cancel each other. Therefore,
so = —sy and ty —tp — 1 = 0, so ¥g(ge) = (—1)2¢? = —(=1)%glo! =
—q¥1(9o)-

The above results together shows that if 3ak = bk mod ¢ + 1, then

Z Z Ci j € TUR = h(g2) € {0, 9w (g0), —q¥rr(go) }-

i=1 j=0

Therefore, such a satisfies (k).

Now consider a € () with 3ak # bk mod ¢ + 1. In this case, let hy €
Oéak,(a—b)k:) (OI‘ Céak,(a—b)k:—&—q—i—l)), h2 c Oé(b—?a)k,—2ak) (OI‘ C,é(b—2a)k,—Qak-‘rq—&-l))7 h3 c

Ciak’(b_%)k), and hy € C’éak’(b_%)k), where the alternative parameters are used

when the original parameters are not in the ranges given in Table 1. Then
by Table 2 and the previous observations,

q

Yi(go) =Y —co e’ € V\ {0},
§=0
q q
wH<h1) _ Z Ci7j€aik+bjk c V,
i=1 j=0
q q
¢H<h2> _ Z Ci7j€(b_2a)ik+bjk c V,
i=1 j=0
q q q q q
Q/}H<h3> _ _(q . 1) (Z Co,ijjk + Z Z Ci,anikerjk) + Z Z Ci’je(b72a)ik+bjk
=0 i=1 j=0 i=1 j=0
= —(¢ — D)(=¥nu(g0) + ¥r(h)) + Yu(hs) €V,
q q q q q
b (ha) = Z Co’jebjk . Z Z Ci’jeaz’k—l-bjk X Z Z Ci’je(b—Za)z’k—l-bjk
7=0 =1 7=0 =1 7=0

= —Yu(g0) + Yu(h1) +Yu(he) € V.

Note that 1 (hq) is the number appearing in (x*). Also, since € is a primitive
(¢ + 1)th root of unity, the choices of parameters in the definitions of h; and
hy does not change the above values.

If ¥y (hy) = 0, then this a satisfies (xx). If ¢y (hy) = 0, then ¥y (hs) =
—(q¢ — 1) (=g (g0) + ¥ (h1)) = —(q¢ — 1)y (hy). Since the only element of
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V which is divisible by ¢ — 1 is 0, it follows that ¥ g (hs) = ¥y (hy) = 0, so
Y (h1) = Y¥u(go). This also satisfies (xx).

If ¢y (hy) = 0, then Y5 (g0) = Yu(hi) + ¥y (h). A sum or difference of
two powers of ¢ is never a power of ¢ (since ¢ > 4). However, ¥y(go) # 0,
so it is a power of ¢q. Therefore, either ¥y (hy) = 0 or ¥y (he) = 0, and we
already checked these cases. Similarly, if ©)g(hs) = 0, then (¢—1)(—¢n(g0) +
Y (h1)) = Yu(ha), so Yy (hy) = 0.

The remaining cases are where these character values are all nonzero. As
before, we can write ¥y(go) = (—1)*¢" and g (hy) = (—1)%q" for some
S0,--.,84 € {0,1} and tg,...,t4 € Zzo.

Suppose that there is exactly one largest number among ¢y, ¢; and t5, so
that the other two are strictly less than the largest one. Then since ¢ > 4,

¢"* = [Yu(ha)l = | = ¥u(g0) + Y (hr) + P (hs)]
== (1) + (1) (1)
c (qmax(to,tl,tg) 173qmax(to,t1,t2))

C (qmax(to,tl,tg)—l’ qmax(to,tl,tz)-‘rl)

so it must be exactly g™®*(o-1#2) "and the two terms in v (hs) = —r(go) +
¥ (h1) + ¥ (he) with smaller absolute value must cancel each other.

If to = max(tg, t1,t2), then (—1)%¢" + (—1)%2¢" = gy (hy) + Yy (h) =0,
so tg > t1 =19 and s; 7& So. Since

¢° = [u(hs)| = = (¢ = 1)(— ¢H(Qo)+¢H(h1))+¢H(h2)|
(g — 1)(=1)*¢" = (¢ = D(=1)¢" + (=1)"¢"|
[(=1)*g"*t — (=1)*0g" — (—=1)"¢" "]

(0 — gl — gt gt gfo 4 gt )

m

C (¢, q to”)

this number is exactly ¢! so it follows that (—1)%g’ + (—=1)%1¢"*™! = 0.

