
Mining Literature-Based Knowledge Graph for
Predicting Combination Therapeutics:

A COVID-19 Use Case

Ahmed Abdeen Hamed
Clinical Data Science

Sano Centre for Computational Medicine
Kraków, Poland

a.hamed@sanoscience.org

* Corresponding author

Jakub Jonczyk
Department of Medicinal Chemistry

Jagiellonian University Medical College
Kraków, Poland

jakub.jonczyk@uj.edu.pl

Mohammad Zaiyan Alam
Information Sciences Institute

University of Southern California
Marina del Rey, California, USA

mzalam@isi.edu

Ewa Deelman
Information Sciences Institute

University of Southern California
Marina del Rey, California, USA

deelman@isi.edu

Byung Suk Lee
Department of Computer Science

University of Vermont
Burlington, Vermont, USA

byung.lee@uvm.edu

Abstract—This paper presents a computational approach de-
signed to construct and query a literature-based knowledge graph
for predicting novel drug therapeutics. The main objective is to
offer a platform that discovers drug combinations from FDA-
approved drugs and accelerates their investigations by domain
scientists. Specifically, the paper introduced the following algo-
rithms: (1) an algorithm for constructing the knowledge graph
from drug, gene, and disease mentions in the biomedical litera-
ture; (2) an algorithm for vetting the knowledge graph from drug
combinations that may pose a risk of drug interaction; (3) and
two querying algorithms for searching the knowledge graph by a
single drug or a combination of drugs. The resulting knowledge
graph had 844 drugs, 306 gene/protein features, and 19 disease
mentions. The original number of drug combinations generated
was 2,001. We queried the knowledge graph to eliminate noise
generated from chemicals that are not drugs. This step resulted
in 614 drug combinations. When vetting the knowledge graph
to eliminate the potentially risky drug combinations, it resulted
in predicting 200 combinations. Our domain expert manually
eliminated extra 54 combinations which left only 146 combination
candidates. Our three-layered knowledge graph, empowered by
our algorithms, offered a tool that predicted drug combination
therapeutics for scientists who can further investigate from the
viewpoint of drug targets and side effects.

Index Terms—Domain knowledge graph, drug repurposing,
combination therapeutics, PubMed, ChEBI, disease ontology,
gene ontology, drug interaction, MeSH terms, COVID-19

I. INTRODUCTION

Since the time Coronavirus has become a global pandemic,

the area of drug repurposing has attracted many players in
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and carried out within the International Research Agendas programme of the
Foundation for Polish Science, co-financed by the European Union under the
European Regional Development Fund.

the scientific community. A simple search in the PubMed

online portal for [“Covid-19” and “drug repurposing”] results

in 2,220 publications to date. Drug repurposing is known

to accelerate the development process of the treatment by

identifying existing FDA-approved drug(s) that may be used

for the new disease [1], [2], [3]. Most certainly, this research

could not be helped without the use of various computational

methods that came to the rescue [4], [5], [6], [7], [8]. Indeed,

some of the authors here have taken part in such research.

The objective of this paper is to address the limitations of the

previous research and to advance our previous findings. The

current scope mandates working with different ontology (gene,

disease, and chemical entities). It is a known fact that those

ontologies are fragmented in nature. Such a challenge imposes

the need to consolidate those different worlds. Hence the

desperate need to construct a knowledge graph that connects

all the pieces together, and answers the questions of the new

direction of our investigations.

In our previous COVID-19 drug repurposing work [9], [10],

we investigated the hypothesis of whether a combination of

FDA-approved drugs may be considered a candidate treatment.

In order for the hypothesis to be valid, two conditions must be

satisfied: (1) evidence of such a combination must exist in the

biomedical literature, (2) an exact match of the same combi-

nation must also exist in the clinical trials space. We pursued

this hypothesis by extracting drug mentions in the PubMed

abstracts and constructed a network of drug co-occurrences,

where drugs mentioned in the same abstract are connected.

