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Abstract

Computational modeling of elasto-capillarity, i.e., a fluid–structure interaction phenomenon where the solid deformation is
riven by capillary forces at fluid–fluid interfaces has recently emerged as an important problem in computational mechanics.
owever, the high-fidelity simulation of elasto-capillary problems involving three immiscible fluids has remained unexplored.
ere, we present a mathematical model and an algorithm to simulate elasto-capillary problems involving compound droplets.
uch problems are of pivotal importance in pharmaceutical, biological and food industrial applications. We adopt a phase-field
odel described by the ternary Navier–Stokes–Cahn–Hilliard equations for the three immiscible fluids and a neo-Hookean model

or the solid. We define a fluid–solid surface energy function, which determines the fluid–solid wettability and the tractions
ransmitted to the solid at the fluid–solid interface. We adopt a boundary-fitted approach for our fluid–structure interaction
ormulation and Isogeometric Analysis for the spatial discretization. To demonstrate the effectiveness of our computational
odel and algorithm, we perform elasto-capillary simulations involving various types of compound droplets.
2022 Elsevier B.V. All rights reserved.

eywords: Elasto-capillarity; Fluid–structure interaction (FSI); Ternary Navier–Stokes–Cahn–Hilliard (tNSCH); Isogeometric analysis (IGA);
ompound droplets

1. Introduction

Fluid–structure interaction (FSI) plays an important role in many scientific and engineering applications [1–5],
ome of which involve multiphase fluids; see [6–8] for detailed reviews. Traditional numerical methods for solving
lassical FSI involving multiphase fluids [9–12] have been largely limited to large-scale problems, where the effect
f surface tension on solid deformation is negligible. However, in FSI problems at micro- and nano-scales, forces
ue to surface tension play a crucial role in deforming the solid. The deformation of an elastic solid by capillary
orces at the fluid–fluid interfaces is termed elasto-capillarity or soft wetting. Elasto-capillarity is important in many
pplications, such as, ink-jet printing [13], microfabrication [14] and biophysics [15]. Many intriguing experiments
nvolving elasto-capillarity have been recently reported, such as, spontaneous migration of droplets on deformable
urfaces [16–19], self-wrapping of droplets in contact with elastic membranes (termed as capillary-origami) [4]

and wrinkling patterns arising upon the placement of droplets on thin bendable sheets [20]. However, this exciting

∗ Corresponding author.
E-mail addresses: sbhopala@purdue.edu (S.R. Bhopalam), hectorgomez@purdue.edu (H. Gomez).
https://doi.org/10.1016/j.cma.2022.115507
0045-7825/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.115507
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.115507&domain=pdf
mailto:sbhopala@purdue.edu
mailto:hectorgomez@purdue.edu
https://doi.org/10.1016/j.cma.2022.115507


S.R. Bhopalam, J. Bueno and H. Gomez Computer Methods in Applied Mechanics and Engineering 400 (2022) 115507
experimental research has not been accompanied by a similar amount of computational research due to the unique
challenges presented by elasto-capillary simulations.

Modeling and simulation of FSI problems with multiphase flows and capillary forces have remained an
outstanding problem until recently; see [17,21–28]. Most previous studies on elasto-capillary FSI have used phase-
field methods. The key idea in phase-field methods is to use an order parameter, also called phase-field, to identify
distinct fluid phases or distinct fluid components. The phase-field is defined on the entire computational domain and
evolves in time governed by partial-differential equations (PDEs) that can be derived from continuum mechanics
or asymptotic variational problems [29]. The popularity of phase-field methods in solving elasto-capillary FSI
problems is due to multiple reasons. Firstly, phase field methods avoid the contact-line stress singularities [30].
Additionally, phase field methods can describe the dynamic wetting behavior [31,32], moving contact lines, can
enforce thermodynamical consistency of the models [22] and can easily include the solid-fluid surface tension
effects in the fluid–solid interface conditions [22,30,33].

Existing elasto-capillary simulations have focused on fluid models that involve a single-component fluid that un-
dergoes liquid-vapor phase transformations [17,24] or two immiscible components that do not undergo phase trans-
formations [22,23,25,26,28,34], using, respectively, the Navier–Stokes–Korteweg (NSK) and the Navier–Stokes–
Cahn–Hilliard (NSCH) equations. However, despite its importance, the simulation of elasto-capillary problems in-
volving three immiscible fluid components remains unexplored. A computational method to simulate these problems
would enable the study of elasto-capillary problems involving compound droplets. The applications of compound
droplets are diverse, ranging from pharmaceutics, biology, atmospheric chemistry to food industry [35,36].
This paper proposes a mathematical model and an algorithm for the simulation of elasto-capillary problems involving
compound droplets. In our model, compound droplets are comprised of two immiscible fluids (e.g., water and
oil) which are immersed in a third ambient fluid (e.g., air). The phase-field model for three-component flow of
immiscible fluids is given by the ternary Navier–Stokes–Cahn–Hilliard equations (tNSCH). Although the tNSCH
equations have been very successful in describing the dynamics of three immiscible fluids, there are still open
theoretical questions about the behavior of the equations in the so-called total spreading regime [37]. Notably,
the tNSCH have not been used in the context of FSI. A critical aspect of our model of elasto-capillary FSI of
compound droplets is the definition of the surface energy function at the fluid–solid interface because it regulates
the wettability of the solid with respect to the three fluids and determines the tractions that are transmitted to
the solid at the fluid–solid interface. We propose a new approach to derive this surface energy function using
consistency conditions compatible with those introduced in [37] for the governing equations in the bulk. We adopt
a neo-Hookean model with a dilatational penalty to describe the dynamics of the solid. Our FSI formulation is based
on a boundary-fitted algorithm in which the fluid–solid interface is defined explicitly [38]. This approach permits
an accurate computation of the capillary forces at the interface, which is important in elasto-capillary simulations.
In our computations, the fluid domain does not undergo topological changes, and we simply have to use a mesh-
update algorithm, which facilitates the implementation of the boundary-fitted method. The spatial discretization is
based on Isogeometric Analysis (IGA) [39,40], a generalization of finite elements that allows to use basis functions
with controllable inter-element continuity on mapped geometries. The time discretization is performed using the
generalized-α method. To solve the linear algebra problem, we adopt a quasi-direct solution strategy [38] in which
the fluid and solid equations are solved monolithically, while the mesh update equations are solved separately, using
the data from the fluid–solid solver as input. The performance of the model and algorithm are illustrated with a
validation example and several elasto-capillary simulations of compound droplets. The results show the complexity
of elasto-capillary problems with compound droplets and highlight the importance of high-fidelity models.

The outline of the paper is as follows: In Section 2, we present the governing equations of the fluid mechanics
and solid mechanics problems. We also present the initial conditions, boundary conditions and fluid–solid interface
conditions. In Section 3, we describe the variational formulation of the fluid–structure interaction problem in the
continuous and semi-discrete forms. In the same Section, we additionally detail our time discretization and solution
strategy for solving the semi-discrete form of the equations. We present a series of numerical examples in Section 4
to demonstrate the capability of our model and algorithm. Lastly, we summarize our conclusions in Section 5.

2. Governing equations

2.1. Kinematics

Let Ωx̂ ∈ Rd , Ωt ∈ Rd and ΩX ∈ Rd denote, respectively, the reference, spatial and material domains occupied

by a continuum body, where d is the number of spatial dimensions. These domains are assumed to be open sets.
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Fig. 1. (Color figure online) (a) Schematic showing the spatial domain of the fluid (Ω f
t ) and solid (Ω s

t ). We also show the direction of the
unit normal vector ns f at the fluid–solid interface in the spatial domain (Γ s f

t ) and the unit normal n f at the fluid boundary without the
fluid–solid interface in the spatial domain (Γ f

t ). (b) Illustration of the static contact angles θi j and θ j i formed by the fluid–fluid interface
with the solid.

The spatial and material domains are also termed as the Eulerian and Lagrangian domains, respectively. Let Ωx̂ be
xed in time and its points be parameterized by the reference coordinates x̂. We define the function φ̂ which maps

he referential to spatial domain at time t as

φ̂(·, t) : Ωx̂ ↦−→ Ωt = φ̂(Ωx̂, t), ∀t ≥ 0,

x̂ ↦−→ x = φ̂ (̂x, t), ∀x̂ ∈ Ωx̂,
(1)

here x denotes the coordinates of the spatial domain. With this mapping, the referential displacement and
eferential velocity can be defined as û(̂x, t) := φ̂ (̂x, t)− x̂ and v̂ := ∂t φ̂ = ∂t û, respectively, where the operator ∂t
enotes partial time differentiation. Analogously, we define φ which maps the material to spatial domain at time t
s

φ(·, t) : ΩX ↦−→ Ωt = φ(ΩX , t), ∀t ≥ 0,
X ↦−→ x = φ(X, t), ∀X ∈ ΩX ,

(2)

here X denotes the location of a material particle. The material displacement and material velocity are defined
s u(X, t) := φ(X, t) − X and v := ∂tφ = ∂t u, respectively. The deformation gradient is defined as, F :=

∂φ

∂X and
the Jacobian determinant is defined as J := det(F). It follows from the definitions above that the Eulerian velocity
is v ◦ φ−1. Although the functions v and v ◦ φ−1 are different, they represent the same physical quantity and we
will use the same symbol for both henceforth. To avoid ambiguity in the definition of the derivatives, we will use
subscripts. For example, subscript x̂ in ∂tv|̂x indicates that the time derivative has been computed by holding x̂
fixed. When no subscript is specified, we assume the time derivative to be taken by holding x fixed. In the context
of spatial derivatives, for example, subscript x̂ in ∇x̂ û indicates that the spatial derivative has been computed with
respect to the reference coordinates x̂. When no subscript is specified, we assume the spatial derivative to be taken
with respect to the spatial coordinates x.

We will be focusing on a FSI problem. Thus, the spatial domain can be decomposed as Ωt = Ω
f

t ∪Ω s
t where Ω

f
t

nd Ω s
t are open sets that identify the current configuration of the fluid and solid, respectively and Ω

f
t ∩Ω s

t = ∅; see
ig. 1a. A similar decomposition applies to the material and reference domains. In our FSI problem, we consider the
aterial and reference domains to be the same. Henceforth, we will denote Ω0 as the referential or material domain

f the combined fluid and solid. We will also denote Γ
f

t as the fluid boundary without the fluid–solid interface in
he spatial domain and Γ

s f
t as the fluid–solid interface in the spatial domain.