Therefore ¥y (h1) = (=1)"1¢" = = (g0)/q.
Iftl = max(tg,tl,tQ), then —(—1>50qt0+(—1)82qt2 = —¢H(go)+1/1H(h2> =0
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and t; > tg = ta, SO

|

(= 1)(=1)*q" = (¢ = )(=1)"¢" + (=1)"¢"|
’ _1)soqt0+1 _ (_1)S1qt1+1 4 (_1)51qt1|

(qt1+1 _ qtl _ qt0+1,qt1+1 + qtl + qt0+1)

Therefore, this number must be ¢+, so (—1)%gt! + (—1)%1¢" = 0, hence
Vi (h) = (=1)1¢" = —=(=1)*¢"*" = —qu(go)-

If t5 = max(tg, t1, t2), then —(—=1)%g" + (=1)*1¢"* = —y(g0) + Vu(h1) =
0, so ¢H(h1) = wH(go)-

Suppose that there are exactly two largest numbers among t¢, t1, 3. Then

¢ = [n(hy)] = | = (=1)*¢" + (=1)"¢" + (=1)"¢"|.

If tg = t; > ty and sy # s;, then the above number becomes 2¢' =+ ¢*2,
which cannot be a power of q. Therefore so = s; and ¥y (hy) = (—1)%¢" =

(=1)*g" = Yu(go)-
Similarly, if tg = t3 > t1, then so = so and g (he) = ¥ (go). In this case,

|

(g = D(=1)"q¢" = (¢ — 1)(=1)"¢" + (=1)*¢"|
’(_1)soqto+1 - (_1>slqt1+1 4 (_1)slqt1|

c (qto-i-l _ qt1+1 _ qtquto-‘rl + qt1+1 + qt1)

C (qtqut0+2)'

Therefore this number is ¢! so —(—1)*1¢"* ™! + (—1)*1¢"* = 0. There is no
such t;, so this case cannot happen.

If t; =ty > tp, then by the same reason, s; # s and ¥y (h1) = =g (hs).
In this case,

|

(@ = D(=1)"¢" — (¢ — 1)(=1)"¢" + (~1)*¢"|
| _1)80qt0+1 o (_1>Soqt0 o (_1)81qt1+1|

(qt1+1 o qt0+1 _ qtoth1+1 + qt0+1 + qto)
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Therefore, this number is ¢"' ™! so (—1)%g'™! — (—=1)%g' = (0. There is no
such %y, so this case also cannot happen.

Finally, suppose that to = t; = to. If ¥5(g90) # ¥u(h1), then ¥y (go) =
—r(h1) = £Yu(hs), so

(=1)*¢" = Yu(hs) = —(q — D(=vu(go) + ¢Yu(m)) + P (he)
=2(q — D)vu(90) £ ¥u(g0)
= (2(¢— 1) £1)(=1)*g"

which is impossible. Therefore 5 (go) = ¥ (h1) in this case.
In all of the above cases, we always got

Z Z Ci €I =y (hy) € {0, _$¢H(go)a Y (90), —qu(90)}-

i=1 j=0

Therefore, such a also satisfies (x%), so (%) is true for every a € Q.
Since ¥y (go) = Z] 0 —Co€7%, by (%),

Z Z ¢ CZ] mk+bjk Z ¢ 0] bjk + Z Z w CZ] aszrbjk

im0 j—o VH (90) (90) #(90)
o’ = N Ocmeazk-&-b]k
Vi (9o)
e -1~ 0, (g + 1)
q
On the other hand,
ZZ¢;Z;O caik-+bjk
i=0 j=0
I DL caik-+bjk
3 O—Co cbsk
Lo o (g ng TG o (1) Py etk
om0 — (2= oaus% + (=1)" 3ag,s )
q"‘3;5:1 ( OZT Oeazk—i—b]r )+ (_1)n—3 (i;:o caik+bjik
o LT () + (1 |
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Note that the denominator does not depend on the choice of a. When ak =0
mod ¢ + 1, this becomes

E T (g i ) + (1) 8 Sl et
qnfsjlg—_lnnf?»( g_ Ebjuk)_‘_(_l)nf?)
T (5 ST ) (1) L e
) TR (S ) o (1)
¢ —(—1)"3 q bjrk n—3 \4¢ bjik
@+ ) X € ) 4+ (- 1) i=0 €'
- n—3_(—1)n—3 n—
. qsrl = ( umo €7F) + (=1)73

—(=D)" g+ 1)+ (=) 3T e

:_<q+1)_ n—3_(_1)n—3 .
E T (Sl ) + (1)

Ifve{-1, —%, 0,—(q+ 1)} is the value of the above number, then

(v+q+1) (qn—3 — (_1)n—3 (Z ebjuk) + (_1)71—3)

q+1 —~
=(-1)"?(g+1)— (=)~ 32 bjik.