We also used the same mechanism to construct a network of

drugs that are mentioned in the description and indication of

clinical trial records. A clique mining algorithm was applied to

each of the networks to identify strongly-connected drugs as
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a potential drug combination. We also presented an algorithm,

namely “search-n-match”, which compares cliques of the same

size and their individual members to confirm the validity of

such combinations. The research proved the hypothesis to be

true and identified various drug combinations. For instance,

the research reported that Nirmatrelvir and lopinavir were the

most studied combination, and both are now commercialized

under the name Paxlovid.

The previous work, however, was limited to testing the

hypothesis stated above and validating the results. Though this

work identified common combinations from the biomedical

literature and the clinical trial space, it was limited in scope.

Further research is needed from the following point of view:

(1) the need to investigate whether the members of each

combination pose a risk of drug-drug interaction when used

together, (2) whether there are contraindications for the use of

members of each combination due to the preexisting condition

and the use of other drugs (e.g., hypertension, renal or liver

dysfunction, simultaneous therapy with antipsychotics or cor-

ticosteroids), (3) whether the members of each combination

act by the same biological target or by multiple targets. The

scope presented here focuses on the first two items, while the

third is up for future research.

In this paper, we use an ontology-based information ex-

traction method against the PubMed abstracts. This process

provides the necessary knowledge for drugs, diseases, and

genes/proteins (as drug targets). The rest of this paper explains

how such features form a knowledge graph that can be further

explored and queried. Here, we use the COVID-19 domain

as a use case; however, our knowledge graph framework may

be instantiated in other diseases (e.g., Alzheimer’s, asthma, or

cancer therapy).

II. RELATED WORK

Drug repurposing is a domain currently established to

benefit from the knowledge graph approach, as exemplified

by publications starting to come out in the past few years.

Zhu et al. [11] gave a comprehensive overview of knowledge

graph construction methods and their use for drug repurposing

studies.

A few published articles addressed the construction of a

knowledge graph specifically for drug repurposing targeting

COVID-19. Zhang et al. [12] used a neural network-based

approach to identify drug candidates from PubMed and other

research literature focused on COVID-19. In their conclusion,

they recommended using a classifier developed on PubMed-

BERT (a variant of BERT which is a transformer-based ma-

chine learning technique) to construct a COVID-19 knowledge

graph and then applying TransE (a neural knowledge graph

completion algorithm) to predict drug repurposing candidates.

Yan et al. [13] constructed a knowledge graph by integrating

14 public bioinformatic databases containing information on

drugs, genes, proteins, viruses, diseases, and symptoms and

developing their linkages; and then generated and ranked drug

candidates for repurposing as treatments for COVID-19 by

integrating motif scores, PageRank scores, and embedding

scores for each drug. Al-Saleem et al. [14] constructed the

“CAS Biomedical Knowledge Graph” using data from the

“CAS Content Collection” and other public repositories; and

then used their own result ranking method to predict potential

drug repurposing candidates for COVID-19.

Other published articles addressed drug repurposing in gen-

eral (beyond COVID-19) using a knowledge graph. SemaTyP

by Sang et al. [15] is the first knowledge graph built based

on PubMed abstract mining for drug discovery. They used a

relation extraction tool to extract semantic predications from

PubMed abstract texts. Gao et al. [16] constructed a knowledge

graph based on associations and presented a computational

approach to drug repurposing through lower-dimensional rep-

resentation of entities and relations in the knowledge graph;

they demonstrated the method for the case of Alzheimer’s

disease. Schartz et al. [17] proposed a new fact-checking

mechanism to explaining drug discovery hypotheses using

knowledge graph patterns; while interesting, this was not a

computational work.

Ratajczak et al. [18] proposed a method to speed up

searching a knowledge graph to predict drug repurposing by

removing unnecessary facts tailored to the prediction task;

knowledge graph construction was not part of the work.

While all these published articles carry significant contri-

butions to the area of knowledge of graph-based drug repur-

posing, none of them considers drug combinations, differently

from our clique-based knowledge graph. Du and Li [19] seem

to be the only authors that considered drug combinations.