.2. Governing equations of fluid mechanics

The dynamics of the three immiscible fluids is described by the ternary Navier–Stokes–Cahn–Hilliard (tNSCH)
quations. We assume that the three fluids share the same density and dynamic viscosity, which are both
onstant [37,41]. We describe the fluids’ motion by a single velocity field. The Ginzburg–Landau free energy per
nit volume of the fluid mixture is [37,41]

ψ f
=

12
F(c1, c2, c3) +

3
ϵΣ1|∇c1|

2
+

3
ϵΣ2|∇c2|

2
+

3
ϵΣ3|∇c3|

2, (3)

ϵ 8 8 8

3
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where ϵ is the diffuse interface length scale, (c1, c2, c3) ∈ [0, 1]3 are the phase fields denoting the volume fractions
of the respective fluid, Σ1,Σ2 and Σ3 are the spreading coefficients and F is the bulk free energy. The expression
for the bulk free energy is

F(c1, c2, c3) =
Σ1

2
c2

1(1 − c1)2
+

Σ2

2
c2

2(1 − c2)2
+

Σ3

2
c2

3(1 − c3)2. (4)

he last three terms in Eq. (3) represent the interfacial free energy. The spreading coefficients are computed from
he surface tensions as

Σ1 = γ12 + γ13 − γ23,

Σ2 = γ23 + γ12 − γ13,

Σ3 = γ13 + γ23 − γ12,

(5)

here γi j denotes the surface tension at the interface between fluids i and j . Because the phase fields represent
olume fractions, admissible solutions belong to the hyperplane

G = {c = (c1, c2, c3) ∈ [0, 1]3, c1 + c2 + c3 = 1}. (6)

he constraint c ∈ G will be imposed using a Lagrange multiplier. Therefore, we will only solve equations for c1
nd c2, and we will obtain c3 from the constraint c1 + c2 + c3 = 1. The governing equations in the Eulerian frame
re given by

∇ · v = 0, (7a)

ρ ∂tv|X = ∇ · σ f
+ ρ f , (7b)

∂t ci |X = ∇ ·

(
M0

Σi
∇µi

)
; i = 1, 2, (7c)

µi = −
3
4
ϵΣi∆ci +

12
ϵ
Σi ci (1 − ci )(1 − 2ci ) −

12δ
ϵ

c1c2(1 − c1 − c2); i = 1, 2, (7d)

where v is the fluid velocity, ρ is the fluid density, σ f is the fluid stress tensor, f is the body force per unit
ass, M0 > 0 is the mobility coefficient associated with the diffusive flux of the fluid mixture, µi is the chemical

otential associated with the diffusive flux of fluid i and δ = 6
(

1
Σ1

+
1
Σ2

+
1
Σ3

)−1
. The last term in Eq. (7d) is the

agrange multiplier used to enforce the constraint c1 + c2 + c3 = 1. The fluid stress tensor is defined as

σ f
= −p I + 2η∇sv −

3
4
ϵ (Σ1 + Σ3)∇c1 ⊗∇c1 −

3
4
ϵ (Σ2 + Σ3)∇c2 ⊗∇c2

−
3
4
ϵΣ3 (∇c1 ⊗∇c2 +∇c2 ⊗∇c1) .

(8)

where p is the pressure, η is the dynamic viscosity of the fluid and ∇
s denotes the symmetrization of the spatial

gradient operator.

Remark 2.1. The governing equations given in Eq. (7) are equivalent to the equations from [37,41]. If we call
p̃ the pressure used in [37,41], then our pressure field in Eq. (8) is defined as p = p̃ − ψ f . We derive Eq. (7)
from [37,41] to express σ f in a conservative form using the constraint c1+c2+c3 = 1, Eqs. (3)–(4) and the relation

µ3 = −Σ3

(
µ1

Σ1
+
µ2

Σ2

)
, (9)

hich follows from Eq. (7d) and the constraint c1 + c2 + c3 = 1.

From Eq. (5), two cases of spreading coefficients are possible [42]: total spreading, where at least one of Σi ≤ 0,
nd partial spreading, where all Σi > 0. We restrict our system to the latter case. Our system additionally satisfies
i >

δ
4 > 0 ∀i = 1, 2, 3 to ensure the positivity of ψ f ; see [37,41] for the mathematical details and proofs.

dditionally, Boyer and Lapuerta [37] proposed two consistency conditions P1 and P2 for the model given by
qs. (3)–(7). Condition P1 is satisfied if and only if the free energy per unit volume in the three-fluid mixture
quals the free energy per unit volume in the two-fluid mixture when one fluid is absent. Condition P2 indicates
hat if c = 0 at t = 0, then c = 0 ∀ t ≥ 0 ∀i = 1, 2, 3.
i i

4
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2.2.1. Initial and boundary conditions for the fluid mechanics equations
For the fluid mechanics equations presented in Eq. (7), we furnish suitable initial and boundary conditions. We

provide initial conditions by specifying the phase fields and fluid velocity at the initial time. In our FSI problem,
the boundary of the fluid domain is Γ

f
t ∪ Γ

s f
t . In our problem of interest, Γ f

t is the external boundary of the
computational domain and is placed sufficiently far away from the region of interest. On Γ

f
t , we impose zero

normal velocity, zero tangential traction, zero diffusive flux and neutral wettability condition, i.e.,

n f
· v = 0 on Γ

f
t , (10)

te · σ
f n f

= 0 for e = 1, . . . , d − 1 on Γ
f

t , (11)

n f
· ∇µi = 0 for i = 1, 2 on Γ

f
t , (12)

n f
· ∇ci = 0 for i = 1, 2 on Γ

f
t , (13)

where n f is the unit outward normal vector at Γ
f

t and the te’s constitute an orthonormal basis of Rd−1 that is
orthogonal to n f .

On Γ
s f
t , we will impose coupling conditions pertaining to the fluid–solid interaction. These are of a different

nature and will be described in Section 2.4. However, Γ s f
t is an external boundary for the phase fields (the phase

fields are not defined in the solid), and thus we need to equate the unknowns or their derivatives to given data. The
first boundary condition for the phase fields that we will impose on Γ

s f
t is

ns f
· ∇µi = 0 for i = 1, 2 on Γ

s f
t , (14)

where ns f is the unit normal vector at Γ s f
t pointing in the direction from fluid to solid; see Fig. 1a. Eq. (14) indicates

hat there is no diffusive flux across the fluid–solid interface. The second boundary condition for the phase fields
n Γ

s f
t defines the wettability of the three-fluid mixture and the solid. However, the derivation of such wetting

oundary conditions is difficult due to three challenges. Firstly, the boundary conditions must allow the motion of
uid–fluid interfaces at the wetting boundary. Secondly, the wetting boundary conditions must satisfy consistency
onditions compatible with P1, P2 and c ∈ G. We found that using boundary conditions that satisfy these conditions
s critical for elasto-capillary simulations involving compound droplets. The reason is that these conditions define
he fluid–solid wettability, but more importantly determine the traction forces transmitted to the solid. Finally, the
etting boundary conditions must be compatible with the equilibrium in Ω

f
t . Existing wetting boundary condition

odels in three-fluid mixtures [43–45] have tried to resolve some of these challenges. For our elasto-capillary
imulations, the first challenge is automatically addressed by the use of a diffuse interface. To address the second
hallenge, we derive wetting boundary conditions that satisfy P1, the constraint c ∈ G and that are compatible
ith P2. To make our boundary conditions compatible with P2, we impose that if ci = 0 on Γ

s f
t at t = 0, then

ns f
· ∇ci = 0 ∀t ≥ 0 ∀i = 1, 2, 3 on Γ

s f
t . We address the third challenge by minimizing the fluid–solid interfacial

nergy of the fluid mixture with respect to c.
For appropriate imposition of the wetting boundary conditions at Γ s f

t , we firstly define the free energy of the
uid mixture including the contribution from the wetting boundary as

Ψ f
=

∫
Ω

f
t

ψ f dΩ f
t +

∫
Γ

s f
t

γs f dΓt , (15)

here γs f is the surface energy density at Γ
s f
t . We now derive the wetting boundary conditions by taking the

unctional derivative of Ψ f with respect to ci using calculus of variations, collecting the boundary terms upon
ubsequent integration by parts and setting them to zero. This procedure ensures that our boundary conditions will
ot be incompatible with equilibrium in the interior of the domain and leads to

3
4
ϵΣi ns f

· ∇ci +
∂γs f

∂ci
= 0, i = 1, 2, 3 on Γ

s f
t . (16)

e neglect the Shuttleworth effect [46], allowing us to interpret γs f as a function of c1, c2 and c3 alone [22,30,33].
e define γs f as,

γs f (c1, c2, c3) = R(c1, c2, c3) + Q(c1, c2, c3), (17)

here
2 3 2 3 2 3
R(c1, c2, c3) = γ1s(3c1 − 2c1) + γ2s(3c2 − 2c2) + γ3s(3c3 − 2c3). (18)

5
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In Eq. (18), γis denotes the surface tension at the interface between the solid and fluid i . Note that γ1s, γ2s and γ3s
are related to each other by the Young’s relation given as,

cos θi j =
γ js − γis

γi j
, i, j = 1, 2, 3, i ̸= j, (19)

here θi j is the static contact angle at equilibrium between the solid and the interface formed between fluids i and
j ; see Fig. 1b. The particular choice of R in Eq. (18) is justified as it is a smoothly varying function, which equals
γ1s, γ2s and γ3s when (c1, c2, c3) equals (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. Additionally, R simplifies to
an expression of the solid-fluid surface tension in the case of two-fluid mixture (see [22,33] for the appropriate
expression) when one among c1, c2 or c3 equals 0, i.e., R satisfies P1. We will determine the function Q by
imposing the above-described consistency conditions. Q satisfies P1 if and only if

Q(0, c, 1 − c) = Q(c, 0, 1 − c) = Q(c, 1 − c, 0) = 0 ∀c ∈ R. (20)

or Eq. (20) to hold valid, we deduce that there exist two smooth functions G and H such that

Q(c1, c2, c3) = c1c2c3G(c1, c2, c3) + (c1 + c2 + c3 − 1)H (c1, c2, c3) (21)

rom [37, Lemma 3.4]. Here, H is a Lagrange multiplier enforcing the constraint c ∈ G. Substitution of Eqs. (17),
18) and (21) in Eq. (16) gives us

3
4
ϵΣi ns f

· ∇ci +
∂R
∂ci

+
∂ (c1c2c3G)

∂ci
+ H = 0, ∀i = 1, 2, 3 on Γ

s f
t . (22)

o enforce c1 + c2 + c3 = 1, we divide Eq. (22) by Σi and sum it up for all i ∈ {1, 2, 3}, yielding us the expression
f H as

H = −
δ

6

(
1
Σ1

(
∂R
∂c1

+
∂ (c1c2c3G)

∂c1

)
+

1
Σ2

(
∂R
∂c2

+
∂ (c1c2c3G)

∂c2

)
+

1
Σ3

(
∂R
∂c3

+
∂ (c1c2c3G)

∂c3

))
. (23)

Enforcing that if ci = 0 at t = 0, then ns f
· ∇ci = 0 ∀t > 0 on Eq. (22) implies that(

∂R
∂ci

+ c j ck G + c1c2c3
∂G
∂ci

+ H
)⏐⏐⏐⏐

ci=0,ck=1−c j

= 0, i, j, k = 1, 2, 3, { j, k} ̸= i and j ̸= k. (24)

Eq. (24) is satisfied by triples (c1, c2, c3) of the form (c, 1 − c, 0), (c, 0, 1 − c) and (0, c, 1 − c) ∀c ∈ [0, 1].
Substituting Eqs. (18) and (23) in Eq. (24) and performing multiple algebraic manipulations, we get the following
onditions on G:

G(c, 1 − c, 0) = 6
(
γ1sΣ2 + γ2sΣ1

Σ1 + Σ2

)
,

G(c, 0, 1 − c) = 6
(
γ1sΣ3 + γ3sΣ1

Σ1 + Σ3

)
,

G(0, c, 1 − c) = 6
(
γ2sΣ3 + γ3sΣ2

Σ2 + Σ3

)
.