Solve this for Y7 ; €%k, Then we get

Z e _ (CD" g+ D) = ()" Plo+g+1) —(g+ 1)
v+q+1»l%#%if+<—nmﬂ (v+a+1)(=g) 3~

When v = —1, this becomes

k q+1
ij TS,

This number is a rational number which is also an algebraic integer, so it
must be an integer. This is possible only when n = 3, and in this case
‘1 bjik — 1.
o€
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Ifv= —‘%1, then

g+ (=gt (@ - D=0t gt
q+1
(g—=D(=g)3+1
This is also an integer by the same reason as the previous case, but there is

no such n. Therefore, this case is impossible.
If v=—(¢g+1), then

S SOEUEE) ey
=0 (

igwik _ —0((qu Dile+1) _

—q)" P +q+1

Finally, if v = 0, then
q
Z ik — 0.
i=0

This shows that for those a € @) such that ak =0 mod ¢+ 1, we have

q

q
Zeaik+bjik _ Z e {0,1,q+ 1}
=0

=0

In particular, these (a,b, k) satisfy (x). Also, with these values, we can

compute the values of the denominator of 31 (>>%_, w;;(;o)eaik*bj k.

q+1 (=1)"3 when v =—1 or 0.

g —(=1)"? (i iRy 4 (—1)n3 = {Q”_S when v = (—¢ + 1),

u=0

For those a € Q with ak # 0 mod ¢ + 1, we know that > 7_ e** =0, so
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by the previous observations,

q q
Cij  aik+bjk
Z Z Yy (90) ‘ ’

i=0 j=0

q"*3—(—1)"*3< q qu 0€aik+bjrk)_’_(_1)n—3 q - aik+bjk
1= r=

_ g+1 =0
TR (g ) 4 (1)
C I (D € ) (g €7H)) + (1) Yo ekt
) OIS (S0 ebivk) £ (1)

(_1)11—3 {I_ atk+bj;k

= — i=0 € € {—1 —
n—3_(—_1)n—3 . _ )
TG (T g k) + (1

g+1

0.-a+ 1)}

Since we know the possible values of the denominator, we can solve this for
4 eoiktbiik and get:

1=0

q

at )i Q+1 n— n— Q+1 n—
Soemitnt e L1080 g1, (g (oL g+
=0

On the other hand, as we saw before, Y 7 e tWiik =1 4 39 cotktbiik ig ]

plus an algebraic integer whose absolute value does not exceed ¢. Therefore,
it cannot be %. If it is (—¢)" ™3, then n < 4 and the values are —q or 1. If
it is (—q)”_?’ﬂql, then n < 4; n # 3 since it is % when n = 3, and when
n =4, it is —(¢ + 1), which is not a sum of 1 plus some number of absolute
value at most g. Therefore, it is never of the form (—q)”_?’%. Finally, if it
is (—q)" (¢ + 1), then n = 3 and the value becomes ¢ + 1. Therefore,

q

> e {0,1,¢+1,~q}
1=0

so these (a,b, k) satisfy (x). Therefore, (*) is true for all possible triples
(a,b, k).

(6) The case ¢ =2, 3.

Here, we again mimic the proof of Theorem 1.1 given in [3]. Note that
first few arguments of part (1) did not assume that ¢ > 4. In particular,
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Y1) = q" Yi_gao; =bo =1 and 377 (>77 gai; = DL b = g+ 1 still
holds in these cases (we still need (n,q) # (3,2)).
First, suppose that ¢ = 2 and n > 4. By condition (a), 9 is real-valued.

Note that ¢}, = (2, and A = A%. Therefore,

2 2 2 2
EE N — ___E:E:”i i
az,jcng)‘ - ¢ - ¢ - az,]Cn,2>‘]
=0 j=0 i=0 j=0
2 2 2
- 0 \2j 3—i\2j
= E 0,jGn 2 A + E E a5 N
j=0 i=1 j=0

By comparing the coefficients and using the linear independence of irreducible
characters, we obtain ag; = ag2, a10 = 20, @11 = a2, and az; = ajz.
The observation in part (1) that S Z?:o aij = S0 gbi=2+1=3
and Z?:o ap; = by = 1, together with the fact that a;; are nonnegative
integers, forces app = 1, ap1 = ap2 = 0, and that one of the three pairs
(a10,a20), (@11, a22), (ag1,a12) is (1,1) and the other two pairs are (0,0).
Therefore, this theorem is valid for ¢ = 2 when n > 4.