They constructed a knowledge graph of combined therapies

from PubMed abstracts manually selected for describing com-

bined therapies. Discovery of drug combination repurposing,

however, was not automated; it was done through manual

investigations of overlapping semantic predications.

III. LITERATURE-MINING FOR DRUG REPURPOSING

A. Knowledge sources

The literature-mining for drug repurposing, centered on the

medical publication records in PubMed, requires knowledge

from multiple sources covering subdomains such as chemistry,

human disease, and biology. For each of the subdomains, there

are specialized ontologies (with domain-specific taxonomies),

created and maintained independently by individual commu-

nities of interest. Since the scope of this paper is concerned

with drug combinations for a specific disease, various drug

targets, and potential drug interactions and side effects upon

being combined, here we are using the following knowledge

sources.

• PubMed [20]: an indexed database of 34 million citations

for biomedical literature from specialized journals and

online books. The articles are structured with elements

in the MEDLINE format [21]. The journal abstracts are

rich in knowledge that is inherently embedded in the text.

• The Chemical Entities of Biological Interest

(ChEBI) [22]: a dictionary specialized in knowledge

pertaining to “small” molecule chemical compounds,
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which are the basis for many of the drugs designed by

the Pharma industry.

• The Human Disease Ontology (DOID) [23]: a resource

developed as a standardized ontology specialized in pro-

viding the research community with reliable knowledge

of human disease terms.

• The Gene Ontology (GO) [24]: The world’s largest gene

functions knowledge-base and is the foundation for com-

putational biology and genetics experiments in biomedi-

cal research.

• Medical Subject Heading (MeSH) [25]: a hierarchically

organized dictionary used for indexing, cataloging, and

searching biomedical and health-related information.

B. The Emerging Need for Knowledge Graphs

The notion of drug combinations as treatment starts with

a homogeneous network of drugs. Mining the networks for

cliques as a notion for “strongly connected” components offers

insights into how the individual drugs that make up the clique

may be used in combination for the treatment of a disease.

However, this network is missing significant knowledge about

whether some drugs interact with others. It is also missing

knowledge about the disease linked, side effects, and drug

targets. The embedding of such knowledge, however, may

prove problematic as the notion of cliques constructed from

drugs alone will dissolve. Having to maintain the network of

drugs as an individual knowledge source is essential. This

situation calls for another layer that integrates knowledge

about the drugs with their connected features(side effects, drug

targets, genes, and diseases).

The new layer naturally offers links to the network of

cliques (via the drugs common to both layers), yet it also

offers the connectivity missing in the first layer. The new

features offer a wealth of knowledge from the perspective

of the disease, and drug target (and hence the side-effect).

The risk of drug interaction, however, remains missing and

must be computed from another source. We have utilized the

Medical Subject Headings as they provide direct pointers to

the drug interaction links in the text of the PubMed Abstracts.

This presents another fragmented layer of the drugs interacting

with each other. Domain experts from the National Library

of Medicine took on the task of manually annotating each

PubMed Abstract with a “drug interactions” label whenever it

applies. However, in order to harvest such knowledge, it must

be extracted and stitched together as another layer of the drug

interaction as part of the knowledge graph.

C. Knowledge Graph Construction

The preliminary work of this research presented a network

of drug associations using the ChEBI ontology. The associ-

ations were originally co-occurrences of two or more drugs

that appeared in the same abstract. The association analysis

extracted the most frequent set of drugs. The associations

among drugs lent themselves as a network where the nodes

are the drugs and links are the associations extracted using the

Apriori [26] algorithm. Here we use the same computational

method of constructing the network of drugs for further

clique mining. Figure 1 gives an overview of the steps in the

computational workflow of constructing the knowledge graph.

Algorithm 1 outlines the steps for constructing the layers of

the knowledge graph (the layer of drugs, and the heteroge-

neous layer of all the other features including drugs).

Algorithm 1 Knowledge graph feature layer construction.

1: Load the ChEBI ontology drug terms into memory.

2: Load the GO ontology and the DOID ontology into

memory.