(25)

o satisfy Eq. (25), we propose G to be of the form

G(c1, c2, c3) = 3
(
γ1sΣ2 + γ2sΣ1

γ12

)
g12(c1, c2, c3) + 3

(
γ2sΣ3 + γ3sΣ2

γ23

)
g23(c1, c2, c3)

+ 3
(
γ1sΣ3 + γ3sΣ1

γ13

)
g13(c1, c2, c3),

(26)

here we have used Eq. (5) and we have introduced the functions gi j with i < j which satisfy

gi j (c1, c2, c3) =

⎧⎪⎨⎪⎩
1 for ci + c j = 1 and 0 < ci < 1, 0 < c j < 1,
0 for ci = 0 or c j = 0,
> 0 for 0 < ck < 1, k ̸= {i, j} and, {ci ̸= 0 or c j ̸= 0}.

(27)

e propose the following rational functions which satisfy Eq. (27),

gi j (c1, c2, c3) =
ci c j

, i, j = 1, 2, 3. (28)

(1 − ci )(1 − c j )

6



S.R. Bhopalam, J. Bueno and H. Gomez Computer Methods in Applied Mechanics and Engineering 400 (2022) 115507

c

w

W
r
w

R
a
t
(

a

w

a

U

Remark 2.2. The functions gi j satisfying the conditions in Eq. (27) are non-unique. We numerically experimented
with exponential, rational (Eq. (28)) or rational power functions satisfying Eq. (27) for the case of three immiscible
fluids on a rigid solid. We observed no appreciable difference in our results and hence adopted the rational functions
given by Eq. (28) for our computations.

Substituting Eqs. (17), (18), (21), (26) and (28) in Eq. (16) we obtain the final form of the wetting boundary
onditions on Γ

s f
t ,

ns f
· ∇ci = hi , (29)

here

hi = −
4

3ϵΣi

(
6γisci (1 − ci ) + c j ck G + c1c2c3

∂G
∂ci

+ H
)
, i, j, k = 1, 2, 3, { j, k} ̸= i and j ̸= k. (30)

hen (c1, c2, c3) equals (1, 0, 0), (0, 1, 0) and (0, 0, 1) some of the rational functions given by Eq. (28) lead to the
esult 0/0 which is undefined. In our implementation, we have used the definition 0/0 = 0. Our derivation of the
etting boundary conditions differs from that in [47], which was based on a gradient projection method.

emark 2.3. Let us consider a subset of Γ s f
t where only two fluids meet the solid. If all solid–fluid surface tensions

re equal, i.e., γ1s = γ2s = γ3s , then Eq. (29) simplifies to the free-flux phase field boundary conditions. To prove
his, let us assume c3 = 0 at the subset of Γ

s f
t where only two fluids meet the solid. In that case, Eqs. (18) and

26) respectively simplify to

R|c3=0 = γ1s(3c2
1 − 2c3

1) + γ1s(3c2
2 − 2c3

2) (31)

nd

G|c3=0 = 6γ1s, (32)

here we have used Eq. (5). Substituting Eqs. (31) and (32) in Eq. (23) with subsequent simplification gives us

H |c3=0 = −
δ

6
c1c2

(
6γ1s

Σ1
+

6γ1s

Σ2
+

G|c3=0

Σ3

)
= −6γ1sc1c2. (33)

Upon substitution of Eqs. (31), (32) and (33) in Eq. (29), we get ns f
· ∇c1 = 0, ns f

· ∇c2 = 0 and ns f
· ∇c3 = 0.

Eq. (33) shows that the function G in Eq. (21) is a necessity, as its omission will not yield free-flux phase field
boundary conditions. We have exemplified our proof with c3 = 0. But our proof will also work when c1 = 0 or
c2 = 0.

Remark 2.4. In the case of two immiscible fluids, Eq. (29) simplifies to standard wetting boundary conditions
in two-fluid mixtures [33]. In this case, Eq. (29) can be rewritten by assuming c3 = 0, c1 = c and c2 = 1 − c
∀c ∈ [0, 1]. Now, we no longer assume all solid-fluid surface tensions are equal. In this case, Eqs. (26) and (23)
respectively simplify to

G|c3=0 = 3
(
γ1sΣ2 + γ2sΣ1

γ12

)
(34)

nd

H |c3=0 = −
3c(1 − c)
γ12

(
γ12 (γ1s + γ2s)+ (γ13 − γ23)(γ2s − γ1s)

)
, (35)

where we have used Eq. (5). The algebraic manipulations required to prove Eq. (35) from Eq. (23) are non-trivial.
We perform these manipulations via symbolic computations in MATLAB; see Appendix for the MATLAB script.
Substitution of Eqs. (35) and (34) in Eq. (29) with subsequent simplification yields

ns f
· ∇c =

4
ϵ

(
γ2s − γ1s

γ12

)
c(1 − c). (36)

sing the Young’s relation from Eq. (19), we can rewrite Eq. (36) as

ns f
· ∇c =

4
cos θ12c(1 − c). (37)
ϵ
7
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This proof shows that when one fluid is not present, our boundary conditions reduce to standard wetting boundary
conditions for a two-fluid mixture.

2.3. Governing equations of solid mechanics

The solid motion is described by the linear momentum balance equation written in the Lagrangian frame as

ρs
0 ∂

2
t u
⏐⏐

X = ∇X · P + ρs
0 f s, (38)

here ρs
0 is the mass density of the solid in the referential configuration, u is the displacement of solid, P is the

rst Piola–Kirchhoff stress tensor and f s is the body force on the solid per unit mass. A compressible neo-Hookean
odel with dilatational penalty [48] is adopted as the constitutive equation of the solid. With this constitutive model,

he strain energy density function W for the solid is defined by

W =
µs

2

(
J−2/d tr(C) − d

)
+
κs

2

(
1
2

(
J 2

− 1
)
− ln J

)
, (39)

where µs and κs are the shear and bulk moduli of the solid, I is the identity tensor, C is the right Cauchy–Green
deformation tensor with C = FT F and tr(C) denotes the trace of C. The bulk and shear moduli are computed as
κs

=
E

3(1−2ν) and µs
=

E
2(1+ν) , where E is the Young’s modulus of the solid and ν is the Poisson’s ratio. The second

Piola–Kirchhoff stress tensor S is computed from W as

S =
∂W
∂E

= µs J−2/d
(

I −
1
d

tr(C)C−1
)
+
κs

2
(J 2

− 1)C−1, (40)

here E is the Green–Lagrange strain tensor given by E = (C − I) /2. The first and second Piola–Kirchhoff stress
tensors are related by P = FS while the Cauchy stress tensor is defined by σ s

:= J−1 P FT .
For the solid mechanics equations presented in Eq. (38), we furnish suitable initial conditions by assuming the

nitial solid displacement and initial solid velocity to be zero. For simplicity, we assume here that the solid is
mmersed into the fluid and no part of the solid boundary coincides with an external boundary of the computational
omain. Thus, we do not need boundary conditions for the solid domain and we will focus on the fluid–solid
nterface conditions here. If the boundary conditions in our numerical computations are different, we accordingly
ncorporate them in our formulation.

.4. Fluid-solid interface conditions

We impose strong kinematic compatibility at the fluid–solid interface Γ
s f
t ,

v =
∂u
∂t

◦ φ̂
−1
. (41)

dditionally, we impose that the fluid and solid tractions are balanced with the traction induced by the solid-fluid
urface tension at Γ s f

t [22]. This can be expressed by

σ f ns f
+ σ s ns

= ∇Γ · σ s f , (42)

here ns is the unit outward normal vector to the solid boundary in the spatial domain, σ s f is the stress tensor
ccounting for the solid-fluid surface tension at Γ

s f
t and ∇Γ is the surface gradient [49,50] on Γ

s f
t defined by

∇Γ = PΓ∇. Here, PΓ = I − ns f
⊗ ns f is the surface projection tensor, defined as the projection on the tangent

lane of Γ
s f
t . In elasto-capillarity, the traction induced by the solid-fluid surface tension avoids the singularity at

he contact line in the sharp-interface limit; see [22] for more details. Since we neglected the Shuttleworth effect,
e use σ s f

= γs f PΓ which is a simplified form of the Boussinesq surface fluid model [51]. With this definition,
he right-hand side of Eq. (42) can be written as

∇Γ · σ s f
= ∇Γ ·

(
γs f PΓ

)
,

= γs f ∇Γ · PΓ + PΓ∇Γγs f ,

= −γs f ∇Γ ·
(
ns f

⊗ ns f )
+ PΓ PΓ∇γs f ,

= −γs f
(
ns f

· ∇Γ ns f
+∇Γ · ns f ns f )

+ PΓ∇γs f ,

s f s f

(43)
= γs f κ n +∇Γγs f ,

8
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where κs f
= −∇Γ · ns f is the additive curvature (d − 1 times the mean curvature) of the interface. The fourth and

fth steps in Eq. (43) follow from the properties PΓ PΓ = PΓ and ns f
· ∇Γ ns f

= 0, respectively.

3. Numerical formulation

3.1. Arbitrary Lagrangian-Eulerian formulation of the fluid mechanics problem

We adopt a boundary-fitted technique with matching discretization at the fluid–solid interface. We solve the
fluid and solid equations in the Arbitrary Lagrangian–Eulerian (ALE) and Lagrangian descriptions, respectively.
In ALE description, the temporal and spatial derivatives are taken, respectively, with respect to the referential and
spatial domains. This makes the adoption of classical semi-discrete methods with finite-difference-in-time treatments
directly applicable to moving boundary problems [7]. To maintain mesh conformity throughout the domain, we
update the fluid mesh to accommodate the solid motion. The fluid mesh update is performed by solving successive
fictitious linear elasticity problems [52]. Using the techniques presented in [38,53], we write Eq. (7) in the ALE
escription as

∇ · v = 0, (44a)

ρ

(
∂tv|̂x + (v − v̂) · ∇v

)
= ∇ · σ f

+ ρ f , (44b)

∂t ci |̂x + (v − v̂) · ∇ci = ∇ ·

(
M0

Σi
∇µi

)
; i = 1, 2, (44c)

µi = −
3
4
ϵΣi∆ci +

12
ϵ
Σi ci (1 − ci )(1 − 2ci ) −

12δ
ϵ

c1c2(1 − c1 − c2); i = 1, 2, (44d)

where v̂ is the velocity of fluid mesh motion which can be obtained from the mapping φ̂.