Suppose that ¢ = 3. Again, 1) is real-valued, C}L?) = (3., and A = \*. Also,

n,37
2. and A\? are real-valued. As in the previous case, we get

3 3 3 3
PN T Y
> ai iGN =v=1=> "> a;;¢i 5N
i=0 j=0 i=0 j=0
3 3
i \3j 4—i\ 3]
i=0,2 j=0 i=1,3 j=0
Hence o1 = Qog3, Q21 = Q23, Q11 = a33, @13 = as3;1, Q10 = a3, and
1,2 = a3,2.

Since by = 1, exactly one of ago and ag 2 is 1 and the other one is 0. Also,
exactly one of aso and as9 is 1 or 3 and the other one is 0, since the sum of
all a; ; is 4, while all a; ;s other than ag g, a2, a2, a2 appear in the above
pairs so that their sum must be even. Note that each of these pairs, except
(ap1,a03) and (ag;1,as3), consists of a;; and ay ; with i # i'. Moreover,
ap; = ap3 = 0 since by = 1. Hence, for each 7, there is unique j; such that
a;j = 0;;,, unless ag1 = az3 = 1 or one of asp,ass is 3. Recall that in part
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(1) we saw that

where

=0 7=0
3 3 3 3n73 — (=1 n—3 )
=3 o)
i=0 j=0 r=0
3 3 3 '
= (3" = (=" Gsl9) + (D)"Y aiiCislg).
i=0 =0 j=0

When ¢ € C’f’o), it has det g = 1, and the irreducible Weil characters has
values

Ci(i),?:(g) = -2, C31,3(9) =3, C§,3(9) =—1, C§,3(9) =3.

Therefore,
3 3
du(g) = (3" = (=1)")(3) + (1)~ (—2 +3) (a1 +ag;) =) a2,j>
=0 =0
3 ’ 3 J
= 3"72 —+ (—1)”73 (—5 + 3 Z(G’Lj + ag,j) — Z CLQJ)
j=0 J=0

Z?:o(ala‘ + as ;) is either 0 or 2, and in these cases, Z?:o as; = 3 and 1,
respectively. If Z?:o(al,j +az;) =0, then ¢ (g) = 3" 2+(-1)"3(-5-3) =
3772 — 8(—1)""3. This is not an element of V, so Z?:()(al,j +as;) =2 In
particular, as; = as3 = 0 and for each i, there exists unique j; such that
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a;; = 0, for all j. It follows that for general g € H,

— 22 (;amgn_ - (_1)n_ —}—(—1)”_3ai7j) ng( ))\] ( )
- * —i—l)”_ (Z C§,3(9)> (Z AZ(Q)) + (—1)”*32@73@))\%(9)

Let hy € 01(1) and hg € CE(;B'). Then

=3P (=) : . .
Yu(hi) = +4< ) (%0 4 €1 4 €972 4 €93)

(1) RO 4 T(MH - O (A3,

—3" 3 4 (=) : A A ,
¢H(h8) _ +4( ) (63]0 + 63]1 + 63]2 + 63]3) + (_1)71_3(_63]0).

With these formulas, we can compute the values for given jg, ji, j2, 3. We
saw at the end of part (2) that we only need to check the cases where j, = 0.
Suppose that (jo, j1, j2, j3) = (0,1,0,3). Then by the above formulas,

_3n—3 + 27(—1 n—3 _3n—3 — (=1 n—3
TV e = 20T

Hence, ¥ (hs) = ¥g(hy) — 14(—1)"73. No elements of V satisfy these rela-

tiOIlS7 S0 (jOaj17j27j3) 7£ (07 17073)
Simﬂaﬂ}’a if (jOajlanaj?)) = (Oa 37 07 1)7 then

Yu(h) =

_3n73 _ 29(_1>n73

_3n73 _ (_l)nfi’)
2 ’ '

2
Hence, ¥y (hs) = ¥y (hi) + 14(—=1)"73. Again, there is no such elements in
V), so this case is also impossible.
If (j07j17j27j3) = (0707270)7 then
_3n73 + 27(_1)7173
2 7

Yu(hi) = Yu(hs) =

_3n73 - (_1)n73

Y (hi) = 5

Yu(hs) =

This is the same as in the case (jog, j1, jo,j3) = (0,1,0,3), so it is impossible.
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If (jO:jlaj27j3) = (072727 2)’ then

373 4 25(—1)" 2

3n73 - 3(_1)n73
2 ’ )

2

Y (h1) = VYu(hs) =
Hence, Vg (hs) = ¥ (hy) —14(—1)""3. Again, this is impossible. All remain-
ing choices of (jo, j1, J2, J3), where jo = 0, are (0,0, 0,0), (0,2,0,2), (0,1,2,3),
and (0,3,2,1). Each of these are of the form j; = ei mod 4 for some e € Z.
Therefore, the theorem holds for ¢ = 3. O
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