3: for each PubMed article’s abstract text A do
4: Create two empty graphs, D (for ”drugs”) and H (for

”heterogeneous”).
5: Initialize an empty list l1 of co-occurring terms.

6: for each drug term d in the ChEBI ontology do
7: if d is found in the abstract then
8: Add d to l1.

9: end if
10: end for
11: for each combination pair in the list l1 do
12: add to D an edge whose end nodes are the pair.

13: end for
14: Initialize an empty list l2 of co-occurring terms.

15: for each of ontologies ChEBI, DOID, and GO do
16: for each term t in the current ontology do
17: if t is found in the abstract A then
18: Add t to l2.

19: end if
20: end for
21: end for
22: for each combination pair in the list l2 do
23: add to H an edge whose end nodes are the pair.

24: end for
25: Output two individual layers of D (for drugs) and H

(for all the features including drugs).
26: end for

Here, we provide the details of constructing the drug-

interaction layer and how it is inferred. As stated earlier,

our approach for computing the drug interactions is de-

signed around the processing of the Medical Subject Headings

(MeSH). This step mandates the scanning of the PubMed

records to establish whether the MeSH field exists. Algo-

rithm 2 outlines the steps for constructing this layer from the

“Drug Interactions” MeSH terms.

D. Vetting and Searching the Knowledge Graph

Now, we have established the need for a fragmented three-

layered knowledge graph and demonstrated the computational

steps for constructing them, here we present the general

framework for vetting the knowledge graph and making it

ready for querying. Starting with the layer of drugs, we

compute the cliques with a maximum size of five (as was

concluded in our previous study). For the computed cliques to
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Fig. 1. An overview of the computational workflow steps. Starting with a set of publications in the MEDLINE format, (1) the PubMed abstract texts are
extracted along with the PMID, and (2) the various ontologies (CHEBI, GO, DOID) are loaded; then, (3) features are extracted using the ontology terms,
constructing network layers comprising the drug combination layer, the drug interaction layer, and the associated heterogeneous ontology layer; then, (4)
drug-drug interactions are vetted, and (5) there emerges the final knowledge graph ready for answering queries.

Algorithm 2 Drug interaction network layer construction.

1: Load the ChEBI ontology drug terms into memory.

2: for each PubMed publication record in the data set do
3: if a MeSH field exists and contains the “Drug Inter-

action” label
then

4: Extract the abstract text.

5: Extract the drug terms mentioned in the abstract

as interacting and add them to the drug interaction

layer as nodes.
6: Add an edge between the newly added drug nodes.

7: end if
8: end for
9: Output is a network of interacting drugs.

be considered, they must pass the vetting process. Specifically,

all cliques must be checked for any drug interactions among

any two components of a clique. That entails that each pair of

drugs of a clique must be checked against the layer of drug

interactions in the knowledge graph. If any pair in the drug

combination has an exact match in the drug interactions layer,

the entire clique is removed. Once all the cliques are vetted,

the knowledge graph is ready for querying.

To issue queries against the knowledge graph, we need two

different inputs: (1) a vetted list of cliques from the first layer

and (2) the heterogeneous layer of all the features including

the drugs. A query of one or more drugs may be issued. In

the event of searching for a single drug, this can be done as

outlined in Algorithm 3. In the event of multiple drugs as input

from a query, it is done as outlined in Algorithm 4. Later in

this paper, we will present concrete examples of two drugs as

Algorithm 3 Knowledge graph search for single-drug repur-

posing.

Require: a single drug d
1: Initialize an empty result-set R.

2: for each clique in the list of cliques do
3: for each member m in the clique do
4: if the input d matches the member m then

5:
Find the matching member m in the het-

erogeneous layer.

6: for each edge connected to m do

7:
Traverse the edge and identify the target

node on the other end of the edge.
8: Insert the target node into R as a neighbor.

9: end for
10: end if
11: end for
12: end for
13: Output the result-set R.

a search query and show the matching combinations resulting

from such a search.