.2. Variational formulation of the fluid–structure interaction problem at the continuous level

.2.1. Fluid mechanics problem
Here, we derive the weak form of Eq. (44). In this derivation, we ignore the boundary terms on Γ

s f
t arising from

he linear momentum balance. These pertain to the fluid–solid coupling and will be discussed later. For the linear
omentum balance equation, we will assume boundary conditions on Γ

f
t that correspond to either homogeneous

irichlet conditions or zero-traction conditions. This assumption renders vanishing boundary terms on Γ
f

t for the
omentum balance equation. Let L2(Ω f

t ) be a functional space of scalar-valued functions that are square-integrable
n Ω

f
t . The trial function space for the fluid pressure is defined as

V p
=

{
p | p ∈ L2(Ω f

t ),
∫
Ω

f
t

pdΩ f
t = 0

}
(45)

nd the weight function space W p is identical to V p. Additionally, we define Vc1 , Vc2 , Vµ1 and Vµ2 to be the
rial function spaces for c1, c2, µ1 and µ2, respectively. Here, Vc1 = Vc2 = Vµ1 = Vµ2 = H1(Ω f

t ), where
1(Ω f

t ) is the Sobolev space of square-integrable functions with square-integrable first derivatives in the domain
f

t . Let the weight functions Wc1 , Wc2 , Wµ1 and Wµ2 be identical to their respective trial function spaces.
e define Vv ⊂ [H1(Ω f

t )]d as a trial function space for v which satisfies Dirichlet boundary conditions. The
orresponding weight function space Wv for v is identical to Vv , except that all restrictions on the Dirichlet
oundary are homogeneous. The variational formulation for the fluid mechanics problem is now stated as follows:
nd p ∈ V p, v ∈ Vv, c ∈ Vc1 , c ∈ Vc2 , µ ∈ Vµ1 and µ ∈ Vµ2 such that ∀w1

∈ W p, w2
∈ Wv, w3

∈
1 2 1 2

9
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Wc1 , w4
∈ Wc2 , w5

∈ Wµ1 and w6
∈ Wµ2 ,

B f ((w1,w2, w3, w4, w5, w6), (p, v, c1, c2, µ1, µ2
)
; v̂
)

=

∫
Ω

f
t

w1
∇ · vdΩ f

t +

∫
Ω

f
t

w2
· ρ

(
∂tv|̂x + (v − v̂) · ∇v

)
dΩ f

t

+

∫
Ω

f
t

∇w2
: σ f dΩ f

t −

∫
Ω

f
t

w2
· ρ f dΩ f

t

+

∫
Ω

f
t

w3 ∂t c1 |̂x dΩ f
t +

∫
Ω

f
t

w3(v − v̂) · ∇c1dΩ f
t +

∫
Ω

f
t

M0

Σ1
∇w3

· ∇µ1dΩ f
t

+

∫
Ω

f
t

w4 ∂t c2 |̂x dΩ f
t +

∫
Ω

f
t

w4(v − v̂) · ∇c2dΩ f
t +

∫
Ω

f
t

M0

Σ2
∇w4

· ∇µ2dΩ f
t

+

∫
Ω

f
t

w5µ1dΩ f
t −

∫
Ω

f
t

3
4
ϵΣ1∇w

5
· ∇c1dΩ f

t +

∫
Γ

s f
t

3
4
ϵΣ1w

5h1dΓt

−

∫
Ω

f
t

w5
(

12
ϵ
Σ1c1(1 − c1)(1 − 2c1) −

12δ
ϵ

c1c2(1 − c1 − c2)
)

dΩ f
t

+

∫
Ω

f
t

w6µ2dΩ f
t −

∫
Ω

f
t

3
4
ϵΣ2∇w

6
· ∇c2dΩ f

t +

∫
Γ

s f
t

3
4
ϵΣ2w

6h2dΓt

−

∫
Ω

f
t

w6
(

12
ϵ
Σ2c2(1 − c2)(1 − 2c2) −

12δ
ϵ

c1c2(1 − c1 − c2)
)

dΩ f
t = 0

(46)

q. (46) imposes weakly the governing Eqs. (44) as well as the boundary conditions (10)–(14) and (29). The weak
mposition of the boundary conditions (29) was facilitated by our splitting of the original fourth-order phase field
quation into two second-order equations, i.e., Eqs. (7c) and (7d) or Eqs. (44c) and (44d). The split of fourth-order
quations into a system of second-order equations has been frequently used in the literature because it allows the use
f classical C0-continuous finite elements and because the imposition of boundary conditions is simple. However, the
se of IGA [39,40] permits to use basis functions with higher-order inter-element continuity on mapped domains,
nd thus, a formulation in which Eq. (44d) is substituted in (44c) is possible. The latter approach (not pursued here)
s usually called direct or primal formulation. Recent research [54] has shown that a judicious modification of the
sual weak form of the direct formulation also permits simultaneous weak imposition of Eqs. (12) and (29). The
ormulation proposed in [54] is as simple as the split formulation, converges at optimal rate, and avoids the use
f global degrees of freedom for the chemical potentials. The method proposed in [54] also avoids the appearance
f non-physical solutions that occurs when the split method is employed on concave geometries [55]. Ref. [55]
lso shows that the split and direct formulations of fourth or higher-order PDEs converge to the same numerical
olution on convex geometries. We employ convex geometries in our numerical examples, and hence, we do not
xpect significant differences between the numerical solutions from direct and split methods.

The spatial discretization of the tNSCH model using equal order function spaces for fluid velocity v and
ressure p requires stabilization. Stabilization techniques like the Variational Multiscale Method (VMS) [56] or
UPG/PSPG [57,58] have been commonly employed in the literature. In the current work, we adopt VMS. With

his scheme, the trial and weight function spaces of velocity and pressure are decomposed into coarse and fine scale
ubspaces, i.e., V p

= V p
⊕ V p ′, Vv = Vv ⊕ Vv ′, W p

= W p
⊕W p ′ and Wv

= Wv
⊕Wv ′. Accordingly, v ∈ Vv ,

p ∈ V p, w1
∈ W p and w2

∈ Wv can be split into a coarse and fine scale component as, p = p + p′, v = v + v′,
w1

= w1
+ w1′ and w2

= w2
+ w2′ with p ∈ V p

, v ∈ Vv , p′
∈ V p ′, v′

∈ Wv ′, w1
∈ W p

, w1′
∈ W p ′, w2

∈ Wv

and w2′
∈ Wv ′.

.2.2. Solid mechanics problem
Here, we derive the weak form of the solid mechanics problem. In the derivation, we ignore the boundary terms

n Γ
s f
t . We define V s

⊂ [H1(Ω s
0 )]d to be a trial function space, where Ω s

0 is the solid domain in the referential
onfiguration. The corresponding weight function space W s is identical to V s . The variational formulation for the
olid mechanics problem can be stated as follows: find u ∈ V s such that ∀ws

∈ W s ,

Bs(ws, u) =
∫

s

(
ws

· ρs
0∂

2
t u|X +∇Xws

: P − ws
· ρs

0 f s
)

dΩ s
0 = 0. (47)
Ω0

10
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Eq. (47) is devoid of boundary terms because we assumed the solid to be immersed in the fluid. If the solid is not
fully immersed in the fluid, additional boundary terms may need to be added.

3.2.3. Fluid mesh motion
We solve successive fictitious linear elasticity equations to update the fluid mesh, which is subject to Dirichlet

boundary conditions from the solid displacement [7]. We denote the displacement of the reference domain as

û(̂x, t) = φ̂ (̂x, t) − x̂. (48)

We determine φ̂ (̂x, t) from the equation

φ̂ (̂x, t) = φ̂ (̂x, t̃) + û(̂x, t) − û(̂x, t̃), (49)

where t̃ < t . We define um
= û(̂x, t) − û(̂x, t̃) and compute an approximation to it by solving a fictitious linear

elastic motion.
Let Ω f

t̃ be the referential configuration of the fluid domain Ω
f

0 at t̃ . Similarly, we define Γt̃ as the mapping of
he fluid–solid interface in the referential configuration at time t̃ . Our unknown um is subject to Dirichlet boundary
onditions given by um

= u ◦ φ̂
−1
⏐⏐⏐
t
− u ◦ φ̂

−1
⏐⏐⏐̃
t

on Γt̃ . We now define Vm
⊂ [H1(Ω f

t̃ )]d as a trial function
pace satisfying Dirichlet boundary conditions. The corresponding weight function space Wm is identical to Vm

xcept that all restrictions on the Dirichlet boundary are homogeneous. The variational formulation of the fluid
esh motion can now be stated as follows: find um

∈ Vm such that ∀wm
∈ Wm

Bm(wm, um) =
∫
Ω

f
t̃

∇
s
x̃w

m
: 2µm

∇
s
x̃ umdΩ f

t̃ +

∫
Ω

f
t̃

∇x̃ · w
mλm

∇x̃ · umdΩ f
t̃ = 0, (50)

where ∇x̃ is the gradient operator on Ω
f

t̃ . Additionally, µm and λm are the Lamé parameters of the fictitious elastic
problem, which are suitably selected to preserve the quality of the fluid mesh.

3.2.4. Coupled fluid–structure interaction problem
The variational formulation of the coupled FSI problem can be stated as follows: find p ∈ V p

, p′
∈ W p ′,

v ∈ Vv , v′
∈ Vv ′, c1 ∈ Vc1 , c2 ∈ Vc2 , µ1 ∈ Vµ1 , µ2 ∈ Vµ2 , u ∈ V s and um

∈ Vm such that ∀w1
∈ W p

, w2
∈ Wv

,
w3

∈ Wc1 , w4
∈ Wc2 , w5

∈ Wµ1 , w6
∈ Wµ2 , ws

∈ W s and wm
∈ Wm ,

B f ((w1,w2, w3, w4, w5, w6), (p + p′, v + v′, c1, c2, µ1, µ2
)
; v̂
)
+ Bs(ws, u) + Bm(wm, um)

= T f (w2,
(

p + p′, v + v′, c1, c2
))

+ T s(ws, u),
(51)

where T f and T s include the contributions of the fluid and solid tractions at the fluid–solid interface, respectively.
T f and T s are given by

T f (w2,
(

p + p′, v + v′, c1, c2
))

=

∫
Γ

s f
t

σ f ns f
· w2dΓt (52)

nd

T s(ws, u) =
∫
Γ

s f
0

Pns
0 · w

sdΓ s f
0 =

∫
Γ

s f
t

σ s ns
·

(
ws

◦ φ̂
−1
)

dΓt . (53)

o enforce traction balance as in Eq. (42), we take [7]

w2
= ws

◦ φ̂
−1

on Γ
s f
t . (54)

ue to our splitting of the fluid velocity v into a coarse and fine scale component, we reformulate the kinematic
oundary condition in Eq. (41) as

v =
∂u

◦ φ̂
−1
. (55)
∂t
11



S.R. Bhopalam, J. Bueno and H. Gomez Computer Methods in Applied Mechanics and Engineering 400 (2022) 115507

w

t
s

R
d

E
v

r

3

w

Using Eq. (42) and σ s f
= γs f PΓ [49], we obtain

T f (w2,
(

p + p′, v + v′, c1, c2
))

+ T s(ws, u)

=

∫
Γ

s f
t

(
σ f ns f

+ σ s ns)
· w2dΓt ,

=

∫
Γ

s f
t

∇Γ ·
(
γs f PΓ

)
· w2dΓt ,

= −

∫
Γ

s f
t

γs f PΓ : ∇Γw2dΓt +

∫
∂Γ

s f
t

γs f w
2
· PΓ td(∂Γt ),

= −

∫
Γ

s f
t

γs f PΓ : ∇Γw2dΓt +

∫
∂Γ

s f
t

γs f t · w2d(∂Γt ).