IV. KNOWLEDGE GRAPH FOR COVID-19 USE CASE

A. The COVID-19 Knowledge Graph Construction

We queried PubMed for the search keyword “COVID-19”.

The search resulted in 311,456 relevant articles and their

corresponding Abstract[AB] field. This is the basic entry point

for our work forward. The articles are provided in a format

known as MEDLINE [21], which is a record-based plain-

text format where an article is described by predefined fields

related to authors (AU), PubMed article ID (PMID), title

(TI), abstract (AB), and Medical Subject Headings (MeSH)
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Algorithm 4 Knowledge graph search for multi-drug repur-

posing.

Require: a list of multiple drugs

1: Initialize an empty result-set R.

2: for each element d in the list of drugs to search do
3: Initialize an empty list L of drugs matching.

4: for each clique in the list of cliques do
5: if the element d is in the clique then
6: Insert d into L.

7: end if
8: end for
9: for each element d in L do

10:
Find the matching member m in the het-

erogeneous ontology layer.

11: for each edge connected to m do

12:
Traverse the edge and identify the target

node on the other end of the edge.
13: Insert the target node into R as a neighbor.

14: end for
15: end for
16: end for
17: Output the result-set R.

among many other metadata. The fields of interest to this

study are PMID, AB, and MeSH. For the first two layers of

the knowledge graph, we need only the PMID and AB fields.

While the PMID is needed to link the ontology features by

the notion of co-occurrence, the AB field provides the text to

the drug and related features to be extracted.

The ChEBI ontology features contributed the nodes of drugs

in the drug combination layer (see Figure 1). The links are de-

rived from the drugs that co-occurred in the same abstract. The

three ontologies (ChEBI, DOID, and GO) together contribute

the nodes in the heterogeneous layer. We enforce the same

notion as before to establish links among all the three types

of knowledge features together. When analyzing the 311,456

articles using the three ontology features, it produced a viable

121,483 records of features. Each of these records constitutes

the nodes and edges to be contributed to the heterogeneous

layer of the knowledge graph (the three types of features

together). Table I shows the summary statistics for each of

the three layers.

B. Vetting and Querying for Drugs

Vetting Drugs Layer: We stated previously the need to

construct a vetting mechanism for interacting drugs. Here, we

provide concrete details related to the COVID-19 dataset. We

queried the PubMed online portal using the search keywords

“drug interaction”. The search resulted in 333,006 records (but

only 10,000 were the allowed limit). Then, we parsed the

MeSH term metadata (which is part of the MEDLINE record)

and identified all the records that met the search criteria. If

an article has a MeSH annotated as [MH]“Drug interactions’,

we processed the associated abstract text and extracted the

mentioned drugs. Using the same notion of co-occurrences,

Fig. 2. An example of a PubMed article (PMID:26721703)(from the dataset
of 10,000 articles), which is related to drug interaction. As shown, provides
information about drugs that may interact (e.g., dasabuvir, enzalutamide, and
imatinib). The role of the MeSH term meeting the search criterion [MH]“Drug
interactions’ is to be noted.

each pair of the drugs was connected as a potential risk of

a drug interaction. This dataset provided a knowledge layer

that enabled a much-needed vetting mechanism to avoid the

risk of drug interactions. Figure 2 shows how a sample of a

MEDLINE record for a given abstract that meets our criteria.

It is important to note that eliminating all the drugs from the

abstracts in this fashion is conservative but also effective in

removing any doubt about any candidate combinations.

The algorithmic process of constructing the knowledge

graph (Algorithm 1) produced 614 combinations. Using the

drug interaction vetting algorithm (Algorithm 2) we success-

fully eliminated 414 combinations. The remaining 200 combi-

nation candidates were further vetted manually by our domain

experts. Figure 3 is visually showing a sample part of the

network that resulted from the vetting process and the potential

risk of drug interaction links is eliminated. In the figure,

we observe common drugs that have been investigated as

COVID-19 treatment (hydroxychloroquine, chloroquine, and

remdesivir).

Any combination that contained a chemical that is not a drug

was vetted out manually by our domain expert author — an

example is the term “ligand” that appeared in one or more of

the publications being analyzed. Concretely, we subjected the

cliques proposed by our algorithm to deeper analysis from the

point of view of medical chemistry. It helped us remove groups

of non-drug substances (including metabolites, solvents, and

neurotransmitters) present in the ChEBI ontology. This shows

the direction for the further development of the algorithm

to reduce the noise resulting from the presence of such
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TABLE I
SUMMARY STATISTICS OF EACH LAYER IN THE KNOWLEDGE GRAPH.

Layer # of nodes # of edges
# of nodes from:

# of cliques
ChEBI DOID GO

Drug combination 844 2,450 844 N/A N/A 2,001

Drug Interaction 1,044 12,159 1,044 N/A N/A N/A

ChEBI, GO, DOID 1,800 9,843 844 19 306 N/A

Fig. 3. A network sample of 100 drugs and their connection extracted after
being vetted through the drug interaction layer. The sample preserves all
the drugs and their connections. However, it is also clear that the network
needs more vetting as some invalid drugs are still not eliminated (e.h.,
CHEBI:15713 UTP, and CHEBI:50266 prodrugs).

substances in the ontology used. This resulted in 54 drugs

that formed 30 false cliques It is essential to eliminate such

noise because they introduce many links that produce invalid

drug combinations. Figure 4 demonstrates the significance of

this vetting mechanism. The figure shows how 54 invalid drugs

may cause noise and produce false combinations; although the

number of those nodes in the knowledge graph is fairly small,

it does create a serious issue of noise because of the high

degrees of some drug nodes.

Ultimately, 146 connections were selected. Many of them

include drugs approved for COVID-19 therapy, such as ri-

tonavir (in 5 connections), remdesivir (in 21 connections), or

dexamethasone (in 14 connections). Many of the proposed

drug combinations comprise substances with a different mech-

anisms of action. These were both combinations that could

enhance the effect of antiviral therapy (remdesivir + simeprevir

+ pyronaridine) and combinations with a broader therapeutic

spectrum (conivaptan + dexamethasone + azithromycin). Some

of the proposed combinations, however, contained drugs with

a repetitive mechanism of action, which limits or prevents the

therapeutic use of such clique. Further development of the

algorithm should allow us to assess the degree of divergence

in the mechanisms of action of drugs in the selected groups.

Querying: The following is an example of how to query

the network.

Fig. 4. A network of false drug interactions generated from non-drug nodes
(which were valid chemical entities that took some part of the experiments)
presented in the abstract. Those nodes introduced many links and enabled
the generation of false combinations. Such invalid cliques were identified by
our domain expertise. The histogram plot is showing that some drugs have
a degree of 20 members. Removing such drugs is necessary for more viable
results.

CHEBI:31781_lopinavir

Here is an example of how to query for drug combinations

containing using a single drug named “lopinavir” with the

CHEBI term ID 31781. This query returned six different

combinations, all of which included the drug lopinavir (the

input query). Table II shows the size (i.e., number of drugs)

of each combination and lists the drugs constituting it. Each

query result can be further explored using (Algorithm 3) by

the neighboring drugs, diseases, genes, and proteins. Here is

a sample of the gene terms associated with lopinavir:

GO:0046697_decidualization
GO:0000792_heterochromatin
GO:0005488_binding

C. Implementation Considerations

In order for any therapeutic prediction system to deliver

high-efficacy combinations, it must have an ever-evolving

knowledge graph that can support such investigations for

various diseases. This need calls for a scalable and extensible

84

Authorized licensed use limited to: University of Southern California. Downloaded on April 11,2023 at 22:47:32 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
THE RESULT OF QUERYING THE KNOWLEDGE GRAPH FOR THE CHEBI:31781 LOPINAVIR DRUG. THE TABLE SHOWS SIX DRUG COMBINATIONS OF SIZES

THREE, FOUR, OR FIVE. (BECAUSE OF SPACE LIMITATION, THE DRUG NAMES IN THE LAST TWO ROWS ARE SHORTENED.)