(56)

here the last step in Eq. (56) follows from the property
(
ns f

⊗ ns f
)

t = 0 which allows us to conclude
w2

· PΓ t = t · w2. In Eq. (56), t is a unit vector tangent to Γ
s f
t and normal to ∂Γ s f

t . We replace the sum of
he fluid and solid tractions at the fluid–solid interface in the variational formulation of Eq. (51) with the right-hand
ide of Eq. (56). Following [22], we neglect the term containing t · w2 in Eq. (56).

emark 3.1. The first term in the final step on the right hand side of Eq. (56) can be alternatively written in two
ifferent forms. For the first form, we simplify this term as follows

−

∫
Γ

s f
t

γs f PΓ : ∇Γw2dΓt = −

∫
Γ

s f
t

γs f PΓ : ∇w2 PΓdΓt

= −

∫
Γ

s f
t

γs f PΓ PT
Γ : ∇w2dΓt

= −

∫
Γ

s f
t

γs f PΓ : ∇w2dΓt .

(57)

q. (57) is identical to the one employed in [50] for two-fluid mixtures and involves no surface gradients in the
ariational formulation. The first and the last lines in Eq. (57) follow from the properties ∇Γw2

= ∇w2 PΓ and
PΓ PT

Γ = PΓ , respectively.
For the second form, we define an identity function as Id(x) := x for x ∈ Γ

s f
t satisfying PΓ = ∇Γ Id [50]. In

this case, the first term on the right hand side of Eq. (56) can be written as −
∫
Γ

s f
t
γs f ∇Γ Id : ∇Γw2dΓt , which is

identical to the form employed in [22]. The identity function Id is also related to κs f as κs f n f
= ∆Γ Id, where ∆Γ

is the surface Laplacian.

Remark 3.2. An alternative approach of including the traction from the solid-fluid surface tension is to transform
the left-hand side of Eq. (57) into a volume integral as in the continuum surface methods [59]; see [26,50] and
eferences therein for more details.

.3. Semi-discrete formulation of the coupled fluid–structure interaction problem

To obtain the semi-discrete variational formulation, we substitute the functional spaces defined in Section 3.2
by finite-dimensional subspaces. We define the discrete trial functional spaces as, V p

h ⊂ V p
, Vvh ⊂ Vv , Vc1

h ⊂ Vc1 ,
Vc2

h ⊂ Vc2 , Vµ1
h ⊂ Vµ1 , Vµ2

h ⊂ Vµ2 , V s
h ⊂ V s and Vm

h ⊂ Vm . We define the corresponding discrete weight function
spaces as W p

h ⊂ W p
, Wv

h ⊂ Wv
, Wc1

h ⊂ Wc1 , Wc2
h ⊂ Wc2 , Wµ1

h ⊂ Wµ1 , Wµ2
h ⊂ Wµ2 , W s

h ⊂ W s and
Wm

h ⊂ Wm .
Residual based approximations [60] are employed to model the fine-scale components p′, v′ as

ρv′
= −τm Rm, p′

= −ρτc Rc, (58)

here, Rm and Rc are the residuals of the momentum and continuity equations, given by

Rm = ρ
(
∂t vh |̂x + (vh − v̂h) · ∇vh

)
−∇ · σ

f
h − ρ f , (59a)

R = ∇ · v . (59b)
c h

12
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In Eq. (59), σ
f
h is the discrete counterpart of σ f evaluated from Eq. (8) by replacing p, v, c1 and c2 with their

discrete counterparts, given by ph , vh , c1h and c2h respectively. The stabilization parameters τm and τc in Eq. (58)
re computed as

τm =

(
4

(∆t)2 + (vh − v̂h) · G(vh − v̂h) + C I

(
η

ρ

)2

G : G
)−1/2

, (60a)

τc =
1

tr(G)τm
. (60b)

In Eq. (60), ∆t is the time step, C I =
1
12 [23] is a constant and G is the element metric tensor [38], i.e., G i j =

d
k=1

∂ζk
∂xi

∂ζk
∂x j

, where ∂ζ

∂x is the inverse Jacobian of the mapping between parametric and physical domains.

The variational formulation of the coupled FSI problem can be stated as follows: find ph ∈ V p
h , vh ∈ Vvh ,

c1h ∈ Vc1
h , c2h ∈ Vc2

h , µ1h ∈ Vµ1
h , µ2h ∈ Vµ2

h , uh ∈ V s
h and um

h ∈ Vm
h such that ∀w1

h ∈ W p
h , w2

h ∈ Wv

h ,
3
h ∈ Wc1

h , w
4
h ∈ Wc2

h , w5
h ∈ Wµ1

h , w6
h ∈ Wµ2

h , ws
h ∈ W s

h and wm
h ∈ Wm

h

B f
V M S

((
w1

h,w
2
h, w

3
h, w

4
h, w

5
h, w

6
h

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
+ Bs(ws

h, uh) + Bm(wm
h , um

h )
= T s f (w2

h,
(
c1h, c2h

))
,

(61)

where

B f
V M S

((
w1

h,w
2
h, w

3
h, w

4
h, w

5
h, w

6
h

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
=∫

Ω
f

t

w1
h∇ · vhdΩ f

t +

∫
Ω

f
t

w2
h · ρ

(
∂t vh |̂x + (vh − v̂h) · ∇vh

)
dΩ f

t

+

∫
Ω

f
t

∇w2
h : σ

f
h dΩ f

t −

∫
Ω

f
t

w2
h · ρ f dΩ f

t

+

∫
Ω

f
t

w3
h

(
∂t c1h |̂x + (vh − v̂h) · ∇c1h

)
dΩ f

t +

∫
Ω

f
t

M0

Σ1
∇w3

h · ∇µ1hdΩ f
t

+

∫
Ω

f
t

w4
h

(
∂t c2h |̂x + (vh − v̂h) · ∇c2h

)
dΩ f

t +

∫
Ω

f
t

M0

Σ2
∇w4

h · ∇µ2hdΩ f
t

+

∫
Ω

f
t

w5
hµ1hdΩ f

t −

∫
Ω

f
t

3
4
ϵΣ1∇w

5
h · ∇c1hdΩ f

t +

∫
Γ

s f
t

w5
h

3
4
ϵΣ1h1dΓt

−

∫
Ω

f
t

w5
h

(
12
ϵ
Σ1c1h(1 − c1h)(1 − 2c1h) −

12δ
ϵ

c1hc2h(1 − c1h − c2h)
)

dΩ f
t

+

∫
Ω

f
t

w6
hµ2hdΩ f

t −

∫
Ω

f
t

3
4
ϵΣ2∇w

6
h · ∇c2hdΩ f

t +

∫
Γ

s f
t

w6
h

3
4
ϵΣ2h2dΓt

−

∫
Ω

f
t

w6
h

(
12
ϵ
Σ2c2h(1 − c2h)(1 − 2c2h) −

12δ
ϵ

c1hc2h(1 − c1h − c2h)
)

dΩ f
t

+

nel∑
e=1

∫
Ω

f,e
t

τm

(
(vh − v̂h) · ∇w2

h +
∇w1

h

ρ

)
· RmdΩ f

t

+

nel∑
e=1

∫
Ω

f,e
t

ρτc Rc∇ · w2
hdΩ f

t −

nel∑
e=1

∫
Ω

f,e
t

τmw2
h ·
(
Rm · ∇vh

)
dΩ f

t

−

nel∑
e=1

∫
Ω

f,e
t

∇w2
h

ρ
:
(
τm Rm ⊗ τm Rm

)
dΩ f

t

−

nel∑∫
f,e

τm

ρ
w3

h Rm · ∇c1hdΩ f
t −

nel∑∫
f,e

τm

ρ
w4

h Rm · ∇c2hdΩ f
t

(62)
e=1 Ωt e=1 Ωt
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w
i
i
a
f

T
w

and

T s f (w2
h,
(
c1h, c2h

))
= −

∫
Γ

s f
t

γs f PΓ : ∇Γw2
hdΓt . (63)

In Eq. (62), nel refers to the total number of elements on the fluid mesh and Ω
f,e

t is the fluid domain occupied by a
finite element e at time t . Some assumptions employed to obtain the stabilized variational formulation in Eq. (62)
include [60,61]:

1. v′
= 0 and p′

= 0 on Γ
s f
t ∪ Γ

f
t .

2.
∫
Ω

f
t
∇

sw2
h : 2η∇sv′dΩ f

t = 0, which arises from the orthogonality condition of the projection.

3. ∂tv
′
= 0 on Ω

f
t .

The finite-dimensional trial and weight function spaces are defined using splines through the concept of IGA. IGA is
a generalization of finite elements that has reached significant success in computational phase-field modeling [62–64]
because it permits to define basis functions with controllable inter-element continuity and because of its robustness.
In our algorithm, the solution variables and their corresponding weight functions are defined as,

ph(x, t) =
∑
A∈I f

pA(t)NA(x, t), w1
h(x, t) =

∑
A∈I f

w1
A(t)NA(x, t), (64)

uh(X, t) =
∑
A∈Is

uA(t)N̂A(X), ws
h(X) =

∑
A∈Is

ws
A N̂A(X), (65)

um
h (̃x, t̃) =

∑
A∈I f

ûA (̃t)ÑA (̃x, t̃), wm
h (̃x, t̃) =

∑
A∈I f

wm
A ÑA (̃x, t̃), (66)

where the coefficients pA, w
1
A, uA, ws

A, ûA, wm
A are the control variables, A is a control variable index and N̂A is a

spline basis function defined on Ω0. Additionally, I f and Is are the index sets of the fluid and solid control variables,
respectively. The basis function NA(x, t) is defined as the push forward of N̂A to Ωt , which can be mathematically
written as NA(x, t) = N̂A ◦φh−1

(x, t) for all A ∈ I f while the basis function ÑA (̃x, t̃) is the push forward of N̂A to

the spatial domain at time t̃ , i.e., ÑA (̃x, t̃) = N̂A ◦ φ̂h−1
(̃x, t̃) for all A ∈ I f . We define the N̂A’s as quadratic splines

ith C1-inter-element continuity everywhere except along four parametric lines that enclose the solid domain and
nclude Γ

s f
0 . The continuity of the N̂A’s perpendicular to those four parametric lines is C0. Although our weak form

s well defined for C0 finite elements, we used splines with C1 interelement continuity everywhere except in the
forementioned four parametric lines because C1 splines have been shown to have higher accuracy per degree of
reedom than C0 finite elements [65]. The mesh velocity in the spatial configuration is computed as

v̂h(x, t) =
∑
A∈I f

∂ ûA(t)
∂t

NA(x, t). (67)

he remaining solution variables (vh, c1h, c2h, µ1h, µ2h) and their corresponding weight functions (w2
h, w

3
h, w

4
h, w

5
h,

6
h) are defined analogous to ph(x, t) and w1

h(x, t) in Eq. (64).

3.4. Time integration and solution strategy

We perform time integration of our equations by employing the generalized-α method [66,67], which has been
successfully implemented in phase-field modeling [62] and fluid structure interaction [21,23,68].

Let U, U̇, Ü be the global vectors of control variables for the fluid–solid system, its first and second
time derivatives respectively. Similarly, we denote V , V̇ , V̈ as the global vectors of control variables of mesh
displacements, velocities and accelerations respectively. We now define the residual vectors as

Rc
= {Rc

A}, Rm
= {Rm

A,i }, Rc1 = {Rc1
A }, (68)

Rc2 = {Rc2
A }, Rµ1 = {Rµ1

A }, Rµ2 = {Rµ2
A }, (69)

and
mesh mesh
R = {RA,i }, (70)
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Rc
A = B f

V M S

((
NA, 0, 0, 0, 0, 0

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
,

Rm
A,i = B f

V M S

((
0, NAei , 0, 0, 0, 0

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
+ Bs(N̂Aei , uh) − T s f (NAei ,

(
c1h, c2h

))
,

Rc1
A = B f

V M S

((
0, 0, NA, 0, 0, 0

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
,

Rc2
A = B f

V M S

((
0, 0, 0, NA, 0, 0

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
,

Rµ1
A = B f

V M S

((
0, 0, 0, 0, NA, 0

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
,

Rµ2
A = B f

V M S

((
0, 0, 0, 0, 0, NA

)
,
(

ph, vh, c1h, c2h, µ1h, µ2h
)
; v̂h

)
,

Rmesh
A,i = Bm(ÑAei , um

h ),

(71)

here i is the index of the spatial dimension and ei is the i th cartesian basis vector. We state our time
tepping scheme as follows: find the discrete global vectors of control variables at the time step tn+1, namely,

Un+1, U̇n+1, Ün+1, V n+1, V̇ n+1, V̈ n+1 when Un, U̇n, Ün, V n, V̇ n, V̈ n are given at the time step tn such that

Rc(Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,
Rm(Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,
Rc1 (Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,
Rc2 (Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,
Rµ1 (Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,
Rµ2 (Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,

Rmesh(Un+α f , U̇n+α f , Ün+αm , V n+α f , V̇ n+α f , V̈ n+αm ) = 0,

(72)

here

(·)n+α f = (·)n + α f

(
(·)n+1 − (·)n

)
,

(·)n+αm = (·)n + αm

(
(·)n+1 − (·)n

)
,

(73)

nd
U̇n+1 = U̇n +∆t

(
(1 − ξ )Ün + ξ Ün+1

)
,

Un+1 = Un +∆tU̇n +
(∆t)2

2

(
(1 − 2β)Ün + 2βÜn+1

)
,

V̇ n+1 = V̇ n +∆t
(
(1 − ξ )V̈ n + ξ V̈ n+1

)
,

V n+1 = V n +∆t V̇ n +
(∆t)2

2

(
(1 − 2β)V̈ n + 2β V̈ n+1

)
.

(74)

n Eq. (73), (·) denotes the global vector of control variables. To attain second-order accuracy and unconditional
tability, we choose the parameters α f , αm, ξ and β as per [7,21].

To solve the discrete formulation of the coupled FSI problem, we adopt a quasi-direct solution strategy; see [21]
or more details. We solve the fluid and solid equations in a monolithic fashion, i.e., fully coupled, while the
quations of mesh motion are solved separately using the solution from the former as an input. We solve the
onlinear system of equations given by Eqs. (72) using a Newton–Raphson iterative procedure with a backtracking
ine search while we solve the linear solver in each Newton iteration using an Algebraic Multigrid with an Additive
chwarz method as a smoother. We check the convergence of the nonlinear solver by ensuring the relative or
bsolute tolerance of each residual vector in Eq. (72) except Rmesh is smaller than 10−3 and 10−5, respectively. For

Rmesh , we set the norm of the change in the solution between each Newton step to be 10−2. Because the mesh
otion is arbitrary, as long as the boundary conditions are satisfied and the mesh quality is good enough, a larger

olerance for Rmesh does not compromise the accuracy of the simulation. Additionally, we set the linear iterative
olver to converge until the relative reduction in the preconditioned residual norm is 10−5. Our code was developed
sing PetIGA [69], an open-source high-performance computing framework employing IGA and built on top of

ETSc [70].
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Fig. 2. Equilibrium numerical solutions for different surface tensions: (a) γ12 = 46.0 mN/m, γ13 = 46.0 mN/m and γ23 = 46.0 mN/m,
b) γ12 = 46.0 mN/m, γ13 = 57.5 mN/m and γ23 = 80.5 mN/m, (c) γ12 = 46.0 mN/m, γ13 = 77.0 mN/m and γ23 = 46.0 mN/m,

(d) γ12 = 46.0 mN/m, γ13 = 207.0 mN/m and γ23 = 230.0 mN/m. The red, blue and green colored regions correspond to c2 ≥ 0.5, c3 ≥ 0.5
nd c1 ≥ 0.5, respectively. We choose a computational domain of size 1000 µm × 1000 µm and we spatially discretize this domain with a
niform mesh of 2562 quadratic elements. The initial conditions are defined by a circular drop of fluid 2 with an initial radius R0 = 150 µm
t the center (xc, yc) = (500 µm, 500 µm). We impose periodic boundary conditions at the left and right boundaries. At the top and bottom
oundaries, we impose no-slip boundary conditions for the velocity, zero diffusive mass flux and neutral wettability. The density and dynamic
iscosity of the fluids are equal to those of glycerol, i.e., ρ = 1260 kg/m3 and η = 1.412 Pa · s. Also, we use ϵ = 10 µm,M0 = 10−12 m3 s/kg

and ∆t = 10.0 µs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Numerical examples

In this Section, we present two-dimensional numerical examples of elasto-capillarity with compound droplets
using the proposed computational model. We validate our ternary phase field model in our first numerical example.
In our subsequent numerical examples, we simulate the static wetting of a compound droplet on a soft solid and
the folding of an elastic sheet induced by various types of compound droplets. We neglect the body forces in all
our numerical examples, i.e., f = 0 and f s

= 0.

4.1. Equilibrium shape of a liquid lens

We study a classical example of liquid lens which has been used as a benchmark for validating ternary phase
field models. Since this example serves as a validation case for the fluid mechanics formulation alone, we do not
solve the equations of solid dynamics and mesh motion. We initially place three immiscible fluids in contact with
each other using the following initial conditions

c2 =
1
2

(
1 + tanh

R0 − d0(x)
2ϵ

)
, (75a)

c1 = max
(

1
2

(
1 + tanh

y − yc

2ϵ

)
− c2, 0

)
, (75b)

where R0 is the initial droplet radius and d0(x) is the distance between x and the initial droplet center (xc, yc). A
fluid lens is attained at equilibrium. The shape of the lens depends on the surface tensions at the three interfaces. The
static contact angles (see Fig. 2) at the two triple point junctions at equilibrium satisfy the following relation [42],

sinΘ1

γ23
=

sinΘ2

γ13
=

sinΘ3

γ12
. (76)

The static contact angles at equilibrium can also be analytically computed from Neumann’s law [42] given by

Θi = cos−1

(
−
γ 2

i j + γ
2
ik − γ

2
jk

2γi jγik

)
, ∀i = 1, 2, 3, i ̸= { j, k} and j ̸= k. (77)

The analytical distance between the triple point junctions is given by [71]

dana = 2

√ πR2
0(

π−Θ1 − cot (π −Θ1)
)
+

(
π−Θ3 − cot (π −Θ3)

) . (78)
sin2(π−Θ1) sin2(π−Θ3)
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1
a

Fig. 3. (Color figure online) Comparison of the (a) static contact angles and (b) distance between the triple point junctions from the present
simulation (symbols) and analytical (black solid line) results. We choose γ12 = 46.0 mN/m for all cases. The subscripts sim and ana denote
the results from our simulations and analytical expressions, respectively. The gray shaded inset in (a) and (b) correspond to ±3.5% and
±4% deviation lines from the black solid line, respectively.

For the purpose of numerical validation, we simulate four cases with different surface tensions. We show
the equilibrium numerical solutions in Fig. 2, which are in excellent agreement with the results previously
reported [37,72]. In Figs. 2a and 2c, the lens is placed symmetrically with respect to fluids 1 and 3. However,
in Figs. 2b and 2d, γ12 < γ23 and the lens moves closer to fluid 1, which increases the contact area between fluids

and 2. We perform a quantitative validation of our results in Fig. 3 by numerically computing the static contact
ngles and distance between the triple point junctions dsim. For numerical estimation of dsim in Fig. 3, we choose the

triple points corresponding to (c1, c2, c3) = (0.33, 0.33, 0.33). As seen in Fig. 3, our numerically computed results
are within a relative error of ±3.5% to ±4.0% from the analytical solutions given by Eqs. (77) and (78).

4.2. Static wetting of a compound droplet on soft substrate

When a liquid droplet is placed on a flat and rigid solid, the droplet attains a spherical shape and contacts the
solid at an equilibrium contact angle given by Eq. (19). When the solid is sufficiently soft or when the droplet
is very small, Eq. (19) breaks down. In that case, the droplet attains an apparent contact angle (with respect to
the horizontal), which is different from that given by Eq. (19). The static wetting of a single droplet on a soft
solid has been previously studied using experiments [73] and simulations [22,23,25]. In [73], the experiments were
performed by placing a glycerol droplet on a thin sheet of silicone gel. A wetting ridge was formed when the
droplet–air surface tension pulled up the contact line while a dimple was created due to the excess Laplace pressure
in the droplet. Here, we study computationally the static wetting of a compound droplet on a soft substrate. Before
doing that, and for the sole purpose of validation, we verified that our code and formulation produce quantitatively
accurate results when applied to a problem with two fluids only. We accomplished this by taking c2 = γs f = 0 in
our model, and verifying that our results (not shown) are identical to those reported in [23, Sec. 4.3].

We now simulate the static wetting of a Janus compound droplet when placed on a soft solid. In the Janus
compound droplet configuration, two droplets are in contact with each other; see Fig. 4a. This compound droplet
configuration has four triple contact points, i.e., one fluid–fluid–fluid and three fluid–solid–fluid. We consider the
fluids in the compound droplet to be water (fluid 1) and oil (fluid 2), both of which are in contact with a surrounding
fluid, which we assume to be air (fluid 3). Unless otherwise mentioned, we choose the parameters for this simulation

from Table 1 and our time step is ∆t = 20 µs. Our model assumes that the three fluids share the same density
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Fig. 4. Static wetting of a Janus compound droplet on a soft solid. (a) Steady state configuration showing how the compound droplet deforms
he solid. The inset shows the schematic of the computational domain, initial conditions and geometrical parameters in the simulations. The
gure in the inset is not drawn to scale. (b) Horizontal and vertical displacements of the solid, respectively. We initially place the droplets
t (500.0 µm, 50.0 µm). We impose zero velocity in the normal directions at the left, right and top boundaries of the domain. At the bottom
oundary, we impose zero velocity in both the normal and tangential directions. We choose R1 = 225.5 µm and R2 = 225.5 µm. Blue
nd red colored droplets denote water and oil, respectively. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Table 1
Parameter values employed for the elasto-capillary simulations.