.

Size Member 1 Member 2 Member 3 Member 4 Member 5

Query result: 1 3 CHEBI:135466 nafamostat CHEBI:5001 fenofibrate CHEBI:31781 lopinavir N/A N/A

Query result: 2 3 CHEBI:39548 atorvastatin CHEBI:6078 ivermectin CHEBI:31781 lopinavir N/A N/A

Query result: 3 3 CHEBI:4781 emetine CHEBI:145994 remdesivir CHEBI:31781 lopinavir N/A N/A

Query result: 4 3 CHEBI:82960 raltegravir CHEBI:31781 lopinavir CHEBI:4781 emetine N/A N/A

Query result: 5 4 CHEBI:5801 hydroxychl. CHEBI:80630 irinotecan CHEBI:6078 ivermectin CHEBI:31781 lopinavir N/A

Query result: 6 5 CHEBI:135466 nafamostat CHEBI:5138 fluvoxamine CHEBI:31781 lopinavir CHEBI:135632 cam.. CHEBI:45409 ritonavir

scientific workflow environment that provides such support.

Indeed, we have implemented our system and executed using

the Pegasus Workflow Management System (WMS) [27], [28].

In the current phase of this research, the main objective of

this workflow is to perform the various information extraction

tasks to process COVID-19 biomedical publications. However,

the utilization of a workflow management system makes it

possible to process any other input that supports the research

of any other disease. Following are the steps that Pegasus

made possible to make the final recommendation of 170

combinations: (1) the first step comprises parsing the various

ontologies (e.g., disease, gene, and drug-related ontologies),

and, (2) the second step is happening concurrently while

parsing, is partitioning the input COVID-19 publication dataset

into chunks of 3,000 publications each to achieve parallel

execution, (3) thirdly, Once the ontology-based features are

extracted, each partition of the dataset is paired with all

three aforementioned ontologies and all the extracted feature

outputs are combined. Pegasus WMS provides end-to-end data

management for the workflow, exhibiting the capability of

portable execution environments (e.g., containers used for the

tasks in the workflow) and, thus, enables us to scale the

workflow further. Such scalability enables the construction

and maintenance of big knowledge graphs of any disease or

multiple various related diseases (e.g., COVID-19 and asthma).

Figure 5 shows the information extraction stages started from

the MEDLINE format until the ontology features are extracted

and the knowledge graph layers are ready to be constructed.

V. CONCLUSION AND FUTURE DIRECTION

In this paper, we presented a combination therapeutics

knowledge graph that is implemented and executed by a

workflow management system for scalability and extensibility.

Using a COVID-19 dataset of biomedical abstracts, we have

shown the steps of extracting the domain knowledge using

specialized ontologies (of drugs, genes/proteins, and diseases).

The knowledge extracted presented naturally-formed three

different layers of knowledge (about drug combinations, drug

interactions, and a heterogeneous ontology layer of drugs,

diseases, and drug targets). The way the three layers of

knowledge needed to interact inspired the construction of

the knowledge graph. The algorithms we presented have

demonstrated promise in both predicting drug combinations

and eliminating those that are false.

With the Pegasus workflow being the backbone support for

the knowledge graph, we can extend the knowledge graph

by introducing new ontologies (e.g., drug target ontology

(DTO) [29], [30], bioassay ontology (BOA) [31], cell line on-

tology [32]). The workflow also offers the flexibility to include

various other datasets (e.g., lab notes, doctor’s notes, clinical

observations, and real-world evidence data). The knowledge

graph offers a platform for answering an unlimited number of

questions and makes the knowledge easy to query using any

open-source engine.

As a natural extension of this ongoing research, the authors

intend to further investigate the combinations to develop better

knowledge of the mechanism of action. This addresses the

level of toxicity for each drug and, hence, sheds insights about

the dosage. We will also continue to investigate the drug target

for each of the members of a drug combination. The members

of a drug combination may negatively or positively interact

and may also share the same target with others. This may

have a significant impact on the side-effect which must be

further investigated in our future research.
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