Symbol Description Value

η Dynamic viscosity of the fluid 1 Pa · s
ρ Fluid density 103 kg/m3

γ13 Surface tension at the interface between fluids 1 and 3 73 mN/m
γ23 Surface tension at the interface between fluids 2 and 3 55 mN/m
γ12 Surface tension at the interface between fluids 1 and 2 40 mN/m
γ1s Surface tension at the interface between the solid and fluid 1 12 mN/m
γ2s Surface tension at the interface between the solid and fluid 2 45 mN/m
γ3s Surface tension at the interface between the solid and fluid 3 31 mN/m
M0 Mobility coefficient 10−14 m3s/kg
ν Poisson’s ratio 0.45
ρs

0 Mass density of solid in the referential configuration 103 kg/m3

and dynamic viscosity. We have used the properties of fluid 2, i.e., ρ = 103 kg/m3 and η = 1 Pa · s [74]. The soft
substrate is a silicone gel with E = 3 kPa [73] and ρs

0 = 103 kg/m3. We use γ3s = 31 mN/m, which is representative
f the surface tension between silicone gel and air [73]. We take γ1s = 50 mN/m and γ2s = 17 mN/m. Using

Eq. (19), we get θ13 = 105◦, θ23 = 75◦ and θ12 = 146◦.
We show the schematic of our computational domain, initial conditions and geometrical parameters in the inset

f Fig. 4a. Henceforth, we use the notations R1 and R2 to denote the initial radii of droplets comprising fluid 1
and fluid 2, respectively. We choose both droplets to have the same volume. We also perform a refinement study
by spatially discretizing the computational domain with a uniform mesh of 300 × 150 (coarse mesh), 400 × 200
(medium mesh) and 500 × 250 (fine mesh) quadratic elements. For our refinement study, we fix the ratio of diffuse
interface length scale ϵ and the mesh element width to 2. This is because previous research [75] has shown that the
iffuse fluid–fluid interface should be thin enough and well resolved to accurately capture the shape and height of
he wetting ridge. We choose ϵ = 4 µm, 5 µm and 6.7 µm for the coarse, medium and fine mesh sizes respectively.
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Fig. 5. (Color figure online) Vertical displacement of the fluid–solid interface u y along the horizontal direction at t = 90 ms (assumed to
be the steady state) for three different mesh refinement levels. The zoomed insets show views of the wetting ridges. The horizontal dashed
line in black represents the fluid–solid interface before solid deformation.

Fig. 4a shows our simulations results at t = 90 ms (assumed to be the steady state). Fig. 4a also shows that
Janus compound droplets produce three wetting ridges at the fluid–solid interface while single-component droplets
produce only two. These ridges are areas of significant deformation in the solid due to the action of concentrated
forces at the diffuse fluid–fluid interfaces. We show the horizontal and vertical displacements of the solid in Fig. 4b.
Fig. 4b shows that the magnitudes of the horizontal and vertical solid displacements are highest around the region
where the fluid–fluid interface contacts the solid. We also show the vertical displacement of the fluid–solid interface
at the steady state for three different mesh refinement levels in Fig. 5. The depth of the dimple below the water
droplet is larger than that below the oil droplet. This is a consequence of the higher Laplace pressure in the water
droplet than in the oil droplet.

4.3. Capillary origami of compound droplets

The spontaneous wrapping of a droplet with an elastic sheet driven by capillary forces has been termed capillary
origami and studied experimentally [4]. The experiments in [4] were performed by placing a thin elastic sheet on
top of a rigid surface. Then, a liquid droplet was deposited on the thin elastic sheet, which led to the folding of the
elastic sheet. Modeling this problem in its entirety would require a contact algorithm. Another challenge is that the
fluid domain undergoes a topological change. Thus, we simplify the problem by ignoring the underlying rigid solid
surface and neglecting gravity forces. Here, we focus on the capillary folding of a flexible sheet when in contact
with a compound droplet. We consider the fluids in the compound droplets to be water (fluid 1) and oil (fluid 2),
both of which are in contact with a surrounding fluid, which we assume to be air (fluid 3).

Unless otherwise mentioned, we choose the parameters for our simulations from Table 1 and our time step
is ∆t = 20 µs. The flexible sheet is a soft hydrogel with E = 30 kPa [76,77] and ρs

0 = 103 kg/m3. Unless
otherwise mentioned, we assume the sheet to be hydrophilic–oleophobic, i.e., water attracting and oil repelling.
On hydrophilic and hydrophobic surfaces, water droplet attains static contact angles of less than 90◦ and more
than 90◦, respectively. The combined hydrophilicity and oleophobicity of a surface can be controlled either with
a fluorosurfactant [78] or by spray coating [79]. To enforce the combined hydrophilicity and oleophobicity of the
sheet, we fix γ1s = 12 mN/m and γ2s = 45 mN/m. Using Eq. (19), we get θ13 = 75◦, θ23 = 105◦ and θ12 = 34◦.

We show the schematic of our computational domain, initial conditions and geometrical parameters in Fig. 6.
Fig. 6 shows the four different types of compound droplets that we study, namely, Janus, collar, lens and
encapsulated. These four types represent the most common compound droplet configurations. The initial geometry
of the solid is identical in all examples. We spatially discretize the computational domain with a uniform mesh of

400 × 200 quadratic elements.
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Fig. 6. (Color figure online) Schematic of the computational domain, initial conditions and geometrical parameters in the simulations involving
(a) Janus, (b) collar, (c) lens and (d) encapsulated droplet configurations. Figures are not drawn to scale.

4.3.1. Janus compound droplets
In the Janus compound droplet configuration, two droplets are in contact with each other; see Fig. 6a. This

compound droplet configuration has four triple contact points, i.e., one fluid–fluid–fluid and three fluid–solid–fluid.
In our simulation, both droplets have the same volume. We show the temporal evolution of the Janus droplet and
sheet in Fig. 7. Our focus is on the effects of surface wettability on the folding of the sheet. As shown in Fig. 7,
we simulate three cases with different surface wettabilities. In Case I, we enforce all solid–fluid surface tensions
to be equal, i.e., γ1s = γ2s = γ3s = 31 mN/m. In Case II, we assume a higher surface wettability of the sheet

ith oil by using γ1s = 50 mN/m and γ2s = 17 mN/m. In Case III, we assume a higher surface wettability of the
heet with water by using γ1s = 12 mN/m and γ2s = 45 mN/m. The initial positions and initial volumes of each
roplet are the same for all cases. In all cases, we observe progressive folding of the elastic sheet as time advances.
lthough the initial condition is symmetric, the folding develops in a non-symmetric way, even for Case I in which

ll solid–fluid surface tensions are equal. In Case I, the symmetry is broken because the fluid–fluid surface tensions
12 and γ23 are different. The symmetry breaking is a particular feature of capillary origami of compound droplets
hat does not easily occur with two fluids only. The presence of the third wetting ridge at an intermediate point
etween the left and right contact lines seems to hinder the folding process.

We show the temporal evolution of the folding angles for Cases I and III in Fig. 8. The folding angle is defined
s per the schematic in Fig. 8a. A smaller folding angle signifies an easier folding of the sheet. We observe that
he folding of the sheet is determined by the effects of the surface tension of the fluid with air and the surface
ettability of the sheet with the fluid. The sheet gets better folded if the surface tension of the fluid with air or the

urface wettability of the sheet with the fluid is high. In Case I, the surface wettabilities of the sheet with water
nd oil are the same. But the surface tension of water with air is higher than that of oil with air, and this explains
hy water better folds the sheet than oil in Case I; see Fig. 8a. In addition to the large surface tension of water
ith air, the surface wettability of the sheet with water is higher than that of the sheet with oil in Case III. That is
hy, water better folds the sheet than oil in this case as well; see Fig. 8c.
Figs. 7 and 8 show that both the surface wettability and fluid–fluid surface tensions play a crucial role in folding

he sheet. This may be important in applications involving self-assembly of micro- and nano-structures.

.3.2. Collar compound droplets
In the collar compound droplet configuration, a central droplet is surrounded by two droplets on either sides.
he droplets on the sides are comprised of the same fluid, which is different from that of the central droplet;
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Fig. 7. Capillary origami of Janus compound droplets for (a) Case I: γ1s = 31 mN/m, γ2s = 31 mN/m and γ3s = 31 mN/m, (b) Case II:
γ1s = 50 mN/m, γ2s = 17 mN/m and γ3s = 31 mN/m, (c) Case III: γ1s = 12 mN/m, γ2s = 45 mN/m and γ3s = 31 mN/m. These cases
correspond to (a) θ13 = 90◦ and θ23 = 90◦, (b) θ13 = 105◦ and θ23 = 75◦ and (c) θ13 = 75◦ and θ23 = 105◦. We choose R1 = 145 µm,
R2 = 145 µm and ϵ = 15 µm. The droplets are initially placed at (500.0 µm, 220.0 µm). Blue and red colored droplets denote water and
oil, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. (Color figure online) (a) Definition of the folding angles α1 (for fluid 1) and α2 (for fluid 2). For fluid 1, the angle is defined with
espect to the average slope of the solid sheet in one third of the solid length wetted by fluid 1. An analogous definition applies to fluid
. (b) and (c) Temporal variation of the folding angles in Janus compound droplets for Case I and Case III, respectively.

ee Fig. 6b. This compound droplet configuration has six triple contact points, i.e., two fluid–fluid–fluid and four
uid–solid–fluid. This leads to the formation of four ridges in the solid. We perform two simulations. In the first
ne (Fig. 9a), the side droplets are comprised of fluid 1, while in the second one (Fig. 9b), the side droplets are
omprised of fluid 2. In our simulations, the droplets on either sides of the central droplet have the same volume.
he droplet configuration in Fig. 9b better folds the sheet than in Fig. 9a because of the higher volume of water
roplet which is in contact with the sheet. In [80], the authors demonstrate the capillary folding of a sheet in the
resence of only one droplet. They also study the dependence of the folding angle at equilibrium on the droplet

olume. The authors report the folding angle to decrease with an increase in the droplet volume. Our observation
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Fig. 9. Capillary origami of collar compound droplets. We choose ϵ = 15 µm, (a) R1 = 60 µm and R2 = 80 µm, (b) R1 = 80 µm
and R2 = 60 µm, respectively. In both cases, the droplets are initially placed at (413.4 µm, 220.0 µm), (500.0 µm, 220.0 µm) and
(586.6 µm, 220.0 µm). Blue and red colored droplets denote water and oil, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Capillary origami of lens compound droplets. We choose ϵ = 15 µm, (a) R1 = 75.0 µm and R2 = 37.5 µm, (b) R1 = 37.5 µm and
R2 = 75.0 µm, respectively. The droplets are initially placed at (a) (500.0 µm, 220.0 µm) and (500.0 µm, 332.5 µm), (b) (500.0 µm, 332.5 µm)
and (500.0 µm, 220.0 µm), respectively. Blue and red colored droplets denote water and oil, respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

on the dependence of the folding angle with the water droplet’s volume also shows that the droplet volumes play
a crucial role in folding the sheet.

4.3.3. Lens compound droplets
In the lens compound droplet configuration, a fluid droplet is placed over another fluid droplet; see Fig. 6c. We

show the temporal evolution of the droplet and sheet in Fig. 10 when water is placed over oil and vice-versa. This
compound droplet configuration initially has three triple contact points, i.e., two fluid–solid–fluid and one fluid–
fluid–fluid; see Fig. 6. As the compound droplet evolves with time, it attains four triple contact points, i.e., two
fluid–solid–fluid and two fluid–fluid–fluid; see Fig. 10. We observe a better folding of the sheet when oil is placed
over water (Fig. 10a) than when water is placed over oil (Fig. 10b). This is due to the higher surface wettability
of the sheet with water than oil. In [23], the authors simulate the capillary folding of a sheet in the case of a
single droplet only. They observed a faster folding of the sheet when using a wetting droplet than when using a
non-wetting droplet. This implies that, at the same time instant, the authors should observe a better folding of the
sheet when the surface wettability of the sheet with the fluid is high. Using theoretical calculations, the authors
in [80] also report a better folding of the sheet when the sheet is hydrophilic in contrast to a hydrophobic sheet.
Our conclusions from Fig. 10 on the dependence of the folding angle with the surface wettability of the sheet match
the observations in [23,80].

4.3.4. Encapsulated compound droplets
In the encapsulated compound droplet configuration, a fluid encloses another immiscible fluid; see Fig. 6d. This
compound droplet configuration has four triple contact points. We show the temporal evolution of the droplet and
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Fig. 11. Capillary origami of encapsulated compound droplets. We choose ϵ = 15 µm, (a) R1 = 100 µm and R2 = 145 µm, (b) R1 = 145 µm
and R2 = 100 µm, respectively. In both cases, the droplets are initially placed at (500.0 µm, 220.0 µm) and (500.0 µm, 220.0 µm). Blue
and red colored droplets denote water and oil, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 12. (Color figure online) Dynamical transition in the compound droplet configuration from encapsulated-collar-encapsulated type. We
choose ϵ = 15 µm, R1 = 145 µm and R2 = 94 µm. The droplets are initially placed at (500.0 µm, 220.0 µm) and (500.0 µm, 262.0 µm).

e select the physical parameters with γ12 = 42 mN/m, γ13 = 73 mN/m, γ23 = 84 mN/m, γ1s = 18 mN/m, γ2s = 50 mN/m and
γ3s = 31 mN/m. These chosen values yield θ13 = 80◦ and θ12 = 40◦.

sheet in Fig. 11. In Fig. 11a, we observe that the length of solid wetted by oil decreases with time. The limited
contact of oil with the sheet at t = 20 ms is due to the large surface tension at the solid-oil interface. Comparing

igs. 11a and 11b, we see that the sheet is better folded when water is enclosed in oil. This is because the volume
f the water droplet which is in contact with the sheet is higher in Fig. 11a than in 11b.

For a given set of physical parameters like volumes of the droplet or surface tensions, recent work [81] has
eported a dynamic transition in the compound droplet configuration. Understanding this transition is of pivotal
mportance in industrial applications where generation or reconfiguration of compound droplets is also possible by
imply changing these physical parameters [82,83]. For example, encapsulated compound droplets are used in drug
elivery applications [84]. In these applications, a transition in the compound droplet configuration could possibly
ead to an escape of the enclosed fluid, which could prove fatal. Here, we simulate an example to show this dynamic
ransition in the compound droplet configuration; see Fig. 12. For this example, we choose oil with a higher surface

tension at the interface with air and water such that γ23 = 84 mN/m and γ12 = 42 mN/m. We also change the
surface tension at the water–solid and oil–solid interfaces, i.e., γ1s = 18 mN/m and γ2s = 50 mN/m. These values
yield static contact angles of θ13 = 80◦ and θ12 = 40◦ from Eq. (19). We start with an initially encapsulated

droplet configuration where water encloses oil. With the passage of time, we notice a transition to a collar droplet
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Fig. 13. (Color figure online) Solid mesh and streamlines of the fluid velocity during the dynamical transition of the compound droplet
from an encapsulated configuration at (a) t = 16 ms, (b) t = 32 ms and (c) t = 69 ms. The arrows indicate the direction of the fluid
velocity. The streamlines and the arrows are colored by the magnitude of the fluid velocity. Fluid–fluid interfaces are represented by black
solid lines. The zoomed inset in (c) shows a small region of the computational mesh at t = 69 ms.

configuration at t = 2 ms. Due to the higher surface wettability of the sheet with water than with oil, the water
droplets eventually merge at t = 48 ms. Later, the droplet configuration transits from a collar at t = 48 ms
to an encapsulated droplet configuration at t = 69 ms, with oil now enclosing water. This example suggests a
potential way of controlling the compound droplet configuration by simply varying the surface wettabilities or
droplet volumes.

We show the temporal evolution of the streamlines of the fluid velocity in Fig. 13. The streamlines are
symmetrical with respect to the vertical axis due to our assumptions in geometry. The dynamic folding of the
sheet results in a pair of counter-rotating vortices at the base of the droplets and near the walls of the computational
domain. The fluid velocity inside the central droplets at t = 16 and 32 ms is mainly vertically oriented without the
presence of any vortices. The streamlines at t = 69 ms show a notable exception, due to two pairs of counter-rotating
vortices inside the central droplet. The inset in Fig. 13c shows a close-up view of the solid and fluid meshes. The
solid mesh was not distorted during the motion. However, the fluid mesh has undergone significant deformation.
The image shows that 20 layers of fluid elements adjacent to the fluid–solid interface are less distorted. This is
because we used a stiffer material for the fictitious elastic problem that defines mesh motion, which helped us to
avoid excessive element distortion that would have led to singular mapping.

In all, this example illustrates the complexity of elasto-capillary folding with compound droplets and highlights
the need for high-fidelity computational models.

5. Conclusions

We have presented a mathematical model and algorithm for simulation of elasto-capillary FSI problems involving
three immiscible fluids, for example, in compound droplets. We have employed a phase-field model given by the
ternary NSCH equations and a neo-Hookean model for the solid. Our motivation for choosing the phase-field model

is because it avoids contact-line stress singularities, describes the dynamic wetting behavior, captures moving contact
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lines and enforces thermodynamical consistency of the model. We have leveraged a fluid–solid surface energy
function, which controls the fluid–solid wettability and determines the tractions transmitted to the solid at the
fluid–solid interface. We have additionally enforced consistency conditions like in [37] to derive the surface energy
function and wettability boundary conditions. We have performed spatial discretization using IGA and employed
generalized-α method for time integrating the semi-discrete equations. We have also adopted a boundary-fitted
approach for our FSI formulation because this approach can accurately compute the capillary forces at the fluid–solid
interface.

Using our computational model, we have successfully simulated the static wetting of Janus compound droplet on
a soft solid and the elasto-capillary folding of a thin elastic solid under the action of different types of compound
droplets (Janus, collar, lens and encapsulated). In our static wetting simulations, we observed the magnitudes of the
horizontal and vertical solid displacements to be highest where the droplet contacts the solid. In our simulations
of capillary origami, we observed the presence of more than two wetting ridges in Janus, encapsulated and collar
droplets, a phenomenon that is unique to compound droplets. These ridges appeared between the left and right
contact lines, and hindered the folding of the sheet. The folding of the sheet was observed to depend on the
surface wettability of the sheet, fluid–fluid surface tensions and droplet volumes. We have also simulated a dynamic
transition in the compound droplet configuration from an encapsulated to a collar type. Achieving this transition
was possible by changing the relative volumes of the fluid, surface wettability or the fluid–fluid surface tensions.
Our numerical examples reveal the complexity of elasto-capillarity involving compound droplets, which motivates
the need for high-fidelity computational models.

This work opens a number of new opportunities for future research. From a fundamental perspective, our
computational model can be used to understand migration of compound droplets on deformable solids; see [85] for a
recent work on migration of encapsulated compound droplets in pressure-driven channel flows. Our model may also
assist in understanding collective cell migration on soft solids driven by heterotypic interactions, i.e., interactions
between different cell types [86]. From a modeling perspective, our model, theory and algorithm can be extended
to include the effects of droplet evaporation; see [87] for a recent development of two-phase two-component phase-
field theory. Such models will help us better understand evaporative-driven microfabrication or evaporative-driven
transition in the compound droplet configurations [35].
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Appendix. Derivation of Eq. (35)

Listing 1: This MATLAB code computes the left-hand side of Eq. (35) and stores it in hfunction.
syms gamma 1s gamma 2s gamma 3s gamma 12 gamma 13 gamma 23

syms c c1 c2 c3 g12 g13 g23 G G12 G13 G23

sigma 1 = gamma 12 + gamma 13 − gamma 23 ;

s igma 2 = gamma 12 + gamma 23 − gamma 13 ;

s igma 3 = gamma 13 + gamma 23 − gamma 13 ;

R = gamma 1s ∗ (3 ∗ c1 ˆ2 − 2∗ c1 ˆ3) + gamma 2s ∗ (3 ∗ c2 ˆ2 − 2∗ c2 ˆ3) + gamma 3s ∗ (3 ∗ c3 ˆ2 − 2∗ c3 ˆ3) ;

g12 = c1 ∗ c2 /(1 − c1 ) /(1 − c2 ) ;

g13 = c1 ∗ c3 /(1 − c1 ) /(1 − c3 ) ;

g23 = c3 ∗ c2 /(1 − c3 ) /(1 − c2 ) ;

G12 = (gamma 1s ∗ s igma 2 + gamma 2s ∗ s igma 1 ) /gamma 12 ;
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G23 = (gamma 2s ∗ s igma 3 + gamma 3s ∗ s igma 2 ) /gamma 23 ;

G13 = (gamma 1s ∗ s igma 3 + gamma 3s ∗ s igma 1 ) /gamma 13 ;

G = (3∗G12∗ g12 + 3∗G13∗ g13 + 3∗G23∗ g23 ) ;

gammasf drv c1 = d i f f ( s imp l i f y (R + c1 ∗ c2 ∗ c3 ∗G) , c1 ) ;

gammasf drv c2 = d i f f ( s imp l i f y (R + c1 ∗ c2 ∗ c3 ∗G) , c2 ) ;

gammasf drv c3 = d i f f ( s imp l i f y (R + c1 ∗ c2 ∗ c3 ∗G) , c3 ) ;

d e l t a = 6/(1/ sigma 1 + 1/ sigma 2 + 1/ sigma 3 ) ;

h = −( de l t a /6) ∗ ( gammasf drv c1/ sigma 1 + gammasf drv c2/ sigma 2 + gammasf drv c3/ sigma 3 ) ;

h funct ion = s imp l i f y ( subs (h , { c1 , c3 , c2 } , { c , 0 , 1−c } ) )
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